
H. Li, Z. Chen, and R. Gupta. ParaStack: Efficient Hang Detection for MPI
Programs at Large Scale. In SC’17.

Hang Detection at Large Scale

On supercomputers, the execution of one batch job costs

#𝑐𝑜𝑟𝑒𝑠 ∗ 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑_𝑡𝑖𝑚𝑒.

Hangs, once occurring, cause a great wastage of computing resources
as it stalls the program execution until the allocated time expires, e.g.,
thousands of cores within the allocated time can be wasted in large
scale runs. Hence, it is urgent to devise a tool to detect hangs at
runtime and terminates hanging job to avoid the wastage.

Key Insight: a program hang occurs when a majority of processes
stay inside MPI communication for a long time.

Based on the insight, ParaStack detect hangs based on a statistical
model maintained at runtime with following highlights:

1) It avoids the complexity of timeout setting.

2) It detects hangs with high accuracy, in a timely manner, with
negligible overhead, and with low false positive rate, and thus
enables great saving for hanging jobs.

3) It is adapted to work with two most popular batch job
schedulers Torque and Slurm.

H. Li, Z. Chen, R. Gupta, and M. Xie. Non-Intrusively Avoiding Scaling
Problems in and out of MPI Collectives. In HIPS’18.

Avoiding Scaling Problems for MPI Collectives

Scaling problems frequently occur with the use of MPI collectives. It
is challenging to fix them. We provide an avoidance framework as an
immediate remedy. Its core idea consists of two parts:

1) Find the trigger point of a scaling problem via testing.

2) Bypass the bug via partitioning the communication.

H. Li, S. Li, Z. Benavides, Z. Chen, and R. Gupta. COMPI: Concolic Testing for
MPI Applications. In IPDPS’18.

Automated Testing with COMPI

Concolic testing automates the testing of a target MPI program by
automatically generating inputs. COMPI extends it in following ways:

1) It tackles basic MPI semantics.

2) It controls the testing time.

With up to 3.5 hours, COMPI justifies itself as a practical testing tool:

1) 69-80% branch coverage for complex programs including HPL,
IMB, and SUSY-HMC (a physics simulation program).

2) 4 new bugs in SUSY-HMC.

3) 4-81% more branch coverage than standard concolic testing.

4) 46-67% more coverage than random testing.

Testing and Runtime Support for MPI Applications

Overview

MPI (Message Passing Interface) is the de facto standard for
distributed memory programming. However, the tool support for MPI
applications’ development and runtime is far from enough:

1) No practical systematic testing techniques for bug detection.

2) No sufficient runtime support for scaling problems – a class of
bugs manifesting at large scale either in terms of problem size
or the number of processes.

Hongbo Li, Zizhong Chen, and Rajiv Gupta
University of California, Riverside

void main() {
int x, y, n, r; // input: (x, y, n, r)
COMPI_int(x); COMPI_int(y);
COMPI_int(r); COMPI_int(n);
MPI_init();
MPI_Comm_size(

MPI_COMM_WORLD, &n);
MPI_Comm_rank(

MPI_COMM_WORLD, &r);
B1: if (x == 100) func1();
B2: else func2();
B3: if (n < 10) func3();
B4: else func4();
B5: if (0 == r) func5();
B6: else {
B7: if (y != 123) func6();
B8: else ABORT_on_Bug(); }
}

3 decision points, or
6 branches
Inputs: (x, y, rank, nprocs)

Figure 1. An MPI program.

Input: (100, 200, 4, 0)

𝑥 = 100, 𝑛 < 10, 𝑟 = 0
62.5% : 𝐵1, 𝐵3, 𝐵5, 𝐵6, 𝐵7

1

Input: (101, 200, 4, 3)

𝑥 ≠ 100, 𝒏 < 𝟏𝟎, 𝑟 = 0
75% :𝐵1, 𝐵2, 𝐵3, 𝐵5, 𝐵6, 𝐵7

Input: (101, 200, 𝟏𝟐, 0)

𝑥 ≠ 100, 𝑦 ≠ 123, 𝑛 ≥ 10, 𝒓 = 𝟎
87.5% :𝐵1, 𝐵2, 𝐵3, 𝐵4, 𝐵5, 𝐵6, 𝐵7

2 w/ 𝑥 ≠ 100

1

2 w/ 𝐧 ≥ 𝟏𝟎

1

2 w/ 𝐫 ≠ 𝟎

1 Execute the program

2 Negate a constraint & Solve

Figure 2. COMPI drives the testing.

……

Figure 3. The process of root filling its receiving buffer recvbuf in one
MPI_Gatherv communication partitioned by two strategies, supposing the bug
occurs when the root receives more than 4 elements at a time.

Receive 2 elements per proc.
from proc. 0 and 1

Receive 1 element per proc.
from proc. 0, 1, 2, and 3

Receive 2 elements per proc.
from proc. 2 and 3

Receive 1 element per proc.
from proc. 0, 1, 2, and 3

One empty element in recvbuf

One filled element in recvbuf

Figure 1. Overview of our work: (1) automated testing for general bug detection,
and (2) runtime support for hard scaling problems that escapes the testing.

Guess one! Statistics decides!

What is majority? 90% or 100% ?
How long? 1min or 1 hour ?

Timeout ParaStack

Phase I: Software Development Phase II: Production Runs

Figure 4. ParaStack v.s. Timeout.

Notes: The original title is Correctness Support for MPI Applications.

