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Abstract—It has been observed that scaling problems are
highly likely to manifest when MPI applications are launched
at a large scale where the scale is characterized by the degree
of parallelism and the problem size. As the complexity of MPI
collectives is directly impacted by both parallelism scale and
problem size, their use often triggers scaling problems. Scaling
problems’ root cause can be outside of MPI libraries and these
can be easily exposed via the dynamic interaction between
user code and MPI library as the scale goes up. Specifically,
irregular collectives suffer the most as the C int displacement
array can easily be corrupted with integer overflow. Scaling
problems can also result from a bug inside the released MPI
libraries due to the lack of a systematic testing of MPI libraries
as well as the platform or environment dependency of some
scaling problems. Hence it is important for library users to
perform testing on their platform to expose potential scaling
problems. Fixing a scaling problem is challenging, and thus it
usually takes much time for users to wait for an official fix,
which sometimes is not even possible due to the difficulty of bug
reproduction, root-cause identification, and fix development. To
improve users’ productivity, we establish the necessity of user
side testing and provide a protection layer to avoid scaling
problems non-intrusively, i.e., without requiring any changes to
the MPI library or user programs. This provides an immediate
remedy when an official fix is not readily available.

I. INTRODUCTION

MPI has been the de facto standard of message passing

based parallel programming model on distributed memory

systems. However, application developers face the challenge

of dealing with bugs whose root-cause is often hard to locate

because errors in one process can easily propagate to other

processes via communication. To make matters worse, some

errors, such as integer overflow and resource exhaustion,

manifest only at large scale. We refer to them as scaling
problems [36], [37], [33], [26].

It has been recognized that program scale has two di-

mensions: parallelism scale, i.e. the number of parallel

processes; and problem size [37] that impacts the message
size that must be handled by the MPI library. Thus, scaling

problems can be triggered by large values in either one

dimension or both leading to the following natural clas-

sification: Type-1 problems are only triggered by a large

parallelism scale; Type-2 problems are only triggered by a

large problem size; and Type-3 problems are triggered by

the combination of the two. We collected a list of well-

documented scaling problems reported online as shown in

Table I. Also, we detected new bugs in various MPI versions

that are listed in Table II. A scaling problem is classified

as Type-3 if the description stresses both parallelism scale

and message size, as Type-2 if it is only related to message

size, and as unknown (either Type-2 or Type-3) if it depends

on message size while its dependence on parallelism scale

is unknown. With such classification, ten scaling problems

are Type-3 (Prob. 1-5, 9-13), one is Type-2 (Prob. 6), and

two are unknown (Prob. 7-8). To our knowledge, Type-3 is

the most common type of scaling problem, Type-2 is next,

and Type-1 is the least common as in our investigation we

are yet to observe a Type-1 problem. This paper focuses
on Type-2 and Type-3 scaling problems – Type-3 problems
are discussed in the context of MPI collectives as collective
communication directly depends on both the parallelism
scale and the problem size.

A. Scaling Problems Observed

Scaling problems can be exposed in the dynamic interac-

tion between user code and MPI library. In the interaction,

the target program runs with various number of processes

and demands the passing of messages of differing lengths.

In extreme cases, the use of too many processes (too large

messages) causes the corruption of MPI routines though

it only demands communications of messages of moderate

lengths (a moderate number of processes). Among all the

MPI routines, irregular collectives, that enable processes to

transfer varying amounts of data, suffer from this problem

the most due to their use of C int displacement array that

characterizes irregular collectives. Take MPI Gatherv as an

example and suppose P processes are used, the address

of the root’ buffer for received messages is recvbuf , and

the displacement array is displs. With MPI Gatherv, one

process, known as the root, gathers messages from all P
processes and stores them in recvbuf according to displs
— the i-th entry of displs specifies the displacement relative

to recvbuf at which to place the incoming message from
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Table I
WELL-DOCUMENTED scaling problems REPORTED ONLINE [1], [8], [36], [3], [6], [7]. NOTES: (1) EFFECT - HANG, CRASH AND PERFORMANCE

DEGRADATION; (2) FAILING SCALE (P,M) - THE PARALLELISM SCALE AND MESSAGE SIZE THAT TRIGGER THE PROBLEM.

Prob. Collective MPI library Type Effect Scale (P,M) Root cause (inside MPI)

1 MPI Gather OpenMPI 1.4.3 3 H (64, 4KB) Environment setting dependency
2 MPI Alltoall OpenMPI 1.4.3 3 H (44, 4MB) Environment setting dependency
3 MPI Allgather OpenMPI 1.4.3 3 H (64, 4MB) —
4 MPI Alltoallv OpenMPI 1.7 3 H (96, 512KB) Network connection failure
5 MPI Allgather MPICH 2 3 D P ·M > INT MAX Integer overflow in MPI
6 MPI Send + Recv Intel MPI 5.1.2 2 H (2, 64KB) OS (ubuntu) dependency
7 MPI Bcast Intel MPI 5.1.2 2 or 3 H (2, 64KB) Unknown to developers
8 MPI Bcast Intel MPI 2017 2 or 3 H (—, 16KB) Platform (KNL & BDW) dependency

Table II
NEWLY UNCOVERED SCALING PROBLEMS.

Prob. Collective MPI library Type Effect Scale (P,M) Root cause

9

MPI Gatherv(I)

MPI Standard

3 C

(48, 44MB)
MPI Scatterv(I) 3 C/H Outside
MPI Allgatherv(I) 3 C MPI
MPI Alltoallv(I) 3 C

10 MPI Igather OpenMPI 1.7 3 C
(48, 44MB)

11 MPI Iscatter & 1.10 3 C/H Inside
12 MPI Gather

MPICH 3.1.3
3 C (48, 128MB) MPI

13 MPI Scatter 3 C (48, 44MB)

Table III
WHO CAN FIX? MPI DEVELOPER (M),
APP. DEVELOPER (D), APP. USER (U),

OR OUR PROTECTION LAYER (P).

Prob. M D U P

1-4,
� �

6-8
9 � �
5,

� �
10-13

process i (0 ≤ i < P ), i.e., the starting address of the

message from process i is

recvbuf + displs[i] ∗ s, (1)

where s denotes the size of the messages’ data type. The

maximum of a int type in C is denoted as INT MAX. Since

displs[P − 1] ≤ INT MAX, the number of elements that

the root receives from the first P − 1 processes must be no

bigger than INT MAX−1, which is about 1/(P −1) of the

number of elements the root receives from the first P − 1
processes when using MPI Gather (INT MAX ∗ (P − 1)).
In addition, C int is represented with 32 bits on most current

platforms [22]. When P = 1024, each process sending a few

megabytes (220 Bytes) can easily corrupt MPI Gatherv’s

displs as well as MPI Gatherv. Hence irregular collectives

face an urgent scalability issue that must be dealt with.

Scaling problems can result from a bug inside released

MPI libraries due to the following two reasons. First, the

lack of systematic testing over MPI software stack has

caused scaling problems to go undetected – Type-2 problems

triggered when operating on large messages have seen little

test coverage [22] and the fact that Type-3 scaling problems

manifest due to the combined force of parallelism scale

and message size has not been adequately appreciated.

Second, manifestation of some scaling problems is platform

or environment dependent [1], [2], [3], [4], [6], [7] and com-

pleletly removing them is extremely challenging. Therefore,
it is important for the library users, including both MPI
application developers and the application users, to perform
testing by themselves to detect potential scaling problems of
MPI routines of their interest.
B. Challenges

A scaling problem caused by breaking the aforementioned

limits of irregular collectives can be fixed by MPI application

developers via changing the application code so as to avoid

corrupting the irregular collectives’ displacement array. But

application developers might not be willing to fix it when

most often the application is used at small scale without

breaking the limit. In addition, many — surely not all

— application developers argue that MPI standard should

replace all the uses of C int with C long long int to avoid

the scaling problem due to integer overflow on MPI routines.

However, it has been a struggle for MPI standard to make

this replacement. The issue of C int has been discussed since

at least 2011. However, MPI forum believes that developers

can support large count by themselves, like by building big

data types, and persists using C int till today to provide

backward compatibility [9], [10].

For a scaling problem whose root cause is inside MPI,

MPI library developers are responsible for fixing it, but it

takes time to release an official fix and sometimes even

not possible due to the difficulty of platform or environ-

ment dependent bugs’ reproduction. Reproducing a scaling

problem is challenging since some scaling problems are

platform-dependent [3], [4], [6], [7] and some occur due

to an incompatible environment setting [1], [2]. Because

of these reasons some scaling problems might never be

reproduced [6]. After a bug is reproduced, it can still take

much time to issue a fix due to the difficulties of root-cause

identification and the development of a safe fix [30].

C. Our Solution
To relieve the tension among MPI developers, application

developers and application users as shown in Table III, this

paper proposes user-side testing to uncover scaling problems

and provides a framework that non-intrusively bypasses the

uncovered problems. First, we eliminate the aforementioned

limits of irregular collectives: based on interception, we

check if the displacement array is corrupted, i.e., if it

contains negative values, recover the value if a corruption

occurs, and avoid the scaling problem via either (1) chopping

the communication into smaller ones or (2) building big
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data types. Second, we bypass scaling problems inside the

MPI collectives based on testing and the same avoidance

strategies. We provide an automated testing tool set for

MPI collectives that users can use to test the correctness

of MPI routines of interest at large scale either when MPI

is installed or when they suspect that some routines trigger

scaling problems for applications built on them. If a scaling

problem is detected for an MPI routine, the testing procedure

reveals the problem trigger point, i.e. the parallelism scale or

message size that triggers a scaling problem. When running

an application, MPI routines are intercepted to dynamically

check if the problem trigger is reached. If this is the case, our

avoidance routine as discussed above is invoked to bypass

the problem. The key contributions of this paper are:

• It makes a clear classification of scaling problems,

and this classification leads to a useful observation —

testing for Type-3 scaling problems does not necessarily

require a large scale supercomputer if we exploit the

interplay between message size and parallelism scale.

• It establishes the necessity of user-side testing to

manifest scaling problems inside MPI collectives. We

uncover two kinds of Type-3 scaling problems as shown

in Table II: (1) an inherent defect in MPI standard on

irregular collectives that impacts eight MPI routines;

and (2) four hidden scaling problems inside the released

MPI libraries including OpenMPI and MPICH.

• It provides a protection layer to avoid scaling problems

without requiring any changes to the MPI library or user

programs. It is an immediate remedy when an official

fix is not readily available.

• It evaluates the practicality of our protection layer

consisting of three potential avoidance strategies for

four representative MPI collectives.

II. OVERVIEW

To affect a non-intrusive fix, we need the following:

(1) problem trigger which is the scale at which a scaling

problem manifests itself; and (2) an avoidance that alters

the execution to avoid the problem. Once both of them are

known we intercept an MPI Collective as shown below.

i n t M P I C o l l e c t i v e ( . . . ) {
i f ( c h e c k p r o b l e m t r i g g e r ( ) )

M P I C o l l e c t i v e A v o i d a n c e ( . . . ) ;
e l s e

P M P I C o l l e c t i v e ( . . . ) ;
}

The interception permits the default collective

PMPI Collective() only when a scaling problem’s

trigger is not reached; otherwise, it invokes the avoidance

routine MPI Collective Avoidance().
The trigger of the scaling problems caused by the cor-

ruption of the displacement array of irregular collectives

is obvious: it is when at least one element in the array

is negative (corrupted). To identify the triggers for other

Table IV
NOTATIONS.

Symbol Meaning

n Element count in one message
s Size of the data type in bytes
P Total number of processes
Gb Global data buffer size in bytes

Ge Global data buffer size in element count, Gb
s

Table V
MPI COLLECTIVES AND THEIR GLOBAL DATA BUFFER SIZE. IF (I )

FOLLOWS A COLLECTIVE, THE COLLECTIVE HAS A NON-BLOCKING

VARIATION; IF v FOLLOWS A COLLECTIVE, THE COLLECTIVE HAS AN

IRREGULAR VARIATION.

Type Function Gb

One-to-All
MPI Bcast(I) sn
MPI Scatter(I, v) snP

All-to-All

MPI Allgather(I, v) snP
MPI Allreduce(I) sn
MPI Alltoall(I, v) snP
MPI Reduce scatter sn

All-to-One
MPI Gather(I, v) snP
MPI Reduce(I) sn

problems, we employ testing. As both Type-2 and Type-

3 scaling problems relate to the message size, they can

be triggered even on a small cluster by testing using large

message sizes. Testing not only tells us if a scaling problem

exists, it also identifies the scale that triggers the problem.

The avoidance we develop either (1) replaces the default

large scale communication specified by multiple commu-

nications at a smaller scale or (2) exploits the interplay

between element count and data type size, whose product

equals the message size, by building a big data type. Without

involving uncovered details, we just give an example of one

strategy for the above approach (1). As shown in Table I,

MPI Gather (Prob. 1) breaks when the message size is

4KB when running with 64 processes. Suppose users use

it at 8 KB message size with 64 processes. By testing we

supposedly get the maximum workable message size like

3KB. Our avoidance bypasses it by carrying out two rounds

of 3KB message transfers and one round of 2KB transfer.

III. MANIFESTING SCALING PROBLEMS

A. Basics of MPI Collectives
Table IV lists the notations we use. With a collective,

P processes communicate with each message having n
elements whose data type’s size is s. MPI collectives can

be classified into four types: All-to-All, All-to-One, One-
to-All, and other collectives that do not fit into any type

above [32]. Table V lists the collectives considered in this

paper, which covers both the blocking/non-blocking regular

collectives and blocking/non-blocking irregular collectives.

Root process is the process holding the final result for All-

to-One collectives and the one holding the data sent out to

all processes for One-to-All collectives. No root exists in

symmetrical All-to-All collectives.

Global data buffer stands for the data buffer whose con-

tents are either contributed by or distributed to all processes.

The global data buffer is the root’s receiving buffer for All-
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Table VI
EXPERIMENT SETUP.

Platform • Tianhe-2, each node having 2 E5-2692 processors (24
cores) and 64GB memory

MPI
• MPICH 3.1.3 based on InfiniBand
• OpenMPI 1.7 & 1.10.0 based on TCP/IP

Programs • OMB adapted for automated testing

to-One and the root’s sending buffer for One-to-All. Each

data buffer for All-to-All is a global data buffer, but we refer

to the largest data buffer when discussing its size. We denote

the global data buffer size in bytes as Gb and in terms of

element count as Ge. Gb can be expressed as functions of

s, n, and P (see Table V), and Ge = Gb/s.

B. Testing
Experiment Setup. Table VI provides an overview of

our experiment setup. The MPI libraries we study include

MPICH 3.1.3, OpenMPI 1.7, and OpenMPI 1.10.0. MPICH

3.1.3 runs over of TH-express—a specialized high perfor-

mance network interconnect of Tianhe-2 [31]. OpenMPI on

the other hand is run by using TCP/IP over TH-express,

which can be achieved by assigning btl framework to

tcp [21]. We modified collective benchmark set from the

OSU micro-benchmark suite (OMB) [11] so that it enables

us to set a time limit for the test at each message size and

to vary n and s.
Testing Scheme. We perform testing by scaling both

parallelism and message size. To increase parallelism P ,

we increment the number of nodes while allocating 24

processes per node (1 process per core). To increase message

size sn we increase n while fixing s – for MPI Reduce,

MPI Reduce scatter, and MPI Allreduce, s = 4B as data

type MPI FLOAT is used and for the rest s = 1B as

MPI CHAR is used. We perform testing for P = 48 and

96. Given P , the testing is fully automated via a Linux shell
script that submit time-limited tests (jobs) to job scheduler

— each test is denoted as test(n, t), where t stands for the

time limit requested to run the job. If a test crashes or cannot

finish in time t, a failure is reported. Testing steps are:
– Step 1 iterates until (1) the message size grows to

INT MAX, the maximum allowed by its data type, (2)

memory limit is hit 1 or (3) a failure is encountered. This

process starts from n = 1 with t = 60 seconds as it is far

more than enough to complete a transfer of 1 or 4 bytes

with 60 seconds for any collective in our configuration. If it

succeeds, we update t as the real time cost of the current run.

We continue tests by increasing message size via n← 2 ∗n
as well as sufficiently increasing the time limit via t = 10∗t.
In this step, the testing procedure terminates without finding

any scaling problem if condition (1) is met; the testing with

the next P configuration starts if condition (2) is met; and

the testing proceeds to Step 2 upon condition (3) with the

detected largest n that passes the test, denoted as n′s.

1During execution if a test runs out of memory due to the huge memory
footprint, we can identify this error from the error logs showing some
processes being killed by the kernel, or more specifically by OOM killer.

Table VII
SAFE BOUNDS.

Root cause Prob.
Safe bound ns (Δ)

P = 48 P = 96
Outside MPI 9

42M (2M) 21M (1M)
Inside MPI

10-11, 13
12 124M (4M) 62M (2M)

– Step 2 refines n′s found in Step 1 as follows. We know n′s
succeeds and 2n′s fails, so we test at interval Δ = n′s/f (we

use f = 16 in our testing and users can vary f to configure

Δ to satisfy their requirement) in the range [n′s +Δ, 2n′s).
Finally the largest n that passes the test at interval Δ is

found. The safe bound, ns, is the largest n that passes the

test under our testing scheme for the given s and P , i.e., the

test is able to pass if n ≤ ns but it fails if n > ns +Δ.

C. Scaling Problems Uncovered

Using the above testing scheme we uncovered scaling

problems shown in Table II. These scaling problems can

result from (1) Displacement array corruption outside MPI
library that impacts all 8 irregular collectives from any MPI

library and (2) A corruption inside MPI library, which maps

to 4 corrupted functions in various released MPI libraries.

Outside MPI (Prob. 9). In the default setting that allo-

cates 24 processes per node, all irregular collectives except

MPI Alltoallv(I) are found to be susceptible to this problem,

and MPI Alltoallv(I) are not as it hits the memory limit first

due to its higher memory consumption. The scaling problem

occurs with the use of MPI Alltoallv(I) when we reduce the

memory consumption by allocating one process per node.

These scaling problems are invariably caused by an integer

overflow error when calculating the C int displacement array

for irregular collectives. On the other hand, even this error

does not occur in user code, i.e., users calculate correctly

based on a larger data type like C long long int, the scaling

problems would still occur due to truncation error in the

data type conversion.

Inside MPI (Prob. 10, 11, 12, 13). Table II shows

two collectives — each in both OpenMPI 1.7 and

1.10.0 and MPICH 3.1.3 — encounter a scaling prob-

lem due to an integer overflow inside the MPI li-

brary. Next we illustrate this problem using MPI Igather

from OpenMPI 1.10. In MPI Igather’s underlying function

ompi coll libnbc igather, the root process needs to calcu-

late the starting address rbuf for storing the message from

process i with

rbuf = (char *)recvbuf + i ∗ recvcount ∗ rcvext, (2)

where recvbuf is the starting address of the root’s receiving

buffer, recvcount (C int) is the number of elements in one

message, and recvext is the size of the used data type.

Integer overflow occurs when i ∗ recvcount > INT MAX,

which results in a negative integer as well as an invalid ad-

dress assigned to rbuf . Considering there are P processes in

total, the problem is triggered once n(P −1) ≥ INT MAX.
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Table VIII
SCALING PROBLEM DETECTORS.

Class Detector
D displs[i0] < 0
G Gb > Bh or Ge > Bh

X n > Bh given s and P
• displs, the displacement array for an irregular collective
• i0, the index of the first corrupted element
• Bh, a bound restricted by an unknown scaling problems

Safe bound. For each MPI routine having a scaling

problem, we report the safe bound ns, where test is able

to pass if n ≤ ns but it fails if n > ns+Δ. The safe bound

for each scaling problem is reported in Table VII.

Useful insights have been gained based on the prob-

lems reported online as well as new problems detected

by us. First, manifesting a Type-3 scaling problems does

not necessarily demand a supercomputer and many scaling

problems can be found by interplaying the message size

and parallelism scale. Second, the testing coverage of MPI

software stack is inadequate as shown by newly uncovered

problems and scaling problems resulting from platform and

environment dependency are hard be removed. Third, it

takes time to obtain an official fix and sometimes the fix

is not possible considering the platform-dependent scaling

problems that are hard to be reproduced [6] as well as the

displacement array corruption for irregular collectives. All

these inspires us to propose user-side testing and to provide

an easy-to-use protection layer, which acts as an immediate

remedy when an official fix is not available.

IV. ONLINE PROBLEM DETECTORS

Depending upon the difficulty of detection, we classify

the problems into 3 classes as shown in Table VIII: (1)

Class D caused by displacement array corruption, (2) Class

G triggered when the global data buffer is too big, and (3)

Class X whose trigger form is not known.

A. Class D: Displacement Array Corruption

To detect the occurrence of a scaling problem (e.g., Prob.

9) because of displacement array displs corruption is very

straightforward. One pass over the array is enough. Below

we detail the validity of our assumptions and how we detect

the corruption as well as how displs can be recovered 2.

Assumptions. We assume (1) uncorrupted values in array

displs are non-descending; (2) n ≤ INT MAX; and (3)

two’s complement is used to represent integers. Assumption

(1), though not specified by MPI standard, is based on a

commonly used programming convention of organizing the

data in global data buffer by MPI rank. Using this conven-

tion makes programming less error-prone. Assumption (2)

implies that the number of elements sent by each process

is at most INT MAX, which is specified by the standard.

Assumption (3) is true on nearly all modern machines [13].

2Proofs omitted due to space limitation – will be provided upon request.

Table IX
DETECTOR G’S LOOKUP TABLE.

1 2 3
Detector Type

(ss, Ps) (ss, 2Ps) (2ss, Ps)

ns

ns/2 ns/2 snP > ssnsPs 3
ns/2 ns nP > nsPs

ns ns/2 sn > ssns 2
ns ns n > ns

Detector D. A corruption is detected if displs[i0] < 0,

where 0 ≤ i0 ≤ P − 1 and the itho entry is the first element

being corrupted.

Recovery. Suppose the actual values of array displs are

a0, a1, a2, ..., aP−1 and the supposed correct values are c0,

c1, c2, ..., cP−1. Upon two’s complement system, we have:

ai = ci%(2 INT MAX + 2)− (2 INT MAX + 2). (3)

This implies that for a corrupted array the actual values will

have several segments, where the actual values are sorted

increasingly in the range of [−INT MAX− 1, INT MAX].
We can always recover displs based on the corrupted values

as below: (1) if i = 0,

ci = a0 ; (4)

(2) else if i > 0 and ai ≥ ai−1

ci = ci−1 + ai − ai−1 ; (5)

and (3) else

ci = ci + ai + 2INT MAX + 2− ai−1 ; (6)

B. Class G: Global Data Buffer Too Large
This class of scaling problem manifests when the global

data buffer size exceeds a certain bound Bh. For example,

Prob. 5, 10, 11, and 13 fall in this class.

Detector G: Gb > Bh or Ge > Bh, i.e., the global data
buffer size, evaluated in either bytes or elements, exceeds a

bound caused by an unknown scaling problem.

This problem trigger is built based upon the analysis of

certain scaling problems – Prob. 5, 10 and 11. Prob. 5 is a

Type-3 scaling problem that was found in MPI Allgather in

MPICH2 [36]. It was tracked down to an integer overflow

that caused a non-optimal communication algorithm to be

selected and this leads to serious performance degradation.

Its problem trigger relation is

snP > INT MAX. (7)

The triggers of Prob. 10 and 11 can be expressed as

n(P − 1) ≈ nP > INT MAX, (8)

where P � 1. All these problem triggers represent cases
where the global data buffer size exceeds a certain bound.

Based on the global data buffer size, we can clas-

sify MPI collectives into two types: (1) collectives with

Gb = snP including MPI Alltoall(I,v), MPI Allgather(I,v),

MPI Gather(I,v), and MPI Scatter(I,v), whose trigger

(Type-3) can be expressed as

nP > Bh, or snP > Bh; (9)

and collectives with Gb = sn including MPI Allreduce(I),

MPI Reduce(I), MPI Reduce scatter(I) and MPI Bcast(I),

whose triggers (Type-2) are

n > Bh, or sn > Bh. (10)
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Figure 1. Safe bounds of G problems (Prob. 10, 11 and 13).

Figure 2. Safe bounds of an X problem (Prob. 12).

Identifying class G and its detector. Based on one round

of testing, we can get the safe bound ns given (ss, Ps, Δ).

To tell whether such scaling problem is from Class G, we

simply check two additional safe bounds at different (s,

P ) configurations by varying each parameter – (2ss, Ps)
and (ss, 2Ps) as given in Table IX. To avoid unnecessary

brute-force stress testing on finding these two additional safe

bounds, we verify if the safe bound is ns/2 or ns. If the test

passes at ns/2 and fails at (ns + Δ)/2, the safe bound is

ns/2; otherwise, we continue checking ns: if the test passes

at ns while failing at ns +Δ, the safe bound is verified to

be ns. If all the safe bounds match any row of Table IX,

we claim this problem is from Class G and its detector is

given in the fourth column. Otherwise, it falls in class X as

discussed below.

C. Class X: Trigger Form Not General
Class X represents scaling problems that cannot be quan-

titatively expressed using a general form. Although Prob. 1,

2, 3, 4, 7 were reported, we cannot conclude that its trigger

can be expressed in a general form like for Class G and thus

we capture them in a restrictive condition.

Detector X: n > Bh given s and P . Note it is not a

general method; it works only within the restriction.

D. Case Studies: Class G and X

Detector D is sound enough based on proof. Here we

show how to find detectors for Class G and Class X.

Class G. To check if a scaling problem is of Class G

or not, we first find the safe bound at (s = 1B, P = 48),
and then verify the two safe bounds at (s = 1B, P = 96)
and (s = 2B, P = 48). The detected safe bounds of

Prob. 10, 11 and 13 are shown in Figure 1, where the

required three as well as three additional safe bounds are

shown so as to provide a clear picture of how the safe

bounds vary given different (s, P ) settings. By checking

Table IX, we conclude that these problems are from Class

G. However, their detectors are different. For Prob. 10 and

11, the detectors are the same:

Ge = nP > 2016M. (11)

Prob. 13’s detector is:

Gb = snP > 2016MB. (12)

Figure 3. Illustration of the partitioning strategies for MPI Gatherv (P =
4 and n = 2) by breaking down the filling process of the global data buffer.
Process 0 is the root and the bug would be triggered when nP > 4.

Class X. Similarly we found that the three safe bounds at

(s = 1B, P = 48), (s = 2B, P = 48) and (s = 1B, P = 96)
are 124M, 68M and 62M respectively as shown in Figure 2.

However, these do not map to any row in Table IX and thus

we classify this problem into Class X. Based on Figure 2,

it follows:{
snP > 5952MB if s = 1 and P ≥ 48
snP > 6144MB if s ≥ 2 and P ≥ 96

(13)

Note that users do not necessarily need to find the exact

bound in all situations. Easily users can find a bound though

overly restrictive. For example, an application uses the buggy

MPI Gather at s = 1B and P = 96. Based on testing it is

easy to obtain 62M as the safe bound. Thus, we assume that

the problem can occur if n > 62M.

V. NON-INTRUSIVE AVOIDANCE

To avoid the risk of introducing other scaling problems,

we keep our design clean via following protocols: (1) the

avoidance of an MPI routine’s scaling problem is based

on the routine itself; (2) the avoidance uses the minimal

number of MPI routines other than the target routine, i.e.

other routines at most do some control messages’ passing

involving only a few bytes. For example, though avoiding

MPI Gather with MPI Gatherv is easy, it it not allowed to

avoid any problems existing in MPI Gatherv.

A. Workaround 1: Communication Partitioning
Partitioning strategies. Consider a Type-3 scaling prob-

lem of Class G that manifests when Gb > Bh (or Ge > Bh).

An inherent workaround (W1) is to partition the communi-

cation such that for each sub-communication nP ≤ Bh (or

Ge ≤ Bh). Specifically, W1 has two partitioning strategies:

(A) shrink P while fixing n; and (B) shrink n while fixing

P . Consider MPI Gatherv, for which the scaling problem is

triggered when nP > 4. Figure 3 shows a simplified view of

how the two strategies are applied. W1-A creates two process

groups – {0, 1} and {0, 2, 3}. Since process 0 is the root

that receives messages from all, it is present in every group.

In the 2nd group process 0 can be configured to send out

nothing; thus the real number of processes participating in

each sub-communication is still two, i.e., P = 2 and n = 2.
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Figure 4. Workaround 1-A for MPI Gatherv.

With W1-B, P = 4 and n = 1 in each sub-communication.

Since nP = 4 with either strategy, the scaling problem is

avoided.

Applying Workaround 1-A to MPI Gatherv: Applying

the workarounds to Class G and X is straightforward, but it

involves the tricky issue of displacement array’s corruption

for Class D. We hence illustrate how W1-A works for

MPI Gatherv (Class D) here. As shown in Figure 4, one

corrupted displacement array displs consists of at least

two segments with all elements in each segment are either

non-negative or negative. Each such segment maps to one

segment of root process’ recvbuf as well as a group of

processes, in which the root process should be added if it

is not included as it is the one that holds recvbuf . The

communication then could be naturally partitioned, each of

which is performed within one group of processes.

Constructing uncorrupted displacement array. Recall

that we have recovered displs from corruption with all

of its correct values stored in array c. For each sub-

communication, we construct a new displacement array

(disps2) as

displs2[i] =

{
0 if i = 0,
cs0+i − cs0 if i > 0,

(14)

where the range [s0, s1 − 1] depicts the process id range

of one process group. In one run, we have cs1−1 − cs0 ≤
INT MAX and thus displs2 would not be corrupted.

B. Workaround 2: Big Data Type

Building a big data type is a potential alternative strategy

(W2) for scaling problems that are unrelated to data type
size s such as Prob. 8, 9, and 10. With the newly created

big data type of size d-bytes, an original message having

x elements with each element accounting for y bytes can

be converted to a new message containing xy/d elements

with each element having d-bytes. That is, the number of

elements in one message (n) is decreased by a factor of

d. Suppose the safe bound limit for an s-irrelevant scaling

problem is ns. This could increase the safe bound from

ns to dns. In addition, W2’s performance is expected to be

Table X
WORKAROUNDS APPLICABILITY: ”�” - APPLY; ”�” - DOES NOT APPLY;

”��” - APPLY WITH RESTRICTIONS.

Scaling problems W1-A W1-B W2

Type-3
Class D ��

� ��
Class G ��
Class X �

Type-2 �

comparable to the original’s as the cost of building new data

type is trivial.

The size of big data type in byte (d) can be set as

following: (1) d = sns for regular collectives; and (2) d =
sngcd with ngcd being the greatest common divisor of all

values in displs and recvcounts for irregular collectives,

which ensures that using the new data type the collective

is able to work as intended. Note that for case (2) W2 is

effective only when ngcd > 1.

C. Applicability and Limitation
Table X summarizes the applicability of all strategies on

various scaling problems. W1-A can tackle the majority of

scaling problems of Class D and G from Type-3, its restric-

tion is for MPI Alltoall(I,v) as this routine has the highest

communication complexity and partitioning the parallelism

scale will only lead to complex error-prone logic. It cannot

handle Class X as we use the detector n > Bh. It does not

handle Type-2 as only message size matters for this type.

W1-B that cuts message size is the most general avoidance

that applies unconditionally. W2 is less general compared

with W1-B because of following limitations: (1) it only

works for scaling problems that are unrelated to s; and (2)

it does not work for irregular collectives when ngcd = 1.

W2’s limitation resides in its limited applicability. W1 has

limitations as well. First, non-blocking communication rou-

tines has been turned into its blocking communication using

W1-A and W1-B. Second, additional memory overhead is

incurred in the implementation of some workarounds like

W1-B for MPI Gather. Third, the performance of W1-A and

W1-B is not as good as the performance of W2.

D. Evaluation
We evaluate our non-intrusive workarounds based on 4

representative MPI routines. They stand for all-to-one and

all-to-all — one-to-all is ignored as it is very similar to all-
to-one, and also they represent irregular, regular, blocking
and non-blocking collectives. Our default setting is the same

as mentioned earlier—24 processes per node (1 process per

core), s = 1B and f = 16.

1) Effectiveness: The effectiveness is evaluated by the

degree to which a workaround can increase the safe bounds
of the default buggy functions – the greater the safe bounds

are increased the more effective is the workaround. In

the evaluation, our workarounds increase the safe bounds

significantly, but the workarounds’ safe bounds are limited

by the physical memory size. To show this point, we also

report the maximum memory consumption on one node,
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Table XI
WORKAROUNDS’ EFFECTIVENESS FOR MPI GATHERV (D) AND MPI IGATHER (G). THE UNIT OF ns IS 1 M, I.E. 220 , AND THAT OF RM IS GB.

Scale ↓
MPI Gatherv MPI Igather

Original W1-A W1-B W2 Original W2 W1-B W2
ns RM ns RM ns RM ns RM ns RM ns RM ns RM ns RM

P
192 10.5 2.21 256 54.00 256 54.0 272 57.38 10.5 2.21 256 54.00 256 54.00 272 57.38
768 2.625 2.03 68 52.60 72 55.69 72 55.69 2.625 2.03 72 57.02 42 32.48 42 32.48

Table XII
EFFECTIVENESS OF WORKAROUND 1-B FOR MPI GATHER (X).

Scale ↓ Original W1-B
ns RM ns RM

P
192 31 6.75 240 50.63
768 7.75 6.19 64 49.50

denoted as RM , which is calculated according to the MPI

standard.

I. Class D (Prob. 9: MPI Gatherv). As shown in Ta-

ble XI, all three workarounds have comparable effectiveness,

and their safe bounds are roughly 24 times the safe bound

of the default MPI Gatherv. W1 and W2 have comparable

effectiveness. The workarounds do not go further because

the physical memory limit is reached — note MPI has

hidden memory footprint besides the obvious RM .

II. Class G (Prob. 10: MPI Igather). Its evaluation is

shown in Table XI. At scale P = 192, three workarounds

are of comparable effectiveness and their safe bounds are

24+ times the default MPI Igather’s safe bound. At P =
768, W1-A is the best, W2 and and W1-B are worse, where

the first is limited by the memory size while the last two

are not. The last two’s worse performance is traced down

to the error of connection time out, i.e., when too many

processes connect to the root process that is only capable

of responding a portion of the connection requests at a time

due to the ongoing communication with large message sizes,

some connections fail to be established within a time limit.

This error doesn’t negatively impact W1-A as each time it

communicates with only a small portion of processes.

III. Class X (Prob. 12: MPI Gather). The detection only

works under a specific restriction as mentioned earlier. Here

the restrictions are s = 1 and P ≥ 48 and the scaling prob-

lem manifests when n ≥ 5952
P . W1-B is the only workable

solution. Table XII shows W1-B’s safe bounds are 7+ times

of the default’s. As W1-B incurs 5.8 GB memory overhead,

RM is smaller compared with the previous experiments.

2) Performance: The performance is measured as time
cost in seconds. As each process might have varying time

costs in one run, we report both the average and the maxi-

mum. Given a (s, n, P ) configuration, a collective is run Y

times, where Y = 500 if n <= 1M and Y = 20 otherwise.

We evaluate the performance of workarounds using the

above three buggy collectives first and then two correctly-

functioning routines with supposed scaling problems for

which all the workarounds apply.

I. Class D. For MPI Gatherv, all workarounds are ef-

fective; they detect scaling problems of class D by detect-

ing if the displacement array displs is corrupted, which

Figure 5. Performance comparison between W1-A and the default
MPI Gatherv (MPICH) before the scaling problem’s occurrence.

Figure 6. Performance comparison among the three workarounds for
MPI Gatherv (MPICH) whose scaling problem (Class D) is triggered once
sn > 2.625MB when P = 768.

Figure 7. Performance comparison among the three workarounds for
MPI Igather (OpenMPI) whose scaling problem (Class G) is triggered once
sn > 2.625MB when P = 768.

Figure 8. Performance trend of W1-B for MPI Gather (MPICH) whose
scaling problem (Class X) is triggered once sn > 7.75MB when P = 768.

involves checking all elements in displs and broadcasting

the judgment to all P processes with respectively O(P ) and

O(logP ) time complexity. Considering such overhead, we

evaluate their performance both before and after the prob-

lem’s occurrence. Figure 5 shows the comparison between

the default MPI Gatherv and W1-A before the problem

occurs. Note all workarounds detect the scaling problem in

the same way and thus have the same detection overhead

before the problem’s occurrence, so we only evaluate W1-A.

We observe that the performance of W1-A is comparable

to the default as the detection overhead is trivial. Figure 6

shows that the time costs of W1-A and W1-B grow linearly

with message size as it cuts communication into roughly

equal-sized pieces. W2’s performance is better as it retains

the communication only by varying the parameter setting,

but it should be noted it is not guaranteed to work for
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Figure 9. Performance comparison based on MPI Gather (MPICH)
supposing a Class G problem is triggered when n > 128K at P = 768.

Figure 10. Performance comparison based on MPI Allgatherv (MPICH)
supposing a Class G problem is triggered when n > 128K at P = 768.

irregular collectives as explained previously. To make W2
work in this case, we configure all processes transfer equal-

sized messages in the experiment.

II. Class G. Since the problem detection is only based

on checking an inequality which is far less overhead than

the detection overhead discussed above, we only measure

the performance after the problem’s appearance. Figure 7

shows the performance comparison of W1-A, W1-B, and

W2 for MPI Igather. W1-A is better than W2 by only a small

margin, and W1-B’s performance is about half of W2’s.

III. Class X. As the detection is also trivial, the per-

formance is measured only after the problem’s appearance,

which is shown in Figure 8.

IV. Evaluation of all workarounds based on correct
MPI Gather. To make sure all workarounds apply, we

suppose a class G scaling problem would be triggered if

nP > 96M. Figure 9 shows the performance comparison

among all and the default. It is observed that: (1) For the

default and W2 the maximum time cost is about 50 times the

average, but for W1-A and W1-B the maximum is at most

1.2 times the average, which results from the fact that the

partitioning method of W1-A and W1-B delays all the non-

root processes while W2 does not; (2) W2 is of comparable

performance to the default; (3) Based on the maximum,

W1-A’s time cost is 1.8 times the default’s and W1-B’s is

1.5 times the default’s.

V. Evaluation of all workarounds based on correct
MPI AllGatherv. For the same reason, we assume a class

G scaling problem would be triggered if nP > 96M . Figure

10 shows the performance comparison. We have following

observations: (1) the average and the maximum has little

difference as the communication is symmetrical, i.e., all the

processes transfer the same amount of data; (2) W2 and the

default have comparable performance; (3) W1-A and W1-B
respectively demands about 1.7 and 2.2 times the time cost

of the default.

Summary. Before a scaling problem’s occurrence, the

performance of any workaround is comparable to that of

the default. After its occurrence, W2’s performance is com-

parable to the default’s. W1-A’s and W1-B’s performance

are worse because they partition the default communication,

and their time cost increases linearly as the message size

goes up. In conclusion, W1-B is the a general solution, and

W2 has the best performance.

VI. RELATED WORK

General bug detection. Though MPI has been the de

facto standard for message passing, the difficulty of using

MPI remains a challenge due to various programming errors

and library errors. Many works [18], [34], [25], [20], [23],

[24] have focused on detecting programming errors like

resource errors, parameter errors and deadlocks. There are

also quite a few works [19], [16], [17] that detect defects

such as data movement error and synchronization error

inside MPI library. All these focus on specific errors that

are not necessarily related to running scale or problem size.

Our work instead studies scaling problems. Testing has been

used to uncover non-deterministic bugs [35] and program

logic errors [15]. We further the study of testing by applying

it on scaling problems.

Scaling problems. Much progress has been made on

detecting and diagnosing scaling problems. Zhou et al. [36],

[37] predict the happening of scaling problems based on a

model built from bug-free runs at small scale. To aid the

diagnosing of hangs and deadlocks, many works studied

how to automatically identify the root-cause process of

scaling problems [12], [28], [27], [29] as well as how to

efficiently detect hangs at runtime [14]. These focus on

only one step of the whole debugging process, i.e., the root

cause identification at the process level. Laguna et al. [38]

identify the scale-dependent integer overflow bugs at code-

level in large-scale parallel applications using both static

and dynamic analysis so as to help programmers fix the

bug. All of the above are complementary to our work. Our

work is different from them as it aims to find an integrated

solution that detects and bypasses scaling problems of the

MPI libraries without the necessity to locate the root cause.

Hammond et al. [22] extends MPI to support the need of

sending a message having a large element count that exceeds

INT MAX based on building big data types. Our work used

the idea of big data types as one of our approaches to solve

a different problem: (1) the element count does not disobey
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the MPI standard, i.e. it is smaller than INT MAX; and

(2) we provide non-intrusive workarounds for more than

integer overflow, e.g. the workarounds can also work for

environment-dependent scaling problem.

VII. CONCLUSION

We demonstrate the necessity of user-side testing. We

show that testing with limited computing resources can

manifest scaling problems based on the interplay between

message size and parallelism scale. We provide a protection

layer consisting of three potential avoidance strategies and

evaluate its practicality based on representative MPI rou-

tines. Our strategies can also be easily applied to point-to-

point communication.
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