
COMPI: Concolic Testing for MPI Applications

Hongbo Li, Sihuan Li, Zachary Benavides, Zizhong Chen, Rajiv Gupta

Department of Computer Science and Engineering
University of California, Riverside

Riverside, USA
{hli035, sli049, benavidz, chen, gupta}@cs.ucr.edu

Abstract—MPI is widely used as the bedrock of HPC
applications, but there are no effective systematic software
testing techniques for MPI programs. In this paper we develop
COMPI, the first practical concolic testing tool for MPI
applications. COMPI tackles two major challenges. First, it
provides an automated testing tool for MPI programs — it
performs concolic execution on a single process and records
branch coverage across all. Infusing MPI semantics such as
MPI rank and MPI COMM WORLD into COMPI enables it
to automatically direct testing with various processes’ execu-
tions as well as automatically determine the total number of
processes used in the testing. Second, COMPI employs three
techniques to effectively control the cost of testing as too high
a cost may prevent its adoption. By capping input values,
COMPI is made practical as too large an input can make
the testing extremely slow and sometimes even fail as memory
needed could exceed the computing platform’s memory limit.
With two-way instrumentation, we reduce the unnecessary
memory and I/O overhead of COMPI and the target program.
With constraint set reduction, COMPI keeps significantly fewer
constraints by removing redundant ones in the presence of
loops so as to avoid redundant tests against these branches. Our
evaluation of COMPI uncovered four new bugs in a complex
application and achieved 69-86% branch coverage which far
exceeds the 1.8-38% coverage achieved via random testing.

I. INTRODUCTION

MPI is the de-facto standard for message-passing. It is

used widely in the field of high performance computing

(HPC). To improve programmers’ productivity, significant

progress has been made towards assisting in the debugging

of errors in MPI applications. The research works on de-

bugging can generally be classified into three categories:

detecting MPI-semantics related bugs [9], [10], [11], [12],

[13], [14]; detecting or diagnosing complex bugs at large

scale [15], [16], [17], [18], [19], [20]; and finally reproduc-

ing and manifesting non-deterministic bugs [21], [22], [23].

In contrast to the above advances in debugging, little effort

has been spent on developing systematic software testing
techniques for MPI programs, even though testing is the

predominant technique in industry to ensure software qual-

ity. The lack of testing techniques for MPI applications is

likely the result of inadequate interaction between scientists,

who play a leading role in HPC application development,

and industrial software engineers [28]. In this less-studied

area existing works include, message perturbation [24] to

manifest non-deterministic bugs, FortranTestGenerator [26]

to generate unit tests for subroutines of Fortran applications

based on capture-and-replay approach, and MPISE [27] to

mainly detect non-deterministic bugs based on symbolic

execution [25].

We believe that there is an urgent need to explore effective

systematic testing techniques in the field of HPC. As man-

ually generating test inputs is very expensive, error-prone

and non-exhaustive, random testing [29], [30], [31], [32] is

commonly employed for automated test generation. But it

is impossible to test all interesting behaviors of a program.

Symbolic techniques [33], [34] overcome the limitation by

generating inputs to force the execution of various paths.

However, they do not scale to large programs because (1)

large programs result in too complex constraints that are hard

to be solved and (2) large programs lead to path explosion

and thus exploring all paths is impractical.

A. Concolic Testing

Concolic testing [35], [36] has been proposed as a so-

lution to the problem of solving complex constraints — it

uses concrete values to simplify intractable constraints. To

alleviate the path explosion problem, Burnim and Sen [37]

propose a trade-off between the capability and practicality:

they focus on branch coverage (the percentage of branches

being executed at least once during testing) instead of path

coverage, where the former is a more practical metric to

evaluate code than the latter as the former is bounded by

the total number of branches that is significantly smaller

than the total number of paths.

Concolic testing automates the iterative testing of a pro-

gram by automatically generating inputs with the goal of

achieving a high branch coverage. It works as follows.

Given a program, execution-path dominant variables reading

inputs (from either a file or a command line) need to be

marked by developers as symbolic, and then the program

is instrumented such that the symbolic execution code is

inserted into the given program. Testing involves iterative

execution of this instrumented program. In each concrete ex-

ecution, all operations of the marked variables are captured

by the symbolic execution component. After each execution,

symbolic execution history like encountered branches and

symbolic constraint set satisfying the branches are logged

in a file. In the next execution, the symbolic execution

865

2018 IEEE International Parallel and Distributed Processing Symposium

1530-2075/18/$31.00 ©2018 IEEE
DOI 10.1109/IPDPS.2018.00096

Figure 1. Concolic testing for a sequential C program.

component reads the log and generates new inputs for

marked variables to potentially force a different execution

path as follows: the constraint set is updatd by negating a

selected constraint; and the updated constraint set is solved

with the results yielding the new inputs.
Figure 1 shows how concolic testing applies to a sequen-

tial program. We denote a branch as [condition id][T/F],
where condition id is the branch condition’s unique ID and

T/F represents True or False evaluation of the condition.

On the left is a sequential program consisting of a pair of

branches: (0T , 0F) and (1T , 1F) with a bug hidden at

branch 0F . Variables x and y are marked as symbolic. On

the right is the process of concolic testing. At the start, the

program is run with random inputs {x ← 10, y ← 50},
which uncovers branches 0T and 1F satisfying constraints

x �= 100 and x/2 + y ≤ 200. To uncover a new branch, the

testing tool negates x �= 100 so that the updated constraint

set is {x = 100, x/2 + y ≤ 200}. It then generates the

next inputs {x ← 100, y ← 50} by solving the updated

constraints. The inputs force the execution of 0F and thus

trigger a bug. The testing logs such error-inducing inputs for

further bug analysis. As the testing continues, it can derive

new inputs and force the execution of 1T . Finally, 100%

branch coverage is achieved.

B. Challenges for MPI Application
Typical SPMD (single program, multiple data) MPI pro-

grams usually consist of the following steps: read inputs,

check the validity of inputs — known as sanity check,

distribute workloads across processes, and finally solve the

problem based on a loop-based solver. Figure 2 shows the

code skeleton of a such program where the inputs x and y
from the user are first read (the reads are omitted for brevity),

a sanity check is performed on x and y as well as their

combination x ∗ y, the work is shared and finally the while
loop solves the problem. When applying concolic testing to

such programs, we encounter two challenges described next.
First, standard concolic testing that only tests one process

is not sufficient for MPI applications that run with multiple

processes. It cannot deal with MPI semantics including MPI
rank (a process’ unique ID) and the number of processes.

Hence, it fails to uncover branches related to such MPI

semantics. Suppose concolic testing is only performed on

Figure 2. An MPI program’s code skeleton and its execution tree.

process 0 for the program in Figure 2. During execution,

branches 3F and 4T are encountered only by processes

different from process 0, 4F is not encountered, and the

remaining are uncovered by process 0. The testing fails to

uncover 3F and 4T as it does not record branches uncovered

by processes other than process 0; it does not uncover 4F
as it does not test processes other than process 0 to satisfy

both rank �= 0 and y ≥ 100. Besides the above missed

branches, it should be noted that the testing can not uncover

branches that can only be executed once a certain number of

processes are used as its ignorance of MPI semantics makes

it unable to vary the number of processes.

In addition, concolic testing could be impractical for MPI

applications without carefully controlling the testing cost.

This could results from three potential sources. First, too

large an input can make the testing extremely slow and

sometimes even fail as the memory needed could exceed

the computing platform’s memory limit. Second, running

all processes using the same heavy-weight instrumentation

incurs unnecessarily high overhead as not all processes

need to perform symbolic execution. Third, too much effort

is wasted in the presence of loops that characterize MPI

applications as loops lead to too many redundant constraints

being generated and solving as well as testing with them

does not help to boost branch coverage.

C. Our Solution: COMPI
To address the above issues, this paper presents COMPI

— a practical concolic testing tool to automate the testing of

MPI applications. It is implemented on top of CREST [37],

a scalable open-source concolic testing tool for C programs

that replaces CUTE (one of the first implementations of con-

colic testing) [35]. COMPI supports testing of SPMD MPI

programs written in C. It exposes bugs that result in assertion

violation, segmentation fault, or infinite loops. It is able to

tackle MPI semantics, uncovering branches that cannot be

uncovered by standard concolic testing, by employing the

following strategies: (1) it records branch coverages across

all processes instead of just the one used to generate inputs;

(2) it automatically determines the number of processes used

in the testing as well as which process’ execution should be

used to generate the inputs to guide iterative testing. For the

866

program in Figure 2, strategy (1) helps uncover 3F and 4T ,

and strategy (2) helps uncover 4F . It curtails testing costs via

three simple yet effective techniques: (1) input capping —

allowing developers to cap the values of marked variables so

as to limit the problem size and control the testing time cost;

(2) two-way instrumentation — generating two versions of

the target program with one being heavily-instrumented to

be used by one single process and the other being lightly-

instrumented to be used by the other processes; and (3)

constraint set reduction — reducing the constraint sets by

removing redundant constraints resulting in the presence of

loops. COMPI makes the following key contributions.

• COMPI is the first practical automated testing tool

for complex MPI applications — it tackles basic MPI

semantics and effectively controls the testing cost.

• COMPI uncovered four new bugs in one physics simu-

lation program that were confirmed by the developers.

• In our experiments COMPI achieved 69-86% branch

coverage which far exceeds the 1.8-38% coverage

achieved by random testing.

• COMPI exploits MPI semantics causing it to achieve

4.8-81% higher coverage than standard concolic testing.

• COMPI achieves high branch coverages quicker with

input capping delivering practical testing; it reduces

testing time by up to 66% via two-way instrumentation;

it achieves 4.7-10.6% more coverage for two programs

and achieves the best coverage much faster for another

with constraint set reduction than without it.

II. OVERVIEW OF COMPI

A. Work Flow of COMPI

The work flow of COMPI consists of two phases: (1) in

the instrumentation phase, COMPI inserts symbolic execu-

tion code into the source code; and (2) during the testing

phase, COMPI iteratively tests the program to potentially

cover new branches via automatic input generation.

Instrumentation. Given a program, developers need to

mark the execution-path dominant input-taking variables.

Then COMPI instruments the program so as to insert sym-

bolic execution code. In the instrumentation, COMPI marks

MPI-semantics variables that represent MPI rank or the size

of MPI_COMM_WORLD (the number of processes) so that

these variables’ values for the next test could be derived

like other variables’ input values. Figure 2 illustrates the

marking of one MPI program — rank is marked by COMPI

and variable x and y are marked manually by developers.

Testing. COMPI performs an iterative testing procedure

until a user-specified budget of iterations (executions of

the program under test) is exhausted. In each iteration, it

first determines the number of processes, as well as which

process should be used to perform concolic testing so as

to generate inputs to drive the next test — we call this

process focus and the remaining processes as non-focus.

In the first iteration, the number of processes and the focus

process can be set by the developer, and all other symbolic

variables are assigned random values; in future iterations,

all the values are generated based on previous iteration. In

each iteration, the instrumentation code generates branch

coverage information and a set of constraints via executing

the program. COMPI updates the coverage information. It

updates the constraint set by selecting and negating one of

the constraints, and then generates new inputs by solving

the updated constraint set. With the new inputs, it drives the

testing in the next iteration.

Highlights of COMPI. In summary, COMPI extends

CREST with the following two critical features:

• It provides an automated testing framework specifically

for MPI programs — it performs symbolic execution

on a single focus process and records branch coverage

across all processes. Due to its knowledge of MPI

semantics, it automatically drives the testing by varying

the number of processes as well as the focus process.

Recording coverage across all processes makes sure the

overall coverage is recorded accurately.

• It enables practical testing via effectively controlling the

testing cost based on three techniques: input capping,

two-way instrumentation, and constraint set reduction.

Figure 3 illustrates the iterative testing of COMPI from

the i-th test to the (i + 1)-th test on the program given in

Figure 2. Suppose after Step 2 of the i-th test, only branch

4F is left, and in Step 3 the constraint rank = 0 is negated.

Supposedly rank ← 1 is obtained from the constraint solver.

Hence, in the (i+1)-th test COMPI shifts its focus from rank

0 to rank 1. With this focus change, COMPI can uncover

the branch 4F in a future test.

B. Search Strategy Selection

The decision on which constraint to negate (and thus

which path to explore next) is made according to the search
strategy. There are four strategies available in CREST:

BoundedDFS, random branch search, uniform random

search, and control flow graph (CFG) search. BoundedDFS

allows users to specify a depth bound and thus can skip

branches deeper than the bound, which is better than DFS

as it avoids exploring infinitely deep execution tree. Random

branch search and uniform random search randomly select a

branch to negate, and CFG search selects the branch based

on a scoring system that checks the distance between the

covered branches and uncovered branches.

BoundedDFS is a classical search strategy that is slow

yet steady [35] and it matches the need of MPI programs

much better than the others because of the major difference

between MPI applications and regular ones: MPI programs

usually read many inputs and thus need to perform a sanity
check before entering the solver to ensure the validity of

inputs (see Figure 2). The sanity check can consist of many

conditional statements, and only by passing all the checks

867

Figure 3. The iterative testing of COMPI: i-th test to (i+ 1)-th test (marked in green).

Figure 4. Branch coverage of HPL using four search strategies.

can the program enter the solving phase. BoundedDFS is

very effective in passing the sanity check as it systematically

traverses the execution tree and aims to uncover all possible

branches. The remaining strategies are ineffective as they do

not search branches in the order by which they are ordered

in an execution path. Consider an example based on the

execution tree of Figure 2. Suppose the current execution

path is 0T → 1T → 2F with all the branches above 2T
being covered already. These strategies may not take the

required step (take 2T by negating 2F) and rather take 0F
by negating 0T , and thus they fail to pass the check. This is

very common, especially for a complex sanity check. Even

if they pass the check, they can deteriorate to the limited

path in sanity check due to the same reason.

Let’s consider High-Performance Linpack Benchmark

(HPL) [3] is one of the most widely used HPC benchmarks.

It performs highly optimized LU factorization and has 28

input parameters that include variables and arrays — we

treat each array as one regular variable. In its sanity check,

each parameter as well as the combinations of parameters

are checked. Figure 4 shows its branch coverage comparison

for four strategies using COMPI. BoundedDFS with default

depth of 1,000,000 and BoundedDFS with bound equal to

100 perform the best with a coverage of over 1100 branches

while the others cover at most 137 branches as they fail

to pass the sanity check. This shows that a bad bound

selection results in poor branch coverage and non-systematic

strategies are unable to pass the sanity check.

BoundedDFS for COMPI. To ensure a good choice of

the bound for BoundedDFS, COMPI’s testing consists of

two phases: (1) it uses DFS first so that the maximal size

of the constraint set (the longest execution path) can be

observed; and (2) it uses BoundedDFS in the remaining iter-

ations with the bound being slightly bigger than the observed

considering longer execution path might be observed later.

In this way, COMPI has one full execution tree in its sight.

Table I
MPI SEMANTICS RELATED VARIABLES.

Symbol Meaning
rw Variables denoting global rank in MPI_COMM_WORLD
rc Variables denoting local rank in other communicators
sw Variables denoting the size of MPI_COMM_WORLD

III. FRAMEWORK ADAPTATION

The framework of COMPI can be summarized as one
focus and all recorders, i.e., it drives the testing with one

focus process and accurately tracks the branch coverage

across all. One focus is the basic requirement for a concolic

testing tool, and all recorders are needed specifically for

MPI programs considering that otherwise only recording the

coverage of the focus process is not accurate as it misses the

branches already being uncovered by non-focus processes.

To enable automated testing for MPI programs, we automate

the selection of the focus as well as the determination of the

number of processes to be used using concolic execution.

The framework consists of 4 major aspects: (1) automatic

marking, (2) MPI-semantics constraints insertion, (3) con-

flicts resolving, and (4) test setup and program launching.

A. Automatic Marking

To make the symbolic execution logic recognize important

MPI semantics, COMPI automatically marks rw, rc and

sw shown in Table I as symbolic. Application developers

mark regular input variables manually with trivial effort

as these usually cluster together and read inputs at the

beginning of the program from either a user-specified file or

a command line. Variables including rw, rc and sw do not

have to cluster together considering they obtain their values

anytime from MPI environment. Since manually marking

them is laborious, COMPI automatically marks them in the

instrumentation phase. At each invocation of

MPI_Comm_rank(comm, rank),

COMPI marks rank as a rw if comm is checked to be

a constant as MPI_COMM_WORLD is a constant in MPI

semantics; otherwise, rank is marked as a rc. At each

invocation of

MPI_Comm_size(comm, size),

COMPI marks size as a sw if comm is found to be a con-

stant. So far COMPI does not mark variables representing

the size of communicators other than the default.

B. Constraints Insertion

The inherent relations among rw, rc and sw should be

obeyed by the constraint solver, e.g., one global rank must

be smaller than the size of MPI_COMM_WORLD (rw < sw).

868

Figure 5. Resolving the conflicts among rw and rc variables by using
the most up-to-date values. Each row in the left table maps to one
communicator, and each column maps to one process.

Without knowing these, the solver can generate invalid

inputs, e.g., rw ≥ sw. It is thus necessary to inform the

solver these inherent relations, i.e., add the inherent MPI-
semantics related constraints to the constraint set to be

solved. Suppose there are m variables of type rw — each is

represented symbolically as xi with 0 ≤ i < m, n variables

of type rc — each is represented as yi with 0 ≤ i < n,

and k variables of type sw — each is represented as zi with

0 ≤ i < k. As the focus process drives the testing, we

need to generate these MPI inherent constraints from the

perspective of the focus considering it may only associate

with some of the non-default communicators. We summarize

these inherent constraints as the union of the following:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⋃m
i=1 {x0 − xi = 0}

⋃k
i=1 {z0 − zi = 0}
{x0 − z0 < 0}⋃n

i=0 {yi − si < 0 | 0 < i < n}⋃n
i=0 {yi ≥ 0} ⋃ {x0 ≥ 0} ⋃ {z0 > 0}

where the first specifies the equivalence of all rw variables

representing the focus’s global rank, the second specifies

the equivalence of all sw variables representing the default

communicator’s size, the third specifies the relation between

the global rank and the default communicator’s size, the

fourth specifies the relation between the local rank and non-

default communicators’ size si (0 < i < n), where si is

a concrete value obtained by the instrumentation code at

runtime, and the last specifies that the size of the default

communicator should be no less than 1 and any of the others

should be no less than 0.

C. Conflicts Resolving

The above constraints are not complete as the relation

between local ranks and global ranks is not included. The

solver thus could generate conflicting constraints — the

generated input values for various variables denoting MPI

ranks don’t map to the same process. Figure 5 shows an

example. Suppose there are 3 processes in total with the fo-

cus being process 0 (global rank). The focus process resides

in MPI_COMM_WORLD as well as two local communicators,

and x0, y0 and y1 respectively record the rank of the focus in

each communicator. Starting with an input (0, 0, 0) for (x0,

y0, y1), COMPI supposedly negates y0 = 0 and generates

input values in conflict as (0, 1, 0) — x0 = 0 and y1 = 0
map to global rank 0 but y0 = 1 maps to global rank 2.

We resolve the conflicts based on the following important

property of the underlying constraint solver.

Incremental solving property. Solving the whole con-

straint set every time is time consuming. Incremental solving
is thus proposed an efficient strategy based on the iterative

tests’ property — two constraint sets being solved consecu-

tively usually share many common constraints. It works in

following way: (1) it only solves incremental constraints —

the negated constraint as well as the constraints dependent

upon it, and (2) it assigns old values from the previous

inputs to variables not being solved. We find an useful

property: if the value of one variable read from the solver

is different from its previous reading, its value is more up-
to-date compared with those whose values stay the same.

Conflict resolving. Because of the presented property,

we resolve the potential conflicts by using the most up-to-
date values among rw and rc since they satisfy the negated

constraints while stale values don’t. As shown in Figure 5,

only y0 is updated and thus is the most up-to-date value. The

conflicting values are corrected using y0, so they map to the

same process, i.e., global rank 2. Note this resolving method

assumes that the rc and rw variables are not dependent,

which does make sense as one constraint involving both

(MPI ranks) doesn’t map to a realistic meaning.

D. Test Setup and Program Launching

In the iterative testing, we launch the current test by feed-

ing the inputs generated from the previous test. However,

the value passing phase of rw, rc and sw differs from that

of regular input variables: the former has to take place in

the test setup phase to guide the program launching while

the latter occurs at runtime, which is due to the fact that

the values of rw, rc and sw are fixed when the program is

launched, e.g., global rank can’t be changed at runtime.

Test setup consists of two parts: determine the number

of processes used to launch the program, and select focus

process. The number of processes is set as the derived value

for sw. To set the focus, we need to find the global rank of

the focus as it is the key to launch the program. Based on

the presented property, the focus stays unchanged if there

is not any value change among rw and rc; otherwise, the

focus’s global rank should be derived based on the value

change. When rw changes, its new value is the focus’ new
global rank; otherwise (rc changes), the case is trickier as
the new value of rc doesn’t directly translate to a global
rank. To solve this problem, COMPI builds a mapping data
structure between local ranks and global ranks at runtime

— a two dimensional array with each row storing all the

global ranks belonging to one local communicator by the

increasing order of local MPI ranks. Given a local rank

with its communicator’s index known, its mapped global

rank can be easily retrieved. Table II illustrates the mapping

869

Table II
THE MAPPING BETWEEN LOCAL RANKS AND GLOBAL RANKS.

Sorted local ranks → 0 1 2 3 4 5

Global ranks →
Local Comm. 0 0 4 2 - - -
Local Comm. 1 0 3 - - - -

...

array from the perspective of the focus (global rank 0) given

five processes in MPI_COMM_WORLD. There are three global

ranks (0, 4, and 2) in local communicator 0 and two global

ranks (0 and 3) in local communicator 1. Suppose we hope to

access the global rank of local rank 1 in local communicator
0. The global rank can be obtained as mapping[0][1] = 4.

Program launching. The instrumentation generates two

copies of programs: ex1 and ex2, where the former is used

to launch the focus process and the latter is used to launch

the remaining. COMPI runs the given SPMD program in a

MPMD (multiple program, multiple data) style. Suppose the

focus’ global rank is i and the total number of processes to

run the program is s. We launch the program with

mpiexec -n 1 ./ex1 : -n s− 1 ./ex2

if i = 0; otherwise, we launch it with
mpiexec -n i− 1 ./ex2 : -n 1 ./ex1 :

-n s− i ./ex2
By default, global ranks are assigned by the order in launch-

ing processes. We hence can shift the focus by varying i,
and vary the number of processes by varying s.

IV. PRACTICAL TESTING

The tool would not be practical to be adopted without

seeking every means to reduce its testing cost. Below we

detail three major techniques to reduce the test cost.

A. Input Capping

Usually MPI programs are designed to be capable of

solving various problems sizes. Given a fixed number of

parallel processes, the larger the problem size is the more

time-consuming the testing is though very often varying

problem sizes lead to very similar coverages. Take HPL

for example. We respectively run it at various matrix size
(the width of a square matrix) 100, 200, ..., 1000 while

maintaining all other inputs as default (see Figure 6). Except

for the small coverage increase from matrix width 100 to

200 the coverage almost stays the same from 200 to 1000.

However, the execution time cost at matrix width 1000 is

27.2 times the cost at 200. Most importantly, too large an

input value can make the testing fail. This manifests in two

ways: (1) too large a problem size might exceed the testing

platform’s memory limit; and (2) way too many processes

can crash the platform, e.g., once our rudimentary COMPI

made the computer freeze when it demanded hundreds of

thousands of processes to run the program.

To avoid unnecessary time-consuming tests, COMPI pro-

vides additional marking interfaces to allow developers to

specify a cap for the input variable that plays a pivotal role

Figure 6. The achieved branch coverage as well as the time cost at various
matrix sizes for HPL.

on determining the execution time cost. Take the marking

of an int variable for example. It can be marked as

COMPI_int_with_limit(int x, int cap),

where the cap is the upper bound for variable x. COMPI

would generate the symbolic constraint x ≤ cap and feed it

to the solver as shown in Section III-B.

B. Two-way Instrumentation

The instrumentation code performs symbolic execution at

runtime. After executing the program, each process outputs

collected symbolic execution information (symbolic con-

straints, branch coverage, inputs, etc.) to a file, which will

be read by COMPI to drive the next test. With very little

effort, we can enable concolic testing for MPI programs

based on one-way instrumentation — all processes run

with the same instrumented program. However, this effort-

saving way is not efficient due to two reasons: (1) it brings

about unnecessary memory overhead at runtime for non-

focus processes since these perform unnecessary symbolic

execution though they only care about recording branch

coverage; and (2) it brings about much unnecessary I/O

overhead for non-focus processes considering I/O on data

unrelated to coverage is not useful for the testing framework.

Hence we propose two-way instrumentation: (1) the pro-

gram (ex1) used to launch the focus process is instrumented

heavily — each expression is instrumented — to enable

full symbolic execution in each concrete run; and (2) the

program (ex2) used to launch the non-focus processes is

instrumented lightly — only branches are instrumented

— to only record the branch IDs being uncovered. This

differentiating style minimizes the workload for non-focus

processes and makes testing efficient.

C. Constraint Set Reduction

Loops characterize MPI programs and cause hundreds and

thousands of reducible constraints generated from the same

branch. They thus cause a significant waste of testing efforts

on the repetitive branches. For example, as shown in Figure 7

at least 101 constraints can be generated from one loop’s

execution — the constraint set size could be far greater

considering function do_A() could also contain branches.

Repetitive tests over if(x < 100) simply waste time as

the first constraint x < 100 subsumes the remaining but the

last one, i.e.,

{x|x+ i < 100 and 0 < i < 100} ⊂ {x|x < 100}.

870

Figure 7. Constraint set reduction given x is marked as symbolic and
x = 0 before entering the loop.

We avoid such unnecessary tests via a heuristic based on the

property of reducible constraints as shown following.

Property of reducible constraints. Given a time-ordered

sequence of constraints generated by one single conditional

statement in one non-nested loop at runtime. All constraints

except the last one evaluate to True (or False), and the

last constraint evaluates to False (or True).

Constraint set reduction. Based on the property, we

reduce the number of constraints generated by each con-

ditional statement using following heuristics. At runtime, a

constraint is recorded only if (1) this conditional statement

is encountered for the first time or (2) its evaluated boolean
value is the opposite of the previous observed value.

V. IMPLEMENTATION

COMPI is implemented on top of CREST that consists

of four main parts: an instrumentation module, an execution

library, and a search strategy framework, and a constraint

solver based on Yices SMT (satisfiability modulo theories)

solver [5]. COMPI’s work spreads across all four. COMPI’s

implementation is based on over 3500 lines of C++/Ocaml

code changes – 1436 lines of CREST were modified and

2151 new lines of code were added. COMPI is publicly

available at https://github.com/westwind2013/compi.

Instrumentation is performed using CIL (C Intermedi-

ate Language) [38] under the guidance of an instrumenta-

tion module written in OCaml [6]. COMPI provides two

separate OCaml instrumentation modules to achieve two-

way instrumentation. Both modules instrument MPI Init(),

MPI Comm rank() and MPI Comm size() so as to equip

COMPI with basic MPI knowledge. Only one module instru-

ments programs heavily by inserting the symbolic execution

code, while the other instruments only programs’ branches

to help non-focus processes record coverage.

Concolic execution library defines all instrumentation

functions. The major new features of COMPI include fol-

lowing: (1) it provides separate instrumentation functions

for the program used by non-focus process; (2) it defines

additional marking functions to achieve input capping; and

(3) it implements the constraint set reduction technique.

Search strategy framework is the brain of COMPI as it

directs the testing. Particularly, COMPI selects the focus as

well as sets the number of processes based on derived input

values before the program launching. Additionally, COMPI

allows developers to specify a timeout for a test. It logs the

derived error-inducing input for further analysis if either the

Table III
COMPLEXITY OF TARGET PROGRAMS.

Program ↓ SLOC ↓ The number of branches
Total Reachable

SUSY-HMC 19,201 2,870 2030
HPL 15,699 3,754 3,468

IMB-MPI1 7,092 1,290 1,114

program returns a non-zero value or fails to complete within

the specified timeout.

Constraint solver solves the constraint sets. COMPI

creates additional constraints based on MPI semantics and

input capping and insert them to the set before solving.

VI. EVALUATION

We detail the newly uncovered bugs first and then evaluate

four major features of COMPI: input capping, two-way

instrumentation, constraint set reduction, and framework.

Each feature is evaluated by comparing the default COMPI

with its variation that either modifies or disables the feature

of interest while incorporating all the other features.

Target programs: Table III shows the three target pro-

grams we use to evaluate COMPI: (1) SUSY-HMC, a major

component in SUSY LATTICE — a physics simulation

program performing Rational Hybrid Monte Carlo simu-

lations of extended-supersymmetric Yang–Mills theories in

four dimensions [39]; (2) HPL (High-Performance Linpack

Benchmark) used for solving a dense linear system via LU

factorization; (3) IMB-MPI1, which is one major component

of IMB (Intel MPI benchmarks) and can benchmark MPI-1

functions’ performance. Table III also shows the code com-

plexity in different metrics: the source lines of code (SLOC)

measured by SLOCCount [7]; the total number of branches

obtained in the instrumentation phase via static analysis; and

the estimated number of reachable branches obtained via

summing up all the branches of all the encountered functions

in testing [8]. We use the reachable branches to evaluate our

coverage as some of branches found by static analysis are

not reachable due to build configurations [8].

Marking input variables: The users of COMPI must

mark a subset of input variables – these are non-floating

point inputs as COMPI does not handle floating-point vari-

ables. The effort required is minimal. Respectively, we

marked 13 variables in SUSY-HMC, 24 variables in HPL,

and 15 variables in IMB-MPI1. For illustration we describe

one relevant input for each program: (1) the lattice size of

each of the four dimensions in SUSY-HMC — we change

the four as well as set input caps for them with the same

value; (2) the width of the square matrix in HPL; and (3) the

number of iterations required to benchmark one function’s

performance in IMB-MPI1. We denote these as N .

Experiment setup: We perform experiments on a plat-

form that is equipped with two Intel E5607 CPUs (totaling

8 cores) and 32 GB memory. Initially, 8 processes are used

to launch the program with the focus being process 0. The

number of processes is restricted to no bigger than 16 via

input capping. Suppose each test consists of n iterations. To

871

be consistent as directed in Section II-B, in each test we use

pure DFS in the first x iterations — x = 50 for SUSY-HMC,

x = 1000 for HPL and IMB-MPI1; we use BoundedDFS

afterwards for the remaining n−x (n > x) iterations — the

depth limits are 500 for SUSY-HMC, 600 for HPL, and 300

for IMB-MPI1 (estimated based on the constraint set sizes

in the first phase). Unless otherwise specified, the default
caps of the introduced input variable N are: (1) NC = 5 for

SUSY-HMC, (2) NC = 300 for HPL and (3) NC = 100 for

IMB-MPI1. Sometimes the testing can be constrained to a

very short shallow path in the execution tree due to an error

that is lacking a constraint for tackling it. Once this error is

encountered, like bugs in SUSY-HMC, concolic testing can

not step out of this error as its constraint-based derivation is

broken. Using tens of tests that only costs a few seconds this

can be found easily if the constraint set size is too small.

We just redo the testing to avoid it. In practice, developers

should fix such known bugs and then continue testing for

uncovering additional bugs.

A. Uncovered Bugs
The use of COMPI on the programs detected four bugs

in SUSY-HMC, where three cause segmentation faults [1]

and one causes a floating point exception [2].
The segmentation fault occurs due to wrong use of

malloc(). Take one bug for example. The program de-
clares a double pointer src and allocates space for it:
Twist_Fermion **src = malloc(Nroot ∗ sizeof(**src));

where Twist_Fermion is a struct and Nroot is an inte-

ger denoting the number of elements the allocated space

would hold. Variable src expects the space allocation to

store Nroot Twist_Fermion* elements, but the above

allocates space to store Nroot Twist_Fermion elements.

This causes a program crash due to a segmentation fault.

This can be easily fixed by changing sizeof(**src) to

sizeof(Twist_Fermion∗). COMPI detects three bugs due

to this error. We reported these bugs and the fix to the

developer, who confirmed them and adopted our fix.

The floating point exception bug is a more serious one. It

leads to a division-by-zero error whose triggering requires

not only specific input values but also a specific number of

processes in the run — it manifests with 2 or 4 processes

but it does not occur with 1 or 3 processes. We provided the

triggering condition generated by COMPI to the developer

and he was easily able to reproduce the bug and then fix it.

B. Input Capping
We compare the testing cost using various input caps.

Each cap is evaluated using 10 times of testing with each

containing 50 iterations for SUSY-HMC and 500 iterations

for both HPL and IMB-MPI1, which are enough to show

the time cost variance on the basis of a decent coverage is

achieved, i.e., the testing passes the programs’ sanity check.

Figure 8 shows the testing time and the coverage comparison

using different caps. For SUSY-HMC, the average time

Figure 8. Evaluation of input capping.

increases by four times as NC increases from 5 to 10 while

the coverages using two caps are comparable. For HPL, the

coverage ranges from about 1100 to 1300 (such variance can

occur even for the same cap size), and when NC = 1200
the testing time cost in the worst case is about seven times

of the cost when NC = 300. For IMB-MPI1, the average

cost increases by four times as NC increases from 50 to 400

while always about 685 branches are discovered. Obviously,

bigger caps lead to more expensive testing cost on the basis

of providing comparable coverages. Without it the concolic

testing is never possible.

C. Two-way Instrumentation
COMPI using two-way instrumentation is compared with

its variation that uses one-way instrumentation based on

simulated testing that fixes the inputs to defaults for each

program (the dynamic derivation of input values is disabled).

The time cost is fixed and thus the comparison reflects only

the difference between instrumentations. Each configuration

is evaluated using one 10-iteration test. Table IV shows

the testing cost comparison of two instrumentation meth-

ods given different input values. Two-way instrumentation

saves over 47% testing time for SUSY-HMC, over 62% for

HPL, and 0-12.5% for IMB-MPI1. Also Table IV shows

the average size of non-focus processes’ log files — the

I/O between the target program and COMPI. Using two-

way instrumentation non-focus processes only output a few

kilobytes while using one-way instrumentation the log size

could be as high as a few hundred megabytes. Moreover,

the trivial log file size indicates that non-focus processes

don’t eat too much memory at runtime as they do not
Table IV

ONE-WAY VS. TWO-WAY

Program N
Time cost (seconds) Avg. log size (B)

1-way 2-way Saving 1-way 2-way

SUSY-HMC
2 163 86 47.0% 104M 6.4K
4 479 226 52.8% 337M 6.4K

HPL
300 92 35 62.0% 71.1M 4.5K
600 382 127 66.8% 261.8M 4.5K

IMB-MPI1
100 7 7 0.0% 562.0K 1.9K
400 16 14 12.5% 1.8M 1.9K

1600 43 38 11.6% 5.5M 1.9K

872

Figure 9. Constraint set size distribution for SUSY-HMC, HPL and IMB-MPI1.

Table V
EVALUATION OF CONSTRAINT SET REDUCTION.

Program ↓ COMPI (R) NRBound NRUnl
Avg. Max. Avg. Max. Avg. Max.

SUSY-HMC 84.7% 86.1% 80.0% 82.0% 80.1% 80.2%
HPL 69.6% 71.9% 59.0% 59.6% 59.4% 60.4%

IMB-MPI1 69.0% 69.1% 69.0% 69.1% 69.0% 69.0%

need to perform tasks other than executing the program and

recording the branch coverage information.

D. Constraint Set Reduction

We evaluate constraint set reduction by comparing

COMPI with reduction (R) with its two variations: non-

reduction with a depth limit (NRBound) (the same to

COMPI’s default depth limit for each program) and non-

reduction with unlimited depth (NRUnl). To perform a fair

comparison, we apply COMPI (R), NRBound and NRUnl
to each program based on a fixed time budget. The time

budget of each test experiment is set to match the time taken

by COMPI (R) to achieve the maximum attainable coverage.

The durations are 1.5 hours for SUSY-HMC, 3.5 hours for

HPL, and 34 minutes for IMB-MPI1. The reported results

are based upon three repetitions of each experiment.

SUSY-HMC: As shown in Table V, R in average

achieves about 4.6% more coverage than NRBound and

NRUnl. Also we notice that sometimes both NRBound and

NRUnl need to spend tens of minutes to derive a set of

inputs. This occurs due to two reasons: too many redundant

constraints are generated and negating these makes the

constraint set insolvable. Figure 9 shows that our reduction

technique generates constraint sets whose size are always

smaller than 500, but without using it the constraint set could

be as large as a few thousands to tens of millions.

HPL: Based on the average coverage, we observe

following: (1) R achieves respectively 10.6% and 10.2%

more coverage than NRBound and NRUnl; (2) all three

achieve about 59% coverage (the maximum of NRUnl)

in three minutes; (3) In the remaining time of over three

hours, NRBound’s and NRUnl’s coverages stay the same

as the coverage in the first three minutes, let alone get

any closer to R’s coverage. This results from the fact that

the non-reduction methods spend a significant portion of

time traversing redundant branches. Figure 9 shows that our

reduction technique significantly reduces the constraint set

size — R’s maximal size is about 500 but the size for other

two can be over 1600.

IMB-MPI1: All of them achieve equivalent coverages

with a difference of only 1 or 2 branches — the average

coverage rate is 69.0%. The required time to achieve the

Table VI
COMPI’S COVERAGE RATE.

Program ↓ COMPI (Fwk) No_Fwk Random
Avg. Max. Avg. Max. Avg. Max.

SUSY-HMC 84.7% 86.1% 3.4% 3.5% 38.3% 38.3%
HPL 69.4% 71.6% 58.9% 59.1% 2.2% 2.2%

IMB-MPI1 69.0% 69.1% 64.2% 64.3% 1.8% 1.8%

minimum of all methods’ maximal coverages, i.e., 767

branches, are respectively: (1) 116s, 64s and 386s for R; (2)

257s, 279s and 966s for NRBound; and (3) 226s, 286s and

4433s for NRUnl. By excluding the outliers 966s and 4433s

— their occurrences are related to the randomness feature of

COMPI, the average time costs to uncover 767 branches are

respectively 189s, 268s and 256s. Most importantly, Figure 9

shows that R generates less than 300 constraint in testing

while the other two generate more than 2,000 constraints in

over 30% testing iterations.

E. COMPI Framework and Random Testing

We evaluate the effectiveness of COMPI’s framework

by comparing COMPI with the framework enabled (Fwk,

COMPI itself) with its variation with the framework disabled

(No_Fwk) — No_Fwk drives the testing using only one

fixed focus process, records the coverage of this process

only, and always uses 8 processes (the initial setting of

COMPI). we apply COMPI (Fwk) and No_Fwk to each pro-

gram based on a fixed time budget as used in Section VI-D.

The reported results are based on three repetitions of each

experiment. As No_Fwk doesn’t vary the focus process,

the above evaluation is performed on each process and the

obtained branch coverage using each process are combined

to form No_Fwk’s final coverage. As shown in Table VI,

for SUSY-HMC Fwk achieves an average coverage of 84.7%

which is about 25 times the coverage of No_Fwk; for HPL

Fwk achieves an average coverage of over 69% that is about

10% higher than No_Fwk; for IMB-MPI1, Fwk achieves

69% coverage that is about 5% higher than No_Fwk. We

observe that No_Fwk performs far worse than Fwk only

for SUSY-HMC because under the condition of using 8

processes persistently No_Fwk fails to generate sound inputs

that exercise the full program. The effectiveness of our

framework is hence obvious — it gives COMPI the freedom

to vary not only the focus process but also the number of

processes and this freedom helps COMPI achieve higher

coverages.

We also compared the default COMPI with purely random

testing (Random). Random testing generates random values

for marked variables and randomly sets the number of

processes used as well as the focus process. For a fair

873

comparison, all the random values are generated under the

limits set by the input capping. We apply COMPI and

Random to each application using the fixed time budgets

as used in Section VI-D. The reported results are based

on three repetitions of each experiment. As shown in Ta-

ble VI, COMPI’s coverage is over 2 times that of Random’s

for SUSY-HMC, and it is over 30 times the coverage of

Random for HPL and IMB-MPI1.

VII. CONCLUSION

We presented COMPI that automates the testing of MPI

programs. In COMPI, MPI semantics guide testing using

different processes and dynamically varying the number of

processes used in testing. Its practicality is achieved by

effectively controlling its testing cost. COMPI was evaluated

using widely used complex MPI programs. It uncovered new

bugs and achieved very high branch coverages.

VIII. ACKNOWLEDGEMENT

This research is supported by the NSF grants CNS-

1617424 and CCF-1524852. We thank Dr. David Schaich for

reproducing and confirming the bugs uncovered by COMPI.

REFERENCES

[1] Three segmentation fault bugs in SUSY-HMC. https://github.
com/daschaich/susy/issues/15.

[2] Floating point exception in SUSY-HMC. https://github.com/
daschaich/susy/issues/16.

[3] HPL: a portable implementation of the high-performance
Linpack benchmark for distributed-memory computers. http:
//www.netlib.org/benchmark/hpl/.

[4] How do I run an MPMD MPI job? https://www.open-mpi.org/
faq/?category=running#mpmd-run.

[5] The Yices SMT Solver. http://yices.csl.sri.com/.
[6] OCaml. https://ocaml.org/
[7] SlOCCount. https://www.dwheeler.com/sloccount/.
[8] https://github.com/jburnim/crest/wiki/

CREST-Frequently-Asked-Questions.
[9] J. S. Vetter and B. R. de Supinski. Dynamic software testing

of mpi applications with umpire. In SC, Article No. 51, 2000.
[10] J. Coyle, J. Hoekstra, G. R. Luecke, Y. Zou, and M. Kraeva.

Deadlock detection in MPI programs. Concurrency and Com-
putation: Practice and Experience, 14(11):911–932, 2002.

[11] B. Krammer, K. Bidmon, M. S. Müller, and M. M. Resch.
Marmot: An mpi analysis and checking tool. In PARCO,
pp. 493–500, 2003.

[12] Q. Gao, F. Qin, and D. K. Panda. Dmtracker: Finding bugs
in large-scale parallel programs by detecting anomaly in data
movements. In ACM/IEEE SC, Article No. 15, 2007.

[13] Z. Chen, Q. Gao, W. Zhang, and F. Qin. Flowchecker:
Detecting bugs in mpi libraries via message flow checking.
In ACM/IEEE SC, 2010.

[14] Z. Chen, X. Li, J-Y. Chen, H. Zhong, and F. Qin. Sync-
checker: Detecting synchronization errors between mpi appli-
cations and libraries. In IEEE IPDPS, pp. 342–353, May 2012.

[15] D.C. Arnold, D.H. Ahn, B.R. de Supinski, G.L. Lee, B.P.
Miller, and M. Schulz. Stack trace analysis for large scale
debugging. In IEEE IPDPS, pp. 1–10, March 2007.

[16] D.H. Ahn, B.R. De Supinski, I. Laguna, G.L. Lee, B. Liblit,
B.P. Miller, and M. Schulz. Scalable temporal order analysis
for large scale debugging. In ACM/IEEE SC, 2009.

[17] G. Bronevetsky, I. Laguna, S. Bagchi, B. R. de Supinski, D.
Ahn, and M. Schulz. Automaded: Automata-based debugging
for dissimilar parallel tasks. In IEEE/IFIP DSN, 2010.

[18] I. Laguna, T. Gamblin, B. R. de Supinski, S. Bagchi, G.
Bronevetsky, D. H. Anh, M. Schulz, B. Rountree. Large scale
debugging of parallel tasks with AutomaDeD. In SC, 2011.

[19] I. Laguna, D. H. Ahn, B. R. de Supinski, S. Bagchi, and T.
Gamblin. Diagnosis of performance faults in large scale mpi
applications via probabilistic progress-dependence inference.
In IEEE TPDS, 26(5):1280–1289, 2015.

[20] H. Li, Z. Chen, and R. Gupta. Parastack: Efficient Hang
Detection for MPI Programs at Large Scale. In ACM/IEEE
SC, Article No. 63, 2017.

[21] R. Xue, X. Liu, M. Wu, Z. Guo, W. Chen, W. Zheng,
Z. Zhang, and G. Voelker. Mpiwiz: Subgroup reproducible
replay of mpi applications. In ACM PPOPP, 2009.

[22] K. Sato, D. H. Ahn, I. Laguna, G. L. Lee, and M. Schulz.
Clock delta compression for scalable order-replay of non-
deterministic parallel applications. In ACM/IEEE SC, 2015.

[23] K. Sato, D. H. Ahn, I. Laguna, G. L. Lee, M. Schulz, and
C. M. Chambreau. Noise injection techniques to expose subtle
and unintended message races. In PPOPP, pp. 89–101, 2017.

[24] R. Vuduc, M. Schulz, D. Quinlan, B. De Supinski, and
A. Sæbjørnsen. Improving distributed memory applications
testing by message perturbation. In Workshop on Parallel and
Distributed Systems: Testing and Debugging, pp. 27–36, 2006.

[25] S. Bucur, V. Ureche, C. Zamfir, and G. Candea. Parallel
symbolic execution for automated real-world software testing.
In Conf. on Computer Systems, pp. 183–198, 2011.

[26] C. Hovy and J. Kunkel. Towards automatic and flexible unit
test generation for legacy hpc code. In International Workshop
on Software Engineering for High Performance Computing in
Computational Science and Engineering, pp. 1–8, Nov 2016.

[27] X. Fu, Z. Chen, H. Yu, C. Huang, W. Dong, and J. Wang.
Symbolic execution of mpi programs. In IEEE ICSE, 2015.

[28] U. Kanewala and J. M. Bieman. Testing scientific software:
A systematic literature review. In Information and Software
Technology, vol. 56, no. 10, pp. 1219 – 1232, 2014.

[29] D. L. Bird and C. U. Munoz. Automatic generation of random
self-checking test cases. IBM Systems J., 22(3):229–245, 1983.

[30] C. Csallner and Y. Smaragdakis. Jcrasher: an automatic
robustness tester for java. In SP&E, 34(11):1025-1050, 2004.

[31] J. E. Forrester and B. P. Miller. An empirical study of the
robustness of windows nt applications using random testing.
In USENIX Windows System Symposium, pp. 59–68, 2000.

[32] K. Claessen and J. Hughes. Quickcheck: A lightweight tool
for random testing of haskell programs. In ICFP, 2000.

[33] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and
R. Majumdar. Generating tests from counterexamples. In IEEE
ICSE, pp. 326–335, 2004.

[34] J. C. King. Symbolic execution and program testing. In
Comm. of the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[35] K. Sen, D. Marinov, and G. Agha. Cute: A concolic unit
testing engine for c. In ESEC/FSE-13, pp. 263–272, 2005.

[36] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed
automated random testing. In PLDI, pp. 213–223, 2005.

[37] J. Burnim and K. Sen. Heuristics for scalable dynamic test
generation. In IEEE/ACM ASE, pp. 443–446, 2008.

[38] G. Necula, S. McPeak, S. Rahul, and W. Weimer. Cil: Inter-
mediate language and tools for analysis and transformation of
c programs. In CC, pp. 209–265, 2002.

[39] D. Schaich and T. DeGrand. Parallel software for lattice N=
4 supersymmetric yang–mills theory. In Computer Physics
Communications, vol. 190, pp. 200–212, 2015.

874

