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ABSTRACT
Software testing is widely used in industry, but its application in

the High Performance Computing area has been scarce. Concolic

testing, that automates testing via generation of inputs, has been

highly successful for desktop applications and thus recent work on

the COMPI [29] tool has extended it to MPI programs. However,

COMPI has two limitations. First, it requires the user to specify an

upper limit on input size – if the chosen limit is too big, considerable

time is wasted and if the chosen limit is too small, the branch

coverage achieved is limited. Second, COMPI does not support

floating point arithmetic that is common in HPC applications.

In this paper, we overcome the above limitations as follows.

We propose input tuning that eliminates the need for users to set

hard limits and generates inputs such that the testing achieves

high coverage while avoiding waste of testing time by selecting

suitable input sizes. Moreover, we enable handling of floating point
data types and operations and demonstrate that the efficiency of

constraint solving can be improved if we rely on the use of reals

instead of floating point values. Our evaluation demonstrates that

with input tuning the coverage we achieve in 10 minutes is typically

higher than the coverage achieved in 1 hour when input tuning is

not used.Without input tuning, 9.6-57.1% loss in coverage occurs for

a real-world physics simulation program. For the physics simulation

program, using our floating-point extension that uses reals covers
46 more branches than without using the extension. Also, we cover

122 more branches when solving floating-point constraints using

reals rather than directly using floating-point numbers.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging;
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1 INTRODUCTION
Software testing is widely used to improve software quality — a

program is executed on range of inputs that collectively exercise the

program thoroughly. The efficacy of testing for a program is com-

monly evaluated using a code coverage criteria such as statements,

branches, execution paths, etc. A higher code coverage by execu-

tions of tests typically corresponds to reduced likelihood of the

tested software containing an undetected bug. The goal of testing

is to attain a certain code coverage before releasing the software. In

practice, branch coverage is the most commonly used code coverage

criteria.

However, the study as well as the application of testing in the

field of High Performance Computing (HPC) is scarce. While sci-

entists may be interested delivering a tool of high quality, lack

of effective and efficient testing techniques for HPC applications

hinders their ability to test their code rigorously. It is thus not unex-

pected that the quality of HPC code is often lacking [22]. The lack

of testing is ultimately the result of inadequate knowledge transfer

between the Software Engineering discipline and High Performance

Computing [21, 22]. Some notable works in this less-studied area

include: message perturbation to improve the testing coverage of

non-determinism [48], Automated Testing System (ATS) for regres-

sion testing [1], FortranTestGenerator for generating unit tests for

legacy HPC applications written in Fortran [20], and GKLEE for con-

colic testing for GPU programs [28, 30]. However, none are aimed

at improving the code coverage of MPI applications, though MPI

has been a widely-used parallel programming model on distributed

memory systems for decades.

Recently COMPI [29] applied concolic testing [17, 42] to boost the
branch coverage of MPI applications. Concolic testing automatically

generates test inputs via combination of concrete execution and

symbolic execution. Since its birth, concolic testing has been a great

success for testing various applications [8, 9, 18, 28, 38, 40, 47]. Its

use also extends to the software industry [18, 24, 25, 47]. It works

as follows. Given a target program, developers mark input-taking

variables that dominates the execution path. Then the program is in-

strumented to perform symbolic execution. Afterwards, the program
is executed iteratively with automatically generated inputs. In each

execution, a series of symbolic constraints that map to encountered

branches along the execution path are recorded. New input values

that drive the next execution are generated via solving constraints

that map to a prefix of the path followed by a negation of the next

(last) constraint — the negation helps guide execution along a new

path. For example, if a branch outcome generated a constraint x > 0,
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to change the branch outcome in the next execution, we solve its

negation, i.e., x ≤ 0.

Following the above methodology, COMPI [29] proposed a con-

colic testing framework for MPI applications with adaptations en-

abling practical testing via controlling the cost of testing MPI pro-

grams. It performs symbolic execution only on one focus process
in each execution and records branch coverage across all processes.

Based on the same input, it can dynamically vary the number of pro-
cesses (i.e., the size of MPI_COMM_WORLD), as well as the focus such
that it can cover branches whose conditional statement depends

on the size of MPI_COMM_WORLD or MPI rank such as the statement

if (rank == 0).

1.1 Limitations of COMPI
COMPI has two major limitations that hinder its testing effective-

ness. First, the input values generated by COMPI do not guarantee

cost-effective testing. As COMPI needs to repeatedly run target

programs in testing, the time cost per execution greatly impacts the

testing efficiency — the higher the time cost per execution is the

less efficient the testing is. Previous research controls the execution

cost via limiting the number of input values as the execution time

cost of many applications increases as the number of input values

increases. For example, Burnim and Sen [8] evaluated CREST us-

ing three string manipulation programs using short strings – each

character in the string is one symbolic value. Kim et al. [24] applied

CREST-BV and KLEE [9] to an image processing application using

small image files – each pixel is a input value. However, this method

does not apply to MPI programs whose execution cost is directly

related to input values instead of the number of input values. It is

common the larger the input value is presented to an MPI program,

the more time-consuming is the execution. If an excessively large

value is generated for a variable that is closely related to the size

of the problem, the testing cost can be exorbitant. To address this

problem, COMPI proposes a technique, known as Input Capping,
allowing developers to set an upper limit, referred to as the cap, for
the input generation of each variable. Its underlying idea is that

with a well-selected smaller cap values, inputs generated achieve

branch coverages that are comparable to larger cap values at a far

less testing cost. However, selecting such good caps is challenging.

Excessively large caps ensure good coverage but incur exorbitantly

high testing cost. Conversely, too small caps ensure the overhead

per program execution is low but this comes at the cost of lower

coverage because some constraints may have no solution under the

cap limits and thus some branches cannot be explored. For simple

programs manual inspection of the constraints of all branches can

help developers find caps such that the caps do not prevent the con-

straints from being solved. However, manual inspection is infeasible
for complex or large programs and thus an automated approach is
essential.

Second, COMPI does not support floating-point types and opera-

tions that are commonly used in HPC applications. Using COMPI to

test an MPI program that reads many floating-point values requires

developers to manually fix the floating-point variables to selected

values. But fixing the variables to certain values prevents testing

from covering branches depending on these variables (e.g., the true
side of conditional statement if (x < 1) cannot be exercised if

we fix x to 2.0). Furthermore, floating-point operations are either

ignored or recorded imprecisely (e.g., assignment statement x = y +
1.5 is ignored as expression y + 1.5 is a floating point operations).
The lack of floating-point support can cause some constraints not to
be recorded or solved, and branches related to the use of floating-point
types and operations may never be covered during testing.

1.2 Our Contributions
We strengthen concolic testing for MPI applications via overcoming

the above limitations. We propose input tunning to make testing

cost-effective while avoiding the need for user to manually set

hard cap limits. Its overall idea is as follows. COMPI generates new

input values via solving a subset of dependent constraints (details

in Section 2.1) — the new values are consumed by the variables

appearing in these constraints in the next test run. Input tuning aims

to make these values as small as possible as follows. It identifies the

largest value L in the generated values and then, via binary search

over the range (0,L], it finds the smallest values for the involved

variables such that the constraints can still be satisfied and thus

uses them to drive the next test run. That is to say, we can achieve

cost-effective testing via searching for small values to drive the

testing as (1) the search does not disrupt the constraint solving

unlike hard cap limits, and (2) they are small enough to ensure the

least-expensive execution during testing.

We also extend COMPI to support floating-point data types and
operations and show that the efficiency of constraint solving can

be greatly improved if we rely on the use of reals instead of float-

ing point values. Satisfiability modulo theories (SMT) solvers like

Z3 [13] have begun to support floating point reasoning due to

the recent advances of the solver technology. This leads to the in-

corporation of floating-point reasoning into concolic testing [32].

However, solving constraints over floating-point numbers is far

slower than over reals. Though approximating floating-point arith-

metic using real arithmetic sacrifices precision, we show that the

high efficiency of the approximation outweighs the imprecision in

terms of achieving higher testing coverage in practice.

The main contributions of this paper include:

• We present input tuning to achieve the most cost-effective

testing via automatically searching for the smallest values

that satisfy the collected constraints and thus eliminate the

need for manually setting hard cap limits.

• We support floating-point data types and operations and

demonstrate significant improvement in constraint solving

and testing efficiency by approximating floating-point arith-

metic using real arithmetic.

• We evaluate input tuning for HPL, IMB-MPI1, and SUSY-

HMC based on one-hour of testing. For HPL, with input tun-

ing we cover 1865 branches in less than 10 minutes which is

6× faster than the time it takes to achieve the same coverage

without using input tuning. For IMB-MPI1, with input tuning

we achieve coverage of 766 branches in less than 8 minutes

while without it only 735 branches are covered in one hour.

For SUSY-HMC, with input tuning we achieve the highest

coverage, while with input capping 9.6-57.1% coverage loss

occurs in other settings.
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Figure 1: Concolic testing of MPI programs: (1) on the left is
a segment of one instrumented program with the code lines
in bold being the original code, mark_symbolic() being in-
serted by developers, and the remaining being the symbolic
execution code inserted automatically; and (2) on the right
shows how the test engine tests the instrumented program.

• We evaluate our floating-point extension using SUSY-HMC

physics simulation program with one-hour of testing. With

our floating point extension using reals we cover 46 more

branches than without it. Also we cover 122 more branches

when solving floating point constraints using reals rather

than directly using floating point numbers during solving.

2 BACKGROUND AND OVERVIEW OF
SOLUTIONS

Here we briely describe the concolic testing process of COMPI for

MPI programs and the incremental constraint solving approach

used by COMPI. We also illustrate with examples the limitations

of the current concolic testing tool for MPI programs as well as

overview our proposed solutions.

2.1 Concolic Testing of MPI Programs
Testing Process. The concolic testing of a given MPI program

consist of two major steps: instrumentation and iterative testing.
In the instrumentation step, developers manually mark variables

that read input values and dominate the program execution, then

the marked program is transformed into a simplified program in

C Intermediate Language (CIL) [33], and finally the simplified pro-

gram is instrumented with symbolic execution code as shown in

Figure 1. With the simplification, branch statements like loops and

switch are all translated into goto and if statements. Each if
statement only contains a simple condition, e.g., {x > 0} instead

of {x > 0 and x < 10}, and is always accompanied with an else
statement. The true/false branch outcome causes the execution of

the if-side/else-side of the conditional statement. The branch cov-
erage metric represents the number of branch outcomes covered

during testing. Note the term branch coverage used in this paper

refers to the branch coverage of the simplified CIL program.

Next, iterative testing (i.e., iteratively executing the target pro-

gram with generated inputs) is performed so as to increase the

branch coverage and potentially uncover software bugs. At the

end of each execution, a series of symbolic constraints mapped

to the branches along the program execution path are recorded.

Figure 2: Input tuning achieves cost-effective testing: (1) on
the left is an MPI program performing square matrix multi-
plication with n denoting the matrix width; (2) on the right
input tuning helps avoiding expensive execution via replac-
ing 1234567 with 101.

The testing tool can generate a set of input values via solving con-

straints in a prefix of the execution path followed by a negation
of the next constraint in the prefix. Due to the negation, the new

inputs can potentially cover a new branch outcome. Among these

inputs, some are used to determine the number of processes to be

used as well as which process should be the focus process — the

focus is the only process on which symbolic execution is performed

while all the other processes only perform concrete execution (e.g.,

the code lines in bold in Figure 1). Based on these, the test engine

can configure the right number of processes and the focus when

launching the program. The remaining input values are passed to

the marked variables at runtime, e.g., variable x takes one value via

mark_symbolic() in Figure 1.

Incremental Constraint Solving. Incremental constraint solv-

ing is a widely used approach in many concolic testing tools due to

its efficiencywhen solving similar constraints repeatedly. CREST [8],

on which COMPI is built, benefits from it as well. Its basic idea is

to exploit the similarity between two constraint sets being solving

consecutively to speedup the solving process. It works as follows:

(1) it only solves subset of constraints — the target negated constraint
as well as constraints depending on it 1 — such that new values are

generated for variables appearing in these constraints; and (2) it

assign old values from previous input to all the other variables that

do not appear in the constraints. Since each time only a subset

of, instead of all, the constraints are solved, this technique greatly

speedups the constraint solving.

We observe that a property inherent to this technique is: An
input value generated for a variable remains unchanged as long as
the variable does not appear in the incrementally solved constraints.

2.2 Overview of Our Solutions
Input Tuning. Though COMPI’s input capping relieves the is-

sue to a certain degree, it is very challenging to select a good set

of cap limits. Consider the MPI program performing square matrix

multiplication shown in Figure 2 where variable n representing the

1
Two symbolic constraints are claimed to be dependent if only they share the same

variables.
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Figure 3: Concolic testing of a program without support for
floating-point data types and operations.

matrix width determines the execution time. The program is de-

signed to use different strategies for different range of matrix widths

to optimize performance — small_matrix_multi() is invoked

when n ≤ 100 and large_matrix_multi() is invoked otherwise. If
the upper cap limit is set to 50 (i.e.,n ≤ 50), large_matrix_multi()
will not be explored during testing. On the other hand, if the upper

limit is set to 500, the testing could be very expensive as the matrix

width could be as high as 500. The property of incremental solving

as discussed earlier in Section 2.1 exacerbates the high cost problem

— once a large width value is generated it could stay unchanged for

a long time and thus repeated time-consuming executions will be

performed.

With our input tuning technique we can achieve the best cost-

effective testing without the need for finding the best upper lim-

its as input tuning always finds the smallest value to satisfy a

given constraint. In Figure 2, the input tunning technique is il-

lustrated. Suppose in the first run a random value is generated

n ← 10. After execution, constraint n ≤ 100 is obtained. Via negat-

ing it (n > 100) the testing aims to cover the branch outcome

that invokes large_matrix_multi(). The solver can generate any

value like n ← 1234567 to satisfy n > 100. This obviously is the

worst scene the testing needs to avoid. With input tuning, we can

find that n ← 101 also satisfy n > 100. This small value ensures

large_matrix_multi() is invoked with the minimum possible

execution time.

Floating-Point Support. Weexemplify the consequence ofmiss-

ing floating point support with the example shown in Figure 3. In

this program, variable a and b read inputs from users. We mark a
as symbolic. As there is no marking interface to support marking

of b, a float variable, as symbolic in COMPI, we can only fix it to

a selected value (e.g., 1.1). Variable c is also a float and its value is

derived from a. Suppose a is initialized to 1 in the first test. However,
function f1() cannot be explored as b = 1.1 does not satisfy b >
1.1 && b < 1.2, and f2() cannot be explored as the symbolic

constraint a ∗ 1.1 ≤ 2 is not recorded, which is ultimately due to

the fact that floating-point multiplication like a ∗ 1.1 is ignored by

COMPI’s symbolic execution component.

To overcome the above limitation, we provide an interface to

developers for marking floating-point variables and allow floating-

point arithmetic in the symbolic execution component. Our ex-

tension helps cover branches related to the use of floating-point

calculations.

Figure 4: Two-stage tuning is applied on the solution gener-
ated by the solver — the solution contains the values gener-
ated for variables x1, x2, and x3, which are respectively C1,
C2, and C3. After Stage I tuning, the smallest upper bound,
B1, is found for all involved variables (i.e., x ≤ B1 for ∀x ∈
{x1,x2,x3, ...} with B1 ≤ max{C1,C2,C3, ...}). After Stage II,
the smallest bound is found for variable x1 if x1 is the single
variable in the target constraint (i.e., x1 ≤ B2 with B2 ≤ B1).
Within the limits of these bounds, the constraints are solved
to get the optimized solution.

3 INPUT TUNING
Directly applying the values generated by the constraint solver

often incurs high testing cost that is not necessary. Though setting

upper limits relieves this problem to a certain degree, it is challeng-

ing to manually find the best limits with which the testing achieves

a high coverage yet incurs the least time cost. We thus propose

input tuning as a solution to achieve effective testing that eliminates

the challenge of setting hard cap limits.

3.1 Design of Our Approach
The tuning process consists of two stages: (Stage I) Multi-variable
tuning that optimizes all variables appearing in the dependent con-
straints such that their values are no bigger than the detected small-

est upper bound; and (Stage II) Single-variable tuning that optimizes

the single variable in the target negated constraint, i.e., the target

negated constraint only contains one variable, under the limit of

the detected bound. Figure 4 illustrates how the two-stage tuning

optimizes the solution, i.e., input values. These two stages are com-

plimentary. Stage I ensures dependent variables, like x2 and x3 in
Figure 4, are not significantly increased when tuning the single

variable in the target constraint, like x1. Stage II ensures the single
variable gets the smallest value under the upper bound detected in

Stage I.

Consider the application of concolic testing to the following code

segment.

. . .

i f ( x − y > 100 )

{ / / b1
i f ( y > 0 ) . . . / / b2
e l se . . . / / b3

}

. . .

This code segment has three branches b1, b2, and b3. In the i−th
test, suppose that b1 and b3 are covered, i.e., the execution path

is [...,b1,b3, ...]. In the (i + 1)−th test, we hope to force execution
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along a new path [...,b1,b2, ...] and thus cover b2 by satisfying

constraints [x − y > 100,y > 0]. Directly applying the solver

to the above constraints could probably generate values such as

[x = 4321,y = 1234]. Our tuning strategy can optimize these

generated values as follows. In stage I, we find common upper limit

102 for both x and y such that [x−y > 100,y > 10,x ≤ 102,y ≤ 102]

is still solvable. In stage II, we find the minimal upper limit 11 for

only y such that [x − y > 100,y > 10,x ≤ 102,y ≤ 11] is still

solvable. Thus, we are able to decrease the satisfying input values

from [x = 4321,y = 1234] to [x = 102,y = 11] and cover b2 with
far less testing cost.

Nextwe details the input tuning algorithm. Algorithm 1 overviews

the two-stage tuning process. Algorithm 2 and Algorithm 3 are two

utility functions, where the former finds the largest input value of

a solution and the latter illustrates the upper bound search process.

Stage I.. Suppose tarдet is the negated constraint, cstrs stands
for the constraint set including tarдet as well as the constraints
depending on tarдet (see Section 2.1), excls is a set of symbolic
symbols 2

that do not need tuning, and soln stores the generated

values for symbols appearing in cstrs as key-value pairs with key
being a symbolic symbol and value being the generated value for

symbol key. The goal of Stage I tuning is to find the lowest up-

per bound for all symbols not appearing in excls , i.e., we exclude
symbols/variables that do not need to be tuned. This process is

composed of the following steps:

• Decide to tune or not (Algorithm 1 and 2). At first, we find

the largest value, denoted as bound (Algorithm 2), among the

generated values, stored in soln, for symbols not appearing

in excls . If the largest value is too small (i.e., bound < 2),

we directly return soln as the input values are already small

enough and there is no need to tune them further (Algo-

rithm 1: lines 4-5).

• Fix variables requiring no tuning (Algorithm 1). We fix

the variables that do not need tuning, i.e., those appearing

in excls , to the generated values in soln to avoid any value

changes caused by the tuning (lines 6-12).

• Search the lowest upper bound (Algorithm3). We search

for the smallest upper bound for symbols/variables to be

tuned using binary search in the range of (0,bound] (lines 2-
21). In the search, we construct new constraints via new_cstr()
that specifies tuned variables are no greater thanmid , where
mid is the average of the lower and upper bound (lines 6-14).

Then we check if the new constraints cstrs_ are consistent
with old ones cstrs (line 15), and set the upper bound asmid
if they are consistent (line 16) and the lower bound asmid
otherwise (line 18). The lowest bound is obtained after the

search is complete.

• Set upper bound (Algorithm 1). We set an upper bound for

tuned variables via constructing new constraints specifying

their values must be no larger than the detected bound (lines

15-19).

Stage II. . Stage II aims to optimize the value for the single vari-

able within the restriction of the upper bound detected in Stage

2
Each symbolic symbol represents a variable marked in the tested program. In the

paper, we use the term symbol and variable interchangeably

Algorithm 1 Input Tuning

Input: tarдet ▷ target negated constraint

cstrs ▷ dependent constraints including tarдet
excls ▷ variables requiring no tuning

soln ▷ a solution generated by the solver

Output: opt_soln ▷ an optimized solution

1: function tune(tarдet , cstrs, excls, soln)
2: /∗ ∗ ∗ STEP 1: optimize a group of variables ∗ ∗ ∗/

3: bound ← дet_larдest(soln, excls)
4: if bound < 2 then return soln ▷ 1.1

5: end if
6: _cstrs ← cstrs ▷ 1.2

7: // fix the values of symbols in excls
8: for all s .key ∈ excls do
9: // construct new constraint: s .key = s .value
10: c ← new_cstr (” = ”, s .key, s .value)
11: _cstrs ← _cstrs ∪ {c}
12: end for
13: opt_bound ← optimize_multi(_cstrs, excls, ▷ 1.3

14: soln,bound);
15: // set upper bounds ▷ 1.4

16: for all s ∈ soln AND s .key < excls do
17: c ← new_cstr (” <= ”, s .key,opt_bound)
18: _cstrs ← _cstrs ∪ {c}
19: end for
20: /∗ ∗ ∗ STEP 2: optimize a single variable ∗ ∗ ∗/

21: if tarдet contains more than one variable then ▷ 2.1

22: return solve(_cstrs)
23: end if
24: if opt_bound < 2 then
25: return solve(_cstrs)
26: end if
27: symb ← single symbolic symbol in tarдet
28: opt_bound2← optimize_sinдle(_cstrs, excls, ▷ 2.2

29: opt_soln,opt_bound, symb)
30: if opt_bound2 < opt_bound then ▷ 2.3

31: c ← new_cstr (” <= ”, symb,opt_bound2)
32: _cstrs ← _cstrs ∪ {c}
33: end if
34: return solve(_cstrs) ▷ 2.4

35: end function

Algorithm 2 Get the Largest Input Value

1: function get_largest(soln, exls)
2: bound ← −1
3: for all s ∈ soln do
4: // largest not in excls
5: if s .key < excls and s .value > bound then
6: bound ← s .value
7: end if
8: end for
9: return bound
10: end function
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Algorithm 3 Search for the lowest upper bound

1: function optimize_multi(cstrs, excls, soln,bound)
2: /∗ ∗ ∗ optimize variables ∗ ∗ ∗/

3: lower ← 0, upper ← bound
4: prev_upper ← upper
5: while lower + 1 < upper do
6: mid ← lower + (upper − lower )/2
7: cstrs_← ∅
8: for all s ∈ soln do
9: if s .key < excls then
10: // construct constraint: s .key ≤ mid
11: c ← new_cstr (” <= ”, s .key,mid)
12: cstrs_← cstrs_ ∪ {c}
13: end if
14: end for
15: if cstrs_ is consistent with cstrs then
16: upper ←mid
17: else
18: lower ←mid
19: end if
20: end while
21: return upper
22: end function

I only if the variable is the single variable in the target negated

constraint. It consists of similar steps.

• Decide to tune or not (Algorithm 1). We check if the target

negated constraint, namely tarдet , only contains single vari-

able (lines 21-23) and if the detected bound is already small

enough (lines 24-26). If either is not satisfied, we directly

solve and return; otherwise, we proceed to the next step.

• Search for the lowest upper bound (Algorithm 1). This

is the same to the search in Stage I except that it optimize

only a single variable (lines 27-29).

• Update upper bound (Algorithm 1). If the new bound is

smaller than the older one, we update the upper bound for

the single variable (lines 30-33).

• Generate optimized values (Algorithm 1). We solve the

updated constraints, i.e., _cstrs , to get the optimized values

(line 34).

Additional setup. As no constraints are available prior to the first
test, input generation for the first test is not available. We need to

assign input values. We make all the initial values as the smallest

positive integer for integer varaiables (i.e., 1). This settingmakes not

only the first test as well as latter tests efficient enough considering

the value persistence property of incremental constraint solving.

3.2 Applicability
Input tuning is effective for tuning input values for a variable when

the following conditions are satisfied: (1) the variable is of integer

type like char, int, and long; (2) the larger the value of the variable

is the longer the execution takes; and (3) eligible values allowing

the program performing its function must be positive, e.g., for the

square matrix multiplication program the matrix width must be

positive so as to perform valid matrix multiplication. Below we

detail how we deal with the cases when one of the conditions is

not satisfied.

Floating-point variables do not satisfy condition (1). We do not

perform input tuning for floating-point variables as usually the

values of integer variables, like matrix width in the matrix mul-

tiplication program, determine the problem size. However, this

technique can be applied for floating-point variables as well.

There two types of variables that do not satisfy condition (2):

Type-1 variables whose values are unrelated to execution time

and Type-2 variables for which increase in value leads to shorter

execution. We do not differentiate type-1 when applying the tuning

as tuning it does not have much side-effect other than the tuning

cost — the tuning cost is trivial considering constraint solving

including the tuning accounts for less than 3% of the total testing

time in our evaluation. To deal with type-2, we allow developers to

mark variables that need to be excluded from the tuning process.

A variable representing the number of processes, i.e., the size of

MPI_COMM_WORLD, is a good example of Type-2. As aforementioned,

the testing also generates input values used for determining the

number of processes: for the same workload the execution takes

more time whenmore processes are used to run the program. In this

paper, we only mark variables representing the number of processes

in exclusion. If it is found the appearance of Type-2 variables in

real-world MPI programs becomes common, we can automate the

marking process as follows. For each variable, we can measure the

execution time cost by giving differing values. By comparing the

cost, we can easily know whether smaller values or larger values

lead to longer execution. Hence, we can automatically exclude the

Type-2 variables in our tuning.

We do not tune the variables violating condition (3) as for the

majority of, if not all, HPC applications only positive values are

meaningful.

4 FLOATING POINT SUPPORT
Enabling floating-point data types and operations in concolic test-

ing requires adapting three components of COMPI: instrumentation

module, symbolic execution library, and the constraints solving

component.

Instrumentation module. guides the insertion of symbolic execu-

tion code into the target program. The instrumentation is performed

at instruction level. For example, the instruction x = y + z needs
to be inserted with four code sequences to achieve symbolic exe-

cution: two for loading the symbolic expressions of x and y, one
for applying the add operation, and one for storing the symbolic

expression for y + z into x . The instrumentation module of COMPI

only instruments integer variables and operations. We adapted the

module such that it also instrument floating-point variables and

operations.

Symbolic execution library. defines all the instrumentation func-

tions — the instrumented instructions discussed above are function

calls to the functions of the library. These functions manipulate sym-

bolic expressions according to the original instructions. In COMPI,

all symbolic expressions only represent linear arithmetic operations

as

E = C +
i=N−1∑
i=0

Ci ∗ xi ,
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Table 1: Time cost (unit: seconds) of floating-point con-
straint solving using reals and floating-point values based
100 iterative tests of a simple synthetic program.

Expression→ x x + y x + y + z

Float→ 31.4 75.0 91.2

Real→ 8.2 8.1 8.2

where E is a symbolic expression, C is a constant, xi denotes a
symbolic symbol representing one input-taking variable, Ci is the
coefficient of xi , and N is the number of symbolic symbols in E.
COMPI ensures linear constraints via replacing symbolic expres-

sions with concrete values as needed. For example, consider the

multiplication of two symbolic expressions: x ∗ y with both x and

y being symbolic expressions. To avoid non-linear operation x ∗ y
being recorded, COMPI substitutes the symbolic expression of y
with the concrete value of y like 2 such that the result expression is

2x which is still linear. As COMPI only targets integers, it records

C and Ci using 64-bit integers.
Our floating-point extension requires us to represent integer

expressions in the same way, but for a floating-point expression

we record C and Ci using double-precision floating point values.

Also, the extension also needs conversion between floating-point

and integer expressions. We convert a integer expression into a

floating -point expression via converting C and Ci from 64-bit

integers to double precision floating point numbers. We convert a

floating-point expression into an integer expression via converting

the concrete value of the floating-point expression into an 64-bit

integer, i.e., after the conversion the integer expression is a concrete

value instead of symbolic expression. In addition, we provide the

marking functions for developers to mark variables of data type

float and double as symbolic such that these variables can also

be involved in the symbolic execution.

Constraints solving component. solves constraints to generate

new inputs that are used in the next test run and this process

is used repeatedly during iterative testing. For incremental solv-

ing, this component finds all constraints depending on the target

negated constraint, and uses Yices-1.0 [4], an SMT solver, to solve

the dependent constraints. In COMPI, the component is only able

to solve integer constraints.

As SMT solvers like Z3 [13] has begun to support floating-point

reasoning, concolic testing is also able to solve constraints with

floating-point arithmetic based on the floating-point reasoning of

Z3. However, the floating-point reasoning is known for its high cost

— the cost of solving floating-point constraints is hundreds of times

the cost of solving integer constraints [49]. Therefore, instead we

propose simulating floating-point arithmetic using real arithmetic

that is far less expensive. To compare the efficiency between solving

using reals and using floating-point values, we created two versions

of COMPI: one solves constraints using floating-point reasoning of

Z3, and the other solves constraints using real arithmetic of Z3. We

use the two versions of the tool to test a simple synthetic program

with 3 if statements below:

i f ( expr == 0 ) . . .

i f ( expr < 0 ) . . .

i f ( expr <= 0 ) . . .

where expr stands for an C floating-point expression. In the testing,

the program can generates 6 constraints including expr = 0, expr ,
0, expr < 0, expr ≥ 0, expr ≤ 0, and expr > 0 such that all the

relational operators are covered.

Based on 100 iterative tests, we measured the time cost of con-

straints solving using reals and using floating-point values based

on three expressions: x , x + y, x + y + z (the data type of x , y and

z are all float). We observed that the solving time using floating

point values is 3.8× to 11.1× times the solving time using reals. Also

the solving time using floating point value grows as the number

of variables in the expression grows, while the solving time using

reals stays almost the same. Hence, we believe the efficiency of

solving floating point constraints using reals makes it a better fit

for practical testing. It should be noted that as our approximation

trades off accuracy for performance our tool may fail to satisfy a

floating-point comparison demanding high accuracy and thus fail

to cover the corresponding branch.

5 EVALUATION
We evaluate input tuning and floating point extension of concolic

testing based on three non-trivial MPI applications.

Hardware and Tool setup. The evaluation is performed on a com-

puter equipped with two Intel E5607 CPUs with total of 8 cores and

32 GB memory. In the evaluation, COMPI tool uses Z3 instead of

Yices-1.0 as its constraint solver due to the floating point extension.

By default, the tool runs the target program with 8 processes with

the focus being rank 0 in the first test. Additionally, the number of

processes is restricted to no more than 16 during dynamic variation

as without it the computer can crash when running with too many

processes. Our tool sets all input values to 1 for the first test run for

both input tuning and input capping techniques for fair comparison.

The decision on which constraint to negate is made by the search

strategy — COMPI uses is BoundedDFS. BoundedDFS explores the
execution tree using a variation of depth-first search (DFS) strategy

which skips constraints as well as branches that are deeper than

a specified depth bound in the execution tree. The depth bound is

selected to ensure that COMPI has the ability to explore the entire

execution tree. The testing process using BoundedDFS (1) applies

x tests without setting a bound first so that the maximal number of

constraintsM can be observed and (2) performs the testing with a

selected bound B, which is obtained via rounding upM to the next

hundred. In the default setting, we perform 100 tests to detect the

bound, i.e., x = 100.

Evaluation goals and applications. Our evaluation aims to show

that input tuning ismore effective than input capping, i.e., it achieves

higher coverage at lower testing cost. We use HPL [2], IMB-MPI1 [3],

and SUSY-HMC [37] to evaluate input tuning as they all have inte-

ger inputs. For floating-point support, we aim to show that testing

with floating-point extension achieves higher coverage than with-

out it and solving floating-point constraints using real values saves

testing time without sacrificing branch coverage. This evaluation

uses only SUSY-HMC as it has multiple floating-point inputs while

HPL has only one and IMB-MPI1 has none.
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Figure 5: Branch coverage progress over one-hour of testing
ofHPL using input tuning, input capping, andNone of them:
a point (x , y) in each plot indicates that it takes x seconds to
attain the maximum branch coverage of y.

5.1 HPL
HPL [2] is a high-performance Linpack benchmark for distributed

memory computers. It solves a dense linear system using LU fac-

torization. Many of the algorithm features can be exploited by

configuring the abundant parameters it provides. To enable con-

colic testing, we need to mark variables for which the testing tool

is to generate input values. HPL read inputs from a designated file,

marking variables requires us to insert the marking lines as well

as commenting out the reading from the file. For HPL we mark 23

integer variables (the variable can also be an array) by inserting 23

lines of code as well as commenting out the same amount of lines.

The depth bound for BoundedDFS is 500 based on the observations

in the first 100 tests.

We compare input tuning with four input capping settings as

well as the case where neither input tuning or input capping is used

(called None). In the input capping evaluations, we set the same cap

(or upper bound limit), denoted as c , for all variables, and use three

caps: c = 2, c = 4, and c = 8. We also evaluate c = 8 without the

timeout mechanism — the tool by default uses timeout to identify

excessively long executions such as those caused by infinite loops —

to avoid the interference from timeout as many large input values

Table 2: Comparison among Tuning, Capping (C2, C4, C8,
and C8 using No Timeout), and None based on HPL with
two metrics: the time costs (unit: seconds) of covering 1860
branches and the number of tests completed in one hour.

Metric ↓ T C2 C4 C8 C8_NT N
Cost (1860) 539 3563 – – – –

# tests 390 1717 231 63 32 215

cause the execution to timeout when c = 8. We allow each of the

above configurations to test for one hour.
Figure 5 shows that using input tuning, the testing covers 1865

branches, which is only 1 less the highest coverage. Using input

capping with c = 2, the testing achieves the highest coverage but

the time cost to achieve such coverage is almost 1 hour while the

time cost of covering 1865 branches using input tuning is less than

10 minutes. This is because, for c = 2 the values of all variables

must be smaller than 2, and thus very often the constraints have

no solution. Using capping with c = 4, the testing coverage is 17

branches fewer than when using input tuning. Using capping with

c = 8 in the default setting, 321 branches fail to be covered as

larger upper bound permits larger values and larger values make

the execution unnecessarily long such that many executions are

killed by the timeout mechanism. Using capping with c = 8without

the timeout scheme, the coverage obtained is even less due to the

same reason — too large values can cause one program execution

to take tens of minutes (the program execution that started after

768 seconds did not finish till finally 1 hour expired). The None
configuration that directly uses the values generated by the solver

(i.e., neither tuning nor capping is used) delivers coverage of 1840

branches after running for over 30 minutes. This is not only worse

coverage than input tuning but also at a much higher execution

time cost (10 minutes vs. 30 minutes).

Table 2 demonstrates the high efficiency of testing using input

tuning. The time it takes to cover 1860 branches using input tuning
is 539 seconds which is only 15.1% cost of using capping with

c = 2. In all other configurations the coverages and time costs

are significantly worse. This high efficiency is the result of input
tuning preferring smaller values and only using larger values when

necessary. Thus, input tuning ensures testing makes progress at

a good pace. Table 2 also shows the efficient testing using input
tuning executed 390 tests in one hour. All other configurations,

except input capping with c = 2, perform fewer tests in one hour

because unnecessarily long executions are involved. Although input

capping with c = 2 executes many more test cases with short runs,

it still takes about one hour to deliver nearly the same coverage

because frequently constraints have no solution. In other words,

input tuning choses neither too small nor too large inputs and as

a result execution runs are just long enough to keep delivering

solvable constraints and thus higher and higher coverage.

5.2 IMB-MPI1
IMB-MPI1 [3] is a major component of Intel MPI Benchmarks (IMB)

and is used for benchmarking MPI-1 functions. It reads inputs

by parsing the command line. We mark 14 integer variables by

commenting out the whole code block that parses command line
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Figure 6: Branch coverage progress over one-hour of testing
of IMB-MPI1 using input tuning, input capping, and None
of them: a point (x , y) in each plot indicates that it takes x
seconds to attain the maximum branch coverage of y.

Table 3: Comparison among Tuning, Capping (C2, C4, C8,
and C8 using No Timeout), and None based on IMB-MPI1
with two metrics: the time costs (unit: seconds) of covering
730 branches and the number of tests completed in one hour.

Metric ↓ T C2 C4 C8 C8_NT N
Cost (730) 142 – 449 559 545 1011

# tests 2806 280 246 244 240 224

and inserting 30 lines with about half of them being the marking

lines and the others being sanity checks on the inputs. The depth

bound for BoundedDFS is 200 based on the observation in the first

100 tests. We compare input tuning with input capping as well as

the case where neither tuning nor capping is used. In the input
capping evaluation, we set the same cap for all variables, and use

three configurations: c = 2, c = 4, c = 8. We also evaluate c = 8

without using timeout. Once again we perform testing for one-hour
testing in each configuration.

Figure 6 shows using input tuning, we cover the most branches,

i.e., 766 branches. Using capping with c = 2, we cover about 700

branches as the cap limit is too small. When we use bigger cap limits

like c = 4 and c = 8 in the default setting, the coverage is over

30 branches less than the coverage based on input tuning. Using

capping when c = 8 without timeout scheme, the coverage does

not improve since without timeout expensive tests costing several

minutes are used and thus one hour is not enough to explore the

branches. Without using either input tuning or capping technique

(None), the coverage is less than the coverage using input tuning as

frequently long executions are killed by the timeout mechanism of

COMPI.

Most importantly, the efficiency of input tuning is justified—with

input tuning we cover 766 branches in only 439 seconds, which

cannot be achieved in any other configurations. Further Table 3

shows with input tuning we cover 730 branches in 142 seconds,

which is only 14.0-31.6% the time cost of other techniques. Still

this is because input tuning permits large values as well as long

program executions only when necessary. Table 3 shows the num-

ber of tests performed by testing using input tuning is far bigger

than the number of tests performed by testing in input capping

configurations. This result from the fact that if using input capping

we need to carefully find the most appropriate cap limit for each

variable to achieve cost-effective testing, while the default limits

for all variables are set to the same value. It is obviously very chal-

lenging to make input capping cost-effective as selecting cap limits

is hard. On the other hand, input tuning eliminates the need for

setting limits.

5.3 SUSY-HMC
SUSY-HMC [37] is a major component in SUSY LATTICE — a

physics simulation program for Rational Hybrid Monte Carlo sim-

ulations of extended-supersymmetric Yang–Mills theories in four

dimensions. It reads inputs from standard input stream. We con-

sider 13 integer variables and 7 double-precision floating point

variables and mark different numbers of variables depending on

the evaluation goals. The marking is achieved by commenting out

the code block that reads values from standard input stream and

inserting around 23 lines of marking code. The depth bound for

BoundedDFS is 500 based on the observation in the first 100 tests.

Input tuning. We mark 13 integer variables using COMPI that

does not have floating-point support.We compare input tuningwith

three input capping settings (c = 2, c = 8, and c = 8 without the

timeout scheme). Our tool aborts in two configurations: capping

with c = 4 and the case where neither input tuning nor input

capping are used. Thus, results in these configurations are not

shown. Each configuration is evaluated over one-hour of testing.

Figure 7 demonstrates with input tuning we obtain the highest

coverage, i.e., 1662 branches. Using input capping with c = 2, we

only cover 713 branches. Using capping with c = 8, we covers

at most 1503 branches regardless of whether the timeout scheme

is used or not. Using input capping, the loss in coverage ranges

from 9.6% to 57.1%. Obviously, the serious coverage loss using input

capping is caused by a bad cap limit. On the other hand, input tuning
delivers high coverage without requiring users to find a good cap
limit.

Table 4 shows that in just about one minute using input tuning

we cover 1600 branches, which is about 100 more branches than the
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Figure 7: Branch coverage progress over one-hour testing of
SUSY-HMC using input tuning and input capping: a point
(x , y) in each plot indicates that it takes x seconds to attain
the maximum branch coverage of y.

Table 4: Comparison between Tuning and Capping (C2, C8,
and C8 using No Timeout) based on SUSY-HMC with two
metrics: the time costs (unit: seconds) of covering 1600
branches and the number of tests completed in one hour.

Metric ↓ T C2 C8 C8_NT
Cost (1600) 64 – — —

# tests 1411 8074 190 131

coverage of one-hour testing using input capping with c = 8 and

about 900 branches higher than the one-hour coverage based on

input capping with c = 2. The high efficiency of testing based on

input tuning results from the fact that input tuning chooses small

enough input values yet without disrupting the constraint solving

process. Hence input tuning makes testing progresses at a good

pace (1411 tests in one hour as shown in Table 4), which is neither

too fast (8074 tests when c = 2) nor too slow (190 and 131 tests

when c = 8) just like the evaluation of HPL.

Floating-point support. On the basis of input tuning, we eval-

uate our floating point extension by comparing three versions of

the testing tool: one that only considers integers (Int); one with

floating point extension using reals (Real); and one with floating

point extension that directly uses floating point numbers (Float).

When using Real and Float, we mark all the identified 13 integer

variables and 7 floating-point variables. When using Int, we (1) only

mark the 13 integer variables as floating-point variables cannot be

marked in the Int version, and (2) fix the floating-point variables to

1 for fair comparison, considering all COMPI versions set all input

values to 1 in the first test run. We perform one-hour of testing

using each version of the tool.

Figure 8: Branch coverage progress of testing of SUSY-HMC
based on 3 versions of COMPI: (Int) only integers; (Real)
with floating point extension using reals; and (Float) with
floating point extension directly using floating point num-
bers.

Figure 8 shows that Real achieves the best coverage after 200 sec-

onds of testing. Real covers 1704 branches, Int covers 1662 branches,

and Float only covers 1582 branches. We find that Real covers 42

more branches than Int. This demonstrates that floating-point ex-

tension help testing achieve greater coverage. Also, we find Float

achieves the worst coverage though it also support floating point

arithmetic. This results from the fact that constraint solving di-

rectly using floating-point arithmetic is inefficient — the constraint

solving cost of Float accounts for 10.9% in the total testing time

while the cost of constraint solving with Real only accounts for

1.7%. Thus, constraint solving using reals is efficient and thus more

practical for testing in comparison to solving constraints by directly

using floating-point numbers.

6 RELATEDWORK
Concolic testing. Concolic testing [17, 42], also known as dy-

namic symbolic execution, automatically generates test inputs via

performing symbolic execution dynamically along with a concrete

execution. Since its birth, concolic testing has been a great success

to test a variety of sequential applications like web applications [5],
sensor network applications [36], Unix utilities [9], database appli-

cations [14, 34], and embedded software [24]. Also concolic testing

has been applied to shared-memory parallel programs including

GPU programs [11, 28, 30, 31], multi-threading programs in C and

Java [15, 40, 41]. None of the above tackle distributed-memory ap-

plications. jCUTE [39] instead applies concolic testing to boost the

branch coverage as well as to detect deadlock in distributed Java

programs. While jCUTE does not tackle large scale MPI programs

that are commonly used in the HPC area, Hermes [23] detects

communication deadlocks in MPI programs using dynamic sym-

bolic verification that is similar to concolic testing. MPISE [16] and

MPI-SV [51] deals with the non-determinism of message passing

in MPI programs and mainly focus on communication deadlock

detection based on concolic testing, and they are both built on

top of CLOUD9 [7] — a parallel version of concolic testing tool

KLEE [9]. Unlike the above, COMPI [29], built on CREST [8], aims

to be a practical concolic testing tool that can help MPI program

developers improve their code quality via achieving high branch

coverage and manifesting runtime bugs like assertion violation,

segmentation faults, and infinite loops.
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Efficiency. The efficiency of concoclic testing is mainly deter-

mined by the search strategy and the time cost per test/execu-

tion (the time cost to evaluate a execution path). A variety of

search strategies have been proposed. They generally fall into two

categories: (1) search strategies guiding the search to branches

that lead to the largest coverage gain [10, 19, 35, 50] or yet un-

covered branches [8], and (2) strategies skipping redundant con-

straints [19, 29, 43]. Regarding the method of controlling time cost

per execution, previous research mainly limits the execution time

by restricting the number of symbolic input values as the execution

time cost of many applications increases as the the number of sym-

bolic input values used increase. For example, Burnim and Sen [8]

evaluated CREST using three string manipulation programs using

short strings – each character in the string is one symbolic value.

Kim et al. [24] applied CREST-BV and KLEE to an image processing

application using small image files – each pixel is a input value.

However, these methods do not apply to MPI programs like HPL,

IMB-MPI1, and SUSY-HMC whose execution time is directly re-

lated to input values instead of the number of input values. Though

COMPI [29] alleviated the issue by limiting the input values gen-

erated by the constraint solver, it is challenging for developers to

select the right limits as detailed above. Our work hence proposed

input tuning to greatly improve the testing efficiency via automati-

cally search for small input values for each test, which avoids the

manual selection of limits for developers.

Floating-point support. Floating-point computations are com-

monly used in MPI applications. Thus it is a must to enable the

floating-point reasoning in a practical concolic testing tool for MPI

programs. For general programs, the study of floating-point sup-

port in concolic testing can be classified into two categories based

on their testing goals. The first category of is the research that

checks a certain property or type of bug, e.g. KLEE-FP [11] and

KLEE-CL [12] supports floating-point reasoning to evaluate pro-

gram equivalence and Ariadne [6] makes use of real arithmetic

to expose floating-point exceptions. Unlike these, the goal of this

work is to support floating-point arithmetic to strengthen the test

input generation and thus improve program coverage. The second

category that includes CORAL [46] and FloPSy [27] instead shares

the same goal as our work. Our work differs from CORAL and

FloPSy in that we approximate the floating-point constraint solv-

ing using real values while they use search-based methods. It is

worth mentioning that directly solving floating-point constraints

has been supported to perform general-purpose concolic testing

recently [32]. This work pursues accuracy while our work trades

off accuracy for performance.

Other symbolic execution based techniques for MPI appli-
cations. A variety of approaches exist to aid the defect detection in

MPI programs, e.g., dynamic analysis [26], formal methods [44, 52],

and symbolic execution [45, 52]. Symbolic execution based methods

are most closely related to our work. CIVL [52] and TASS [45] are

symbolic execution based tools that uncover software bugs such

as data races, deadlocks and assertion violations in MPI programs.

These works are complimentary to our approach as they employ

symbolic execution alone as opposed to concolic testing. Concolic

testing distinguishes itself from traditional symbolic execution via

simplification of symbolic constraints by using concrete values.

The cost of concolic testing is the sacrifice of completeness as some

constraints can be lost or not recorded precisely due to the use of

concrete values. What distinguishes our work from above works

is that it focuses on efficiently performing branch coverage based

testing of real-world MPI applications.

7 CONCLUSION
COMPI faces two major limitations that hinder its testing effective-

ness. First, the input values generated by COMPI do not guarantee

cost-effective testing. Second, floating-point data types and oper-

ations are not supported and thus coverage loss can occur. We

propose input tuning to achieve cost-effective testing by favoring

small input values. Also, we provide floating-point support and ar-

gue that the efficiency of constraint solving as well as testing could

be significantly boosted if solving using reals instead of floating-

point numbers. Evaluation results demonstrate that input tuning
achieves high branch coverages much quicker than when it is not

used. We further demonstrate that floating-point extension using

reals helps us achieve higher coverage and solving constraints using

reals is a better fit for practical testing compared with direct use of

floating-point numbers.
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