
Data Min Knowl Disc
https://doi.org/10.1007/s10618-018-0565-y

Optimizing dynamic time warping’s window width for
time series data mining applications

Hoang Anh Dau1 · Diego Furtado Silva2 · François Petitjean3 ·
Germain Forestier4 · Anthony Bagnall5 · Abdullah Mueen6 ·
Eamonn Keogh1

Received: 28 September 2017 / Accepted: 30 March 2018
© The Author(s) 2018

Abstract Dynamic Time Warping (DTW) is a highly competitive distance measure
for most time series data mining problems. Obtaining the best performance from
DTW requires setting its only parameter, the maximum amount of warping (w). In
the supervised case with ample data, w is typically set by cross-validation in the

Responsible editor: Jian Pei.

B Hoang Anh Dau
hdau001@ucr.edu

Diego Furtado Silva
diegofs@ufscar.br

François Petitjean
francois.petitjean@monash.edu

Germain Forestier
germain.forestier@uha.fr

Anthony Bagnall
ajb@uea.ac.uk

Abdullah Mueen
mueen@unm.edu

Eamonn Keogh
eamonn@cs.ucr.edu

1 University of California, Riverside, Riverside, USA

2 Universidade Federal de São Carlos, São Carlos, Brazil

3 Monash University, Melbourne, Australia

4 University of Haute-Alsace, Mulhouse, France

5 University of East Anglia, Norwich, UK

6 University of New Mexico, Albuquerque, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-018-0565-y&domain=pdf
http://orcid.org/0000-0003-2439-5185

H. A. Dau et al.

training stage. However, this method is likely to yield suboptimal results for small
training sets. For the unsupervised case, learning via cross-validation is not possible
because we do not have access to labeled data. Many practitioners have thus resorted
to assuming that “the larger the better”, and they use the largest value of w permitted
by the computational resources. However, as we will show, in most circumstances,
this is a naïve approach that produces inferior clusterings. Moreover, the best warping
window width is generally non-transferable between the two tasks, i.e., for a single
dataset, practitioners cannot simply apply the best w learned for classification on
clustering or vice versa. In addition, we will demonstrate that the appropriate amount
of warping not only depends on the data structure, but also on the dataset size. Thus,
even if a practitioner knows the best setting for a given dataset, they will likely be
at a lost if they apply that setting on a bigger size version of that data. All these
issues seem largely unknown or at least unappreciated in the community. In this work,
we demonstrate the importance of setting DTW’s warping window width correctly,
and we also propose novel methods to learn this parameter in both supervised and
unsupervised settings. The algorithms we propose to learn w can produce significant
improvements in classification accuracy and clustering quality. We demonstrate the
correctness of our novel observations and the utility of our ideas by testing them
with more than one hundred publicly available datasets. Our forceful results allow
us to make a perhaps unexpected claim; an underappreciated “low hanging fruit”
in optimizing DTW’s performance can produce improvements that make it an even
stronger baseline, closing most or all the improvement gap of the more sophisticated
methods proposed in recent years.

Keywords Time series · Clustering · Classification · Dynamic time warping ·
Semi-supervised learning

1 Introduction

Clustering and classification are perhaps the two most fundamental tasks in time
series data mining. They are useful tools in their own right, and they are a subroutine
inmany higher-level algorithms such as rule-finding, semantic segmentation, anomaly
detection, visualization, and data editing (Petitjean et al. 2015). Both clustering and
distance-based classification algorithms depend critically on the availability of a good
distance measure (Bagnall and Lines 2014; Bagnall et al. 2017; Ding et al. 2008;
Górecki and Łuczak 2013, 2014; Lines and Bagnall 2015; Paparrizos and Gravano
2015; Rakthanmanon et al. 2012; Zakaria et al. 2012). Over the last decade, the time
series research community seems to have come to the consensus thatDTWis a difficult-
to-beat baseline for many time series mining tasks. Most recent research efforts in
time series data mining have thus treated this distance measure as a default baseline;
a competitive rival for justifying a novel distance measure or algorithm (Bagnall et al.
2017; Ding et al. 2008).

However, we believe that the extraordinary competitiveness and utility of DTW
is still not fully appreciated in the community. This under-appreciation mostly stems
from lacking awareness of the importance of DTW’s single parameter, the amount of

123

Optimizing dynamic time warping’s window width

200 5 10 15

R
an

d
In

de
x

Warping Window Width (as % of time series length)

Two Patterns

Swedish Leaf
Coffee

0.2

0.4

0.6

0.8

1

0

Fig. 1 Rand-Index versus warping window (w) width for three datasets, using a density-based clustering
algorithm (Begum et al. 2015). A larger value of w can make things better, worse or have no effect

0

0.18 CBF

0 10 20
0.05

0.35 CinC_ECG

0 10 200 10 20
0.22

0.38 50words

Train error-rate

Test error-rate

Warping Window Width

Er
ro

r-
ra

te

Fig. 2 (Blue/fine) TheLeave-One-Out error-rate of three datasets for increasing values ofw, using theDTW-
based 1-nearest neighbor classifier. (Red/bold) The holdout error-rate. Note that the holdout accuracies
closely track the predicted accuracies (Color figure online)

allowable warping (w), by the majority of the community. Moreover, there is a lack
of robust methods to set w, even among those who do appreciate the critical role this
parameter can have in producing good results (Lu et al. 2017).

Thew parameter can affect the quality of the returned clusters (in case of clustering)
or the class assignments (in case of classification) in unexpectedly different ways.
Figure 1 illustrates this sensitivity to w for clustering under DTW. Figures 2 and 3
similarly demonstrate the sensitivity to w for classification. Note that the Euclidean
distance is a special case of DTW when the warping constraint w is equal to 0.

Figure 1 shows how changing w affects the quality of clustering on three differ-
ent datasets. For Two Patterns, increasing the amount of warping steadily improves
clustering quality until it reaches perfection with w =9. In contrast, for Swedish Leaf ,
a higher w reduces the quality of clustering from a very impressive (for a 15-class
problem) Rand-Index of 0.87 at w =0 to a stunningly low score of 0.32 at w =10. This
finding is more surprising given that allowing some warping improves the classifica-
tion accuracy of this dataset slightly (Ding et al. 2008).

These results indicate that blindly using the Euclidean distance for clustering (i.e.w
=0) will yield poor results on some datasets. Likewise, another practitioner, perhaps
motivated by the observation that DTW generally helps in classification problems
(Bagnall et al. 2017; Bagnall and Lines 2014; Ding et al. 2008), and thus simply

123

H. A. Dau et al.

0.05

0.35 SonyAIBORobotSurface

0 10 20 0 10 20
0.02

0.16 Gun_Point

0.03

0.07

0 10 20

DiatomSizeReduction

Warping Window Width

Test error-rate

Train error-rate

Er
ro

r-
ra

te

Fig. 3 (Blue/fine) The Leave-One-Out error-rate of three datasets for increasing values of w, using DTW-
based 1-nearest neighbor classifier. (Red/bold) The holdout error-rate. In these examples, the holdout
accuracies do not track the predicted accuracies (Color figure online)

clusters with a hard-coded value of w set at 10, will also do poorly on some datasets
(Paparrizos and Gravano 2015).

The Coffee dataset is unusual (and empirically rare), since it is virtually unaffected
by varyingw (in Fig. 1 it is 0.48 whenw =0 and 0.49 everywhere else), but even here it
is still possible to make a poor decision. The time taken to compute DTWwith a w =0
(denoted hereafter as cDTW0) is about four orders of magnitude less than the time to
compute cDTW100. Thus, unnecessary large values of w incur a huge computational
burden that produces no improvement.

For classification, we do have a way to learn the value of w. We can simply use
cross-validation on the labeled training set to examine the error-rate for all values ofw,
then choose the one that minimizes the predicted error-rate (breaking ties by picking
the smaller value). The underlying classifier used is 1-Nearest-Neighbor classifier (1-
NN), which is a specific case of the k-NN algorithm when k =1. This is the method
used by the authors of the UCR Archive (Chen et al. 2015) [and thus, reflected in
hundreds of papers, for example Deng et al. (2013) and Górecki and Łuczak (2013)].
Figure 2 demonstrates that on many datasets, this simple method produces favorable
results. It predicts the correct optimal value of w for CinC_ECG, and it is only off
slightly for CBF and 50words.

Nevertheless, the results above contrast with the examples in Fig. 3. In these cases,
our estimation of the best value for w is much worse, and this has a detrimental effect
on our holdout error. For instance, for DiatomSizeReduction, we predicted cDTW0

to be an appropriate setting, but an oracle would have chosen cDTW13 and seen a
3.27% reduction in error-rate. Likewise, we predicted that cDTW0 is the ideal setting
for Gun_Point, but cDTW2 would have reduced the rate of misclassifications by 6%.

The differences that a better estimate of w can make are difficult to overstate, and
they have been acknowledged by a handful of other independent research efforts, such
as Lu et al. (2017). The authors of this study found that DTW is an effective distance
measure to classify HRM (high-resolution melt analysis) curves for identifying fungal
species. They exploit the observation that the temporal distortions that DTW can
compensate for are analogous to the temperature distortions in HRM data. Therefore,
they see a direct application of DTW to their problem at hand. The authors examined

123

Optimizing dynamic time warping’s window width

the effect of the warping window size on the melt curve clustering by testing all the
w values from 1 to 20, corresponding to a temperature range of 0.1–2 °C. They found
thatw =5 is themost appropriate, and either values in lower or higher range deteriorate
the performance.

In this work, we go beyond claiming that tuning the value of w is a good use of
a practitioner’s time. We argue that the constraint on maximum amount of warping,
when set appropriately, can close most of the improvement gap on the “more sophis-
ticated” time series classification/clustering methods proposed in recent years. We do
not deny the advances in the state-of-the-art methods thanks to new algorithms and/or
new distance measures. However, we strongly believe that a better understanding and
methodology in setting w can make the “good old” DTW an even stronger baseline,
eliminating the need for overly complicated methods. To further support this claim,
let us consider some examples from recent literature.

In the context of time series classification, Deng et al. proposes a time series forest
ensemble method (Deng et al. 2013). One of their reported successes is in halving
the error-rate on Gun_Point to 4.7%. However, Fig. 3right shows that when the 1-NN
classifier utilizes DTW as its distance measure (1-NN-DTW), a better choice of w
could further halve their reported error-rate to 2.7%.

Similarly, Górecki and Łuczak (2013) introduce a new distance measure DDDTW
that combines the DTW distances calculated both on the raw data and its derivatives
(i.e. the mixture weights being learned by cross-validation). Among the datasets suc-
cessfully considered are Lightning2 and Lightning7. The authors note that they can
reduce the error-rate of Lightning2 to 13.11%, but a better choice ofw for 1-NN-DTW
could significantly beat this with just an 8.2% error-rate. Likewise, with Lightning7,
their method can reduce the error-rate to 32.88%, which is impressive given a high
error-rate of 42.47% with the Euclidean distance. However, if we use w =8 for this
dataset, 1-NN-DTW can achieve a much better error-rate of 23.28%.

In a follow-up paper (Górecki and Łuczak 2014), the authors further improve on
the previous method by adding the DTW distance between transforms of time series.
Now the new method can match the performance provided by DTW with the best w
for the two datasets mentioned above. Yet, this is still a somewhat ad-hoc gain after
much thought and further processing. The authors themselves admitted, “due to the
high degree of nonlinearity, the method does not easily admit a rigorous theoretical
analysis.”

It is important to clarify that we are not claiming the works above are without merit.
A better setting of w might further boost their performance, especially for the works
of Jeong et al. (2011) and Kate (2015). Yet, in most cases, the community has been
proposing rather complex methods for relatively modest gains. The results in Fig. 3
suggest that similar or greater improvements are possible with existing techniques if
we have a bettermethod to discover a suitablewarping constraint. There are also strong
reasons to favor existing techniques, as they are amenable to many optimizations that
allow them to scale to trillions of data points or to real-time deployment on resource-
constrained devices (Rakthanmanon et al. 2012).

This work unifies two previous research efforts (Dau et al. 2016, 2017) under a
coherent theme: learning DTW’s warping window width for time series data mining
applications. We have (re)structured these texts to tell a single narrative, that carefully

123

H. A. Dau et al.

setting DTW’s warping window width offers more “bang-for-your-buck” than any
other simple change you can make. Integrating these two papers in the current work
allows us to more forcefully make a point that was only made in passing previously
(Dau et al. 2016, 2017). In general, on any given dataset, the best warping window
width for clustering is not the best warping window width for classification.

The rest of this the paper is organized as follows. In Sect. 2, we explain the back-
ground material of the problem we are solving. In Sect. 3, we offer a semi-supervised
method to learnw for time series clustering. In Sect. 4, we discuss a resamplingmethod
to learn w for time series classification. Both methods target the scenarios in which
access to labeled data is limited.We summarize findings and offer directions for future
work in Sect. 5.

2 Related work and background

2.1 Dynamic time warping

DTW is a distance measure that originated in the speech recognition community.
Recent work strongly suggests that DTW is the best distance measure for many data
mining problems (Ding et al. 2008). In an influential paper (Rakthanmanon et al.
2012), authors state, “after an exhaustive literature search of more than 800 papers,
we are not aware of any distance measure that has been shown to outperform DTW by
a statistically significant amount,” and very recent independent work has empirically
confirmed thiswith exhaustive experiments (Paparrizos andGravano 2015). Of course,
these resultsmust comewith several caveats, themost important ofwhich is that almost
all papers (including this one) test only on data from the UCR Archive (Chen et al.
2015). While the archive is large and diverse, it reflects only distribution of datasets
the curators could make or obtain, not the distribution of real-world problems that are
worthy of addressing. Nevertheless, it is telling that in a very competitive research
area, there are at least two dozen papers published on time series classification each
year, there is still no technique that unambiguously beats DTW on more than half the
datasets in the archive.

As illustrated in Fig. 4 left, DTW allows a one-to-many mapping between data
points, thus enabling a meaningful comparison between two time series that have
similar shapes but are locally out of phase. To find the warping path W , we construct
the distance matrix between the two time series Q and C. Each element (i, j) in this
matrix is the squared Euclidean distance between the ith point ofQ and jth point of C.
The warping path W is a set of contiguous matrix elements that define the alignment
between Q and C. The kth element of W is defined as wk�(i, j)k .

The warping path is subject to several conditions. It must start and finish in diago-
nally opposite corner cells of the matrix; the subsequent steps must be in the adjacent
cells; and all the cells in the warping path must be monotonically spaced in time.
Among all the warping paths possible, we are only interested in the path that mini-
mizes the differences between the two time series.

123

Optimizing dynamic time warping’s window width

Fig. 4 (Left) The unconstrained
warping path for time series Q
and C. Such warping paths are
allowed to pass through any cell
of the matrix. (Right) A
constrained DTW. We can
choose to constrain the warping
path to avoid passing through
cells that are too far from the
diagonal

r

L
w= (r/L)*100Q

C

DTW or cDTW100 cDTWw = cDTW25

DTW (Q,C) � min

⎧
⎨

⎩

√
√
√
√

K∑

k�1

wk

⎫
⎬

⎭

DTWcomputation lends itself to the dynamic programming paradigm. In the dynamic
programming implementation of DTW, we construct the alignment cost matrixD. The
cell at location (i, j) of this matrix is the minimum cumulative sum of the alignment
cost up to Qi and C j . The bottom corner cell of the matrix contains the cost of the full
alignment between Q and C , which is the DTW distance between the two time series.

D(i, j) � (Qi − C j)
2 + min(D(i − 1, j), D(i, j − 1), D(i − 1, j − 1))

.
A DTW implementation that does not restrict the boundary of the warping paths on

the distance matrix is referred to as an unconstrained DTW. A constrained DTW is a
variant that imposes a limit on how far the warping path can deviate from the diagonal.
This limit is known as themaximumwarpingwindowwidth (w). For example, in Fig. 4
right, the warping path cannot visit the gray cells.

The constrained DTW helps avoid pathological mappings between two time series
when one point in the first time series is mapped to too many points in the other
time series. For example, DTW should be able to map a short heartbeat to a longer
heartbeat, but it would never make sense to map a single heartbeat to ten heartbeats. In
addition, the constraints have the additional benefit of reducing the computation cost
by narrowing the search for qualified paths. A typical constraint is the Sakoe–Chiba
Band (Sakoe and Chiba 1978), which expresses w as a percentage of the time series
length. We denote DTW with a constraint of w as cDTWw.

The Euclidean distance between the two time series is a special case of DTWwhen
w is set to 0%, enforcing a one-to-one mapping between data points. It is denoted as
cDTW0. An unconstrained DTW is denoted as cDTW100. By definition, Euclidean
distance is the upper bound, and the unconstrained DTW is the lower bound of the

123

H. A. Dau et al.

0 100 200 300 400 500

Single Plateau Class A Single Plateau Class B

Fig. 5 Five examples of each class of the Single Plateau dataset (Class A and Class B)

constrained DTW (for any amount of constraint). Both bounds have been exploited by
various clustering/classification algorithms and similarity search algorithms (Begum
et al. 2015).

This review is necessarily brief; we refer the interested readers to other surveys
(Ding et al. 2008; Shokoohi-Yekta et al. 2015) and the references therein for more
details.

2.2 Factors affecting the best warping window

We note that the detailed discussion below of the factors affecting the best warping
window forDTWclassification are in the context of one-nearest neighbor classification
only. Undoubtedly the other classifiers that use DTW distances [e.g. some variants of
Shapelets andDTWembeddingmethods (Hayashi et al. 2005)] could also benefit from
such a discussion. However, 1-NN classification is intuitive and well understood, and
it accounts for the vast majority of work in this area (Bagnall et al. 2017; Bagnall and
Lines 2014; Ding et al. 2008).

Before proceeding, we must ward off the common misconception that there is
a fixed one-time domain dependent value of w. There is no single w value that is
transferable across different contexts. To help illustrate this, we will create a synthetic
dataset, which we call Single Plateau (SP). This dataset (and all others in this paper) is
available at the paper supporting webpage (Supporting Page 2018). Each item in the
dataset consists of a vector of 500 random numbers taken from a standard Gaussian.
We add a “plateau” of height 100 and with a length randomly chosen in the range 5–20
to each exemplar. If the plateau’s location falls in the range of 1–250, it is in class A.
If it is between 300 and 500, it is in class B. The plateau never appears in the middle
of the time series; Fig. 5 shows examples from each class.

Note that while the SP dataset is synthetic, it closely models several real datasets,
including yearly “snow-melt” time series, collect by the National Snow and Ice Data
Center (NSIDC) in Boulder, Colorado and used as a critical resource for scientists
studying climate change (Hu et al. 2014).

We will use this SP dataset as a running example to demonstrate factors affecting
the choice of the maximum warping window width in DTW distance.

123

Optimizing dynamic time warping’s window width

1
2
3
4
8
9
10
5
6

7 1
3
2
4
5
6
7
8
9
10

1
3
7

2
5
4
6
8
9
10

cDTW0 cDTW10 cDTW100

Fig. 6 A hierarchical clustering result for the SP dataset. Exemplars in Class A are numbered 1–5 and are
shown in red. Exemplars in Class B are numbered 6–10, and are shown in blue. (Left) Clustering with
cDTW0, (middle) clustering with cDTW10, (right) clustering with cDTW100 (Color figure online)

2.2.1 The intrinsic variability of the time axis

If we cluster SP with cDTW0, we obtain a “random” clustering as shown in Fig. 6 left.
This is not surprising, as this is clearly a dataset that needs awarping-invariant distance
measure. If we re-cluster using cDTW10,we obtain a clustering that correctly separates
the two classes (in Fig. 6 center). Thus far, these observations coincide with most of
the community’s intuition. However, what happens when we cluster using cDTW100?
Again, we obtain a clustering that appears essentially random (Fig. 6 right).

This notion that “a little warping is a good thing, but too much warping is a bad
thing” is known [although perhaps underappreciated (Ratanamahatana and Keogh
2005)] for time series classification (Chen et al. 2013); however, we believe that this
is the first explicit demonstration of the effect for clustering (Figs. 13, 17 and 18 show
examples for real datasets). Note that for classification, the luxury of labeled training
data suggests a way to learn the appropriate amount of warping, a possibility we are
denied in the unsupervised case of clustering.

This observation prevents us from considering a simple, though computationally
expensive solution, which is just performing a clustering/classification under com-
pletely unconstrained warping.

2.2.2 The size of the dataset

It might also be imagined that we could discover the best warping window width for
a given data type and just use that setting for all future datasets from the domain. For
example, we might imagine that for the gesture-recognition-for-tall-males dataset,
cDTW5 is generally best, but for the heartbeat-classification-for-the-elderly dataset,
cDTW13 is generally best.

However, we can dash such a hope with the following observation: the best value
for w also depends on the size of the dataset. To see this, we can classify increasing
large instances of the SP dataset. For each size, we search over all possible values of w

123

H. A. Dau et al.

4 8 16 32 64 128 256 512
0

50

100

Dataset size

B
es

t w

Fig. 7 Classification of increasingly large instances of Single Plateau shows the effect of dataset size on
the best w

0 20 40 60 80 100
0

0.07

Er
ro

r-
ra

te

Warping window width

Fig. 8 Classification of 32-objects Single Plateau demonstrates effect of w on LOO error-rate. Average
result of 100 runs

and record the value that minimizes the error-rate of LOO cross-validation. Figure 7
shows the result, averaged over 100 runs.

Consistent with observations in Ratanamahatana and Keogh (2005), small datasets
tend to require much larger settings of w compared to larger ones. Note that this size
versus the best curve forw is different for different datasets. Thus,we cannot generalize
the best setting for w on one subset of a dataset to a different sized subset of the same
dataset.

As shown in Fig. 7, the best value for w on this dataset, given that it contains 32
objects, is 46. Let us further consider this particular sized subset of the training set.
Figure 8 displays the effect of w on the misclassification rate of the 32-objects SP
dataset. We can see that allowing too much warping is almost as detrimental as too
little warping.

In this case, the w versus error-rate curve has a broad flat valley, meaning that
even if we choose a w value that is too large or small, we could still achieve low
misclassification. However, as Fig. 8 suggests, this curve can take on more complex
shapes, which makes the choice of w more critical.

2.2.3 The effect of the shapes of the time series

A good value for w depends not only on the intrinsic variability of the time axis and
the size of the dataset, but it is also dependent upon the time series shapes. We can
illustrate this latter point with a simple experiment. We created two near identical
datasets, Slim Plateau and Broad Plateau, which, as their names suggest, differ only
in the width of the plateaus (see Fig. 9). In both datasets, one class has a plateau in the
first half, and the other class has a plateau in the second half.

123

Optimizing dynamic time warping’s window width

1
2
3
4
5
6

1
4
5
2
3
6

1

2

3

4

5

6

1

2

3

4

5

6

(Before) Warping Added → (After)

(Before) Warping Added → (After)

Slim Plateau

Broad Plateau

Fig. 9 Warping affects different datasets differently under hierarchical clustering. (Top) The clustering of
the Slim Plateau dataset is very brittle when the time axis is warped. (Bottom) In contrast, the Broad Plateau
dataset is extremely robust to identical levels of warping

As shown in the leftmost column of Fig. 9, we can see that both variants cluster well
under cDTW0 (i.e. Euclidean distance). What would happen if we added an identical
amount of random warping to both datasets and clustered them again using cDTW0?
(We will explain how we can add synthetic warping to a time series in Sect. 4.1.8). As
we can see in the rightmost column of Fig. 9, the clustering of Slim Plateau becomes
essentially random, whereas Broad Plateau is basically unaffected.

The critical message from this experiment is as follows. In this pathological exam-
ple, we canmeasure exactly howmuch warping there is in a dataset because we placed
it there. But even in this case, we cannot use the amount of warping added to guide
the choice of w. Even with a lot of warping in the time axis, the best value of w could
still be as low as zero, depending on the time series shapes and the size of the dataset.

In summary, the best value ofw depends on both the data size and the structure of the
data. This fact bodes ill for any attempt to learn a fixed one-time domain independent
value for it. There is not a single prototypicalw versus error-rate curve for heartbeats or
for gestures. We must learn this curve on a case-by-case basis, which is the argument
of this paper.

2.3 Non-transferability of the best setting for w between supervised and
unsupervised settings

In the introduction, we claimed that the best setting of w for classification is generally
not an indicator of the best setting of w for clustering. Since this assumption has been
explicitly made, but never formally tested multiple times in the literature (Paparrizos

123

H. A. Dau et al.

0 10 200.45

0.5

0.55

0.6

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

0.2

0.4

0.6

0.8

R
an

d
In

de
x

0 10 200.7

0.8

0.9
C

la
ss

ifi
ca

tio
n

A
cc

ur
ac

y

0

0.5

1

R
an

d
In

de
x

ToeSegmentation2 MiddlePhalanxTW

Increasing values of w Increasing values of w

Fig. 10 The Rand-Index (red/fine) and the classification accuracy (blue/bold) versus the warping window
width for two representative datasets (Color figure online)

and Gravano 2015), we will demonstrate that it is unwarranted. In Fig. 10, we show
both the Rand-Index and the accuracy for two datasets.

In retrospect, it is unsurprising that these values are weakly related. For 1-NN
classification (the most commonly used classification technique in the literature (Ding
et al. 2008;Ratanamahatana andKeogh 2005), only the distance between the unlabeled
exemplar and its single nearest neighbor matters. However, for clustering, the mutual
distance among small groups of objects matters. This observation motivates us to
learn the appropriate warping constraint for time series classification and clustering
independently.

2.4 Classic learning of warping window size

Themost popular method for learning themaximumwarpingwindowwidth for DTW-
based time series classification is via cross-validation. In the case of the UCR Time
Series Archive (Chen et al. 2015), the best value of w is determined by performing
leave-one-out cross-validation with the 1-NN classifier on the training set over all
warping window constraints possible, from 0 to 100% at 1% increments. The window
size that maximizes training accuracy is selected, as it is expected to also give the best
testing accuracy. The creators of the UCR Time Series Archive’s disclaimer states that
this may not be the best way to learn w, but it is simple, parameter-free, and works
reasonably well in practice. We estimate that at least four hundred papers have used
this approach or some variants of it (Bagnall et al. 2017; Ding et al. 2008; Górecki and
Łuczak 2014; Jeong et al. 2011; Kate 2015; Lines and Bagnall 2015; Ratanamahatana
andKeogh 2005), by either explicitly implementing themethod, or directly comparing
results to the numbers published in the UCR Archive (Chen et al. 2015).

For time series clustering, we do not have access to labeled data. Common practices
involve using as large a value of w as the computation resources permit, directly
applying the w learned from classification of the same problem domain and resorting
to a fixed w value that is known to work reasonably well for most tasks. For example,
in a recent highly cited recent paper, the authors noted, “…we use as window 5%,
for cDTW5, and 10%, for cDTW10, of the length of the time series of each dataset;
this second case is more realistic for an unsupervised setting such as clustering”
(Paparrizos and Gravano 2015).

123

Optimizing dynamic time warping’s window width

However, as our motivating examples demonstrate, these practices still require
compromising the quality of clustering/classification. For many real-world problems,
even a small increase in accuracy matters. To achieve the best possible performance,
we need a more systematic approach to tailor w for individual tasks/datasets.

2.5 Summary of introductory material

Now that the importance of DTW’s warping window width has been established, we
are finally in a position to discuss our proposed methods for learning this parameter
in the context of time series clustering (Sect. 3) and classification (Sect. 4). To ensure
that all our experiments are easily reproducible, we have built a website that contains
all data/code/raw spreadsheets for all the results (Supporting Page 2018).

3 Learning warping window width for time series clustering

3.1 Our approach

3.1.1 Introduction

We begin by formalizing the task at hand:

Problem Statement: Given an unlabeled time series dataset D; find the value of
w that maximizes the clustering quality. Where ties exist, report the smallest w.

There are many measures of clustering quality; however, measures based on sum-
of-squared residual error do not allow for meaningful comparisons among clusterings
with different values of w. Here, we wish to optimize the objective “correctness” of
the clustering. Typically, we will not have access to this ground-truth (by definition);
however, for the datasets we consider in this work, we do have class labels that allow
us to do a post hoc analysis. Without loss of generality, we will use Rand-Index as
the internal scoring function we optimize, and for the external post hoc analysis of the
effectiveness of our ideas.

How canwe choose the best value forw in the absence of class labels? One possibil-
ity is to use a semi-supervised clustering (Athitsos et al. 2008; Basu et al. 2002, 2004;
Demiriz et al. 1999; Wagstaff and Cardie 2000). Here, we ask the user to annotate a
fraction of the data (typically in the form of must-link/cannot-link constraints), and
we attempt to exploit these annotations to guide the clustering algorithm.

One reason why semi-supervised clustering has not been as influential is its inef-
ficiency. Suppose we have a mere 1415 items to cluster. This gives us just over one
million pairs of time series we could ask the user to annotate. However, it may be that
the vast majority of such annotations will be irrelevant, since all the clusterings in the
search space agree (or all disagree) with a particular user annotation. Thus, to be sure
that we get enough actionable annotations to guide the search in the clustering space,
we must ask the user to annotate hundreds or thousands of objects. This is clearly
undesirable as the user may be unwilling or unable to provide such an effort.

123

H. A. Dau et al.

We introduce a novel semi-supervised clustering method for time series that does
all the clustering up-front and only then asks for user input. This allows us to ask the
user to annotate only informative pairs. Our proposed method offers the following
advantages:

• Our approach is independent of the clustering algorithm. We are only learning the
best w for a particular dataset; therefore, we can produce the final clustering using
essentially1 any partitional, hierarchical, spectral, or density-based clustering.

• The annotations are solicited after the clustering has been performed, meaning that
we only ask the user to annotate pairs that matter. In contrast, almost all other semi-
supervised clustering algorithms require the labels up-front, often asking the user to
annotate pairs that will make no difference in all the clusterings considered. Thus,
our algorithm is maximally respectful of the cost of human effort.

• Because the annotations are solicited after the clustering has been performed, our
approach requires very few annotations; inmany cases, as few as sixteen annotations
can produce dramatic improvements.

• While we mostly envisage asking a human for annotation, in some situations, these
annotations may be gleaned by examining side-information or statistical tests. Our
framework can exploit this information.

• Our approach works for both single and multi-dimensional time series.
• Finally, as we shall demonstrate, our approach is highly accurate and robust to
mistakes made by the annotator.

3.1.2 Semi-supervised learning

Due to its demonstrated utility in many practical applications, the semi-supervised
learning paradigm (SSL) has drawn in significant attention in the data mining and
machine learning communities over the last decade (Athitsos et al. 2008; Basu et al.
2002; Demiriz et al. 1999; Wagstaff and Cardie 2000). Existing methods for semi-
supervised clustering are generally classified as constraint-based or distance-based.

Constraint-based methods rely on user-provided constraints to guide the algorithm
toward a more accurate data partitioning. This can be accomplished in several (non-
exclusive) ways:

• Enforcing constraints during the clustering process itself (Wagstaff and Cardie
2000). This requires modification of the clustering algorithm.

• Modifying the objective function for evaluating candidate clusterings and rewarding
solutions that satisfy themost constraints. For example,Demiriz et al. (1999)modify
the fitness function of a genetic search algorithm that optimizes clusterings.

• Seeding the clustering using the labeled examples to provide the initial seed clusters
(Basu et al. 2002), mitigating the fact that some clustering algorithms are sensitive
to the initialization.

In distance-based approaches, an off-the-shelf clustering algorithm is used; how-
ever, the underlying distance measure is trained to satisfy the given constraints. For

1 “Essentially,” since some clustering algorithms are not defined (or lose certain guarantees) for non-metric
distance measures.

123

Optimizing dynamic time warping’s window width

example, a weighted string-edit distancemeasure could be given the constraint that the
words “bare” and “bore”must-link, but “bare” and “care” cannot-link, allowing
the algorithm to suitably weigh the substitution cost in the edit distance lookup table
to reflect the fact that while vowels are often confused, consonants are rarely confused
(Bilenko and Mooney 2003).

Our proposed algorithm does not fit neatly into any of the categories above. First,
our approach is completely agnostic to the clustering algorithm used. Second, we do
not specify the constraints before the clusterings are performed, we only do so after
the fact. This provides our approach with a significant advantage. If we ask the user
to provide constraints before clustering, either by their choices, or randomly choosing
pairs to be labeled, they may label objects of no utility. Specifically, they may label
objects as must-link, which would have been linked by any clustering in our search
space. Conversely, they may label objects as cannot-link, which never would have
been linked by any clustering that our search algorithm would have considered. By
waiting until after all the clustering has been performed,we can ensure that annotations
we ask the user for are truly informative.

3.1.3 Clustering algorithm

At the risk of redundancy, again we emphasize that we are not proposing a clustering
algorithm in this work. We are proposing a post hoc measure that enables us to score
candidate clusterings created with different DTW parameters. Nevertheless, we must
use some clustering algorithms. Without loss of generality, we use the TADPole algo-
rithm of Begum et al. (2015), which is a specialization of the Density Peaks algorithm
(Rodriguez and Laio 2014) for DTW. This algorithm is suited to DTW, since it does
not require metric properties, and it is particularly amenable to optimizations to its
scalability by exploiting both upper and lower bounds of DTW (Begum et al. 2015).

However, it is important to note that TADPole is just the clustering algorithm we
use to predict w. Having done so, we could, in principle, use any clustering algorithm
(partitional, hierarchical, spectral, or density-based clustering) with the newly-learned
w. As it happens, the results using the TADPole algorithm are so good (Begum et al.
2015) that we do not consider this option for simplicity.

3.1.4 Clustering quality measure

We use Rand-Index as the internal scoring function we optimize, and for the external
post hoc analysis of the effectiveness of our ideas. The Rand-Index penalizes both
false positive and false negative decisions during clustering, and therefore it is not
possible to optimize in a trivial way. There are some proposed variants, including the
Adjusted Rand-Index (Vinh 2010); however, the classic Rand-Index (Rand 1971) is
widely accepted and used. Moreover, at least internally, we are only interested in the
relative improvements in clustering quality.

With Rand-Index, we assess clustering quality based on a series of decisions, one
for each of the unique pair of objects in the dataset. A true positive (TP) decision
means that we assign two similar objects to a same cluster. A true negative (NP)
means we assign two dissimilar objects to different clusters. Similarly, a false positive

123

H. A. Dau et al.

(FP) means that we assign two dissimilar objects to the same cluster. A false negative
(FN) decision means that we assign two similar objects to different clusters. The
Rand-Index is calculated as follow:

Rand Index � TP + TN

TP + FP + FN + T N

.
As Rand-Indexmeasures the ratio of decisions that are correct, it is in the same spirit

as accuracy in the context of classification; however, it is applicable even when class
labels are not available. Rand-Index is always a number between 0 and 1; the higher
is the better. Note that the Rand-Index penalizes false negatives and false positives
equally, meaning grouping dissimilar objects in a same cluster is as bad as separating
similar objects.

3.1.5 Choosing constraints

As we have noted above, the fact that we only need to see the constraints after the
clusterings have been performed gives us a unique opportunity to optimize the user
time and attention.

For every possible pair of time series in our dataset, we can build a constraint vector
based on whether the pair are assigned to the same cluster or not (hereafter referred to
as linked or not-linked). A candidate constraint be a binary vector C, whose length is
the number of values of w under consideration. A ‘0’ at the ith position in C indicates
that the pair of time series was not linked under DTWi, whereas a ‘1’ indicates that it
was linked.

In Fig. 11, we can see four candidate constraints. Constraint (A) is vacillating, and
it is likely of little use to us. We can interpret it as being “volatile,” since it constantly
switches between linked and not-linked for different values of w. These constraints
are rare and likely indicate a “hybrid” object on the cusp between two distinct clusters.

Constraints (B) and (C) are always/never linked, respectively. It is pointless to
show such constraints to the user, since they “vote” equally for all values of w. In

0 5 10 15 20

Not-linked

Linked

0
1

0
1

0
1

0
1

Value of w

(A)

(B)

(D)

(C)

Fig. 11 Four representative constraints. (A) a vacillating constraint, (B) an always linked constraint, (C) a
never linked constraint, (D) an ideal constraint

123

Optimizing dynamic time warping’s window width

Table 1 Algorithm for finding the constraint set

Input: set of candidate constraints, maximum number of constraints to
get annotated

Output: UA, the set of user annotations
1
2
3
4
5
6
7
8
9
10
11

constraints ← sort_by(constraints, simplicity)
index ← 1
while ¬empty(Constraints) AND loopCount < max
 UAindex ← get_user_annotation(Constraints(index))
 answer ← get_user_willingness(‘Do Another? Y or N’)
if answer = ‘Y’

 index ← index + 1
else

 index ← infinity // break out of loop
end

end

most datasets we consider, the majority (often the vast majority) of constraints are of
these two types. With a little introspection, it is obvious that most constraints are non-
volatile, as it suggests that most of the objects being clustered are in stable clusters. If
all constraints were highly volatile, it would be difficult to select any clustering that
is meaningful in any sense.

In contrast to the constraints above, constraint (D) seems to be an ideal constraint.
For datasets that need warping invariance, it can be interpreted as: a value for w that
is between zero to six is not enough, but anything seven or above works.

These observations inform our algorithm design. Constant constraints (types (B)
and (C)) should be discarded. Of the remainder of the constraints, “simple” constraints
are most likely to be informative. We can measure their simplicity by counting the
number of sign changes as we “slide” across the vector. For constraint (A), this yields
a value of 12, but for (D), the simplicity score is only 1.

Simplicity(C) �
(maxw)−1∑

k�0

0, if Ck � Ck+1, else 1

Our algorithm for finding the set of constraints that we will ask the user to evaluate
is presented in Table 1. We begin in line 1 by sorting the constraints with the simplest
indicated first, and breaking ties randomly. At this point, we enter a loop, and while
we have some constraints left to annotate, we have not reached our preset maximum
limit, and the user is willing, we will show the two relevant time series to the user and
get them to perform the must-link/cannot-link annotation.

Figure 12 illustrates examples of time series from the Trace dataset that are shown
to the user. We hope to avail of the user’s domain knowledge, intuitions, and pattern
recognition ability. For Fig. 12 left, the user may realize that while the two time series
are superficially different, most of the difference can be explained by warping the time
axis. Therefore, we would expect the user to annotate this as “must-link.”

123

H. A. Dau et al.

0 2750 275

Please Annotate
1) cannot-link
2) must-link

Please Annotate
1) cannot-link
2) must-link

Fig. 12 Examples of pairs of time series from the Trace dataset presented to user for annotation. User has
to decide whether the two time series should be in a same cluster or not. (Left) The correct label ismust-link
as most of the difference between the two time series is from warping in the time axis. (Right) Ideally,
the user should choose cannot-link because one time series is missing the short peak that characterizes the
other time series

In contrast, for Fig. 12 right, we hope the user would recognize that despite the
similarity of the two time series (they have a relatively small Euclidean distance), one
time series misses the short peak that seems to characterize the other sequence.

Naturally, we want our algorithm to be insensitive to occasional annotation mis-
takes. We consider this issue in Sect. 3.2.2. One helpful idea would be to add a third
option “skip this annotation” to the list of possibilities offered. For simplicity, we
ignore this possibility in this work.

Once we obtain the user annotation (UA), we can construct a prediction vector (PV)
that tells uswhichw ismost suitable. Note that this vector has little to dowith the actual
ground-truth Rand-Index vector, but it indicates the expected magnitude difference in
Rand-Index (relative clustering quality) at each of the w values. The prediction vector
value at index i (PVi) is equal to the number of UA constraints satisfied (i.e. correctly
clustered by our chosen clustering algorithm) over the total number of UA constraints.

PVi � Number of UA constraints correctly clustered atwi

Total number of UA constraints

We can see the incremental improvement (anytime algorithm) property of the algo-
rithm by examining the predictions wemake forw as we obtain more user annotations.
Figure 13 shows an example of this for two datasets.

Note that in both cases, the “shape” of our prediction vector converges to the shape
of the ground truth Rand-Index curve after sixteen user annotations. However, it is
important to note that this is not necessary for our algorithm to be successful. All we
require is that the prediction of the best setting for w concurs with the ground truth.
Recall that this prediction is the location of the maximum value with ties broken by
choosing the smallest w.

3.1.6 Pseudo user annotation

As the results in Fig. 13 suggest, and we will later confirm with an extensive empirical
analysis, we can typically learn a good value for w with just a handful of user-
interactions. Nevertheless, one might imagine that there are occasions where user
annotations may be essentially impossible or especially expensive to obtain. Can we
do anything in these situations?

123

Optimizing dynamic time warping’s window width

1

0.5

0 10 20

Rand-Index

HandOutlines

0 10 20

MoteStrain
Rand-Index

1

0.5Optimal w
Optimal w

After one user annotation

After two user annotations

After four user annotations
After four user annotations

After sixteen user annotations

After eight user annotations

After one user annotation

After eight user annotations

After two user annotations

After sixteen user annotations

Increasing values of w Increasing values of w

Fig. 13 For the two datasets HandOutlines and MoteStrain: The ground truth Rand-Index (colored/bold
line). The prediction vectors (light/gray lines) learned after 1–16 user annotations allow us to estimate w
(arrows). The shapes of the prediction vectors reflect the ratio of constraints satisfied (correctly linked or
not linked) at each w (Color figure online)

A similar problem arises in information retrieval, where user feedback is known to
improve the effectiveness of search, yet users are reluctant to give explicit feedback.
The information retrieval community has addressed this by creating algorithms to give
generated pseudo-relevance feedback automatically (Lv and Zhai 2010).

The ambition of these approaches is limited. No one claims that pseudo-relevance
feedback is as useful as real human feedback. It suffices because it is better than doing
nothing. In this spirit, we present a technique to learn w from pseudo annotations.

The basic idea is simple. Before we perform any clustering, we randomly sample
objects from the dataset. For each object O, we create a copy of it that we denote as Ō.
We add some warping to Ō, and place it into the dataset with the (pseudo) constraint
must-link(O, Ō). Since we know that object Ō is just a minor variant of O, we can
safely assume that if Ō occurred naturally, it would have been in the same cluster as O,
and ourmust-link constraint was warranted. At this point, the list of “user annotations”
is like those produced in Table 1.

This idea seems to have a tautological paradox to it. It seems that if we addw amount
of warping to the dataset, we will discover w warping in that dataset. However, this is
not the case, as discussed Sect. 2.2.3.

Table 2 outlines algorithm for generating pseudo constraints.
In line 1, we ensure that the data has an arbitrary structure in its ordering. In line 2,

we enter a loop that replaces every second data object with a warped version of the data
object that precedes it. Since these two objects differ only by the existence of some
warping, we annotate them as ‘must-link’. Note that this algorithm produces a new
dataset Dnew, which is the same size as D. This is important, as the size of the dataset
affects the best setting for w (recall Sect. 2.2.2). The algorithm also outputs PUA,
a set of pseudo annotations for Dnew. PUA is essentially identical to UA produced
in Table 1 except its annotations are produced without human interventions. Note
that with this method of generating annotations, all PUAs are must-link constraints.

123

H. A. Dau et al.

Table 2 Algorithm for finding the pseudo constraint set

Input: D, the dataset to be clustered
Input: M, the amount of warping to add
Output: Dnew, a new version of dataset D
Output: PUA, the set of pseudo user annotations for Dnew

1
2
3
4
5

Dnew ← random_shuffle(D)
for i = 1 in steps of 2 to numberOfInstances(Dnew)
 Dnewi+1 = add_random_warping(Di) // See Table 3
 PUA(i+1)/2 = set_constraint(Dnewi, Dnewi+1, ’must-link’)
end

5% warped 10% warped 20% warped

30% warped 40% warped 50% warped

0 100 200

60% warped

0 100 200

80% warped

-1

0

1

0 100 200

70% warped

Fig. 14 From left to right, top to bottom: increasingly warped versions of a sine wave. The red/bold curve is
the original, and the blue/fine curves are the ones with added warping. The “percentages” have no absolute
interpretation; they only allow a relative understanding of the amount of warping added (Color figure online)

Table 3 Code to add warping to a time series

1
2
3
4
5

function [warped_T] = add_warping(T,p)
i = randperm(length(T));
i = sort(i(1:end-floor(length(T) * p)));
warped_T = smooth(resample(T(i),length(T),length(i)),1);
end

Figure 14 shows some examples of synthetic time series with warping added, and for
concreteness Table 3 contains the actual MATLAB code used to add warping. We call
this variant of our ideas the Pseudo User Annotation (PUA) algorithm.

How well does this idea work compared to using true human annotations? The
human annotations are constraints between two real data objects, which is undoubtedly
advantageous. However, in most cases, we have only a fraction of D annotated this
way. In contrast, every item in Dnew has an annotation, which provides this approach
with an advantage if we choose to use them all. Figure 15 shows how this idea works
with Trace and Two Patterns. Here we use 64 out of 1824 pseudo constraints available

123

Optimizing dynamic time warping’s window width

Rand-Index
Optimal w

Using 1 pseudo constraint

Using 4 pseudo constraints

Using 16 pseudo constraints

Using 27 pseudo constraints

Trace
1

0.5

155 10 20
Increasing values of w

0 155 10 20

Rand-Index

Using 1 pseudo constraint

Using 4 pseudo constraints

After 16 pseudo constraints

After 64 pseudo constraints

Two Patterns

0

Optimal w

1

0.5

Increasing values of w

Fig. 15 Trace andTwoPatterns’ prediction vectors using pseudo constraints provided by the PUAalgorithm

for Two Patterns to reach the correct value w =8. Using all 27 constraints available
for Trace, we arrive at w =15, which gives a Rand-Index of 0.991 (the optimal is 1.0
at w =7).

The reader may wonder how much warping we should use to obtain good pseudo
constraints. The good news is that our PUA algorithm is quite robust to this parameter.
In this example, we tried all possible warping amounts from 5 to 90% in 5% intervals.
We found that for Two Patterns, any warping amount in the range 5–65% allows us to
estimate the correct w.

3.1.7 Further reducing human effort

There are a handful of techniques we could use to reduce the number of annotations
given by the user, and many of these ideas can be borrowed directly from the informa-
tion retrieval community (Lv and Zhai 2010). For example, suppose the user decides
{7,11} must-link, and that {11,27} must-link, then there is little point in asking their
opinion on {7,27}, since they will also label this pair as must-link (by transitivity).
We do not consider such optimizations here for brevity, because the simplest version
of our ideas is already very competitive.

3.1.8 Related work

Zhou et al. (2015) recently introduced a paper entitled “Enhancing time series clus-
tering by incorporating multiple distance measures with semi-supervised learning”.
However, the method is perhaps better seen as an ensemble-based method for time
series clustering. The method has many parameters (at least four: α, β, p, w), and it
is not clear how they affect the performance. They only test on twelve of the datasets
we consider here, but in every case, they do not perform as well as our proposed
approach. For example, for Trace, they obtain a best Normalized Mutual Information

123

H. A. Dau et al.

(NMI)2 score of 0.813, whereas, as we will show in Sect. 3.2, we can easily obtain a
near-perfect NMI of 0.97.

Beyond this effort, we are not aware of any other work like our approach for semi-
supervised learning for time series clustering. The general field of semi-supervised
time series clustering is vast; we refer the interested reader to Rani and Sikka (2012)
and the references therein. We further briefly review some of the most recent, high-
visibility efforts in time series clustering in Sect. 3.2.4 before the direct empirical
comparisons to our proposed algorithm.

3.2 Empirical evaluation of using prediction vector for setting w for time series
clustering

At the risk of redundancy, we restate that we are not introducing a new clustering
algorithm, merely proposing a technique to learn w because this parameter critically
affects the quality of clusterings. Nevertheless, in Sect. 3.2.4, we explicitly compare
TADPole by using the learnedwarpingwindow to five recent state-of-the-art clustering
algorithms.

3.2.1 Preliminary tests

We denote our algorithm as cDTWss (DTW Semi-Supervised). We compare to two
rivals by clustering with cDTW0 (Euclidean distance) and clustering with cDTW10.
These rival methods account for virtually everything in the literature. For example,
Ding et al. (2015) uses cDTW0, andPaparrizos andGravano (2015, 2017) use cDTW10.
A surprisingly large number of papers neglect to explicitly state what value of w they
used.

It is important to state that theonly difference betweenour approach and the two rival
methods is the access to the labeled constraints. Otherwise, the underlying clustering
algorithm,TADPole (Begumet al. 2015), is identical for all approaches and completely
deterministic (Rodriguez and Laio 2014). Thus, any improvements obtained can be
completely attributed solely to our ideas.

We can measure success as follows. For each dataset, we compute the maximum
Rand-Index obtainable under any setting of w from 0 to 20 [as our result shows, and
in concurrence with the literature, most datasets in the UCR Archive do not require
w greater than 10% (Ratanamahatana and Keogh 2005)]. For example, in Fig. 1, the
maximum Rand-Index is 1.0 for Two Patterns and 0.89 for Swedish Leaf . Then, we
can compute a score, the ratio of the Rand-Index achieved by an approach over this
optimal achievable value. The closer this ratio is to 1.0, the better; we call an approach
a success if its score is 0.99 or higher.

We begin by considering the utility of our approach if given only sixteen labels; this
is about the amount a person can annotate in 1min.We summarize the result in Table 4.
With sixteen labeled constraints, we achieve success of 46 out of 102 datasets, with

2 NMI is an information-theoretic interpretation of clustering quality. It has values in range 0 and 1, the
higher the better.

123

Optimizing dynamic time warping’s window width

Table 4 Summary of number of successes on 102 datasets of cDTW0 (DTW with w =0 a.k.a. Euclidean
distance), cDTW10 (DTW with w =10) and cDTWss (DTW semi-supervised, our method)

CDTW0 CDTW10 CDTWss

16 annotations 34 out of 102 31 out of 102 46 out of 102

32 annotations 34 out of 102 31 out of 102 50 out of 102

Rand-Index
(the ground truth)

The three sequences are
dithered for visual clarity.
Only their amplitude is original,
their offset has no meaning.

Increasing values of w
0 5 10 15 20

Lighting2

MedicalImages

ScreenType

Fig. 16 The Rand-Index versus the warping window width for three small datasets. Contrast the variability
of the curves with the relatively smooth curves shown in Fig. 1

cDTW0 and cDTW10 achieving 34 and 31, respectively. If we double the number of
constraints to thirty-two, we extend our success to 50 datasets. Recall that thirty-two
annotations require only a few minutes of user effort, and they typically represent less
than 0.0001% of the labeled pairs.

Despite this significant improvement over the state-of-the-art, it is natural towonder
about the cases we did not score within 0.99 of the optimal. In some cases, we just
missed out. For example, using thirty-two constraints on theTwoLeadECG,Cricket_Y ,
NonInvasiveFatalECG_2, and 50words datasets, we were within at least 0.98 of the
optimal.

However, in some cases, we do achieve significantly worse than the optimal. Essen-
tially, all such cases can be attributed to very small datasets (or small, relative to the
number of clusters). As shown in Fig. 16, this tends to result in clusterings that are
very unstable with small changes in w. The fact that small datasets have poor stability
when clustered is well known (Von Luxburg 2010), and the issue is orthogonal to our
contributions. We speculate that if the best value of w is poorly defined and unstable,
it may be impossible for any algorithm to learn it. Nevertheless, even in such datasets,
we do not do worse than the lower scoring of our two rivals.

3.2.2 Robustness to incorrect constraints

The experiments in the previous section assume that all the constraints the user
provided are correct. However, this assumption may be unwarranted in many cir-
cumstances. Our annotator may indicate that two items cannot-link when they are in
the same class, and really must-link, or vice versa. To investigate the robustness of
our approach, we revisit some of the experiments above, but this time, we randomly
make some of the constraints incorrect.

123

H. A. Dau et al.

1

0.6
Optimal w Rand-Index

0 incorrect annotations out of 16

2 incorrect annotations out of 16

4 incorrect annotations out of 16

6 incorrect annotations out of 16

MiddlePhalanxOutlineAgeGroup

10 200

1

0

Optimal w
Rand-Index

0 incorrect annotations out of 16

2 incorrect annotations out of 16

4 incorrect annotations out of 16

6 incorrect annotations out of 16

ItalyPowerDemand

10 20
Increasing values of w

0
Increasing values of w

Fig. 17 Robustness to incorrect constraints. In each case, 16 pairs of time series are presented for annotation.
The annotator may incorrectly label a pair that should have been must-link as cannot-link and vice versa.
Our algorithm is robust to these mistakes

As shown in Fig. 17, for the ItalyPowerDemand and MiddlePhalanxOutlineAge-
Group dataset, we can achieve near perfect results even if a fraction of the constraints
is incorrect. Among the 16 pairs of time series chosen for annotation, we single out
the must-link pairs and randomly change the label of some pairs from this list to can-
not-link. Then, we observe the mean best w predicted averaged over 10 runs. We find
that it is consistently 0 for the ItalyPowerDemand dataset and 1 for the MiddlePha-
lanxOutineAgeGroup, which concurs with the objective ground truth.

As a practical matter, any system used to garner user feedback should allow three
choices to the user, cannot-link, must-link and I-don’t-know, which would further
enhance robustness by giving the user a chance to simply skip over the difficult or
ambiguous case.

3.2.3 Handling the multi-dimensional case

Thus far, we have considered only single dimensional time series; however, the pro-
liferation of sensors from sources such as wearable devices indicates that there is
increasing interest in multi-dimensional time series data (Shokoohi-Yekta et al. 2015).
Fortunately, there is nothing in our approach that makes any assumption about dimen-
sionality, so we can immediately apply our ideas to the multi-dimensional case. A
recent paper notes that there are (at least) two ways that DTW can be generalized
to the multi-dimensional case, for simplicity, we use DTWI (Shokoohi-Yekta et al.
2015), which allows each dimension to warp independently. Let Q and C be two
multi-dimensional time series ofM dimensions. DTWI defines their DTW distance as
the sum of independent DTW distances between each dimension.

DTWI (Q,C) �
M∑

m�1

DTW (Qm,Cm)

.

123

Optimizing dynamic time warping’s window width

Rand-Index
Optimal w

After one user annotation

After two user annotations

After four user annotations

After eight user annotations

After sixteen user annotations

uWave

155 10 20
Increasing values of w

0

1

0.5
After one user annotation

After two user annotations

After four user annotations

After eight user annotations

After sixteen user annotations

Handwriting Accelerometer

155 10 200

1

0.5

Rand-Index
Optimal w

Increasing values of w

Fig. 18 Three-dimensional uWave and Handwriting Accelerometer dataset clustered with DTWI

In Fig. 18, we consider the 4480-objects, three-dimensional UWave dataset (Liu
et al. 2009), which has become a benchmark for gesture recognition in the last 5 years.
We also consider theHandwritingAccelerometer dataset using all three of the available
accelerometer channel readings. Even though all dimensions are not necessary for this
task, we only wish to illustrate that our algorithm can correctly predict a good value
for w.

While there are just over one million possible pairwise constraints, our algorithm
can find the optimal w with only sixteen annotations. Note that here, the amount
of warping is critical. Too much or too little warping yields poor results. This fact
might explain the puzzlingly diversity of accuracy claims made for this dataset in the
literature. Unfortunately, most papers do not explicitly state the value of w used, but
the three most common settings, cDTW0, cDTW10, and cDTW100 are all suboptimal
to widely differing degrees.

3.2.4 Comparison to rival methods

In this section, we have two related aims. The first is to compare our methods to
other clustering methods in the literature (despite not introducing a new clustering
algorithm). Our second aim is higher-level.Wewish to demonstrate that finding a good
value for w generally produces improvements that dwarf all other choices, including
the choice of the clustering algorithm.

Concretely, in this section, we offer some evidence to support the following claim:

The effect of choosing the correct value of w is critical, and it generally dwarfs
any effect of the choice of the clustering algorithm.

This can also be stated as:

Any discussion of the “best” clustering algorithm for time series is premature,
unless the best value of w has been decided.

123

H. A. Dau et al.

Because somepublished research has claimed improvements in creating a clustering
algorithm, or in designing an alternative distance measure, which has only provided
slight improvements demonstrated in accuracy, this claim is important. We believe
that in many cases, a better (but not necessarily best) choice of wwould have radically
changed the outcome in favor of DTW with any “off-the-shelf” clustering algorithm.
Our claim somewhat contradicts recent claims such as “… the choice of algorithm…
is as critical as the choice of distance measure” (Paparrizos and Gravano 2015). We
reiterate that we are only offering some evidence to support this claim. Amore forceful
demonstration (that is rigorously fair to all cited works) would require more space than
is available here.

In a recent work (Paparrizos and Gravano 2015, 2017), the authors introduce k-
Shape, a system that combines a novel time series-clustering algorithm and a novel
distance measure named SBD (Shape-Based Distance), which are designed to work
together. They perform an extraordinary comprehensive empirical comparison of the
proposed method with all the major clustering algorithms and distance measures. For
DTW, they do recognize that the value of w can make a difference; they compare two
possibilities (cDTW5 and cDTW10) and conclude that “SBD is a very competitive
distance measure… and achieves similar results to both constraint and unconstraint
versions of DTW .”

However, simply choosing a better value of w offers improvements that dwarf the
claimed improvements of the SDB algorithm. For example, for the Trace dataset, they
compare five clustering algorithms using DTW versus the same five clustering algo-
rithms using SBD. The former achieves Rand-Index values of {0.87, 0.75, 0.75, 0.83,
0.77}, and the latter achieves {0.87, 0.87, 0.87, 0.83, 0.87}, suggesting an advantage
for SBD. However, using the exact same split of the Trace data, we can beat all these
approaches significantly without any human intervention, as our PUA algorithm can
achieve a 0.99 Rand-Index.

Similarly, we have a large margin of improvements for Two Patterns. For example,
Paparrizos and Gravano (2015) has the DTW-based algorithms achieving Rand-Index
values of {0.87, 0.59, 0.62, 0.97, 0.65}, and SBD variants achieving {0.25, 0.54, 0.64,
0.67, 0.66}, but PUA learns that cDTW8 is the best setting and achieves a perfect 1.0.

In a publication of ICML 2011 (Li and Prakash 2011), the authors introduce a
clustering method called Complex-valued Linear Dynamical Systems (CLDS) and
claim that the “approach produces significant improvement in clustering quality, 1.5–5
times better than well-known competitors on real motion capture sequences.” The
method involves several layers of complicated sub-procedures, so we refer the inter-
ested readers to the original paper. The authors demonstrate the utility of their work
on the publicly available MOCAPANG-Subject-35, right-foot-marker dataset. The
evaluation method is based on the conditional entropy,3 and they score 0.1015, while
cDTW100 using K-Means scores significantly worse at 0.4229, which is about the
same as random guessing.

In revisiting this experiment, we noted that the authors acknowledge that “the orig-
inal motion sequences have different lengths; we trim them with equal duration.”

3 For conditional entropy, smaller is better.

123

Optimizing dynamic time warping’s window width

Fig. 19 The Rand-Index versus
the warping window width for
StarLightCurves. We predict w
=1, obtaining a Rand-Index of
0.83, equivalent to a NMI of 0.79

0 5 10 15 20

After sixteen user annotations

Rand-Index
(the ground truth)

StarLightCurves

Optimal w

Increasing values of w

1

0.5

However, it is important to note that this manipulation is only needed for their pro-
posed method; cDTW can handle sequences of unequal lengths. When we re-ran the
experiments, we found that cDTW20 has a perfect conditional entropy of 0 when
using K-Means. TADPole achieves the same superior score for any w from 11 to 20.
As before, the correct value of w makes a difference; for example, if forced to use
cDTW10, TADPole scores a slightly worse 0.142.

To be clear, we are not claiming the work proposed by Li and Prakash (2011) is
without merit.We are simply demonstrating that when using any reasonable choice for
w with an off-the-shelf clustering method, cDTW can be a very competitive method
for the datasets the original authors used to validate their method.

A recently published work measures the accuracy of eleven carefully optimized
clustering algorithms on the Trace dataset, of which eight use DTW as the distance
measure (Ferreira and Zhao 2016). The Rand-Index of these methods are {0.87, 0.76,
0.86, 0.86, 0.91, 0.86, 0.86, 0.87, 0.87, 0.84, 0.75}. However, as noted above, using
the exact same split of Trace, we can beat all these approaches without any human
intervention, as our PUA algorithm can achieve a Rand-Index of 0.99.

Another recently published time series clustering technique called YADING is
shown to “provide theoretical proofwhich…guarantees YADING’s high performance”
(Ding et al. 2015). However, these guarantees are only with respect to Euclidean
distance. The only publicly available real dataset they test on is StarLightCurves, for
which they obtain a Normalized Mutual Information (NMI) score of 0.60. However,
as shown in Fig. 19, with 16 constraints given by the user, we find cDTW1 to be a
good choice and achieve a significantly better NMI of 0.79 (omitted for brevity: in
fact, any number of constraints above four also works this well).

Why did the authors of this paper dismiss DTW as a distance measure? They noted
that DTW “is one order of magnitude slower than calculating [Euclidean distance],”
and further noted that it only took them a brief 3.1 s to cluster this dataset. However,
this dataset took several years to collect, and many days of careful human effort in
preprocessing. Given that, the difference between taking 3.1 s and taking 30 s to do
the clustering seems completely inconsequential (but also see Sect. 3.2.5). Of course,
the authors are correct in noting that there is sometimes a need for better speed and
scalability. However, in many domains, the tradeoff between speed and accuracy will
still favor accuracy. For example, in the UCRArchive, many datasets took hours, days,
or weeks to collect (InsectWingbeatSound, ElectricDevices, Fish, Phoneme, etc.), so
the few minutes needed to cluster them is negligible if we can improve accuracy.

Finally, a paper in AAAI tests four algorithms for time series clustering; two are
based on DTW (Zhong et al. 2016). These algorithms yield NMI scores of {0.53, 0.45,

123

H. A. Dau et al.

0.54, 0.64} for the Trace dataset, but our PUA algorithm can achieve an almost perfect
NMI score of 0.97 (Rand-Index=0.99) on this same dataset.

These five examples strongly support our claim. Finding a good value for w (using
our method, or any method) can produce improvements that make almost all other
changes inconsequential.

3.2.5 Scalability

At first, our algorithm appears to require a significant overhead in time complexity,
given that the Density Peaks algorithm (Rodriguez and Laio 2014) requires O(n2)
calculations of cDTW, and we need to run this algorithm twenty-one times (for each
warping window from 0 to 20). However, this is a pessimistic view. To begin with,
note that we use the TADPole version of the algorithm, which is a specialization
of the Density Peaks algorithm for DTW that exploits the fact that we can compute
tight upper and lower bounds for cDTWw for any value of w and use these bounds to
prune off many computations. The TADPole algorithm is admissible, and it can prune
90%-plus of the cDTW calculations.

In fact, we can improve upon this. Instead of performing twenty-one independent
clusterings, we can exploit the fact that for any two time series Q and C, the value of
cDTWw(Q,C) is a very tight lower bound for the value of cDTWw+1(Q,C). Thus, we
can perform the clusterings in order, from w =0 to w =20, at each stage by using any
cDTWw calculations as lower bounds in the next level. Thus, the time overhead for
our ideas is only slightly more than a single highly optimized clustering. Even to the
must-calculated DTW that remains after the lower-bound pruning procedure, we can
still apply the work of Silva et al. (2018) to dismiss unpromising alignments.

Finally, we note that there are a wide variety of DTW implementations, and the
efficiency differences between them overshadow the small overhead of our approach.
For example, a recently published paper that tests a DTW-based clustering on some
of the datasets we consider, and it notes “several experiments were unable to return
results within 20 days” (Zhong et al. 2016). However, we can cluster these same
datasets in at most minutes, at least 10,000 times faster.

3.3 Case study: gesture-based identification

We present a case study in the context of gesture-based identification. The goal is to
identify/authenticate users based on loosely defined gestures such as “picking-up” or
“shaking” a handheld device (Guna et al. 2012). Such a gesture-based identification
system can be well suited for personalized applications that only target a small group
of users and are not security critical. User login for home sharingNetflix is an example.

The dataset was kindly shared by the authors of the paper (Guna et al. 2012),
whose preliminary experiment results show the feasibility of implicit gesture-based
user identification. The subset that we use is available for download on our supporting
webpage (Supporting Page 2018). The dataset consists of an accelerometer recording
of 10 subjects; each performs a “shake” gesture 10 times with a Nintendo Wii Mote
remote controller. The users are instructed to shake the control device in no predefined

123

Optimizing dynamic time warping’s window width

-3

0

3
Shake gesture x-axis Shake gesture y-axis Shake gesture z-axis

0 200 400 0 200 400 0 200 400
Sample (data point)

A
cc

el
er

at
io

n

Fig. 20 Five examples of a shake gesture captured with x, y, and z-axis acceleration. Time series of same
color correspond to one specific instance. One instance is highlighted for visual clarity (blue/bold time
series). The sampling rate is 100 Hz (Color figure online)

Rand-Index

Optimal w

After two user annotations

After four user annotations

After sixteen user annotations

After eight user annotations

Increasing values of w
0 10 20 30 40

0.6

1

Fig. 21 Clustering result with TADPole (red/bold) and prediction vectors (grey/thin). With 16 user annota-
tions, the algorithm suggests w =5, which gives a Rand-Index of 0.91, being 99% of optimal (Color figure
online)

way, just as they would normally do in their everyday life. Figure 20 displays some
instances of a shake gesture with acceleration measured in three axes. For simplicity,
we only use an x-axis reading for the results presented in Fig. 21.

We resample all the gesture occurrences, so they have a uniform length of 385,
which is the length of the longest occurrence recorded. Instead of performing user
classification as in the original paper, we are interested in clustering this dataset to
see how well each time series cluster characterizes an individual user. Figure 21 top
displays the Rand-Index if we have access to the true label. It shows that the highest
clustering quality for this dataset is 0.92 at w =8. Using a w =0 yields a much poorer
Rand-Index of only 0.82. By applying our method to learn w, we will eventually learn
that w =5 is the best, and it gives a Rand-Index of 0.91 (Fig. 21 bottom). We count this
a success, because the achieved Rand-Index scores 0.99 of the optimal Rand-Index.

In retrospect, this is clearly a dataset that would benefit from warping invariance.
Although the chosen gesture is identical for all users, there exists a subtle systematic
variation in how it is performed by each individual, which explains the good clustering
result. For instances contributed by a particular subject, there may be shifting in the
time axis that a small amount of warping can account for. In this case, a suitable choice
of w can make a significant difference in the final cluster assignment.

123

H. A. Dau et al.

4 Learning warping window width for time series classification

4.1 Our approach

4.1.1 Introduction

We begin by formalizing the task at hand:

Problem Statement: Given a labeled time series training set D; find the value
of w that maximizes the classification quality on an unlabeled test set. Where
ties exist, report the smallest w.

We evaluate the classification quality by themeasure of accuracy.Maximizing accu-
racymeansminimizing the classification error-rate. Readersmay argue that some other
performance measures, such as the F-measure, are more suited. The F-measure penal-
izes false positive and false negative equally, making it a fairer metric for unbalanced
datasets. However, the uneven distribution of classes is not an issue here, since all the
datasets we consider are stratified sampling. We are more interested in learning the
appropriate value of w for the maximal classification accuracy of the test set, given
that we only have limited training examples to learn from.

Since there is a growing consensus that the DTW-based k-NN (NN-DTW) is a
strong baseline for time series classification, we use it as the underlying classification
algorithm. This concurrence stems from the fact that time series classification has a
universally used collection of benchmark datasets (Chen et al. 2015). There are now
many independent comprehensive empirical studies demonstrating a strong perfor-
mance of NN-DTW (Bagnall and Lines 2014; Ding et al. 2008; Lines and Bagnall
2015). Nevertheless, in recent years, there have been many proposed algorithms that
are able to improve upon NN-DTW’s accuracy in the general case. Recent papers
note that many claims do not hold under rigorous statistical evaluations: “Based on
experiments on 77 problems, we conclude that 1-NN with Euclidean distance is fairly
easy to beat but 1-NN with DTW is not” (Bagnall and Lines 2014) or “the received
wisdom is that DTW is hard to beat” (Bagnall et al. 2017).

We will show that it is possible to learn w more robustly; this is particularly useful
when the training data is limited. Our approach is based on resampling the training
data. Resampling is normally ill advised in small datasets, where using only a subset
of the data compounds all the problems inherent with working with limited data.
However, we can address this issue by replacing the non-sampled data with synthetic
replacements. Our idea is simple, making it very amendable to existing time series
classification tools, but as we will show, the performance improvements it allows are
statistically significant.

4.1.2 DTW-based 1-NN classification

The nearest neighbor classifier (NN) works intuitively. It assigns an unseen object to
the class of its closest neighbor in the feature space. The general algorithm is referred
to as k-NN, in which k is the number of nearest neighbors under consideration. In the
case of 1-NN, the new object is automatically assigned the class label of its nearest

123

Optimizing dynamic time warping’s window width

neighbor, breaking ties randomly. For k greater than 1, the majority vote is applied.
The NN classifier is unique in that there is no explicit model built during training.
A new object is simply classified by comparing itself to all the other objects in the
training set.

The warping constraint has a direct effect on the k-NN classifier outcome. Kurbalija
et al. (2014) study the impact of global constraints on the four most widely used elastic
distance measures: DTW, LCS, ERP, and EDR (they note that DTW is the most
accurate overall by a wide margin). They test different values of the Sakoe–Chiba
band and observe how this parameter affects the number of time series changing their
nearest neighbors in comparison with the unconstrained case. They found that among
the distance measures considered, DTW is the most sensitive to the setting of w. The
nearest neighbors of time series objects tend to remain stable for w greater than 15 but
change significantly for smaller w values.

Geler et al. (2014) study the effectiveness of the k-NN classifier in relationship to
the w values. They found that if the k-NN have equal votes, then the best w value
grows as k grows. However, if we use a weighing scheme that favors the first nearest
neighbor, then the best w remains approximately similar for different k settings. They
argue that such weighing schemes significantly improve the k-NN classifier accuracy.
In the absence of a weighing scheme, the k-NN classifier gives the highest accuracy
for k =1.

Most practitioners who adopt 1-NN do so for its simplicity, i.e., requiring no param-
eter tuning. The research focus has thus shifted to improving the distancemeasure used.
1-NN using DTW has emerged as the new benchmark for many time series classifica-
tion tasks. This practice of using 1-NN-DTW is supported by a recent survey in time
series classification: “When using a NN classifier with DTW on a new problem, we
would advise that it is not particularly important to set k through cross validation, but
that setting the warping window size is worthwhile” (Bagnall and Lines 2014). The
importance of setting the right w for DTW is acknowledged here and in a handful of
other places in the literature. Nevertheless, we argue that it is under-examined, given
that the potential for the improvements that it offers seems to equal the improvements
gained at the expense of more complex methods.

4.1.3 Classification quality measure

We evaluate the classification quality by the measure of accuracy. Interchangeably, we
sometimes report the classification error-rate as maximizing accuracymeansminimiz-
ing the classification error-rate (the sum of accuracy and error-rate is 100%). Accuracy
measures the proportion of true results among the total number of cases examined,
multiplied by 100 to turn it into a percentage. A true positive (TP) or true negative
(TN) means that the correct label agrees with the classifier’s label.

False positive (FP) refers to the number of negative examples labeled as positive.
False negative (FN) refers to the number of positive examples labeled as negative.
Accuracy is calculated as follow:

Accuracy � TP + TN

TP + TN + FP + FN
.

123

H. A. Dau et al.

Note that accuracy may not be a good classification measure in the presence of
imbalanced data. In that case, a classifier that blindly assign all objects with either
negative label or positive label will have a high accuracy, even though it is practically
useless. However, it is not a problem here because we assume stratified sampling of
train data.

In assessing the quality of the classifier during the training phase, it is common to use
k-fold cross-validation error-rate. The final error-rate is the average of all error-rates
from training on each (k −1) folds and testing on the remaining fold.

4.1.4 Making synthetic data

The idea of making synthetic data to improve classification is not new, but it has
been limited to the two-class problem. For example, it has been used to address the
problem of class imbalance, in which one class dominates the other (Batista et al.
2004; Chawla et al. 2002; He et al. 2008). Synthetic exemplars of the minority class
are added to create a more balanced training set, hence mitigating the tendency for the
classifier to be biased towards the majority class. Although oversampling techniques
have been used in time series classification with class imbalance (Cao et al. 2013),
creating synthetic time series data mining under DTWhas only been explored recently
(Forestier et al. 2017; Petitjean et al. 2015).

A recent paper also generates synthetic exemplars by adding warping to existing
objects (Guennec et al. 2016).However, this is tomitigate convolutional neural network
(CNN)weakness “…that they need a lot of training data to be efficient” (Guennec et al.
2016). The synthetic examples do help improve accuracy over the non-augmented
datasets; still, it remains unclear if CNNs are generally competitive for time series
problems (Bagnall and Lines 2014), and this issue is orthogonal to the claims of this
work.

4.1.5 An intuition to our proposed approach

To understand the effect(s) of dataset size on the most suitable warping windowwidth,
we performed the following experiment.We beginwith a simple experiment that deter-
mines whether what we hope to achieve is possible, and it also offers intuition on how
to achieve it. Consider the Two Patterns dataset. Because it has 1000 training objects,
we will denote it as Two Patterns1000. As shown in Fig. 22 left, Two Patterns1000 is
a dataset in which we can correctly learn the best maximum warping window with
cross-validation.

Suppose the dataset had significantly fewer training instances; we will call this
dataset Two Patterns20. We would expect that the holdout error-rate would increase,
and we were advised by Ratanamahatana et al. (2005) that we should expect the
best value for w to go up slightly. As we can see in Fig. 22 right, these both occur.
However, the most visually jarring observation wemake is that we have lost the ability
to correctly predict the best value for w, as the training error oscillates wildly as we
vary this parameter. In fact, Fig. 22 right strongly resembles some of the plots shown
in Fig. 3, and for the same reason, we do not have enough training data.

123

Optimizing dynamic time warping’s window width

0 50 100
0

0.5

1
Two Patterns with
20 training objects

Warping Window Width
0 10 20

0

0.05

0.1
Two Patterns with
1000 training objects

Warping Window Width

Er
ro

r-r
at

e

Fig. 22 The LOO error-rate (blue/thin) and the holdout error-rate (red/bold) for increasing values of w.
(Left) Two Patterns1000 dataset, (right) Two Patterns20 dataset (Color figure online)

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

Warping Window Width

LOO error-rate of 1000-objects Two
Patterns (blue) and holdout error-rate
of 20-objects Two Patterns (red)

Er
ro

r-r
at

e

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

Warping Window Width

Average LOO error-rate of 20
random samples of 20-objects Two
Patterns (blue) and holdout error-rate
of 20-object Two Patterns (red)

Fig. 23 (Left) The LOO error-rate of the Two Patterns1000 dataset is a poor predictor of the holdout error
on Two Patterns20. (Right) In contrast, the average LOO error-rate of 20 random samples of Two Patterns20

is an excellent predictor of the holdout error on Two Patterns20

Let us further suppose that while we are condemned to using Two Patterns20 to
classify new instances, we have one thousand more labeled instances at our disposal.
One might ask: if we have more labeled examples, why do we not use them in the
training set? Perhaps the time available at classification time is only enough to compare
twenty instances.

Clearly, we do not want to use all one thousand labeled instances to learn the best
value for w, because, as shown in Fig. 23 left, we will learn the best value of w for
Two Patterns1000, not for Two Patterns20, which is our interest.

The solution suggests itself. Performing cross-validation with Two Patterns1000

gives us low variance, but it is biased toward the wrong value of w. In contrast, doing
cross-validation with Two Patterns20 is biased toward the correct value for w but has
high variance. If we resample many subsets of size twenty from Two Patterns1000,
do cross-validation on each, and average the resulting w versus error-rate curves, we
expect that this average mirrors the curve for the test error-rate and therefore predicts
a good value for w. As we can see in Fig. 23 right, this is exactly the case.

The observations above seem to be non-actionable. In general, we do not have 1000
spare objects to resample from. Our key insight is that we can synthetically generate
plausible training exemplars. We can use these synthetic objects to resample from,

123

H. A. Dau et al.

Table 5 Algorithm for making augmented training set

Input: D, the original training set with n objects
Input: M, the amount of warping to add
Input: R, the ratio of synthetic objects to create
Output: Dnew, a new version of dataset D

1
2
3
4
5
6

realObjects ← random_sample(D,(1-R)*n objects)
fakeObjects ← random_sample(D,(R*n) objects)
for i ← 1:1:numberOfInstances(fakeObjects)
 fakeObjectsi ← add_warping(fakeObjectsi,M)
end
Dnew ← [realObjects;fakeObjects]

make as many new instances of the training set as we wish, and learn the best setting
for w.

Note that this task is easier than it seems. We do not need to produce synthetic
exemplars that are perfect in every way or even visually resemble the true objects to
the human eye. It is sufficient to create synthetic objects that have the same properties
with regards to the best setting for w. In the next section, we show our strategy for
generating an arbitrary number of such instances.

4.1.6 Our algorithm

We can finally explain our algorithm, which can be tersely summarized as follows:

Make N copies of the original training set. For each copy, replace a fraction of
the data with synthetically generated data and perform cross-validation to learn
the error-rate versus w curve. Use the average of all N curves to predict w.

This algorithm, outlined in Table 6, contains a subroutine presented in Table 5.
Individual elements aremotivated and explained in following subsections. The essence
of themethodwe are proposing is inmakingN new training sets by using the algorithm
in Table 5. These datasets will be used instead of the original training set to learn w.
While each dataset may produce a noisy error versus w curve (as in Fig. 22 right), the
average of all such curves will be smoother, and it will more closely resemble the true
noisy error versus w curve (as in Fig. 23 right).

As shown in Table 5, we begin in line 1 by randomly sampling portion of the
original training objects with replacement. These objects will be included in the new
training set and will be unmodified. After that, we randomly sample a portion of the
original training set again. These objects are then distorted by adding a warping and
are appended to the new training set. Using this algorithm, the new training sets have
the same number of objects as the original set. Note that the sampling is performed in
a stratified manner; otherwise, when working with small datasets, we run the risk of
only adding warping to one class and possibly skewing the results.

The sub-routine of making new training set is invoked over a number of iterations,
as shown in line 2 of the main algorithm in Table 6. For each new training set, we run
cross-validation to compute the classification error-rate at each setting of themaximum
warping width allowed from 0% (Euclidean distance) to 100% (unconstrained DTW),

123

Optimizing dynamic time warping’s window width

Table 6 Algorithm for finding the warping window width

Input: D, the original training set
Output: w, the predicted best warping window

1
2
3

for i ← 1:1:numberOfIterations
 Dnew ← make_new_train_set(D) // See Table 4
for j ← 1:1:maximumWarpingWindow

4
5
6
7
8
9

errorRatei,j ← run_cross_validation(Dnew)
end
end
meanOfAllIterations ← mean(errorRate)
[minValue, minIndex] ← min(meanOfAllIterations)
w ← minIndex – 1

in steps of 1%. Finally, we calculate the mean error-rate of all runs in line 7 and obtain
the index of the minimum error-rate. The learned w in line 9 is this index minus one
since the item at the first index corresponds to w =0.

4.1.7 Generation of new training set

The new training set has the same size as the original training set, but only a portion
of the real objects are retained, and a portion of synthetic objects added. The ratio of
real/synthetic objects is 0.2/0.8. This ratio is based on an intuition, which is explained
in Sect. 4.1.9 and verified empirically.

4.1.8 Adding warping to make new time series

We add warping to a time series in the same manner as we presented previously in
the context of learning w for time series clustering, where we showed how to make
pseudo user annotations (Sect. 3.1.6, Table 3). We nonlinearly shrink a time series
to a smaller length by randomly removing data points and then linearly stretching
the down-sampled time series back to its original size. However, we incorporate a
small modification to account for possible “endpoint effects” introduced by the resam-
pling process. Figure 24 illustrates how a time series is transformed into its warped
version.

We add extra “paddings” at the beginning and end of the down-sampled time series
by repeating its endpoint/start point values ten times. These paddings are removed
from the final time series later (Fig. 24 middle). It is important to note, as a recent
work indicates, that the endpoints can result in misleading DTW distance (Silva et al.
2017). Recall that DTW’s constraints require it tomatch the pairs of beginning and end
points, even though they may be a poor match. The MATLAB code to add warping
in Table 7 contains a small modification of Table 3 to reflect these changes. Even
though “without padding” still brings about reasonably good results, findings from
our experiments presented in Sect. 4.2 confirm that “adding padding” improves the
performance.

It may be possible to further improve our overall method if we find better ways to
makemore “natural” synthetic exemplars.Wehave experimentedwith severalmethods

123

H. A. Dau et al.

0 50 100 150 200 250 300

0 50 100 150 200 250 300

0 50 100 150 200 250 300

0 50 100 150 200 250 300

The original time series exemplar O, of length 275

Down-sample O by 20%, making a new time series O’ of length 220

Add padding to O’, by repeating the endpoints’ values

Resample O’ to the original sample rate plus padding amount

Trim off padding on each end to resize to the length of O

The original time series exemplar O

The 20%-warped version of O

Fig. 24 Adding 20% warping to an exemplar of Trace. Note that in the bottom panel, the generated times
series (bold/red) is a slightly warped version of the original time series (fine/black) (Color figure online)

Table 7 Code to add warping to a time series

1
2
3
4
5
6
7

function [warped_T] = add_warping(T,p)
 i = randperm(length(T));
 t = T(sort(i(1:end-length(T) * p)));
 t = [repmat(t(1),1,10), t, repmat(t(end),1,10)];
 warped_T = resample(t,length(T) + 20, length(t));
 warped_T = warped_T(11:end - 10);
end

to generate synthetic time series (Chawla et al. 2002; Forestier et al. 2017; Petitjean
et al. 2015). Interested readers can findmore details on the paper’s supportingwebpage
(Supporting Page 2018). In brief, there are dozens of methods to produce synthetic
examples (averaging, grafting, perturbing etc.), and many of these ideas work well
(Esteban et al. 2017). We chose the method shown in Table 7, because it is simple and
effective.

4.1.9 On the parameter setting

Readers will have observed that we have three parameters to set. The first is the amount
ofwarpingwe use tomake newdata objects, whichwewill refer to as synthetic objects.
The second is the ratio between real and synthetic objects in the newly constructed
training set, whichwewill refer to as an augmented training set. The third is the number

123

Optimizing dynamic time warping’s window width

0

ShapeletSim

Different amounts of warping (%)

Po
ss

ib
le

 e
rr

or
-r

at
e

re
du

ct
io

n
Possible error rate reduction with UCR-method

Possible error rate reduction with our method

0 5 10 15 20 25 30

0.1

0.2

0.3

Fig. 25 Effect of the warping amount on the possible error-rate reduction. The vertical axis shows the
difference between the error-rate achieved by thew learned and the error-rate achieved by the bestw for this
dataset. Possible error-rate reduction is synonymous with room for improvement. Adding warping helps if
the blue/fine line is below the green/bold line (Color figure online)

of iterationswewould like to repeat the process, i.e., the number of augmented training
sets to generate.

At first glance, the idea of adding warping seems to have a tautological air to it.
It seems that the amount of warping we will discover is the amount of warping we
added. However, this is not the case. Empirically, we have discovered that if we do not
add enough warping, our algorithm will fail, that if we add exactly the correct amount
it will work well, and if we add too much, it will still work well. Given this, we should
clearly err on the side of adding more warping.

To demonstrate this, we consider the ShapeletSim dataset. We ran our algorithm
(Table 5) on this dataset multiple times, changing only M, the amount of warping
added to make synthetic exemplars (Table 5 line 4) from 0 to 30%. The lowest error
achievable for this size subset of ShapeletSim is 26.11%, and the error-rate obtained
with the baselinemethod is 52%.As shown in Fig. 25, adding too little warping hinders
our ability to predict the best w, but once we have added at least 15% warping, we
learn a setting for w that gives us the lowest error-rate.

Given this observation, for simplicity, we hardcode the amount of warping to 20%
for all experiments in this work.

Similarly, different synthetic/real object ratios for the augmented training set can
produce different results. However, there is a single value, 0.8 that produces successful
results on most datasets. Making the majority of objects in the newly constructed
training set synthetic yields more diversity and variance in each training cycle. This
value is hardcoded for all experiments presented in this work.

Finally, the parameter N , the number of new (partly synthetic) training sets needs
to be determined. This is a simple parameter to set; the more the better, but the gain
comeswith diminishing returns.N is hardcoded to a conservative 10 for all experiments
presented in this work.

Using hardcoded settings for all the datasets in the UCR Archive is an opportunity
cost; an adaptive approach could be better. However, our strategy guards against over-
fitting.Moreover, we see this work as proof that amore robust learning ofw is possible,
and it is not the final word on the matter.

123

H. A. Dau et al.

4.1.10 Why tenfold cross-validation

Leave-one-out (LOO) is a common variant of cross-validation (CV) to tune the param-
eters, and it is the method used by the UCR Time Series Archive to learn the warping
window size. LOO has the advantage that no data is wasted. However, as noted in
Ng (1997), LOO can be more susceptible to over-fitting. This is because the models
trained in each iteration are only slightly different (since the training set differs in only
one object each time). Moreover, the entire purpose of creating N training sets to learn
w is to increase the variance of the results. LOO is deterministic, but (with shuffling)
K-fold CV (when K is less than size of training set) is not. On the other hand, if we set
K =2, we are learning from a dataset that is only half the size of the dataset we have.
As we explained in Sect. 4.1.5, for small training sets, this is likely to result in learning
a pessimistic value of w, which is much too large. Given these two constraints, we
propose to use tenfold CV throughout this work. It provides a good tradeoff between
low-variance LOO and the biased-to-large-w twofold CV.

Finally, it may appear that performing 10 repetitions of tenfold CVwill be computa-
tionally expensive. However, recall that the datasets in question are small by definition.
Additionally, we can accelerate the entire process by embedding the current state-of-
the-art DTW lower bounding and early abandoning techniques. Even without these
techniques, our entire learning algorithm only takes 23 min for Gun_Point, given that
we perform 100 iterations for all w from 0 to 100. Note that we can further reduce this
time by choosing to perform fewer iterations and a narrower w range. Our experiment
results demonstrate that even 10 iterations offer statistically significant improvement
over the baseline method, and the best w for a dataset, regardless of its size, does not
exceed 60. This applies for datasets discussed in Sect. 4.2.1, which are framed around
small training set problem, not the original UCR splits.

4.1.11 Related work

Themore general idea of creating synthetic data tomitigate the problemsof imbalanced
datasets (Chawla et al. 2002) or to learn a distance measure (Ha and Bunke 1997) is
well-known. However, we are not aware of any other research suggesting a window
size for improving DTW-based classification. We suspect that the dearth of study on
this important problem is likely due to the community’s lack of appreciation of the
importance of w setting.

4.2 Empirical evaluation of the resampling method to learn w for time series
classification

4.2.1 Datasets

We use the UCR Time Series datasets for our experiments (Chen et al. 2015). As of
February 2018, the UCR Time Series Archive has 85 datasets from various domains,
has served as the benchmark for the time series community, and is widely referenced

123

Optimizing dynamic time warping’s window width

-4 -2 0 2 4 6 8 10 12 14 16
The help/hurt amount, as absolute value of error rate reduction in percentage

Above: Data sets
that we help (24)

Below: Data sets that
we hurt (13)

Fig. 26 Help/hurt amount. The number of datasets that we help is nearly twice the number of datasets that
we hurt

in the literature. A more comprehensive version of the UCR Archive together with
classification results of different algorithms is hosted by Bagnall et al. (2018).

As we have demonstrated in Fig. 22 left, our ability to learn w depends on the
amount of training data. With enough data, the simple baseline method is effective,
and we have little to offer. The ideas proposed in this work are most useful for smaller
datasets. Some of the train/test splits in the UCR datasets have large enough training
sets that our ideas do not offer any advantages. Rather than ignoring these datasets,
we will recast them to a smaller uniform size.

We merge the original train and test set together, then randomly sample ten objects
per class for training. The remaining objects are used for testing. As three datasets
do not have enough ten objects per class, we exclude them from the experiment (the
excluded are:OliveOil,50words andPhoneme). Therefore,we are leftwith 82datasets.
These new splits are published in the paper supporting webpage (Supporting Page
2018) for reproducibility. Note that with these new splits, the training sets all have
equal class distribution. However, this distribution may not be true for the test set.

4.2.2 Performance evaluation

We compare our method to the standard practice of learning w via cross-validation
on the train set. Specifically, we implement the tenfold cross-validation with 1-NN
classifier variant. For concreteness, we refer to this as the baseline method.

Using the algorithm in Table 6 to learn the warping window size, we classified
the holdout test data on the training set with 1-NN. Figures 26 and 27 show a visual
summary of the results. Perceptibly, ourmethodwinsmore often and by largermargins.
We can summarize this in several ways.

We call our proposed method a success if it can reduce error-rate in absolute value
by at least 0.5% (i.e., we round the error-rate to two decimal places) compared to the
baseline method. We call it a failure if our method increases the error-rate by more
than 0.5%. If the newly learned w results in test error-rate that is less than 1% different
from the test error-rate obtained by the traditional method, we consider our method
neutral. This can happen in two ways. Our method suggests the same value of w as
the baseline method, or it recommends a different value of w, which offers similar
accuracy.

123

H. A. Dau et al.

0

5

10

15

0 5 100 10 20 30 40
0

10

20

30

40

In this region
the baseline
method wins

In this region
our method wins

Possible error-rate reduction

Po
ss

ib
le

 e
rr

or
-r

at
e

re
du

ct
io

n

15

In this region
the baseline
method wins

In this region
our method wins

Fig. 27 Possible error-rate reduction (how close a method’s error-rate to the optimal error-rate is) of the
baseline method and our proposed method

Given this nomenclature, we can say that of the 82 datasets tested, our method
improves classification accuracy of twenty-four, with an average improvement of
3.2%, and decreases the accuracy on only thirteen with a smaller average of 1.6%.
This statement can in turn be visualized with the linear plot in Fig. 26.

Another way to demonstrate how our proposed method outperforms the traditional
method is to look at the possible room for improvement, which is the difference
between the error-rate achieved by the learned w and the error-rate of the best w of a
dataset (found by exhaustive search). The smaller the difference, the better the method
is. This is illustrated in Fig. 27.

While the results are visually compelling, we turn to statistical tests to ensure that
the superiority of our method is statistically significant. Both the paired-sample t test
and the one-sided Wilcoxon signed rank test confirm that our method is better than
the baseline method at the 5% significance level. Details are available on our website
(Supporting Page 2018).

4.2.3 On time complexity

It is important to clarify that we are optimizing the classification accuracy in trade-off
for speed. However, we are only compromising training time here. The test time is
not affected. Instead of running cross-validation one time as the baseline method, we
would need to do that multiple times and average the results of these independent
runs. So, if we decide to use ten iterations, the time it takes to learn the right w will
be ten times slower than the traditional method (the resampling and adding warping
to construct a new training set is linear and inconsequential).

Once the correct setting forw has been learned, we can readily use it for testing. This
use of multiple random samples might seem like a computational burden but recall
that many datasets in the UCR Archive took days, weeks or even months to collect, so
spending a fewmore seconds orminutes on training themodel to improve classification
accuracy is well worth the relatively small increase in computational effort. Moreover,
recent works such as FastWWSearch (Tan et al. 2018), which exploits various novel
lower bounds and pruning strategies, has dramatically reduced the time to search for

123

Optimizing dynamic time warping’s window width

the best w from training data of NN-DTW. FastWWSearch offers at least one order of
magnitude and up to 1000× speed-up than the state-of-the-art (Rakthanmanon et al.
2012). Such algorithms can augment our method.

4.2.4 Beating other algorithms with the UCR splits

As we noted, our contributions are focused on the case in which we have a small
training set. The “small training set” problem setting is a common situation. For
example, it was used in the “cold-start” learning of gestures for controlling a wearable
device (Valsamis et al. 2017). Nevertheless, it is interesting to ask if our algorithm can
improve upon the original UCR Archive’s train/test splits. The answer is “yes, at least
sometimes.” In most cases, for the larger train splits the baseline method is effective,
as in the examples in Fig. 2. However, in several cases, our method does significantly
improve on the baseline method, and it even improves on many of the methods that
claim to improve upon that strong baseline.

For example, we mentioned that Deng et al. (2013) can reduce the error-rate of
Gun_Point to 4.7%, but our method suggests w =5, which yields an error-rate of only
3.3%. Similarly, Górecki and Łuczak (2013) can lower error-rate of Lightning2 and
Lightning7 to 13.1 and 32.9%, but ourmethod can achieve an error-rate of only 8.2 and
29%, respectively. All these improvements are solely from optimizing the maximum
warping window width of DTW.

4.3 Case study: fall classification

We conduct a case study in the context of fall classification. We do not claim any
expertise in this domain, and we only have a superficial idea of how the data was
collected. This is exactly the purpose of this case study. We wish to demonstrate that
our ideas can be easily applied to any dataset/domain with minimum effort and show
the potential for significant gains in accuracy. The accuracy may be improved by
several other (mostly orthogonal) methods; for example, by carefully truncating data
(Silva et al. 2017), averaging exemplars (Petitjean et al. 2015), and discarding data
(Xi et al. 2006). However, we believe our method offers an unusually large “bang-for-
the-buck.”

Falls are a common source of injury among the elderly. A fall generally has few con-
sequences for the young, but it can lead to fatal consequences to the elderly. According
to the US Centers for Disease Control and Prevention, in the USA alone, an older adult
is hospitalized due to a fall every 11 s, with one such individual succumbing to their
injuries every 19 min. The total cost of fall injuries mounted to $34 billion in 2013 in
the US alone (National Council on Aging 2016). The type of fall is highly predictive
of the extent of the injuries that the victim sustains (Masters 2016). Thus, knowing the
cause or manner of a fall may assist timely and relevant medical intervention post-fall,
as well as help prevent more fall in the future.

The dataset we consider was kindly shared by Albert et al. (2012). It was collected
with a built-in phone accelerometer, whichwas attached the volunteer subjects’ lumbar
by a belt strap, positioned such that the accelerometer x, y, and z axes were directed

123

H. A. Dau et al.

0 100 200 300 400

-5

0

5

The fall event
A

cc
el

er
at

io
n

Sample (data point)

Fig. 28 Four instances of a trip and fall event captured in the x-axis acceleration

Fig. 29 Error-rate of fall
classification. The indices of
lowest values indicate the best w.
Our method to learn w obtains
an 7.5% error-rate reduction
compared to the baseline method

0 5 10 15 20
0

0.1

0.2

0.3

0.4

Best w for this
dataset is 7, which
gives 25.23%
error-rate

The baseline method suggests using w = 0,
meaning 36% error-rate

Our methods learns a
w = 9, which results
in 28.5% error-rate

Increasing w values

Er
ro

r-
ra

te

upward, left, and behind the subject, respectively. All falls were carried out onto a pad
in a controlled lab environment.

We only consider a small subset of the data and only the x-axis acceleration to
demonstrate the utility of our method. Each example in our dataset is 400 data points
long, representing a 20 s fall event at the sampling rate of 20 Hz (we re-sample the
subsequences of uniform length if some are slighter shorter or longer). Figure 28
displays four examples of a trip fall. The data can be considered weakly labeled. The
fall does not span the entire 20 s session, but it can be shifted in the time axis by an
arbitrary amount (“arbitrary” to us, as we did not collect the data). Visual inspection
suggests that this dataset needs warping invariance, and our algorithm helps determine
the appropriate amount of warping to allow, as shown in Fig. 29.

Our task is to classify falls into one of two classes: forward orientation (trip and
fall) or backward orientation (slip and fall). We randomly sample the data to construct
a train set of 20 objects and a test set of 214 objects. Stimulated falls come from five
different individuals. We perform stratified sampling, so the number of slip falls, and
trip falls are equal, and the contributions from each subject are the same. This training
set resembles the classic “cold start” problem. We restrict the train set to 10 objects

123

Optimizing dynamic time warping’s window width

per class only. Given the data comes from five different people, who possess unique
physiques and gaits, we only have two samples of each individual to learn from.

The baseline method leads us to use Euclidean distance (w =0), which gives a
classification accuracy of only 64%.However, ourmethod suggestsw =9, reducing the
error-rate from 36% to only 28.5%. The best warping window width for this dataset is
w =7, which corresponds to a 25.23% error-rate. This result is less impressive than the
one published in (Albert et al. 2012), but note that we intentionally frame our problem
around limited cross-subject training data and we perform classification using only a
single dimension.

5 Conclusion

In this work, we have shown that w, the maximum amount of warping allowed by
DTW, is a critical parameter for both the classification and clustering of time series
under theDTWdistance. Formost datasets, if this parameter is set poorly, then nothing
else matters; it is impossible to produce high-quality results. In many cases, a more
careful setting of the value of w can close most or the entire performance gap gained
by other more complicated algorithms recently proposed in the literature.

For clustering, we have further proposed the first semi-supervised technique
designed to discover the best value forw. Our approach is unique since human involve-
ment is not required up-front as it is in other semi-supervised clustering algorithms.
Instead, we seek user annotations after the clustering process, and we devise a scor-
ing scheme to ask for only the labels that really matter. This gives our algorithm the
desirable anytime algorithm property.

We have also forcefully demonstrated that the choice of warping window width w
is critical for accurate DTW-based nearest neighbor classification of time series and
proposed a resamplingmethod to learnw in this context. Our method is parameter-free
(or equivalently, we hardcoded all parameters). However, experimenting with adaptive
parameters may allow others to improve upon our results.

We have tested our algorithms on more than one hundred datasets from diverse
domains, showing that it offers statistically significant improvements. We note that
the ideas we have proposed are very simple. This is not an accident. We hope that
the reader sees this simplicity as the strength it is intended to be, not as a weakness;
simple ideas are more likely to be widely adopted and widely used.

Our paper has several other observations that are novel, or at least underappreciated.
We have shown that w depends not only on the data object shapes, but also on the
number data objects considered. This observation has been made for classification
before (Ratanamahatana and Keogh 2005), but not for clustering. We have shown
that the optimal setting for w for classification is not generally the optimal setting for
clustering, an assumption that has appeared in the literature (Paparrizos and Gravano
2015). Finally, in the last decade, a handful of researchers have argued that warping
constraints are not necessary, and that there are “cases where unconstrained warping
is useful” (Shou et al. 2005), or that research should “focus on unconstrained DTW”
(Athitsos et al. 2008). While the absence of evidence is not evidence of absence, the
extensive nature of our experiments, which failed to find a single datasetwhich requires

123

H. A. Dau et al.

a value of w greater than 20 for either clustering and classification of the UCR Time
Series Archive data, suggests that these efforts are likely to be fruitless.

Future work includes a more theoretical treatment of the issues at hand and deter-
mining if the basic framework can be extended to other distancemeasures with tunable
parameter(s) (Beecks et al. 2010; Assent et al. 2006; Lee et al. 2008; Vlachoset al.
2002). Finally, we have released all our code and data in a public repository (Support-
ing Page 2018), to allow others to confirm, extend, and exploit our ideas.

Acknowledgements This material is based upon work supported by the Air Force Office of Scientific
Research, Asian Office of Aerospace Research and Development (AOARD) under award number FA2386-
16-1-4023. The Australian Research Council under grant DE170100037 and the UK Engineering and
Physical Sciences Research Council (EPSRC) under grant number EP/M015807/1 have also supported this
work. Finally, we acknowledge the funding from NSF IIS-1161997 II and NSF IIS-1510741. We also wish
to take this opportunity to thank the donors of the data to the UCR Time Series Archive.

References

Albert MV, Kording K, Herrmann M, Jayaraman A (2012) Fall classification by machine learning using
mobile phones. PLoS ONE 7(5):e36556. https://doi.org/10.1371/journal.pone.0036556

Assent I, Wichterich M, Seidl T (2006) Adaptable distance functions for similarity-based multimedia
retrieval. Datenbank Spektrum 19:23–31

Athitsos V, Papapetrou P, Potamias M, Kollios G, Gunopulos D (2008) Approximate embedding-based
subsequence matching of time series. In: Proceedings of the 2008 ACM SIGMOD international con-
ference on management of data. ACM, pp 365–378

Bagnall A, Lines J (2014) An experimental evaluation of nearest neighbour time series classification. arXiv
Preprint arXiv:1406.4757

BagnallA, Lines J, BostromA,Large J,KeoghE (2017)The great time series classification bake off: a review
and experimental evaluation of recent algorithmic advances. Data Min Knowl Discov 31(3):606–660.
https://doi.org/10.1007/s10618-016-0483-9

Bagnall A, Lines J, Vickers W, Keogh E (2018) The UEA and UCR time series classification repository.
www.timeseriesclassification.com

Basu S, Banerjee A, Mooney R (2002) Semi-supervised clustering by seeding. In: Proceedings of the 19th
international conference on machine learning (ICML-2002), pp 19–26

Basu S, Bilenko M, Mooney RJ (2004) A probabilistic framework for semi-supervised clustering. Int Conf
Knowl Discov Data Min (KDD). https://doi.org/10.1145/1014052.1014062

Batista GE, Prati RC, Monard MC (2004) A study of the behavior of several methods for balancing
machine learning training data. ACM SIGKDD Explor Newsl Spec Issue Learn Imbalanced Datasets
6(1):20–29. https://doi.org/10.1145/1007730.1007735

Beecks C, Uysal MS, Seidl T (2010) Signature quadratic form distance. In: Proceedings of the ACM
international conference on image and video retrieval. ACM, pp 438–445

Begum N, Ulanova L, Wang J, Keogh E (2015) Accelerating dynamic time warping clustering with a
novel admissible pruning strategy. In: Proceedings of the 21th ACM SIGKDD international confer-
ence on knowledge discovery and datamining—KDD’15, pp 49–58. https://doi.org/10.1145/2783258.
2783286

Bilenko M, Mooney RJ (2003) Adaptive duplicate detection using learnable string similarity measures. In:
Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data
mining—KDD’03, p 39. https://doi.org/10.1145/956755.956759

CaoH, Li XL,WoonDYK,Ng SK (2013) Integrated oversampling for imbalanced time series classification.
IEEE Trans Knowl Data Eng 25(12):2809–2822. https://doi.org/10.1109/TKDE.2013.37

Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling
technique. J Artif Intell Res 16:321–357. https://doi.org/10.1613/jair.953

Chen Y, Hu B, Keogh E, Batista GE (2013) “DTW-D: time series semi-supervised learning from a single
example. In: KDD '13: Proceedings of the 19th ACM SIGKDD international conference on
knowledge discovery and data mining, pp 383–391. https://doi.org/10.1145/2487575.2487633

123

https://doi.org/10.1371/journal.pone.0036556
http://arxiv.org/abs/1406.4757
https://doi.org/10.1007/s10618-016-0483-9
http://www.timeseriesclassification.com
https://doi.org/10.1145/1014052.1014062
https://doi.org/10.1145/1007730.1007735
https://doi.org/10.1145/2783258.2783286
https://doi.org/10.1145/956755.956759
https://doi.org/10.1109/TKDE.2013.37
https://doi.org/10.1613/jair.953
https://doi.org/10.1145/2487575.2487633

Optimizing dynamic time warping’s window width

ChenY,KeoghE,HuB,BegumN,Bagnall A,MueenA,BatistaG (2015) TheUCR time series classification
archive. www.Cs.Ucr.Edu/~Eamonn/time_series_data

Dau HA (2018) Supporting page 2018. http://www.cs.ucr.edu/~hdau001/learn_dtw_parameter/
Dau HA, Begum N, Keogh E (2016) Semi-supervision dramatically improves time series clustering under

dynamic time warping. In: 25th ACM international conference on information and knowledge man-
agement, pp 999–1008. https://doi.org/10.1145/2983323.2983855

Dau HA, Silva DF, Petitjean F, Forestier G, Bagnall A, Keogh E (2017) Judicious setting of dynamic time
warping’s window width allows more accurate classification of time series. In: IEEE international
conference on big data

Demiriz A, Bennett KP, Embrechts MJ (1999) Semi-supervised clustering using genetic algorithms. In:
Artificial neural networks in engineering (ANNIE-99), pp 809–814

Deng H, Runger G, Tuv E, Vladimir M (2013) A time series forest for classification and feature extraction.
Inf Sci 239:142–153. https://doi.org/10.1016/j.ins.2013.02.030

Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh E (2008) Querying and mining of time series
data: experimental comparison of representations and distance measures. Proc VLDB Endow
1(2):1542–1552. https://doi.org/10.1145/1454159.1454226

Ding R, Wang Q, Dang Y, Fu Q, Zhang H, Zhang D (2015) YADING: fast clustering of large-scale time
series data. VLDB Endow 8(5):473–484. https://doi.org/10.14778/2735479.2735481

Esteban C, Hyland SL, Rätsch G (2017) Real-valued (medical) time series generation with recurrent con-
ditional GANs. arXiv Preprint arXiv:1706.02633

Ferreira LN, Zhao L (2016) Time series clustering via community detection in networks. Inf Sci
326:227–242. https://doi.org/10.1016/j.ins.2015.07.046

Forestier G, Petitjean F, Dau HA, Webb GI, Keogh E (2017) Generating synthetic time series to augment
sparse datasets. In: 2017 IEEE international conference on data mining (ICDM), pp 865–870. https://
doi.org/10.1109/ICDM.2017.106

Geler Z, Kurbalija V, RadovanovićM, IvanovićM (2014) Impact of the Sakoe–Chiba band on theDTW time
series distance measure for kNN classification. In: International conference on knowledge science,
engineering and management. Springer, pp 105–114

Górecki T, Łuczak M (2013) Using derivatives in time series classification. Data Min Knowl Discov
26(2):310–331. https://doi.org/10.1007/s10618-012-0251-4

Górecki T, Łuczak M (2014) Non-isometric transforms in time series classification using DTW. Knowl
Based Syst 61:98–108. https://doi.org/10.1016/j.knosys.2014.02.011

Guennec AL, Malinowski S, Tavenard R (2016) Data augmentation for time series classification using
convolutional neural networks. In: ECML/PKDD workshop on advanced analytics and learning on
temporal data

Guna J, Humar I, PogačnikM (2012) Intuitive gesture based user identification system. In: 2012 Proceedings
of 35th international conference on telecommunications and signal processing, TSP 2012, pp 629–633.
https://doi.org/10.1109/TSP.2012.6256373

Ha TM, Bunke H (1997) Off-line, handwritten numeral recognition by perturbation method. IEEE Trans
Pattern Anal Mach Intell 19(5):535–539. https://doi.org/10.1109/34.589216

Hayashi A, Mizuhara Y, Suematsu N (2005) Embedding time series data for classification. In: International
workshop on machine learning and data mining in pattern recognition, pp 356–365

He H, Bai Y, Garcia EA, Li S (2008) ADASYN: adaptive synthetic sampling approach for imbalanced
learning. In: Proceedings of the international joint conference on neural networks, pp 1322–1328.
https://doi.org/10.1109/IJCNN.2008.4633969

Hu B, Rakthanmanon T, Hao Y, Evans S, Lonardi S, Keogh E (2014) Using the minimum description
length to discover the intrinsic cardinality and dimensionality of time series. Data Min Knowl Discov
29(2):358–399. https://doi.org/10.1007/s10618-014-0345-2

Jeong Y-S, JeongMK, Omitaomu OA (2011)Weighted dynamic time warping for time series classification.
Pattern Recogn 44:2231–2240. https://doi.org/10.1016/j.patcog.2010.09.022

Kate RJ (2015) Using dynamic time warping distances as features for improved time series classification.
Data Min Knowl Discov 30(2):283–312. https://doi.org/10.1007/s10618-015-0418-x

Kurbalija V, Radovanović M, Geler Z, Ivanović M (2014) The influence of global constraints on similarity
measures for time-series databases. Knowl Based Syst 56:49–67. https://doi.org/10.1016/j.knosys.
2013.10.021

123

http://www.Cs.Ucr.Edu/%7e%e2%80%89Eamonn/time_series_data
http://www.cs.ucr.edu/%7ehdau001/learn_dtw_parameter/
https://doi.org/10.1145/2983323.2983855
https://doi.org/10.1016/j.ins.2013.02.030
https://doi.org/10.1145/1454159.1454226
https://doi.org/10.14778/2735479.2735481
http://arxiv.org/abs/1706.02633
https://doi.org/10.1016/j.ins.2015.07.046
https://doi.org/10.1109/ICDM.2017.106
https://doi.org/10.1007/s10618-012-0251-4
https://doi.org/10.1016/j.knosys.2014.02.011
https://doi.org/10.1109/TSP.2012.6256373
https://doi.org/10.1109/34.589216
https://doi.org/10.1109/IJCNN.2008.4633969
https://doi.org/10.1007/s10618-014-0345-2
https://doi.org/10.1016/j.patcog.2010.09.022
https://doi.org/10.1007/s10618-015-0418-x
https://doi.org/10.1016/j.knosys.2013.10.021

H. A. Dau et al.

Lee J-G, Han J, Li X, Gonzalez H (2008) TraClass: trajectory classification using hierarchical region-
based and trajectory-based clustering. Proc VLDB Endow 1(1):1081–1094. https://doi.org/10.1145/
1453856.1453972

Li L, Aditya Prakash B (2011) Time series clustering: complex is simpler! Proc IEEE Comput Soc Conf
Comput Vis Pattern Recognit 28(1):137–146. https://doi.org/10.1177/1420326X11423163

Lines J, Bagnall A (2015) Time series classification with ensembles of elastic distance measures. Data Min
Knowl Discov 29(3):565–592. https://doi.org/10.1007/s10618-014-0361-2

Liu J, Zhong L, Wickramasuriya J, Vasudevan V (2009) uWave: accelerometer-based personalized gesture
recognition and its applications. PervasiveMobComput 5(6):657–675. https://doi.org/10.1016/j.pmcj.
2009.07.007

Lu S, Mirchevska G, Phatak SS, Li D, Luka J, Calderone RA, Fonzi WA (2017) Dynamic time warping
assessment of highresolutionmelt curves provides a robust metric for fungal identification. PLoSONE
12(3):e0173320. https://doi.org/10.1371/journal.pone.0173320

Lv Y, Zhai CX (2010) Positional relevance model for pseudo-relevance feedback. In: Proceeding of the
33rd international ACM SIGIR conference on research and development in information retrieval—SI-
GIR’10, p 579. https://doi.org/10.1145/1835449.1835546

Masters J (2016) The level of pain and injury from slip and fall accidents. Brain Injury Society. http://www.
bisociety.org/level-pain-injury-slip-fall-accidents/

National Council on Aging (NCOA) (2016) Falls prevention facts. https://www.ncoa.org/news/resources-
for-reporters/get-the-facts/falls-prevention-facts/

Ng AY (1997) Preventing ‘overfitting’ of cross-validation data. In: ICML, vol 97, pp 245–253.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.6720&rep=rep1&type=pdf%0Ahttp://
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.6720

Paparrizos J, Gravano L (2015) K-shape: efficient and accurate clustering of time series. ACM Sigmod.
https://doi.org/10.1145/2723372.2737793

Paparrizos J, Gravano L (2017) Fast and accurate time-series clustering. ACM Trans Database Syst
42(2):1–49. https://doi.org/10.1145/3044711

Petitjean F, Forestier G,WebbGI, NicholsonAE, ChenY, Keogh E (2015) Dynamic timewarping averaging
of time series allows faster and more accurate classification. In: Proceedings of IEEE international
conference on data mining, ICDM, pp 470–479. https://doi.org/10.1109/ICDM.2014.27

RakthanmanonT,CampanaB,MueenA,BatistaG,WestoverB,ZhuQ,Zakaria J,KeoghE (2012) Searching
and mining trillions of time series subsequences under dynamic time warping. In: Proceedings of the
18th ACM SIGKDD international conference on knowledge discovery and data mining—KDD’12, p
262. https://doi.org/10.1145/2339530.2339576

Rand WM (1971) Objective criteria for the evaluation of clustering methods. J Am Stat Assoc
66(336):846–850. https://doi.org/10.1080/01621459.1971.10482356

Rani S, Sikka G (2012) Recent techniques of clustering of time series data: a survey. Int J Comput Appl
52(15):1–9. https://doi.org/10.5120/8282-1278

Ratanamahatana CA, Keogh E (2005) Three myths about dynamic time warping data mining. In: Proceed-
ings of the 2005 SIAM international conference on data mining, pp 506–510. https://doi.org/10.1137/
1.9781611972757.50

Rodriguez A, Laio A (2014) Clustering by fast search and find of density peaks. Science
344(6191):1492–1496. https://doi.org/10.1126/science.1242072

SakoeH, Chiba S (1978) Dynamic programming algorithm optimization for spokenword recognition. IEEE
Trans Acoust Speech Signal Process 26(1):43–49. https://doi.org/10.1109/TASSP.1978.1163055

Shokoohi-Yekta M, Wang J, Keogh E (2015) On the non-trivial generalization of dynamic time warping
to the multi-dimensional case. In: Proceedings of the 2015 SIAM international conference on data
mining, pp 289–297. https://doi.org/10.1137/1.9781611974010.33

Shou Y, Mamoulis N, Cheung D (2005) Fast and exact warping of time series using adaptive segmental
approximations. Mach Learn 58(2–3):231–267. https://doi.org/10.1007/s10994-005-5828-3

Silva DF, Batista GE, Keogh E (2017) Prefix and suffix invariant dynamic time warping. In: Proceedings of
IEEE international conference on data mining, ICDM, pp 1209–1214. https://doi.org/10.1109/ICDM.
2016.107

Silva DF, Giusti R, Keogh E, Batista GE (2018) Speeding up similarity search under dynamic time warping
by pruning unpromising alignments. In: Data mining and knowledge discovery. Springer, pp 1–29

123

https://doi.org/10.1145/1453856.1453972
https://doi.org/10.1177/1420326X11423163
https://doi.org/10.1007/s10618-014-0361-2
https://doi.org/10.1016/j.pmcj.2009.07.007
https://doi.org/10.1371/journal.pone.0173320
https://doi.org/10.1145/1835449.1835546
http://www.bisociety.org/level-pain-injury-slip-fall-accidents/
https://www.ncoa.org/news/resources-for-reporters/get-the-facts/falls-prevention-facts/
http://citeseerx.ist.psu.edu/viewdoc/download%3fdoi%3d10.1.1.47.6720%26rep%3drep1%26type%3dpdf%250Aciteseerx.ist.psu.edu/viewdoc/summary%3fdoi%3d10.1.1.47.6720
https://doi.org/10.1145/2723372.2737793
https://doi.org/10.1145/3044711
https://doi.org/10.1109/ICDM.2014.27
https://doi.org/10.1145/2339530.2339576
https://doi.org/10.1080/01621459.1971.10482356
https://doi.org/10.5120/8282-1278
https://doi.org/10.1137/1.9781611972757.50
https://doi.org/10.1126/science.1242072
https://doi.org/10.1109/TASSP.1978.1163055
https://doi.org/10.1137/1.9781611974010.33
https://doi.org/10.1007/s10994-005-5828-3
https://doi.org/10.1109/ICDM.2016.107

Optimizing dynamic time warping’s window width

Tan CW,HerrmannM, Forestier G,WebbGI, Petitjean F (2018) Efficient search of the best warpingwindow
for dynamic time warping. In: Proceedings of the 2018 SIAM international conference on data mining.
https://www.francois-petitjean.com/Research/Petitjean2018-SDM-learn-warp-window.pdf

Valsamis A, Tserpes K, Zissis D, Anagnostopoulos D, Varvarigou T (2017) Employing traditional machine
learning algorithms for big data streams analysis: the case of object trajectory prediction. J Syst Softw
127:249–257. https://doi.org/10.1016/j.jss.2016.06.016

Vinh NX (2010) Information theoretic measures for clusterings comparison: variants, properties, normal-
ization and correction for chance. J Mach Learn Res 11:2837–2854. https://doi.org/10.1182/blood-
2008-03-145946

Vlachos M, Kollios G, Gunopulos D (2002) Discovering similar multidimensional trajectories. In: Pro-
ceedings of international conference on data engineering, pp 673–684. https://doi.org/10.1109/ICDE.
2002.994784

Von Luxburg U (2010) Clustering stability: an overview. Found Trends® Mach Learn 2(3):235–274
Wagstaff K, Cardie C (2000) Clustering with instance-level constraints. In: Proceedings of

the national conference on artificial intelligence. http://citeseer.ist.psu.edu/rd/0,307538,1,
0.25,Download/http://citeseer.ist.psu.edu/cache/papers/cs/14353/http:zSzzSzwww.cs.cornell.
eduzSzhomezSzcardiezSzpaperszSzicml-2000.pdf/wagstaff00clustering.pdf%5Cnhttp://portal.acm.
org/citation.cfm?id=658275%5Cnhttp:/

Xi X, Keogh E, Shelton C,Wei L, Ratanamahatana CA (2006) Fast time series classification using numeros-
ity reduction. In: Proceedings of the 23rd international conference on machine learning—ICML’06,
pp 1033–1040. https://doi.org/10.1145/1143844.1143974

Zakaria J,AbdullahM,KeoghE (2012)Clustering time series using unsupervised-shapelets. In: Proceedings
of IEEE international conference on data mining, ICDM, pp 785–94. https://doi.org/10.1109/ICDM.
2012.26

Zhong Y, Liu S, Wang X, Xiao J, Song Y (2016) Tracking idea flows between social groups. In: AAAI, pp
1436–43

Zhou J, Zhu SF, Huang X, Zhang Y (2015) Enhancing time series clustering by incorporating multiple
distance measures with semi-supervised learning. J Comput Sci Technol 30(4):859–873. https://doi.
org/10.1007/s11390-015-1565-7

123

https://www.francois-petitjean.com/Research/Petitjean2018-SDM-learn-warp-window.pdf
https://doi.org/10.1016/j.jss.2016.06.016
https://doi.org/10.1182/blood-2008-03-145946
https://doi.org/10.1109/ICDE.2002.994784
http://citeseer.ist.psu.edu/rd/0%2c307538%2c1%2c0.25%2cDownload/citeseer.ist.psu.edu/cache/papers/cs/14353/http:zSzzSzwww.cs.cornell.eduzSzhomezSzcardiezSzpaperszSzicml-2000.pdf/wagstaff00clustering.pdf%255Cnportal.acm.org/citation.cfm%3fid%3d658275%255Cnhttp:/
https://doi.org/10.1145/1143844.1143974
https://doi.org/10.1109/ICDM.2012.26
https://doi.org/10.1007/s11390-015-1565-7

	Optimizing dynamic time warping’s window width for time series data mining applications
	Abstract
	1 Introduction
	2 Related work and background
	2.1 Dynamic time warping
	2.2 Factors affecting the best warping window
	2.2.1 The intrinsic variability of the time axis
	2.2.2 The size of the dataset
	2.2.3 The effect of the shapes of the time series

	2.3 Non-transferability of the best setting for w between supervised and unsupervised settings
	2.4 Classic learning of warping window size
	2.5 Summary of introductory material

	3 Learning warping window width for time series clustering
	3.1 Our approach
	3.1.1 Introduction
	3.1.2 Semi-supervised learning
	3.1.3 Clustering algorithm
	3.1.4 Clustering quality measure
	3.1.5 Choosing constraints
	3.1.6 Pseudo user annotation
	3.1.7 Further reducing human effort
	3.1.8 Related work

	3.2 Empirical evaluation of using prediction vector for setting w for time series clustering
	3.2.1 Preliminary tests
	3.2.2 Robustness to incorrect constraints
	3.2.3 Handling the multi-dimensional case
	3.2.4 Comparison to rival methods
	3.2.5 Scalability

	3.3 Case study: gesture-based identification

	4 Learning warping window width for time series classification
	4.1 Our approach
	4.1.1 Introduction
	4.1.2 DTW-based 1-NN classification
	4.1.3 Classification quality measure
	4.1.4 Making synthetic data
	4.1.5 An intuition to our proposed approach
	4.1.6 Our algorithm
	4.1.7 Generation of new training set
	4.1.8 Adding warping to make new time series
	4.1.9 On the parameter setting
	4.1.10 Why tenfold cross-validation
	4.1.11 Related work

	4.2 Empirical evaluation of the resampling method to learn w for time series classification
	4.2.1 Datasets
	4.2.2 Performance evaluation
	4.2.3 On time complexity
	4.2.4 Beating other algorithms with the UCR splits

	4.3 Case study: fall classification

	5 Conclusion
	Acknowledgements
	References

