Data Flow Analysis

Data flow analysis is used to collect information about the flow of data values across basic blocks.

- Dominator analysis collected global information regarding the program’s structure.
- For performing global code optimizations global information must be collected regarding values of program values.
 - Local optimizations involve statements from same basic block.
 - Global optimizations involve statements from different basic blocks → data flow analysis is performed to collect global information that drives global optimizations.
Local and Global Optimization

Applications of Data Flow Analysis

- Applicability of code optimizations
- Symbolic debugging of code
- Static error checking
- Type inference
-
1. Reaching Definitions

Definition d of variable v: a statement d that assigns a value to v.

Use of variable v: reference to value of v in an expression evaluation.

Definition d of variable v reaches a point p if there exists a path from immediately after d to p such that definition d is not killed along the path.

Definition d is killed along a path between two points if there exists an assignment to variable v along the path.

Example

d reaches u along path$_2$ & d does not reach u along path$_1$

Since there exists a path from d to u along which d is not killed (i.e., path$_2$), d reaches u.
Reaching Definitions Contd.

Unambiguous Definition: \(X = \ldots; \)
Ambiguous Definition: \(*p = \ldots; \) \(p \) may point to \(X \)

For computing reaching definitions, typically we only consider kills by unambiguous definitions.

\[
X = \ldots \\
*p = \ldots
\]

Does definition of \(X \) reach here? Yes

Computing Reaching Definitions

At each program point \(p \), we compute the set of definitions that reach point \(p \).

Reaching definitions are computed by solving a system of equations (data flow equations).

\[
\text{IN}[B] \quad \text{OUT}[B] \quad \text{GEN}[B] = \{d1\} \quad \text{KILL}[B] = \{d2, d3\}
\]

\[
d1: X = \ldots \\
d2: X = \ldots \\
d3: X = \ldots
\]
Data Flow Equations

\[\text{IN}[B] = \bigcup_{p \in \text{pred}(B)} \text{OUT}(p) \]

\[\text{OUT}(B) = \text{GEN}(B) \cup (\text{IN}(B) - \text{KILL}(B)) \]

IN\[B\]: Definitions that reach B’s entry.

OUT\[B\]: Definitions that reach B’s exit.

GEN\[B\]: Definitions within B that reach the end of B.

KILL\[B\]: Definitions that never reach the end of B due to redefinitions of variables in B.

Reaching Definitions Contd.

- **Forward** problem – information flows forward in the direction of edges.
- **May** problem – there is a path along which definition reaches a point but it does not always reach the point. Therefore in a May problem the meet operator is the **Union** operator.
Applications of Reaching Definitions

• Constant Propagation/folding

• Copy Propagation

2. Available Expressions

An expression is generated at a point if it is computed at that point.

An expression is killed by redefinitions of operands of the expression.

An expression A+B is available at a point if every path from the start node to the point evaluates A+B and after the last evaluation of A+B on each path there is no redefinition of either A or B (i.e., A+B is not killed).
Available Expressions

Available expressions problem computes: at each program point the set of expressions available at that point.

Data Flow Equations

\(\text{IN}[B] \): Expressions available at B’s entry.
\(\text{OUT}[B] \): Expressions available at B’s exit.

\[
\text{IN}[B] = \bigcap_{P \in \text{pred}(B)} \text{OUT}(P)
\]

\[
\text{OUT}[B] = \text{GEN}[B] \cup (\text{IN}[B] - \text{KILL}[B])
\]

\(\text{GEN}[B] \): Expressions computed within B that are available at the end of B.
\(\text{KILL}[B] \): Expressions whose operands are redefined in B.
Available Expressions Contd.

- **Forward** problem - information flows forward in the direction of edges.
- **Must** problem - expression is definitely available at a point along all paths.

Therefore in a Must problem the meet operator is the **Intersection** operator.

- Application:

```
A + B is available here
\[ X = A + B \]
\[ Y = A + B \]
\[ Z = A + B \]
\[ T = X = A + B \]
\[ T = Y = A + B \]
\[ Z = T \]
```

3. Live Variable Analysis

A path is **X-clear** if it contains no definition of \(X \).
A variable \(X \) is **live** at point \(p \) if there exists a X-clear path from \(p \) to a use of \(X \); otherwise \(X \) is **dead** at \(p \).

```
X = ...
\[ X \text{ is live} \]
\[ \ldots = X \]
\[ \text{Read}(X) \]
\[ \ldots = X \]
\[ \ldots = X \]
\[ X \text{ is dead} \]
```

Live Variable Analysis

Computes:
At each program point \(p \) identify the set of variables that are live at \(p \).
Data Flow Equations

\[\text{IN}[B] = \bigcup_{s \in \text{succ}(B)} \text{IN}[s] \]
\[\text{OUT}[B] = \text{GEN}[B] \cup (\text{OUT}[B] \setminus \text{KILL}[B]) \]

GEN[B]: Variables that are used in B prior to their definition in B.

KILL[B]: Variables definitely assigned value in B before any use of that variable in B.

Live Variables Contd.

- **Backward** problem - information flows backward in reverse of the direction of edges.
- **May** problem - there exists a path along which a use is encountered. Therefore in a May problem the meet operator is the **Union** operator.
Applications of Live Variables

- Register Allocation
- Dead Code Elimination
- Code Motion Out of Loops

4. Very Busy Expressions

A expression $A+B$ is very busy at point p if for all paths starting at p and ending at the end of the program, an evaluation of $A+B$ appears before any definition of A or B.

Application: Code Size Reduction

Compute for each program point the set of very busy expressions at the point.
Data Flow Equations

IN[B]: Expressions very busy at B’s entry.

OUT[B]: Expressions very busy at B’s exit.

\[
\begin{align*}
\text{OUT}[B] &= \bigcap_{S \in \text{Succ}(B)} \text{IN}[S] \\
\text{IN}[B] &= \text{GEN}[B] \cup (\text{OUT}[B] - \text{KILL}[B])
\end{align*}
\]

GEN[B]: Expression computed in B and variables used in the expression are not redefined in B prior to expression’s evaluation in B.

KILL[B]: Expressions that use variables that are redefined in B.

Very Busy Expressions Contd.

- **Backward** problem - information flows backward in reverse of the direction of edges.

- **Must** problem - expressions must be computed along all paths.

 Therefore in a Must problem the meet operator is the **Intersection** operator.
Summary

<table>
<thead>
<tr>
<th>May/Union</th>
<th>Must/Intersection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td>Reaching Definitions</td>
</tr>
<tr>
<td>Backward</td>
<td>Live Variables</td>
</tr>
</tbody>
</table>

Conservative Analysis

Optimizations that we apply must be Safe => the data flow facts we compute should definitely be true (not simply possibly true).

Two main reasons that cause results of analysis to be conservative:
1. Control Flow
2. Pointers & Aliasing
Conservative Analysis

1. Control Flow – we assume that all paths are executable; however, some may be infeasible.

Conservative Analysis

2. Pointers & Aliasing – we may not know what a pointer points to.
 1. \(X = 5 \)
 2. \(\ast p = \ldots \) // \(p \) may or may not point to \(X \)
 3. \(\ldots = X \)

 Constant propagation: assume \(p \) does point to \(X \) (i.e., in statement 3, \(X \) cannot be replaced by 5).
 Dead Code Elimination: assume \(p \) does not point to \(X \) (i.e., statement 1 cannot be deleted).
Representation of Data Flow Sets

- **Bit vectors** - used to represent sets because we are computing binary information.
 - Does a definition reach a point? T or F
 - Is an expression available/very busy? T or F
 - Is a variable live? T or F
- For each expression, variable, definition we have one bit - intersection and union operations can be implemented using bitwise and & or operations.

Solving Data Flow Equations

Iterative Approach
- Initialize sets
- Iterate over the sets till they stabilize

Example - Forward Problem (Available Expressions)

\[
\begin{align*}
\text{in}(0) &: \emptyset, \quad \text{out}(0) : \text{gen}(0) \\
\text{for } i = 1 \text{ to } n \text{ do } \text{out}(i) &: \{\text{expr}_{i-1}\} - \text{null}(i) \\
\text{change} &: \text{false} \\
\text{while change} \text{ do} \\
\text{change} &: \text{false} \\
\text{in each block } &\neq 0 \text{ do} \\
\text{out}(i) &: \text{out}(i) \\
\text{for }\text{each} \\
\text{out}(i) &: \text{gen}(0) \cup (\text{in}(i) \times \text{null}(i)) \\
\text{if out}(i) \neq \text{null} \text{ then change} &: \text{true} \\
\text{end while} \\
\end{align*}
\]

- Start with largest eliminated & eliminate until the solution till it stabilizes.
Solving Data Flow Equations

Iterative Approach

Example - backtrace problem (five variables)

for \(x = 1 \) to \(N \) do
\(\text{IN}[x] = \text{GEN}[x] \)
endfor

\(\text{OUT}(x) = x \)

change = true

while change do
change = false

for each block \(B \) do
\(\text{OLDIN} = \text{IN}[B] \)
\(\text{OUT}[B] = \cup \text{IN}[S] \text{success}(S) \)
\(\text{IN}[B] = \text{GEN}(B) \cup (\text{OUT}[B] - \text{KILL}[B]) \)
if \(\text{OLDIN} \neq \text{IN}[B] \) then change = true
endfor
endwhile

\(\) - start with smallest solution and keep expanding until it stops shrinking.

Alternative Approach: Worklist Algorithm

Example - backtrace problem (five expressions)

for \(x = 1 \) to \(N \) do
\(\text{IN}[x] = \{ \text{Any expression} \} - \text{KILL}[B] \)
endfor

\(\text{OUT}(x) = x \)

worklist = all blocks

while worklist \(\neq \emptyset \) do
get \(B \) from worklist
\(\text{OLDIN} = \text{IN}[B] \)
\(\text{OUT}[B] = \cup \text{IN}[S] \text{success}(S) \)
\(\text{IN}[B] = \text{GEN}(B) \cup (\text{OUT}[B] - \text{KILL}[B]) \)
if \(\text{OLDIN} \neq \text{IN}[B] \) then
add \(\text{Pred}(B) \) to worklist
endwhile

\(\) - start with target solution and keep iterating until it stops shrinking.
Use-Def & Def-Use Chains

Directly link instructions that produce values with instructions that consume values.

<table>
<thead>
<tr>
<th>Use-def</th>
<th>Def-use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use chain for some variable use (A) is the list of pointers to all definitions of the variable that reach (A)</td>
<td></td>
</tr>
<tr>
<td>Def chain for some variable definition (A) is the list of pointers to all uses of the variable that are reachable from (A)</td>
<td></td>
</tr>
</tbody>
</table>

Block B: \(\text{ud}(A, i) \rightarrow \{ f \} \)

Block B: \(\text{du}(A, i) \rightarrow \text{in}(b) \)

Reaching definitions

Reachable self

\(\text{du}(A, i) \rightarrow \{ f \} \)

= \(\text{iu} \) \cup \text{out}^{+}(b) \)

Reachable self

(Slight correction)

Live variables

31