Compilation Phases

‘ Lexical Analysis |< -----------------------

a[i] =

4

+

2

i

‘ Syntax Analysis ‘

:

Semantics Analysis

I

Interm. Code Gen.

==

‘ Target Code Gen. | “““““““““““ ”

mov RO,
shl RO,

mov &a[RO],

1
2

6

R

CSE Department

Semantic Processing: Syntax Directed Translation

e Attributes: Associate information with language con-
structs by attaching attributes to grammar symbols
representing that construct.

An attribute can represent anything (reasonable)
that we choose, e.g. a string, number, type, mem-
ory location, code fragment etc.

e Semantic rules: Values for attributes are computed
using semantic rules associated with grammar pro-
ductions.

A parse tree showing the values of attributes at
each node is called an annotated parse tree.

CSE Department

Example :

Attributes for an Identifier

name : character string, obtained from scanner.

scope

tvype

e /nteger

e array :

no. of dimensions

upper and lower bounds for each dimension

— type of elements

e record :

name and type of each field

e function

no. of parameters

types of parameters (in order)
type of returned value

entry point in memory

size of stack frame

CSE Department

ICK

Example : Associating Semantic Rules with Productions -

Production Semantic Rule
E—FE+T E.val := F1i.val & T val
E—T E.val = T.val

1T"— Ty = F T'wal := T1.val ® F.val
' — F 1'wal := F.val

F— (F) Fwal == FE.val

F'— intcon F.val = intcon.val

Note: The semantic rules also impose an evaluation
order on the attributes.

CSE Department

Two-Pass vs. One-Pass Compilation

Two-Pass

1. Parse input and use semantic rules to:
(a) process declarations into symbol table

(b) construct syntax tree

2. Traverse syntax tree:
(a) check types
(b) make storage allocation decisions

(c) generate code

CSE Department

UCR

One-Pass

1. Parse input and use semantic rules to:
(a) process declarations into symbol table
(b) check types
(c) make storage allocation decisions

(d) generate code

CSE Department

Inherited and Synthesized Attributes

Inherited Attributes : An attribute at a node is inher-
ited if its value is computed from attribute values
at the siblings and/or parent of that node in the
parse tree.

inherited attributes
o at this node

CSE Department

Synthesized Attributes : An attribute at a node is

synthesized if its value is computed from the at-
tribute values of the children of that node in the

parse tree.

CSE Department

6.1.1. Attribute Grammars

Basic Idea

— Every grammar symbol is associated with a set
of attributes.

— Semantic rules specify how each attribute is to
be computed.

The attributes of a grammar symbol are partitioned into

two sets: inherited and synthesized. l.e., for any par-
ticular grammar symbol, a given attribute cannot be
inherited in some places and synthesized in others.

CSE Department

UCR

Eg: A—-=XY 7

Synthesized
Attributes
of A

Inherited attributes
of A @

Synthesized
Attributes ~ > @

of X
Inherited /

Attributes
of Y

CSE Department

S-Attributed Grammars

Definition : Grammar containing only synthesized at-
tributes is called S-attributed.

— Synthesized attributes can be conveniently handled

during bottom up parsing as it builds the parse tree
bottom up.

L-Attributed Grammars

Definition : Grammar for which the attributes can al-
ways be evaluated by a depth-first L-to-R traversal of
the parse tree.

— All attributes can be conveniently handled during

LL(1) parsing because the parse tree is built depth-
first L-to-R.

— Every S-attributed definition is L-attributed.

CSE Department

Example

We will develop semantic rules for constructing symbol
table from the declarations and constructing syntax tree
for the expression.

e Inherited attribute needed to propagate the type to
each declared variable.

e Synthesized attribute needed to construct syntax
tree for an expression from syntax trees of subex-

pressions.

CSE Department

int a, b, ¢

a+ b *c
Svmbol Table
Name| Type| Addr | =
a int 1 [1]
b int 2 2]
c int 3 [3]

Svntax Tree

CSE Department

Syntax Trees

Programs
Declarations =------ Computations
Symbol Table =------- Syntax Tree

e A syntax tree is a tree that shows the syntactic
structure of a program, while omitting irrelevant
detail present in a parse tree.

e Each node of a syntax tree represents “what to do”
at that point, i.e., a computation.

The children of the node correspond to the objects
to which that computation is applied.

CSE Department

Example

Grammar :
E—E+T | T
T — T % F | F
F—(E) | id

Input : id + id * id

Parse Tree

E
T
F
|

id + id * id

Syntax Tree :
+

AN
id id

id

CSE Department

Structure of Syntax Trees

Expression :

— Leaves: identifiers or constants.
— Internal nodes labelled with operations.
— Children of a node are its operands.

Statements

— A node's label indicates what kind of statement
it is.

— T he children of a node correspond to the com-
ponents of the statement.

fa_ e O

Cond Body Cond Then Else LHS RHS Stmtl StmtRest

CSE Department

6.3. Symbol Tables

Purpose : To hold information about identifiers that
Is computed at one point and looked up at later
points during compilation.

Example : type of a variable; entry point for a
function.

Operations : insert, lookup, delete.

Common implementations : linked lists, hash tables.

CSE Department

Managing Scope Information

e When a name is looked up in a symbol table, the

entry for the “appropriate’” declaration of that name
must be returned.

The scope rules of the language determine which
declaration is appropriate.

Often, the appropriate declaration for a name is the
“most closely nested” one. A simple implementa-
tion of this is to push a new symbol table when
entering a new scope, and pop it when leaving it:

— Implement the stack of symbol tables as a linked
list of tables.

— Jookup : search backward starting at the inner-
most scope.

— Insert, delete : works on the innermost scope.
Information may be ‘“deleted” when leaving a scope;

but it may be necessary to retain this information
for use by run-time tools, e.g. debuggers.

CSE Department

Processing Declarations

Goal : Store information about variable names and
types in symbol table.

Use of Attributes : To propagate type information to
the various identifiers appearing in a declaration.

Decl — T'ype Id_list , Decl
Id_list — 1d , Id_list | id
I'ype — int | real Ty 41) Id_ hst ,
I l<\
d .
B_list
v
id

CSE Department

Semantic Rules: e R

e ['ype synthesizes the value of tval,

e [d_list uses tval as an inherited attribute; defines
type information in symbol table entries correspond-
ing to id.

Production Decl
Semantic Rule

T - Type Id_li t X
Decl — T'ype Id_list ; [‘ a_lis

Id_list.tval .= T'ype.tval

Td_list — id , Id_lists /’ ’i
id.type .= Id_list.tval; /\
symtab_insert(id.name, id, type) id T
Id_listq.tval := Id_list.tval \\

1'ype — int Id_list
T'ype.tval = int |\U

I'ype — real
1'ype.tval = real

CSE Department

Semantic Rules for Constructing
Expression Syntax Tree

Goal : Construct syntax tree for the expression; asso-
ciate references to ids by entries in symbol table.

Use of Attributes : To propagate syntax trees for smaller
subexpressions needed to from syntax trees for larger
expressions.

Production
Semantic Rule

E—E, + T
E.tree = mktree(PLUS, Eq.tree,l'.tree)

E =T
E .tree = T .tree

CSE Department

UCR

T—1T = F
T.tree = mktree(I'Il MES, T .tree, F.tree)

T — F
T .tree = F.tree

F — id
F.tree = mknode(idnode, symtab_lookup(id.name))

F — intconst
F.tree = mknode(intconstnode, intconst.value)

CSE Department

Syntax-Directed Definitions vs. Translation Schemes

Syntax-directed definitions describe relationships among
attributes associated with grammar symbols (so far
we have only looked at these).

Syntax-directed translation schemes describe the order
and timing of attribute computation.
e Embeds semantic rules into the grammar.

e Each semantic rule can only use information
computed by already executed semantic rules.

CSE Department

Translation Scheme with Synthesized Attributes]R

e Synthesized attributes of a terminal are contained
in the terminal symbol itself.

e Synthesized attribute associated with a non-terminal
symbol is computed after seeing everything it de-
rives.

E—E; + T {E.tree = mktree(PLUS, Eq.tree, T.tree)}

E — T {E.tree = T.tree)

T —T % F {T.tree = mktree(TIMES, T tree, F.tree)}

T — F {T.tree = F.tree)

F — id {F.tree = mknode(idnode, symtab_lookup(id.name))}

F — intconst {F.tree = mknode(intconstnode, intconst.value)}

CSE Department

Translation Scheme with Inherited Attributes UCR
|

e Inherited attribute associated with a non-terminal
Is computed before encountering the non-terminal.

E =1 {R.itree = 1'.stree}
R {E.stree = R.stree)}

R —+ T {Ri.itree = mktree(" 4+ ", R.itree,l'.stree)}
Ry {R.stree = Rj.stree}

R ——"T {Ri.itree = mktree(" — ", R.itree,l'.stree)}
R1 {R.stree = Rj.stree}

R — ¢ {R.stree = R.itree}
T — id {T1'.stree = mknode(idnode, symtab_lookup(id.name))}

1" — intconst {1'.stree = mknode(intconstnode, intconst.value)}

CSE Department

E>TR
R>+TR|-TR|¢
T - id | intconst

CSE Department

E>TR PN
|

E
R>+TR|-TR]|¢ = 2
T 2 id | intconst l

id -+

E —T {R.atree =1 .stree}
R {E.stree = R.stree)}

R —+ T {Ri.itree = mktree(" 4+ ", R.itree,l'.stree)}
Ry {R.stree = Rq.stree}

R ——T {Rq.itree = mktree(" —", R.itree.l'.stree)}
R1 {R.stree = R1.stree}

R — ¢ {R.stree = R.itree}
1T'— id {T.stree = mknode(idnode, symtab_lookup(id.name))}

1" — intconst {1'.stree = mknode(intconstnode, intconst.value)}

CSE Department

Implementation Issues

Triggering execution of semantic actions: How can
parsing actions be made to trigger execution of se-
mantic rules?

Managing and accessing attribute values: Where should
the attribute values be held and how should they be
accessed?

Note: Solutions vary according to the type of parses:
bottom-up vs. top-down.

CSE Department

Triggering Semantic Actions in a Bottom-Up Parser

e A reductionoccursin the parser at each point where

a synthesized attribute is to be computed because
computation of a synthesized attribute is performed
at the end of the right hand side of a production.

Example
E — Ei+T{FE . tree = mktree(" +", Eq.tree, T .tree)}

Reductions trigger execution of code correspond-
ing to semantic rules.

The same is not true for inherited attributes as se-
mantic rules for their evaluation is embedded inside
the right hand side of a production.

Augment the grammar with marker non-terminals
to Iintroduce reductions corresponding to evalau-
tions of inherited attributes.

CSE Department

UCR

Example

Before transformation:

E—TFE
E' — 4T {print ‘+’} E' | =T {print ‘—’} E' | T
1T"— num {print NuUM.val}

After transformation:

E—=TF

E'—+T M E | —TNM,E | T
1T"— num {print NUM.val}

M, — = iprint ‘+7 |

M> — ¢ \print ‘—’|

CSE Department

Managing Attributes in a Bottom-Up Parser

A bottom-up parser maintains a semantic stack
that parallels the syntax stack. Given a symbol X in
the syntax stack, the attributes of X are stored in
the corresponding position of the semantic stack.

When a reduction is made, compute new synthe-
sized attributes from the values currently on top of
the stack.

Computation of inherited attributes requires " reach-
ing into"” the semantic stack. We must ensure that
the position that we must reach into is predictable.

CSE Department

Example with Synthesized Attribute:

UCR

E—EB+T{

y .= semantic_stack[top];

x .= semantic_stack[top — 2];
z ;= mktree("+', 2. y);
semantzc_stack[top 2] = z;
top .= top — 2;

}

Example with Inherited Attribute:

E—TFE

E'—OPT ME | T

OP — + | —

M — ¢ {print semantic_stack[top-2]}
T — num {print NuM.val} |

CSE Department

Triggering Semantic Actions in a LL(1) Parser

e Unlike the bottom-up parser, there are no distinct

parsing events which can be used to trigger the
execution of semantic actions.

Augment the grammar with marker non-terminals
whose only purpose is to trigger execution of se-
mantic actions.

When a production rule is applied, these markers
are pushed along with the rest of the symbols on
to the syntax stack in reverse order.

When a marker is popped from the syntax stack,
the corresponding semantic action is executed.

CSE Department

Managing Attributes in a LL(1) Parser

The syntax stack does not parallel the semantic
stack — syntax stack contains what we expect to see
in the future while the semantic stack contains at-
tributes of constructs that have already been seen.

For each production applied, reserve positions in the
semantic stack to hold attributes for the left hand
side non-terminal and right hand side symbols.

Save these positions in the syntax stack to allow
access to attributes.

For more details see separate handout given in the
class.

CSE Department

