Run-Time Environments

Issues :

e Managing the relationship between names in the
source program and data objects that exist at run-

time.

e Managing the allocation/deallocation of, and ac-
cess to, data objects at runtime.

e Controlling and keeping track of different activa-
tions of a procedure (in case of recursion, several
activations of a procedure may be "alive” at the

same time).

CSE Department

Flow of Control

Assumptions :

e Control flows sequentially: at each step during ex-
ecution, control is at some specific point in the
program .

= no program-level parallelism.

e Each execution of a procedure starts at the begin-
ning of the procedure body; When control even-
tually leaves the procedure, it returns to the point
iImmediately following the place where the proce-
dure was called.

= Nno coroutining, no backtracking.

CSE Department

Characteristics of Procedure Activations

e Our assumptions imply that given two procedure
activations a and b, their lifetimes are either disjoint
or are nested.

e [his implies that activations can be managed using
a control stack:

— Push a node for an activation when the activa-
tion begins, i.e., at the entry to the procedure.

— Pop the node when the activation ends, i.e., at
the return from the call.

CSE Department

Language Issues that Affect the Compiler

Can procedures be recursive?

What happens to the values of locals on return from
a procedure?

Can a procedure refer to non-local variables?
How are parameters to a procedure passed?
Can procedures be passed as parameters?
Can procedures be returned as results?

Can storage be allocated dynamically under pro-
gram control?

Must storage be deallocated explicitly?

CSE Department

7.1. Organization of Run-Time Memory

Run-time memory needs to be subdivided to hold the
different components of an executing program:

e (Generated executable code.

e static data objects.

e A structure to keep track of procedure activations.

This can generally be considered to consist of two
components:

— the stack : for objects whose lifetimes do not
exceed the lifetime of the activation; and

— the heap : for objects whose lifetimes exceed
that of the activation.

CSE Department

e A typical subdivision might be:

Code

Global /Static Data

Stack

'

4

Heap

CSE Department

Organization of Code Area

e Usually,

Code for function 1

Code for function 2

Code for function

I

code is generated a function at a time.
Thus, the code area layout is of the form:

Entry point
for function 1

“*~ Entry point
for function 2

= Entry point
for function »n

e Within a function, the compiler has freedom to or-
ganize the code in any way.

Careful layout of code within a function can reduce
pipeline “bubbles” and improve i-cache utilization,
and thus better performance.

Careful attention to the order in which the functions
are processed can improve i-cache utilization.

CSE Department

Activation Records

An activation record, or stack frame, manages the in-
formation needed by a single activation of a procedure.

Fields of an Activation Record (language and com-
piler dependent):

e temporary values, used during expression evalua-
tion;

e |ocal data;

e saved machine status information (PC, registers,
return address);

e (optional) access link, for access to non-local names;

e (optional) control link, points to the activation record
of the caller.

e the actual parameters;

e the returned value.

CSE Department

Compile-time Layout of Local Data

The compiler must determine where, within an activa-

tion record, the memory location(s) for an object are, so
that during code generation it can refer to the correct

address (use displacement off the stack pointer).

e [he amount of storage needed for an object is de-
termined from its type.

e [he field for local data in the activation record is
laid out as declarations in the procedure are pro-
cessed. (Variable-length data are kept outside this
field.)

e Storage layout must conform to alignment require-
ments of the target machine, e.g., many RISC ma-
chines require longwords to be longword-aligned.
This may require padding.

CSE Department

Activation Records :

high addresses

frame ptr

ebp ——=

stack ptr

M_f\

caller’s frame

Incoming arguments

return address

saved registers

saved ebp

locals and
temporaries

esp

low addresses

——

callee’s frame

~_/

Example 2: Intel x86

stack
growth

CSE Department

R

|
Storage Allocation Strategies for Activation Records

1. Static allocation (Fortran 77) :

e Storage for all data objects laid out at compile
time.

e Can be used only if size of data objects and
constraints on its position in memory can be re-
solved at compile time. No dynamic data struc-
tures.

e Recursive procedures are restricted, since all ac-

tivations of a procedure must share the same
locations for local names.

CSE Department

2. Stack Allocation (Pascal, C) :

e Storage organized as a stack.

e Activation record pushed when an activation be-
gins, and popped when it ends.

e Cannot be used if the values of local names
must be retained when an activation ends, or if
a called invocation outlives the caller.

3. Heap Allocation (Lisp, Scheme) :

e Activation records may be allocated and deallo-
cated in any order.

e Some form of garbage collection or compaction
necessary to reclaim free space.

CSE Department

Handling Procedure Calls and Returns

e Procedure calls are handled using calling sequences
in the code generated.

Returns from procedures are handled by return se-
quences.

e Calling sequence : a code sequence that ‘“sets up
a procedure call” :

— allocates an activation record (model-dependent);

— |loads actual parameters;

— saves machine state (return address etc.);

— transfers control to callee.

CSE Department

e Return sequence : a code sequence that handles
the return from a procedure call:

— deallocates activation record:
— sets up return value (if any);

— restores machine state (stack pointer, PC, etc.);

CSE Department

Calling Sequences : Division of responsibilities

The code in a calling sequence is often divided up
between the caller and the callee:

e
. Caller
Calling
sequence
code Callee
\

If there are m calls to a procedure, then the in-
structions in caller's part of the calling sequence is
repeated m times, while the callee's part is repeated
exactly once.

T his suggests that we should try to put as much of
the calling sequence as possible into the callee.

However, it may be possible to carry out more call-
specific optimization by putting more of the code
into the caller instead of the callee.

CSE Department

Calling/Return Sequences : typical actions

e J[ypical calling sequence:

1. caller evaluates actuals, pushes them on the
stack:

2. caller saves machine status on the stack (in the
callee’'s AR) and updates the stack pointer.

3. caller transfers control to the callee.
4. callee saves registers, initializes local data, and
begins execution.
e [ypical return sequence:
1. callee stores return value in the appropriate place;
2. callee restores registers and old stack pointer;

3. callee branches to the return address.

CSE Department

7.3.2. Access to Non-Local Names

Basic Issue : In a language with lexical scope and nested
procedures, e.g. Pascal or Scheme, how do we know
where to find (at runtime) a variable declared in an en-
closing scope?

Example : Consider the program

procedure p(m:integer)
begin
X : integer;

function q(n:integer): integer;
begin
if (n > 0) then
return 2*q(n-1);
else
return x+1;
end

print q(m+2) ;
end

CSE Department

The variable x lives in p's activation record. But we
don't know how deep in the stack this may be, since we
don't know how many levels of recursion there will be
in q at runtime.

Basic Idea : Generate code to pass an access link at
each procedure call.

e Suppose a procedure p is nested immediately within
a procedure g, then the access link to a procedure
p IS a pointer to the activation record of the most
recent activation of gq.

e [he code to set up access links can be determined
at compile time, using the idea of nesting depth.

Intuitively:
— The outermost scope has nesting depth = 0.

— The nesting depth increases by 1 each time we
enter a new scope, decreases by 1 when we leave
a scope.

CSE Department

UCR

e Suppose a procedure p at nesting depth n, refers
to a non-local variable a whose nesting depth is n,:
the storage for a is given by the pair:

{ np — ng, Offset of a in AR)

This pair is computed at compile time. The first
number gives the no. of access links to be tra-
versed.

CSE Department

Example

P1: NL=2

Main
var |, J;
P1
var K, L, P2
var Q; .
~ ™ Main: NL=1
) ! use K > (1,0) ,
— = I . 0
Z used 2 (2,1)
J:1
= usel > (1,0) Pl:..........
= E— P3: ..
P3__
ol Ver H; P2: NL=3
]
= use J 9(1,1) Q:0
offset
usel - (0,0)
number of access links

that must be traversed

P3: NL=2

H:0

CSE Department

Example Contd.

Call Chain: Main - P1 > P3 > P1 > P2

Main I
2
P1 K
L In P2 access K - (1,0)
P3 H In P2 access J = (2,1)
P1 K In P2 access | 2 (2,0)
L lllllllll
P2 Q
Control Link / Static Link /
Dynamic Link Access Link

CSE Department

Example Contd. _
Next call P3 — set up the access link

Main I
C J P2 calls P3
H IE c — current nesting level
P3 H d — nesting level of callee’s declaration
Traverse (c — d) links from P2 to find
o IE where P3’s access link should point to
P2 Q (c-d)=3-1=2
P2 > P1 - Main
3 Access link of P3 points to Main
Control Link / Static Link /
Dynamic Link Access Link

CSE Department

Procedure Parameters

Procedure M Main > M 2> R - P(S) 2> X/S
| Procedure R ‘
‘ Procedure S L J(\)
| “ *K
End S R /4/’ ."-:
Call P(S) — — N/
e | 5 ccde of S
End R B]
S/
Procedure P(X) X/S
l Call X |
End P l

End M

CSE Department

Dynamic Arrays — Maintaining Constant Offsets

B1: begin Var X;
Var X; Array [l ..w] A;
Array [1..10] A; VarY;
VarY; |

end [

CSE Department

