Final Code Generation and
Code Optimization

Final Code Generation

SIc

pgm

intermediate

front end

final code
generator

symbol table

target

pgm

Translating 3-address code to final code
3-Address Code | MIPS assembly code

x = A[i] load i into reg,
la reg,, A

add reg,, T€G>, TEG,
1w reg,, (reg,)
SW T€g>, X

X = y+z load y into regq
load z into reg,
add regz, 1€g1, TEGH
SW T€g3, X

if x >= y goto L | load x into reg,
load y into reg,

bge reg,, 195, L

Improving Code Quality : Peephole Optimization

e redundant instruction elimination, e.qg.:

goto L

L. = L:

e flow-of-control optimizations, e.qg.:

goto L1 goto L2

Ll: goto L2 L1: goto L2

Improving Code Quality : Peephole Optimization

e algebraic simplifications, e.qg.:

— instructions of the formx := x+00rx := x*1 can
be eliminated.

— special case expressions can be simplified, e.qg.:
x := 2%y can be simplified to x := y+y.

Improving Code Quality : Code Optimization

e Examine the program to find out about certain
properties of interest (“Dataflow Analysis").

e Use this information to change the code in a way
that improves performance. (“Code Optimization™).

Improving Code Quality : Code Optimization

Code Motion out of Loops .

if a computation

inside a loop produces the same result for all

iterations (e.g., computing the base address of
a local array), it may be possible to move the

computation outside the loop.

for

(1=0; 1 < N; i++)
base = &a[0];
crt = *(base + 1);

{

original code

—

&al[0];
i=0; 1 < N; i++)
* (base + 1);

base =
for (
crt =

}

{

optimized code

Improving Code Quality : Code Optimization

Common Subexpression Elimination : if the same

expression is computed in many places (e.g., ar-
ray addresse computations; results of macro ex-
pansion), compute it once and reuse the result.

el
e?

*(&a[0]+offset +1);
*(&a[0]+offset +7);

original code

—

tmp = &a[0]+offset;
el = *(tmp +1);
e2 = *(tmp +73);

optimized code

Improving Code Quality : Code Optimization

Copy Propagation . If we have an intermediate
code “copy” instruction ‘x := y’', replace subse-
guent uses of x by y (where possible).

=

.... y
yf :'/,\ b

X / 2;

X
| T

v [/ 23

o}

original code optimized code

Improving Code Quality : Code Optimization

Dead Code Elimination : delete instructions whose
results are not used.

Yr

X = V;
else > X

original code optimized code

Basics of Code Optimization and Machine
Code Generation

« Construct Control Flow Graph (CFG) Representation
for the Intermediate Code

-> Algorithm for building CFG

« Perform Data Flow Analysis to Collect Information
Needed for Performing Optimizations
-> Variable Liveness Analysis

* Perform Optimizations and Generate Machine Code
-=> Algorithm for Register Allocation

Basic Blocks and Flow Graphs

e For program analysis and optimization, it is usu-
ally necessary to know control flow relationships
between different pieces of code.

e For this, we:

— group 3-address instructions into basic blocks

— represent control flow relationships between ba-
sic blocks using a control flow graph.

Example:

L1:

LO:

if x > y goto LO
tl = x+1

x = tl
y=20
goto L1

|

Ll:
if x>y goto LO
tl = x+1
x = tl
LO:\Y

Definition : A basic block is a sequence of consecutive
instructions such that:

1. control enters at the beginning;
2. control leaves at the end; and

3. control cannot halt or branch except at the end.

Identifying basic blocks :

1. Determine the set of leaders, i.e., the first in-
struction of each basic block:

(a) The first instruction of the function is a leader.

(b) Any instruction that is the target of a branch
is a leader.

(c) Any instruction immediately following a (con-
ditional or unconditional) branch is a leader.

2. For each leader, its basic block consists of itself
and all instructions upto, but not including, the
next leader (or end of function).

Example

N
/* dot product: prod = Za[i] * b[i] */
=1
No. leader? Instruction basic block
(1) Vv prod = 0 1
(2) i=1 1
(3) V4 tl = 4x%i 2
(4) t2 = al[t1] 2
(5) t3 = 4x%i 2
(6) t4 = b[t3] 2
(7) t5 = t2*t4 2
(8) t6 = prod+th 2
(9) prod = t6 2
(10) t7 = i+l 2
(11) i = t7 2
(12) if i < N goto (3) 2

Control Flow Graphs

Definition : A flow graph for a function is a directed
graph G = (V, E) whose nodes are the basic blocks
of the function, and where a — b € E iff control can
leave a and immediately enter b.

The distinguished initial node if a flow graph is the

basic block whose |leader is the first instruction of
the function.

Constructing the flow graph of a function :
1. Identify the basic blocks of the function.

2. There is a directed edge from block B to block
B> if

(a) there is a (conditional or unconditional) jump
from the last instruction of B; to the first
instruction of Bs; or

(b) B> immediately follows Bj in the textual order
of the program, and Bj; does not end in an
unconditional jump.

Predecessors and Successors : if there is an edge

a — b then a is a precedessor of b, and b is a
successor of a.

Example :

L1: prod = 0
i=1

L2: t1 = 4x%i
t2 = a[t1]
t3 = 4x%i
t4 = b[t3]
tb = t2%t4
t6 = prod+tb
prod = t6
t7 = i+l
i=t7

if i < N goto L2

Bl:

B2:

¢

prod = 0
i=1
tl =4 * i
t2 = a[tl]
t3 =4 * i
t4 = b[t2]
t5 = t2 * t4
t6 = prod + t5
prod = t6
t7 =1+ 1
i=t7

if i<=N goto B2

¢

Improving Code Quality : Register Allocation

e Rationale

— A value in a register can be accessed much more
efficiently than one in memory

* Liveness Analysis to build Live Ranges

— Identifies durations for which each variable could
benefit from using a register

* Perform Register Allocation

— CPU has limited registers = keep frequently used
values in registers

Variable Liveness

Definition : A variable is live at a point in a program if
it may be used at a later point before being redefined.

Example :
X live
------- X live
X not live - - X live
X not live -- - X live

Live Ranges

Definition : A live range is an isolated and connected
group of basic blocks in which a variable is live.

e Usually, a live range begins at a definition point of
a variable and ends at its last uses.

e Different variables may have different live ranges.

(= a given basic block may be part of many differ-
ent live ranges.)

e A given variable may have several different live ranges.

2 Live Ranges of x

Start
I

define x
define y

use X

N

use X usey

\/\

T 57 define x
usey

1 Live Range of

Start
I

define x
define y

use X

N

use X usey

use X

use X

End

\/\

y

use x define x
usey

use X

use X

End

Global Register Allocation : considers the entire body
of a function or procedure:

e [ries to keep frequently accessed values in registers,
esp. across loops.

e Uses loop nesting depth as a guide to frequency of
access:. variables in the most deeply nested loops
are assumed to be accessed the most frequently.

read A

~

D A+1 D = A+1
read B read C
D D+B D = D+C

Register Interference Graph

nodes: live ranges
edges: live ranges overlap

.

i\\\\‘\\\ﬁe,,/”’//’?

print A,D

k-coloring, where k is
the number of registers

Attempt n-coloring

Color the interference graph using R colors where R
is the number of registers.

Observation: If there is a node n with < R neighbors,
then no matter how the neighbors are colored,
there will be at least one color left over to color
hode n.

Remove n and its edges to get G’
Repeat the above process to get G'°

If an empty graph results, R-coloring is possible.
Assign colors in reverse of the order in which
they were removed.

Attempt Coloring Contd..

Input: Graph G
Output: N-coloring of G
While there exists nin G with < N edges do
Eliminate n & all its edges from G; list n
End while
If G is empty the
for each node i in list in reverse order do
Add i & its edges back to G;
choose color for i

endfor
End if

6 G :> > {empty graph}

{empty graph}

{empty
graph}

Spill Ain
Memory

{empty

40U OL 10
()

- Ry
R,

graph}

0

A keptin
Memory

Liveness Analysis and Live Range
Construction

* Global Analysis
- Finds what variables are live at basic block
boundaries

* Local Analysis
- Finds what variables are live at all points within
basic blocks

* Build Live Ranges

Computing Liveness Information (within a basic block)

Suppose we know which variables are live at the exit

from the basic block. Then:

e Scan backwards from the end of the block. At the

point immediately before an instruction
I:x :=y o0pz

we have:

-- X is not live
--y and z are live

Live Before I = (Live AfterI —{x}) U {y, z}

Input a
Input b
y=a+b
y=y-1
Xx=a+1
Print x +vy

——{a}
——> {a,b}
__){y’a}

__){y’a}

—){X,Y}

Computing Liveness Information (dataflow analysis)

We compute IN[B] and OUT|[B], the sets of variables
that are live at the beginning and end of each basic

block, respectively, in a flow graph, as follows:

IN[B] l |

GENI[B] = {X}
v= | B makes X live on entry to B

=x | KILLBI={V)
B makes Y not live on entry to B

OUTIB] l l

Initialization:
IN[B] =0 for all B

all globals if B is an exit block ©fafunction
OUTI[B] =) ° otherwise other than main()

Propagation: For each non-exit block B:

— OUT[B] = lJ IN[B]

B'esuccessors(B)

— IN[B] = (OUTI[B] - KILL[B])|JGEN[B], where
GEN|[B] = {v : variable v is read be fore being written}

KILL[B] = {v : variable v is defined in B}

Since a flow graph may have cycles, we need to
iterate this step until there is no change to any IN
or OUT set.

Start
I

definex | GEN[1] = -
@ define y KILL[1] = x,y
@ P I GEN[2] = x
KILL[2] = -
I @ | usex ssey [GEN[4] = y
KILL[3] = - KILL[4] = -
GENI5] = x

..... | usex deﬁnex.@.....GEN[(S]:y
KILL[3] = - @ usey KILL[6] = x

........... -~ '\ GEN[g]=x
KILL[7] = - @ HSe X uSe X KILL[8] = -

End

IN[1] = (OUT[1] = KILL[1]) U GEN[1] = OUT[1] - {x,y}

OUTI[1] = IN[2] U IN[4]

IN[2] = (OUT[2] - KILL[2]) U GEN[2] = OUT[2] U {x}

OUTI[2] = IN[3] U IN[4]

IN[3] = (OUT[3] = KILL[3]) U GEN[3] = OUT[3] U {x}

OUT[3] = IN[3] U IN[5]

IN[4] = (OUT[4] — KILL[4]) U GEN[4] = OUT[4] U {y}

OUTI4] = IN[5] U IN[6]

IN[5] = (OUT[5] - KILL[5]) U GEN[5] = OUT[5] U {x}

OUTI[5] = {}

IN[6] = (OUT[6] — KILL[6]) U GENI[6] = (OUTI[6] — {x}) U {y}

OUT[6] = IN[7] U IN[8]

IN[7] = (OUT[7] = KILL[7]) U GEN[7] = OUT[7] U {x}

OUT[7] = {}

IN[8] = (OUT[8] - KILL[8]) U GEN[8] = OUT[8] U {x}

OUT[8] = IN[8]

OUT(b) = Usin succb) IN(S)
IN(b) = (OUT(b) — KILL(b)) U GEN(b)

IN[1] = OUT[1] - {x,y}
OUT[1] = IN[2] U IN[4]
IN[2] = OUT[2] U {x}
OUT[2] = IN[3] U IN[4]
IN[3] = OUT[3] U {x}
OUT[3] = IN[3] U IN[5]
IN[4] = OUT[4] U {y}
OUT[4] = IN[5] U IN[6]
IN[5] = OUT[5] U {x}
OUT[5] = {}
IN[6] = (OUTI[6] — {x}) U {y}
» OUT[6] = IN[7] U IN[8]
IN[7] = OUT[7] U {x}
OUT[/] = {}
IN[8] = OUT[8] U {x}
OUT[8] = IN[8]

IN[1]
OUTI[1]
IN[2]
OUT[2]
IN[3]
OUTI3]
IN[4]
OUT[4]
IN[5]
OUTI5]
IN[6]
OouTI[6]
IN[7]
OuUT[7]
IN[8]
OUTI[8]

U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U

{}
{x,v}
{x,v}
{x,v}

{x}

{x}
{x,v}
{x,v}

{x}

{}

{v}

{x}

{x}

{}

{x}

{}

{}
{xv}
{xv}
{xv}

{x}
{x}
{xv}
{xv}

{x}

{}

{v}

{x}

{x}

{}

{x}

{x}

{}
{x,v}
{x,v}
{x,v}

{x}

{x}
{x,v}
{x,v}

{x}

{}

{v}

{x}

{x}

{}

{x}

{x}

ouT(b) = U, i sucery IN(S)

IN(b) = (OUT(b) — KILL(b)) U GEN(b)

Start
I

IN

OouT

define x
G define y

GENI[3] = x
KILL[3] = - @ ..| useXx

GEN[5] = x

cENS=x ... @)

CENIT =X @ | usex

define x Q
usey

End

GEN[1] = -
KILL[1] = x,y

GEN[2] = x
KILL[2] = -

GEN[4] =y
KILL[4] = -

GEN[6] = y
KILL[6] = x

GENI8] = x
KILL[8] = -

2 Live Ranges of x

Start
I

define x
define y

use X

N

use X usey

\/\

T 57 define x
usey

1 Live Range of

Start
I

define x
define y

use X

N

use X usey

use X

use X

End

\/\

y

use x define x
usey

use X

use X

End

Algorithm for solving data flow equations:
For each block B do
if B is the exit block then
OUTIB] = set of global variables
IN[B] = (OUTI[B] — KILL[B]) U GEN|B]
else
OUT[B] = IN[B] ={}
endif
Endfor
DONE = false
While not DONE do
DONE = true;
for each B which is not the exit block do
new = U IN[B’]
B’ ¢ SUCC(B)
if new = OUTIB] then
DONE = false;
OUTIB] = new;
IN[B] = (OUTI[B] — KILL[B]) U GEN|B]
Endif
Endfor
Endwhile

Sample Problems for Review

1. Input X
2. InputY
3. X=X+Y

X=X+1

X=X-1
Y=Y+1

© 0N OA

1. Input X
2. InputY

3. X=X+Y

4. 1f Z<0 go to 71\

If Z<Ogoto7

—

Goto 8

N\

7.

X=X-1

e

. T=X+Y
10. If Z==T goto 4
11. Output Z

0.1fZ==Tgoto4

f

1

tN—"

11. Output Z

Input X
Input Y
If X<Y goto L1
Z=X+Y
X=Y
Goto L2

L1: Z=X-Y
X=Y

L2: Output X
Output Y
Output Z

Input X
Input Y
If X<Y goto L1

A

Z=X+Y
X=Y

\ Goto L2

L2: Output X
Output Y
Output Z

IN[1] = {}

KILL[T] = {X,Y} | Input Y
OUT[1] = {X,Y} If X<Y goto L1
/ \f
IN[2] = {X,Y}
2 3 | Z=X+Y
GEN[2] = {X,Y} |L1: £=X-Y _
KILLR2] = (X2} | wey A=Y
Goto L2

OUT[2] = {X,Y,Z}

IN[4] =

GENI[4] = {X,Y,Z}
KILL[4] = {}

OUT[4] = {}}

{X,Y,>. /

L2: Output X
Output Y
Output Z

4

IN[3] = {X,Y}

GENI3] = {X,Y}
KILL[3] = {X,Z}

OUT[3] = {X,Y,Z}

LIVE RANGES OF X, Y and Z

Input X

Output Y

OQutput Z

Input X
Input Y
If X<Y go to L1

L2: Output
Outpu
Output Z

L2: Output
Output

Outpu

LIVE RANGES OF X, Y and Z

X1

o

~

X2

Y

X1

INTERFERENCE GRAPH

X2

X2

REGISTER ALLOCATION: R1, R2, R3

REMOVE DEGREE<3
X1, X2, 2, Y

COLOR IN REVERSE ORDER
Y R1
 R2

X2 R3
X1 R2o0rR3

©

REGISTER ALLOCATION: R1, R2

)

©

REMOVE DEGREE<2
X1; spillY; X2, Z

COLORIN
Z
X2
X1

REVERSE ORDER
R1
R2

R1 or R2

0 Main () { Man2>F->G—>H->F

Inta, b: o-d > 1-1 5.1 5.0 3.1
1 F
O Int a Control ; ACCess
“ G, i . ‘a :
2 Call G(); Links | Main b _Links
}
160 { _j.'F: OE
Int a, e; 1:
2 H() {
Int a, d: 03
9®Gc
3 Call F();
h
0:
2 =@ H 1- Access
f o binH
0: traverse
1 Call F() Fooo e 3-1=2 links
} ' then at

offset at of 1
find b

GRAMMAR

CONSTRUCT RELEVANT PRODUCTIONS

if x <y then <S> - if <condt> then <otherstatements> <rest>
<otherstatements>

elseif a > b then <rest> = elseif <condt> then <otherstatements> <rest>
<otherstatements> | else <otherstatements> endif

elseif c == d then <condt> - id relop id
<otherstatements>

else
<otherstatements> Question:

endif Provide SEMANTIC RULES that

generate code and finally place it
in attribute <S>.code

CONSTRUCT

INTERMEDIATE CODE

if x <y then
<otherstatements>
elseif a > b then
<otherstatements>
elseif c == d then
<otherstatements>
else

<otherstatements>
endif

if x <ygotoL1
goto L2

L1: <otherstatements>
go to exitL

L2: Ifa>bgotolL3
go to L4

L3: <otherstatements>
go to exitL

L4: if c==d go to LS
goto L6

L5: <otherstatements>
go to exitL

L6: <otherstatements>

exitL:

if <condt> then <otherstatements> <rest>

id relop id elseif <condt> then <otherstatements> <rest>

id relop id elseif <condt> then <otherstatements> <rest>

id relop id else <otherstatements> endif

if <condt> then <otherstatements> <rest>

id relop id elseif <condt> then <otherstatements> <rest>

<condt>.falselabel
<condt>.code

<rest>.ifalselabel
<rest>.iexit
<rest>.icode

<rest>.scode
<S>.code

id relop id elseif <condt> then <otherstatements> <rest>

id relop id

else <otherstatements> endif

if x <ygotoL1
goto L2

L1: <otherstatements>
go to exitL

L2: <rest>

L2: Ifa>bgotolL3
goto L4

L3: <otherstatements>
go to exitL

L4: <rest>

L4:

L5:

L6:

if c==d goto L5
goto L6
<otherstatements>
go to exitL

<rest>

L6: <otherstatements>

exitL:

<S>.code = rcbcgcpc

'\

<rest>.scode = rcbcgcpc

<condt>.falselabel = L2 \

<condt>.code = \ <rest>.scode = rcbcgcpc

< > =
rest>.ifalselabel = L2 _ - 4> falselabel = L4
<rest>.iexit = exitL
<condt>.code = \

< > =
rest>.icode =rc <rest>.ifalselabel = L4 <condt> falselabel = L6
<rest>.iexit = exitL ' a

: N <condt>.code =
sresticode =robe e elabel <16

<rest>.iexit = exitL <rest>.scode = rcbcgcpc
<rest>.icode = rcbcgc

if x <y gotoL1 L2:Ifa>bgotolL3 L4: if c==d go to L5 L6: <otherstatements>

gotol2 go to L4 go to L6 exitL:

L1: <otherstatements> | L3: <otherstatements> | L5: <otherstatements>
go to exitL go to exitL go to exitL

L2: <rest> L4: <rest> L6: <rest>

<condt> -> id; relop id2 {
truelabel = newlabel();
<condt=>.falselabel = newlabel();

<condt>.code = gen(“if” id,.place ‘relop” idz.place “go to" truelabel)

|| gen("go to" <condt>.falselabel) || gen(truelabel”:")
}

<5> = if <condt> then <otherstatements>

{

<rest>.ifalselabel = <condt>.falselabel:
<rest>.iexit = newlabel();
<rest>.icode = <condt>.code || <otherstatements>.code |
gen("go to” <rest>.jexit)
}

<rest>{ <S>.code = <rest>.scode)

<rest;> = elseif <condt> then <otherstatements=

{

<restz>.icode = <resty>.icode || gen(<resty>.ifalselabel “:") ||
<condt>.code || <otherstatements>.code || gen(“go to” <resty>.iexit);
<resty>.ifalselabel = <condt>.falselabel;
<restz>.iexit = <rest;>.iexit

}

<rest;> { <resty>scode = <restz>.scode }

<rest;> = else <otherstatements> endif

{

<rest;>.scode = <resty>.icode || gen(<rest;>.ifalselabel ":")
|| <otherstatements>.code || gen(<resti>.jexit":")

