Final Code Generation and Code Optimization

Final Code Generation

Translating 3-address code to final code

3-Address Code	MIPS assembly code		
x = A[i]	load i into reg ₁		
	la reg ₂ , A		
	add reg_2 , reg_2 , reg_1		
	lw reg_2 , (reg_2)		
	sw reg ₂ , x		
x = y+z	load y into reg_1		
	load z into reg ₂		
	add reg_3 , reg_1 , reg_2		
	sw reg ₃ , x		
if x >= y goto L	load x into reg ₁		
	load y into reg ₂		
	bge reg_1 , reg_2 , L		

Improving Code Quality : Peephole Optimization

redundant instruction elimination, e.g.:

flow-of-control optimizations, e.g.:

- algebraic simplifications, e.g.:
 - instructions of the form x := x+0 or x := x*1 can be eliminated.
 - special case expressions can be simplified, e.g.:
 x := 2*y can be simplified to x := y+y.

Improving Code Quality : Code Optimization

- Examine the program to find out about certain properties of interest ("Dataflow Analysis").
- Use this information to change the code in a way that improves performance. ("Code Optimization").

<u>Code Motion out of Loops</u> : if a computation inside a loop produces the same result for all iterations (e.g., computing the base address of a local array), it may be possible to move the computation outside the loop.

original code

optimized code

<u>Common Subexpression Elimination</u>: if the same expression is computed in many places (e.g., array addresse computations; results of macro expansion), compute it once and reuse the result.

original code

optimized code

<u>Copy Propagation</u> : If we have an intermediate code "copy" instruction 'x := y', replace subsequent uses of x by y (where possible).

<u>Dead Code Elimination</u>: delete instructions whose results are not used.

Basics of Code Optimization and Machine Code Generation

- Construct Control Flow Graph (CFG) Representation for the Intermediate Code
 → Algorithm for building CFG
- Perform Data Flow Analysis to Collect Information Needed for Performing Optimizations
 → Variable Liveness Analysis
- Perform Optimizations and Generate Machine Code
 → Algorithm for Register Allocation

Basic Blocks and Flow Graphs

- For program analysis and optimization, it is usually necessary to know control flow relationships between different pieces of code.
- For this, we:
 - group 3-address instructions into basic blocks
 - represent control flow relationships between basic blocks using a control flow graph.

Example:

Definition : A <u>basic block</u> is a sequence of consecutive instructions such that:

- 1. control enters at the beginning;
- 2. control leaves at the end; and
- 3. control cannot halt or branch except at the end.

Identifying basic blocks :

- 1. Determine the set of *leaders*, i.e., the first instruction of each basic block:
 - (a) The first instruction of the function is a leader.
 - (b) Any instruction that is the target of a branch is a leader.
 - (c) Any instruction immediately following a (conditional or unconditional) branch is a leader.
- For each leader, its basic block consists of itself and all instructions upto, but not including, the next leader (or end of function).

Example

/* dot product: prod = $\sum_{i=1}^{N} a[i] * b[i] */$						
No. (1) (2) (3) (4) (5) (6) (7) (8) (9)	leader? √	<pre>Instruction prod = 0 i = 1 t1 = 4*i t2 = a[t1] t3 = 4*i t4 = b[t3] t5 = t2*t4 t6 = prod+t5 prod = t6</pre>	basic block 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
(10) (11) (12)		t7 = i+1 i = t7 $if i \le N$ goto	2 2			

Definition : A flow graph for a function is a directed graph G = (V, E) whose nodes are the basic blocks of the function, and where $a \rightarrow b \in E$ iff control can leave a and immediately enter b.

The distinguished *initial* node if a flow graph is the basic block whose leader is the first instruction of the function.

Constructing the flow graph of a function :

- 1. Identify the basic blocks of the function.
- 2. There is a directed edge from block B_1 to block B_2 if
 - (a) there is a (conditional or unconditional) jump from the last instruction of B_1 to the first instruction of B_2 ; or
 - (b) B_2 immediately follows B_1 in the textual order of the program, and B_1 does not end in an unconditional jump.
- **Predecessors and Successors** : if there is an edge $a \rightarrow b$ then a is a <u>precedessor</u> of b, and b is a <u>successor</u> of a.

Example :

L1:
$$prod = 0$$

 $i = 1$
L2: $t1 = 4*i$
 $t2 = a[t1]$
 $t3 = 4*i$
 $t4 = b[t3]$
 $t5 = t2*t4$
 $t6 = prod+t5$
 $prod = t6$
 $t7 = i+1$
 $i = t7$
 $if i \leq N \text{ goto L2}$

 \Rightarrow

Improving Code Quality : Register Allocation

- Rationale
 - A value in a register can be accessed much more efficiently than one in memory
- Liveness Analysis to build Live Ranges
 - Identifies durations for which each variable could benefit from using a register
- Perform Register Allocation
 - — CPU has limited registers → keep frequently used values in registers

Variable Liveness

Definition : A variable is <u>live</u> at a point in a program if it <u>may</u> be used at a later point before being redefined.

Example :

Live Ranges

Definition : A *live range* is an isolated and connected group of basic blocks in which a variable is live.

- Usually, a live range begins at a definition point of a variable and ends at its last uses.
- Different variables may have different live ranges.
 (⇒ a given basic block may be part of many different live ranges.)
- A given variable may have several different live ranges.

<u>Global Register Allocation</u> : considers the entire body of a function or procedure:

- Tries to keep frequently accessed values in registers, esp. across loops.
- Uses loop nesting depth as a guide to frequency of access: variables in the most deeply nested loops are assumed to be accessed the most frequently.

Attempt n-coloring

Color the interference graph using R colors where R is the number of registers.

- Observation: If there is a node n with < R neighbors, then no matter how the neighbors are colored, there will be at least one color left over to color node n.
 - Remove n and its edges to get G'
 - Repeat the above process to get G''

If an empty graph results, R-coloring is possible. Assign colors in reverse of the order in which they were removed.

Attempt Coloring Contd..

Input: Graph G

- **Output**: N-coloring of G
- While there exists n in G with < N edges do
- Eliminate n & all its edges from G; list n End while
- If G is empty the
 - for each node i in list in reverse order do

Add i & its edges back to G;

choose color for i

endfor

End if

Liveness Analysis and Live Range Construction

- Global Analysis
 → Finds what variables are live at basic block boundaries
- Local Analysis
 → Finds what variables are live at all points within basic blocks
- Build Live Ranges

Computing Liveness Information (within a basic block)

Suppose we know which variables are live at the exit from the basic block. Then:

 Scan backwards from the end of the block. At the point immediately before an instruction

 $I : \mathbf{x} := \mathbf{y} \ \mathbf{O}\mathbf{p} \ \mathbf{z}$

we have:

-- x is not live-- y and z are live

Live Before I = (Live After I – $\{x\}$) U $\{y, z\}$

Computing Liveness Information (dataflow analysis)

We compute IN[B] and OUT[B], the sets of variables that are live at the beginning and end of each basic block, respectively, in a flow graph, as follows:

Initialization:
 $IN[B] = \emptyset$ for all Bof a function
other than main() $OUT[B] = \begin{cases} all globals & if B is an exit block \\ \emptyset & otherwise & other than main() \end{cases}$ of a function
other than main()

Propagation: For each non-exit block *B*:

$$- \text{OUT}[B] = \bigcup_{B' \in successors(B)} \text{IN}[B']$$

- $IN[B] = (OUT[B] - KILL[B]) \bigcup GEN[B]$, where $GEN[B] = \{v : variable v is read before being written\}$ $KILL[B] = \{v : variable v is defined in B\}$

OUT[1] = IN[2] U IN[4] $IN[2] = (OUT[2] - KILL[2]) U GEN[2] = OUT[2] U \{x\}$ OUT[2] = IN[3] U IN[4] $IN[3] = (OUT[3] - KILL[3]) U GEN[3] = OUT[3] U \{x\}$ OUT[3] = IN[3] U IN[5] $IN[4] = (OUT[4] - KILL[4]) U GEN[4] = OUT[4] U \{y\}$ OUT[4] = IN[5] U IN[6] $IN[5] = (OUT[5] - KILL[5]) U GEN[5] = OUT[5] U \{x\}$ OUT[5] = {} $IN[6] = (OUT[6] - KILL[6]) U GEN[6] = (OUT[6] - {x}) U {y}$ OUT[6] = IN[7] U IN[8] $IN[7] = (OUT[7] - KILL[7]) U GEN[7] = OUT[7] U \{x\}$ OUT[**7**] = {} $IN[8] = (OUT[8] - KILL[8]) U GEN[8] = OUT[8] U \{x\}$ OUT[8] = IN[8] $OUT(b) = U_{s \text{ in Succ}(b)} IN(s)$

IN(b) = (OUT(b) - KILL(b)) U GEN(b)

 $IN[1] = (OUT[1] - KILL[1]) U GEN[1] = OUT[1] - {x,y}$

IN[1] = OUT[1] - { <mark>x,y</mark> }		0	0	0	0
$OUT[1] = IN[2] \cup IN[4]$	IN[1]	{}	{}	{}	{}
	OUT[1]	{}	{x,y}	{x,y}	{x,y}
	IN[2]	{}	{x,y}	{x,y}	{x,y}
	OUT[2]	{}	{x,y}	{x,y}	{x,y}
	IN[3]	{}	{x}	{x}	{x}
OUT[3] = IN[3] U IN[5]	OUT[3]	{}	{x}	{x}	{x}
$IN[4] = OUT[4] \cup \{y\}$	IN[4]	{}	{x,y}	{x,y}	{x,y}
OUT[<mark>4</mark>] = IN[<mark>5</mark>] U IN[<mark>6</mark>]	OUT[4]	{}	{x,y}	{x,y}	{x,y}
IN[<mark>5</mark>] = OUT[<mark>5</mark>] U { x }	IN[5]	{}	{x}	{x}	{x}
OUT[<mark>5</mark>] = {}	OUT[5]	{}	{}	{}	{}
IN[<mark>6</mark>] = (OUT[<mark>6</mark>] – {x}) U {y}	IN[6]	{}	{y}	{y}	{y}
OUT[<mark>6</mark>] = IN[7] U IN[<mark>8</mark>]	OUT[6]	{}	{x}	{x}	{x}
IN[7] = OUT[7] U { x }	IN[7]	{}	{x}	{x}	{x}
OUT[7] = {}	OUT[7]	{}	{}	{}	{}
IN[<mark>8</mark>] = OUT[<mark>8</mark>] U { x }	IN[8]	{}	{x}	{x}	{x}
OUT[<mark>8</mark>] = IN[<mark>8</mark>]	OUT[8]	{}	{}	{x}	{x}
	$OUT[1] = IN[2] \cup IN[4]$ $IN[2] = OUT[2] \cup \{x\}$ $OUT[2] = IN[3] \cup IN[4]$ $IN[3] = OUT[3] \cup \{x\}$ $OUT[3] = IN[3] \cup IN[5]$ $IN[4] = OUT[4] \cup \{y\}$ $OUT[4] = IN[5] \cup IN[6]$ $IN[5] = OUT[5] \cup \{x\}$ $OUT[5] = \{\}$ $IN[6] = (OUT[6] - \{x\}) \cup \{y\}$ $OUT[6] = IN[7] \cup IN[8]$ $IN[7] = OUT[7] \cup \{x\}$ $OUT[7] = \{\}$ $IN[8] = OUT[8] \cup \{x\}$	$OUT[1] = IN[2] \cup IN[4]$ $OUT[1]$ $IN[2] = OUT[2] \cup \{x\}$ $IN[2]$ $OUT[2] = IN[3] \cup IN[4]$ $OUT[2]$ $IN[3] = OUT[3] \cup \{x\}$ $IN[3]$ $OUT[3] = IN[3] \cup IN[5]$ $OUT[3]$ $OUT[3] = IN[3] \cup IN[5]$ $OUT[3]$ $IN[4] = OUT[4] \cup \{y\}$ $IN[4]$ $OUT[4] = IN[5] \cup IN[6]$ $OUT[4]$ $IN[5] = OUT[5] \cup \{x\}$ $IN[5]$ $OUT[5] = \{\}$ $OUT[5]$ $IN[6] = (OUT[6] - \{x\}) \cup \{y\}$ $IN[6]$ $OUT[6] = IN[7] \cup IN[8]$ $OUT[6]$ $IN[7] = OUT[7] \cup \{x\}$ $IN[7]$ $OUT[7] = \{\}$ $OUT[7]$ $IN[8] = OUT[8] \cup \{x\}$ $IN[8]$	$OUT[1] = IN[2] \cup IN[4]$ $IN[1]$ {} $IN[2] = OUT[2] \cup \{x\}$ $IN[2]$ $IN[2]$ {} $OUT[2] = IN[3] \cup IN[4]$ $OUT[2]$ {} $IN[3] = OUT[3] \cup \{x\}$ $IN[3]$ {} $OUT[3] = IN[3] \cup IN[5]$ $OUT[3]$ {} $OUT[3] = IN[3] \cup IN[5]$ $OUT[3]$ {} $OUT[4] = OUT[4] \cup \{y\}$ $IN[4]$ {} $OUT[4] = IN[5] \cup IN[6]$ $OUT[4]$ {} $OUT[4] = IN[5] \cup IN[6]$ $OUT[4]$ {} $OUT[5] = \{\}$ $OUT[5]$ {} $OUT[5] = \{\}$ $OUT[6]$ {} $OUT[6] = IN[7] \cup IN[8]$ $OUT[6]$ {} $OUT[6] = IN[7] \cup [X]$ $IN[7]$ {} $OUT[7] = \{\}$ $OUT[7]$ {} $IN[8] = OUT[8] \cup \{x\}$ $IN[8]$ {}	$OUT[1] = IN[2] \cup IN[4]$ $IN[1]$ {} $IN[2] = OUT[2] \cup \{x\}$ $OUT[1]$ {}{x,y} $OUT[2] = IN[3] \cup IN[4]$ $OUT[2]$ {}{x,y} $IN[3] = OUT[3] \cup \{x\}$ $IN[3]$ {}{x,y} $OUT[3] = IN[3] \cup IN[5]$ $OUT[3]$ {}{x} $OUT[3] = IN[3] \cup IN[5]$ $OUT[3]$ {}{x} $OUT[4] = OUT[4] \cup \{y\}$ $IN[4]$ {}{x,y} $OUT[4] = IN[5] \cup IN[6]$ $OUT[4]$ {}{x,y} $OUT[4] = IN[5] \cup IN[6]$ $OUT[4]$ {}{x,y} $IN[5] = OUT[5] \cup \{x\}$ $IN[5]$ {}{} $OUT[5] = \{\}$ $OUT[5]$ {}{} $OUT[6] = IN[7] \cup IN[8]$ $OUT[6]$ {}{y} $OUT[6] = IN[7] \cup IN[8]$ $OUT[6]$ {x} $IN[7] = OUT[7] \cup \{x\}$ $IN[7]$ {} $OUT[7] = \{\}$ $OUT[7]$ {} $IN[8] = OUT[8] \cup \{x\}$ $IN[8]$ {}	$OUT[1] = IN[2] \cup IN[4]$ $IN[1]$ {}{}{} $IN[2] = OUT[2] \cup \{x\}$ $OUT[1]$ {}{x,y}{x,y} $OUT[2] = IN[3] \cup IN[4]$ $OUT[2]$ {}{x,y}{x,y} $IN[3] = OUT[3] \cup \{x\}$ $OUT[2]$ {}{x,y}{x,y} $OUT[3] = IN[3] \cup IN[5]$ $OUT[3]$ {}{x}{x} $OUT[3] = IN[3] \cup IN[5]$ $OUT[3]$ {}{x}{x} $OUT[3] = IN[3] \cup IN[5]$ $OUT[3]$ {}{x}{x} $OUT[4] = OUT[4] \cup \{y\}$ $IN[4]$ {}{x,y}{x,y} $OUT[4] = IN[5] \cup IN[6]$ $OUT[4]$ {}{x,y}{x,y} $IN[5] = OUT[5] \cup \{x\}$ $IN[5]$ {}{}{} $OUT[5] = {$ $OUT[5]$ {}{}{} $IN[6] = (OUT[6] - {x}) \cup {y}$ $IN[6]$ {}{y}{y} $OUT[6] = IN[7] \cup IN[8]$ $OUT[6]$ {}{x}{x} $IN[7] = OUT[7] \cup {x}$ $IN[7]$ {}{}{} $IN[8] = OUT[8] \cup {x}$ $IN[8]$ {}{x}{x}


```
Algorithm for solving data flow equations:
For each block B do
  if B is the exit block then
      OUT[B] = set of global variables
      IN[B] = (OUT[B] - KILL[B]) U GEN[B]
  else
      OUT[B] = IN[B] = \{ \}
  endif
Endfor
DONE = false
While not DONE do
    DONE = true;
    for each B which is not the exit block do
          new = U
                                IN[B']
                  B' ε SUCC(B)
          if new != OUT[B] then
              DONE = false;
              OUT[B] = new;
              IN[B] = (OUT[B] - KILL[B]) U GEN[B]
          Endif
    Endfor
Endwhile
```

Sample Problems for Review

LIVE RANGES OF X, Y and Z

INTERFERENCE GRAPH

REGISTER ALLOCATION: R1, R2, R3

REMOVE DEGREE<3 X1, X2, Z; Y

COLOR IN REVERSE ORDER Y R1 Z R2 X2 R3 X1 R2 or R3

REGISTER ALLOCATION: R1, R2

REMOVE DEGREE<2 X1; spill Y; X2, Z COLOR IN REVERSE ORDER Z R1 X2 R2 X1 R1 or R2

CONSTRUCT

if x < y then <otherstatements> elseif a > b then <otherstatements> elseif c == d then <otherstatements>

else

<otherstatements> endif

GRAMMAR RELEVANT PRODUCTIONS

<S> \rightarrow if <condt> then <otherstatements> <rest>

<rest> > elseif <condt> then <otherstatements> <rest> | else <otherstatements> endif

<condt> \rightarrow id relop id

Question:

Provide SEMANTIC RULES that generate code and finally place it in attribute **<S>.code**

CONSTRUCT

if x < y then <otherstatements> elseif a > b then <otherstatements> elseif c == d then <otherstatements> else <otherstatements> endif

INTERMEDIATE CODE

if x < y go to L1 go to L2 L1: <otherstatements> go to exitL L2: If a > b go to L3 go to L4 L3: <otherstatements> go to exitL L4: if c==d go to L5 go to L6 L5: <otherstatements> go to exitL L6: <otherstatements> exitL:

if x < y go to L1	L2: If a > b go to L3	L4: if c==d go to L5	L6: <otherstatements></otherstatements>
go to L2	go to L4	go to L6	exitL:
L1: <otherstatements></otherstatements>	L3: <otherstatements></otherstatements>	L5: <otherstatements></otherstatements>	
go to exitL	go to exitL	go to exitL	
L2: <rest></rest>	L4: <rest></rest>	L6: <rest></rest>	

```
<condt> \rightarrow id<sub>1</sub> relop id<sub>2</sub> {
```

```
truelabel = newlabel();
<condt>.falselabel = newlabel();
<condt>.code = gen("if" id1.place "relop" id2.place "go to" truelabel)
|| gen("go to" <condt>.falselabel) || gen(truelabel":")
```

<S> → if <condt> then <otherstatements>

```
<rest>.ifalselabel = <condt>.falselabel;
<rest>.iexit = newlabel();
<rest>.icode = <condt>.code || <otherstatements>.code ||
gen("go to" <rest>.iexit)
}
<rest> { <S>.code = <rest>.scode }
```

```
<rest<sub>1</sub>> \rightarrow elseif <condt> then <otherstatements>
                    <rest<sub>2</sub>>.icode = <rest<sub>1</sub>>.icode || gen(<rest<sub>1</sub>>.ifalselabel ":") ||
                       <condt>.code || <otherstatements>.code || gen("go to" <rest1>.iexit);
                    <rest<sub>2</sub>>.ifalselabel = <condt>.falselabel;
                    <rest<sub>2</sub>>.iexit = <rest<sub>1</sub>>.iexit
               <rest<sub>2</sub>> { <rest<sub>1</sub>>.scode = <rest<sub>2</sub>>.scode }
<rest<sub>1</sub>> → else <otherstatements> endif
                      <rest1>.scode = <rest1>.icode || gen(<rest1>.ifalselabel ":")
                             || <otherstatements>.code || gen(<rest1>.iexit ":")
                   }
```