8. Intermediate Code

Intermediate code is closer to the target machine
than the source language, and hence easier to gen-
erate code from.

Unlike machine language, intermediate code is (more
or less) machine independent. This makes it easier
to retarget the compiler.

It allows a variety of optimizations to be performed
in a machine-independent way.

Typically, intermediate code generation can be im-
plemented via syntax-directed translation, and thus
can be folded into parsing by augmenting the code
for the parser.

CSE Department

Intermediate Languages: Design Issues

The set of operators in the intermediate language
must be rich enough to allow the source language
operations to be implemented.

A small set of operations in the intermediate lan-
guage makes it easy to retarget the compiler to a
new machine.

Intermediate code operations that are closely tied
to a particular machine or architecture may make it
harder to port the compiler to other architectures.

A small set of intermediate code operations may
lead to long instruction sequences for some source
language constructs. This may require more work
during optimization.

CSE Department

High-Level Intermediate Representations

Examples : syntax trees, DAGSs:

e (abstract) syntax trees: a compact form of a parse
tree that represents the hierarchical structure of the

program: nodes represent operators, the children of
a node represent what it operates on.

e DAGs: similar to syntax trees, except that common
subexpressions are represented by a single node.

CSE Department

Example :

If (z>0)then 2 :=3«(y+1) elsey:=y+1;

if if
> assg > assg
N N AN /
x 0 assg Y /+\ ° assg Y
N y 1 N\
X * X *
AN AN
3 /+ /"“\
Y \1 Yy 1
syntax tree DAG

CSE Department

8.1.1. Low-Level Intermediate Representations

Examples : Three Address Code

This is a sequence of instructions of the form
X :=y op z

where x, y, and z are variable names, constants, or
compiler generated variables (“temporaries™).

Only one operator is permitted on the RHS, so
there are no “built-up” expressions. Instead, ex-
pressions are computed using temporaries. E.g. the
source language construct

X 1=y + z*w
might translate to

tl 1=z *x w
X 1=y + tl

CSE Department

Different Kinds of Three-Address Statements

Assignment :

X .=V opZ, op binary
X = op YV, op unary
X 1=V

Jumps
goto L,
jumpt t L,
jumpf t L, L a label

If X relop y goto L, L a label

CSE Department

Procedure Call/Return

param z,
call p, n,
enter
exit
return
return z
retrieve =

x an actual parameter
n = no. of params to p
initialization (if any)
cleanup actions (if any)

save returned value in z=

CSE Department

Indexed Assignment :

X =y[i]
X[i] =y

Address and Pointer Assignments

X 1= &vy
X 1= ¥y
X 1=V

Miscellaneous :
label L

CSE Department

8.1.2. Implementing Three-Address Instructions

Each instruction is implemented as a structure called
a quadruple:

e contains (upto) 4 fields: operation, (upto) two operands,
and destination;

e for operands: use a bit to indicate whether it's a
constant or a pointer into the symbol table.

X =y + z if t1 >= t2 goto L

op | PLUS Op | JMP_GE

Src1 — 1Y Src1 —=>t1

Src2 — % Src2 — =12

Dest — X Dest _W
instruction
labelled L

CSE Department

8.2. Intermediate Code Generation

e Source language constructs are decomposed to sim-
pler constructs at the intermediate code level.

e \When generating code to evaluate expressions, tem-
porary names must be made up for internal nodes
in the syntax tree for the expression.

Example:

Source ifz+2>3%x(y—1)+4 then = := 0O;

Intermediate Code :

<= t4 goto L

tl := x+2

t2 = y-1

t3 := 3%t2
t4 := t3+4
if t1

Z =

label L

CSE Department

Intermediate Code Generation

Syntax-Directed Translation :

e Intermediate code represented as a list of instruc-
tions. Instruction sequences are concatenated using
the operator ||.

(In practice, we might choose to write the interme-
diate code instructions out into a file.)

e Attributes for Expressions E

— FE.place . denotes the location that holds the
value of E.

— F.code : denotes the instruction sequence that
evaluates FE.

CSE Department

e Attributes for Statements S

— S.begin . denotes the first instruction in the code
for S.

— S.after . denotes the first instruction after the
code for S.

— S.code : denotes the instruction sequence that
represents S.

CSE Department

e Auxiliary Functions :

— newtemp() : returns a new temporary each time
it is called.

= returns a pointer to the ST entry of a temp.

= may take a parameter specifying the type of
the temp (useful if reusing temps).

— newlabel () : returns a new label name each time
it Is called.

e Notation : we write

gen(z ="y '+' 2)

to represent the instruction z (= y + =z.

CSE Department

Intermediate Code Generation : Simple Expressions R

PRODUCTION SEMANTIC RULE

EF —id FE .place = id.place;
F.code :=";
E— (E1) E .place = E1.place,

FE.code .= FE1.code;

EF— F{+ E> E .place := newtemp();
E.code .= FE1i.code ||
E>.code ||
gen(E .place ":='
Fq.place '+’
E>.place)

EF — —F4 E .place := newtemp();
E.code := FE1.code ||
gen(FE .place ":='
‘—" F1.place)

CSE Department

8.3.2. Accessing Array Elements I

e Array elements can be accessed quickly if the ele-
ments are stored in a block of consecutive locations.

e Assume:

— we want the it" element of an array A whose
subscript ranges from lo to hzi;

— the address of the first element of the array is
base.

e \We can avoid address computations in the interme-
diate code if we have indexed “addressing modes”
at the intermediate code level.

In this case, A[i] is the (i — lo)* element of the
array located at base (starting at element 0). So a
reference A[i] translates to the code

t1 := i-_lo
t2 := A[t1]

CSE Department

8.3.2. Accessing Array Elements II

e Address computations can't be avoided in general,
because of pointer and record types.

e [hesimple approach using indexed expressions may
recompute base addresses repeatedly, leading to in-
efficient code.

e Assume:

— we want the " element of an array A whose
subscript ranges from lo to hi;

— the address of the first element of the array is
base;

— each element of A has width w.

CSE Department

Then, the address of z[i] is

base + (i — lo) * w
— (b(l.Se — lo 'lU) + 2 % W
= Ca+tixw

where (4 depends on the array A and is known at
compile time.

Note : (4 is a memory address if A is a global, and
iIs a stack displacement if A is a local.

The idea extends to multidimensional arrays in the
obvious way: need to know whether the elements
are stored in row-major or column-major order.

CSE Department

8.4. Logical Expressions

BFExzp — F4 relop E>

8.4.3. Naive but Simple Approach :

Intermediate Code (TRUE == 1, FALSE == 0) :

—

tl — value of F;

L

t2 — value of E-

i3 := TRUE
if t1 relop t2 goto L

t3 := FALSE
label L

Disadvantage : Lots of (usually unnecessary) memory
traffic.

CSE Department

8.4.1. Code Generation for Conditionals

Production : S — if E then S else 5S>

Semantic Rule :

{ S.begin := newlabel();

S.after := newlabel();

S.code := gen('label’ S.begin) ||
E.code |
gen(‘if'E.place' = "0"goto'S>.begin) ||
S1i.code
gen(‘goto’ S.after) ||

S-.code
gen(‘label' S.after)

CSE Department

8.4.1. Code Generation for Loops

Production : S — while £ do 5,

Structure of Generated Code

L]_ .
evaluate E
—=— FALSE) goto L-
Code for S,
goto L1
Lo

Semantic Rule :

{ S.begin = newlabel();

S.after := newlabel();

S.code := gen(‘label' S.begin) ||
E.code ||
gen('if'E.place' = “0"goto'S.after) ||
Si.code ||
gen(‘goto’ S.begin) |
gen('label' S.after)

CSE Department

Intermediate Code Generation: Assignment

e Grammar productions:

S — Lhs := Rhs

e Semantic Rule:

{ S.code := Lhs.code ||
Rhs.code ||
gen(Lhs.place ":=" Rhs.place) }

CSE Department

Relational Expressions: Better Approach

e Often, relational expressions occur in the context
of boolean conditions of control statements.

e Instead of creating temporaries which are set to true
or false, based upon the outcome of evaluating a
boolean condition, generate direct branches to true
and false targets.

e Short circuit evaluation of boolean expressions can
also be handled effectively by this approach.

CSE Department

Relational Expressions: Example

F=a<borc<dande< f

100 :
101 :
102 :
103 :
104
105 :

if a < b goto __
goto 102

if ¢ < d goto 104
goto __

of e < f goto __
goto __

E truelist = {100, 104}
E.falselist = {103,105}

CSE Department

UCR

F— Fior M E>
{
backpatch(E;. falselist, M.quad);
E.truelist = merge(FEq .truelist, Es.truelist);
E.falselist = E».falselist;
}
M — ¢
{ M.quad = nextquad}
EF — Fiand M FE>
{
backpatch(E1.truelist, M .quad);
E . truelist = E».truelist;
E.falselist = merge(F1.falselist, E». falselist);

;

CSE Department

Relational Expressions: cont'd. UCR
I

E — not F4
{
E . truelist = E1. falselist;
E.falselist = F1.truelist;
}
E — (E1)
{
E . truelist = F1.truelist;
E.falselist = F1.falselist,;
}
E — idy relop id>
{
E .truelist = makelist(nextquad);
E.falselist = makelist(nextquad + 1);
generate(if idi.addr relop id>.addr goto_)
generate(goto__)

;

CSE Department

UCR

E =2 true
{
E.truelist = makelist (nextquad);
generate (goto)

h

E = false
d

E.falselist = makelist (nextquad);
generate (goto)

b

CSE Department

Code Generation for Loops and Conditionals

Straightforward approach can introduce branch in-
structions whose targets are unconditional jumps.

while a<b do
if x<y then S endif
endwhile

100: ifa<bgoto 102
101: go to 106

102: ifx <y go to 104
103: goto 105 100
104: S.code

105: goto 100

1006:

We can avoid this by maintaining an additional at-
tribute for statements called the nextlist. This at-
tribute tracks branches in the statements whose tar-
get should be set to code that follows them in the
execution sequence.

CSE Department

Loops and Conditionals: cont'd.

S — if E then My S1 N else M> S>
{
backpatch(E . truelist, M1.quad);
backpatch(E. falselist, M>.quad);
S.nextlist = merge(Si.nextlist, merge(N.nextlist, Sz.nextlist))
¥
1'\" —> €
{
N.nextlist = makelist(nextquad);
generate(goto__)
¥
M — €
{M .quad = nextquad}
S — if FE then M S1
{
backpatch(E . truelist, M .quad);
S.nextlist = merge(FE.falselist, S1.nextlist)

}

CSE Department

Loops and Conditionals: cont'd.

S — while M1 E do M> S
{

backpatch(S1.nextlist, Mi.quad);

backpatch(E truelist, M>.quad);
S.nextlist = E.falselist;
generate(gotoM.quad);
}
S — begin L end
{S.nextlist = L.nextlist}
S — A
{S.nextlist = nil}
L — Li; MS
{
backpatch(Li.nextlist, M.quad);
L nextlist = S.nextlist;
}
L — S
{L.nextlist = S.nextlist}

/t

Optimization
akes place here

CSE Department

while a<b do

while x<y do
S
endwhile

endwhile

100:
101:
102:
103:
104
105:
106:

ifa<bgoto 102
go to 107
ifx<ygoto 104
go to 166 100
S.code

goto 102

go to 100

107:

CSE Department

Intermediate Code Generation: case Statements

Implementation issue : Need to generate code so that
we can (efficiently) choose one of a set of different
alternatives, depending on the value of an expres-
sion.

Implementation choices :

1. linear search
2. binary search

3. jump table

CSE Department

Implementation considerations :

1. Execution Cost : linear or binary search may be
cheaper if the no. of cases is small.

For a large no. of cases, a jump table may be
cheaper.

2. Space cost : a jump table may take too much
space if the case values are not clustered closely
together, e.g.:

switch (x) {
case 1 : ...
case 1000 : ..
case 1000000 :

CSE Department

8.5. Code Generation for Function Calls

Calling Sequence: Caller :

e Evaluate actual parameters; place actuals where
the callee wants them.

Instruction : param t

e Save machine state (current stack and/or frame
pointers, return address) and transfer control to

callee.
Instruction : call p.n (n = no. of actuals)

Calling Sequence: Callee

e Save registers (if necessary); update stack and
frame pointers to accommodate m bytes of local

storage.
Instruction : enter m.

CSE Department

Return Sequence: Callee :

e Place return value z (if any) where the caller
wants it; adjust stack/frame pointers (maybe);
jump to return address.

Instruction : return = Or return.

Return Sequence: Caller :

e Save the value returned by the callee (if any)
into .
Instruction : retrieve x.

CSE Department

Intermediate Code for Function Calls: An Example

Source Code

x = £(0,y+1)-1;

Intermediate Code Generated

tl = y+1

param t1 /* arg 2 */

param O /* arg 1 */

call £, 2

retrieve t2 /* t2 := £(0,t1) */
t3 = t2-1

X = t3

Suppose function £ needs 24 bytes of space for its
locals and temporaries. Its code has the form

enter 24
return tl17
/* suppose return value is in t17 */

CSE Department

Code Generation for Functions: Storage Allocation

Problem : The first instruction in a function is

enter n /* n = space for locals, temps */

but n is not known until the whole function has
been processed.

Solution 1 : generate final code into a list, “back-
patch™ the appropriate instructions after processing
the function body.

Advantage : Can also do machine-dependent opti-
mizations (e.g., instruction scheduling).

Disadvantage : slower, requires more memory.

CSE Department

Solution 2 : Generate code of the form

code
for
Jfunction

foo

goto L1

L2:

Ll:

code for

body of foo

code for enter n

goto L2

CSE Department

Reusing Temporaries

Storage requirements can be reduced considerably if we
reuse temporaries:

e Maintain a free list of temporaries:

— When a temporary is no longer necessary, it is
returned to the free list.

— The function newtemp() is modified to first search
the free list, and to allocate a new temporary
only if there is nothing in the free list.

e [0 handle objects of different sizes, we can main-
tain a free list for each type (or size).

CSE Department

