Summary: Top-Down Parsing UK

Backtracking Parsing

(“brute force”)

Top-Down Parsing

AN

Common Issues:

* |left recursion
« common prefix

Recursive Descent Parsing
e a func for a nonterminal

Predictive Parsing * leverage call stack
(lookahead)

AN

LL(1) Parsing

» use explicit stack
* First and Follow sets
» parsing table-driven

CSE Department

Example

FIRST FOLLOW
S>A|BC S a,b,cd,s | $
A->aA]|c A | ac $
B>bB]|¢ B b,s c,d,$
C>cC|dC|¢ C c,d,e $
a b C d $
S>A
S| S>A [S=>BC/S=>BC|S>BC SS>BC
Al A>aA A-> ¢
B B>bB B->c¢ B¢ B¢
C C>cC|C>dC| C>¢

R

CSE Department

Bottom-up Parsing

Basic Idea -
e Scan the input string from left to right.

e Try to construct a parse tree starting at the bottom
(i.e., the leaves) and working towards the root.

Shift-reduce parsing :

Basic Idea . Apply a sequence of “‘reductions” to trans-
form the input string to the start symbol of the
grammar.

reduction:. replace a substring matching the RHS
of a production by the LHS.

CSE Department

Example . Consider the grammar

S — aABe
A — Abec
A=—>b
B—-—d

Input: abbcde
~+ aAbcde
~+ aAde
~ aABe
~r S

Handles

Intuition : A handle of a string s is a substring « S.t.:
1. « matches the RHS of a production A — «; and

2. replacing « by the LHS A represents a step in the
reverse of a rightmost derivation of s.

CSE Department

Example . Consider the grammar

S — aABe
A=+ Abe | b
B —-d

The rightmost derivation for the input abbcde is:

S = aABe = aAde = aAbcde
= abbcde.

The string aAbcde can be reduced in two ways:
1. aAbcde ~+ aAde; and
2. aAbcde ~+» aAbcBe.

But (2) is not in a rightmost derivation, so Abc is the
only handle.

CSE Department

Handles : cont'd

Definition : A handle of a right-sentential form ~ is
1. a production A — 3, and

2. a position in 4 where g may be found and replaced
by A to produce the previous sentential form in a
rightmost derivation of ~.

S

o w
\(a string

B of terminals)

The handle A — 3 in afw

CSE Department

Shift Reduce Parsing R

Stack Tokens
$J gbc$
$£bc é Shifts
S 2 abc

$S $ Reduce

CSE Department

Stack Implementation of Shift-Reduce Parsing:

Data Structures :

e the stack, its bottom marked by $, initially empty.

e the input string, its right end marked by $, initially
wa.

Action :

repeat

1. Shift zero or more input symbols onto the

stack, until a handle 3 is on the top of the
stack.

2. Reduce 3 to the LHS of the appropriate
production.

until ready to accept.

Acceptance : When the stack contains the start sym-
bol and the input is empty.

CSE Department

Example . Consider the grammar

S — aABe
A — Abc
A=—>b
B—-—d

Input: abbcde
~+ aAbcde
~+ aAde
~ aABe
~r S

AT
PP T O

PO m O

PP Q
AU

CSE Department

Exampile -

Grammar:

S —— aABe

A —s Abec | b

B—-—d

Input string : abbcde

Stack (—) Input | Action

$ abbcde$ | shift

$a bbcde$ | shift

$ab bcde$ | reduce by A — b
$aA bcde$ | shift

$aAb cde$ | shift

$aAbc de$ | reduce by A — Abc
$aA de$ | shift

$aAd e$ | reduceby B — d
$aAB e$ | shift

$aABe $ | reduce by S — aABe
$.5 $ | accept

CSE Department

Conflicts during Shift-Reduce Parsing :

1.

Can't decide whether to shift or to reduce
(“shift-reduce conflict").

Example . “dangling else”:

Stmt —— if Expr then Stmt |
if Exzpr then Stmt else Stmt| ---

. Can’t decide which of several possible reductions to

make (“reduce-reduce conflict").
Example :

Stmt — id (params) | Bxpr := Expr | ---
Expr — id (params)

Given the input A(I, J) the parser doesn't know
whether it's a procedure call or an array reference.

CSE Department

LR Parsing

e Bottom-up.

e LR(k) parser:
— Scans the input L-to-R.
— Produces a Rightmost derivation.
— Uses k-symbol lookahead.

CSE Department

Advantages :

e Very general and flexible.
e Efficiently implemented.

e Parses a large class of grammars.

Disadvantages :

e Difficult to implement by hand for typical program-
ming language grammars.

(Use tools such as yacc or bison.)

CSE Department

Schematic of an LR Parser :

input

J

/ action
LR Parser j goto

program

S0

stack

string

Parsing Table

e The driver program is the same for all LR parsers
(SLR(1), LALR(1), LR(1), ...) : only the parsing

table changes.

CSE Department

e T he stack holds strings of the form
50X151X282 = = XynSm
where s, is on top, the s; are ‘states”, and X; are
grammar symbols.
e The configuration of an LR parser is given by a pair
(stack contents, unexpended input).

A configuration {s0X151 - - - XinSm. a8y ---an) rep-
resents the right-sentential form

X1---Xpaa;4q---ap

The sequence of symbols X; --- X;, on the parser
stack is called a viable prefix of the right sentential
form.

CSE Department

Parse Tables

The parsing table consists of two parts: a parsing
action function, and a goto function.

For a given configuration of the parser, the next
move is determined by the parse table entry

action[s;.a;].
where s, is the topmost state on the stack, and a;
is the next input symbol.
An action table entry can be of four types:
1. shift s, where s is a state.
2. reduce by a grammar production A — .
3. accept
4. error

CSE Department

LR Parsing : cont'd

Suppose the parser configuration is
<30X131 vee XmSm, Qj=-- 341$>

e if actionlsm.a;] = shift s then the parser executes
a shift move. The new configuration is

<30X 181 * = XnSm QA S, Ayt a-n.$>-

pushed

CSE Department

e if action[sm.a;] = reduce A — 3 then the parser
does a reduce move. The new configuration is

(30X181 " Xpp—rSm—r 4,-.9,1 aj,---an$).

new

where
— r = length of 3; and
— § = gotO[S?rn,—r’ A]-

e if actionl[s,;,.a;] = accept then parsing is done.

e if action[sm,a;] = error the parser calls an error
recovery routine.

CSE Department

5.2. Finite Automata to recognize Viable Prefixes

Definition : An LR(0) item of a grammar G is is a
production of G with a dot ‘.’ added at some position
in the RHS.

Example . The production A — aAb gives the items

A= saAb
A= a.Ab
A=—>aA.b
A —+ aAb.

Intuition : An item A — a./3 denotes;
— Wwe have seen a string derivable from «; and

— Wwe hope to see a string derivable from f£.

CSE Department

Overall Goal : Given a grammar with start symbol 5,

— Construct an augmented grammar by adding a new
start symbol S’ and production S' — S;

— Starting with the item S" — .5, recognize the viable
prefix 8" — S..

CSE Department

Viable Prefix DFA

1. closure :

Definition : If I is a set of items for a grammar G, then
closure(I') is the set of items constructed as follows:

repeat
1. add every item in I to closure(I);

2. if A = a«.Bg is in cosure(I) and B —

is a production of &, then add B — v tO
closure(T).

until no new item can be added to closure(I).

Intuition : If A — a«Bg isin closure(I) then we hope to
see a string derivable from B in the input. SO if B —— ~
is a production of &, then we should hope to see a

string derivable from ~ in the input. Hence, B — .+~ iS
in closure(I).

=

CSE Department

Viable Prefix DFEA — cont'd:

2. goto .

Definition : If 7 is a set of items for a grammar G and
X a grammar symbol, then goto(I, X) is the set of items

closure({A — aX .+ | A — a. X3 € I'}).
Intuition :
e A set of items I corresponds to a state.

e If A= a.X3 €I then
— we've seen a string derivable from «; and

— we hope to see a string derivable from Xj3;

=

CSE Department

|

e NOW SUppoOSse we see a string derivable from X : the
resulting state should be one in which:

— we've seen a string derivable from «X; and
— we hope to see a string derivable from f;

e The item corresponding to this is A — aX /.

CSE Department

Constructing the Viable Prefix DFA for LR(0) Items R

e Given a grammar G with start symbol S, construct |
the augmented grammar by adding a special pro-
duction

S ——s S

where S’ does not appear in G.

e Algorithm for constructing the canonical collection
of LR(0) items for an augmented grammar G":

begin |
C = {closure({S" — +SH}H
repeat

for each set of items I € C do
for each grammar symbol X do
if goto(I,X) #= 0 then
add goto(I,X) to C;

fi
until no new set of items can be added to C;
return C;

end

CSE Department

Example
Original Grammar Augmented Grammar
E>2E+T | T S’>E
T 2>id | (E) E>E+T | T

T >id | (E)

K

CSE Department

R

Augmented Grammar

S'>E
ESE+T|T
T>id | (E)

Kernel items are
Marked with

Rest of the items
added by closure

. Tells where we are
in the production

CSE Department

S SE. FESE+.T K

. T->.id "E>E+T.
E>E.+T TS .(E)
E
(
E->.E+T T Augmented Grammar
E>.T S’>E
- E>E +T | T
T>.id “T>id. T é
T>.(E) id id | (E)
(id T . Kernel items are
Marked with *
*T>(.E)
E>.E+T *T>(E.) ‘T (E) Rest of the items
E>.T E "E>E.+T) ' added by closure
T->.id
T->.(E) . Tells where we are

in the production

CSE Department

5.3. Constructing an SLR(1) Parse Table R

|

1. Given a grammar G, construct the augmented gram-
mar G' by adding the production S' — S.

2. Construct ¢ = {Iy,..., I}, the set of states of the
viable prefix DFA for G.

3. State z iIs constructed from I;, with parsing action
determined as follows:

(@) A — «a.af € I;, a a terminal, goto(l;,a) = I;:
set action[i,a] = shift j.

(b) A= . €I;;A# 5" foreacha € FOLLOW(A),
set action[i,a] = reduce A — a.

(c) S8 = S« €I; : set action[z,$] = accept.

CSE Department

R

4. goto transitions are constructed as follows: for each
nonterminal A, if goto(I;, A) = I; then
gotoli, A] = j.

5. All entries not defined by the above steps are made

error.

If there are any multiply defined entries, then G is
not SLR.

6. Initial state of the parser: that constructed from
IO "~ S’ —_— 'l.'S-

CSE Department

ACTION GOTO

+ Id () $ E T
SO £,S3 54 S1 S2
S1 | ¢S7 accept
S2 | A#3 RH3 RH3
S3 | ##4 rH4A rH4
S4 $S3 ¢S4 S5 S2
S5 | ¢,S7 9,56
S6 | A#5 RHS RH#H5
S7 £,S3 ¢S54 S8
S8 | A#2 RH2 RH2

¢-SHIFT #- REDUCE

S# - Next State

#n - Production Rule Number

R

#1 S SE
#2 ESE+T
#3 E>T
#4 T id
#5 T (E)

Follow(S) > {$}
Follow(E) 2 {+,), $}
Follow(T) > {+,), $}

CSE Department

The LR Parsing Algorithm

begin
set 4p to point to the first symbol of the input w$;

while TRUE do
let s be the state on top of the stack,
a the symbol pointed at by p;

if action[s,a] = shift & then
push a then s’ on top of the stack;
advance zp to the next input symbol;

else if action[s,a] = reduce A — 3 then
pop 2+ | 3| symbols off the stack;
let 5 be the state now on top of the stack;
push A then goto[A. s] on top of the stack;

else if action[s,a] = accept then return;

else error():
fi
od
end

CSE Department

Stack Input Action

$ S0 id+id$ shift S3

$S0id S3 +id $ red. T>id GOTO[S0,T]=S2
$SO0TS2 +id $ red EST GOTO[S0,E]=S1

$ SO E S1 +id $ shift S7

$ SO0 E S1+8S7 id $ shift S3
$SOES1+S7idS3 $ red T>id GOTO[S7,T]=S8
$SOES1+S7TS8 $ red EDE+T GOTO[S0,E]=S1

$ SO0 E S1 $ accept

CSE Department

Limitations of SLR P&I‘Siﬁg

Cannot handle many ‘reasonable” grammars, e.d.:

S—R|L=R
L— * R|id
R— L

The SLR parse table contains a state
I={S— Le=R,R—+ L}

which causes a shift/reduce conflict on *=', since ‘="
is in FOLLOW(L).

Problem : For an input

*id = id

we want to remember enough “left context” after see-
ing * to make the right shift/reduce decision. SLR
cannot do this adequately.

CSE Department

— Since = is in Follow(R)
so Reduce on =

___5__{73-» L =R,

_ S > L.=R—-> Shifton =
'S>L=R|R Gl
R->L
L>*R | id
R X*S-—a R"—\ _ ~S—sL=.R
// a R— .
> 5 = L L=R L. s S—L.=R L*'ffe
s S— .r | SR— L. L= id

J

L— . % R

L —.1d *'».L_*—'%.)Q

R— . Lo R—. L
L—v«fo{
L—-—r

ta :
» L —+Hd \/'

R

5.4. LR(1) Parsing

Idea : Extend SLR parsing to incorporate lookahead.

LR(1) Item :

e Of the form [A — «./3,a], where a is a terminal
or is the endmarker $.

¢ [he lookahead has no effect on items of the
form [A — . /3,a], where 3 # ¢.

e For items of the form [A — «..a], reduce only
if the next symbol is a.

Note: For an item of the form [A — «.3,a], a €
FOLLOWI(A). But there may be b € FOLLOW(A)
for which there is no item [A — a. 3, b].

CSE Department

LR(1) Parsing: closure and goto Functions R

1. closure(l) :

begin
S = I
repeat
for(each item [A — «« B3,a] € 1,
each production B — #,
each terminal b € FIRST(3a)) do
add [B — «+,b] to S;
until no new item can be added to S;
return S;
end

2. goto(I,X)

begin
let J = {[A — aX.3.a] | [A — a+X[3,a] € I};
return closure(J);

end

CSE Department

Constructing the Viable Prefix DFA for LR(1) Items |—R

e Given : An augmented grammar G'.

e Algorithm

begin
C' = {closure({[S" — +S,$P}i
repeat

for each set of items I € C do
for each grammar symbol X do
if goto(I,X) #= 0 then
add goto(I,X) to C;
until no new set of items can be added to C;
return C;
end

e Note : The set of items construction is essentially
the same as for the SLR(1) case.

CSE Department

S— L=R | R
R—+ L

UCR

S8
L— aRl rd S5 EJ*S%L=R-,$‘
S1 o S9
: R>.L$ *R- L |<—
_.| S>R.,$ ‘ L>.*R, $ —’IL o o1z
L->.id, $ _.I ‘ ‘
) . N *R.
R) 1 Id L9|d_,$| L% R y$
< $10 {id IR
S0 L |[7S>L-=R3 : *L>*.R, $
*S>.L=R,$ ‘R>L..3 R>.L, $
“S>.R$ S6 L%.id,$
L>.*R, =/$ —'l* i ‘ b
R%L-,_l L% R,$.
L->.id, =/$. |*L9*.R, =% [L : ‘
RS>.L S R>.L =/$ o1
L->.id, =/$ R :|*|_9*R.,=l$‘ *
id s3g| L>-*R =5 |__ |
S7

S4|*L>id.,=/$ |<7 °

CSE Department

K

ACTION GOTO

* = $ S R L
SO ¢33 S1 S2
S1 accept
S2 9,55 2,R>L
S3 <33 S7 S6
S4 #,L->id #,L->id
S5 4,511 S8 S9
S6 #,R>L Z,R>L
S7 2L2>*R 2L2>*R
S8 accept
S9 2,R>L
S10 #,L->id
S11 <811 ¢,810 S12 S9
S12 2L2>*R

¢-SHIFT #-REDUCE S# - Next State #n — Production Number

CSE Department

$ SO *id=id $

$ S0 *S3 id=id $
$S0*S3id S4 =id $
$S0*S3L S6 =id $
$S0*S3R S7 =id $
$ SO L S2 =id $
$SO0LS2=S5 id $
$SOLS2=S5id S10 $
$SOLS2=S5L S9 $
$SOLS2=S5R S8 $

accept

CSE Department

Constructing an LR(1) Parse Table

1. Given a grammar G, construct the augmented gram-
mar G' by adding the production S' — S.

2. Construct C = {Iy,...,In}. the viable prefix DFA
for G".

3. State 2 iIs constructed from I;, with parsing action

determined as follows:

@) [A — a.a3,b] € I;, @ a terminal, goto(l;,a) =
I;: set action[i,a] = shift j.

(b) [A — «.,a] € I;,A # 5" set action[i,a] =
reduce A —— a.

() [S" = S+,%] € I; : set action[i,$] = accept.

CSE Department

4. goto transitions are constructed as follows: for each
nonterminal A, if goto(I;, A) = I; then
gotoli, A] = j.

5. All entries not defined by the above steps are made
error.

If there are any multiply defined entries, then G is
not LR(1).

6. Initial state of the parser: that constructed from
Io ~ [S’ —— -&S_1$].

CSE Department

LR(1) vs. SLR(1):

e LR(1) more powerful, can handle a strictly larger
class of grammars than SLR(1).

e The parse tables for LR(1) become very large —
may be impractical for realistic grammars.

e A compromise between parsing power and table size
that is commonly used is seen in LALR parsers.

An LALR parser can be thought of as an LR(1)

parser, some of whose states have been merged
into a single state. This can be done in many (but
not all) cases without causing problems.

The parsers generated by tools such as yacc and
bison are LALR.

CSE Department

5.4.3. LALR(1) Parsing

Observation : Every SLR grammar is an LR(1) gram-
mar, but the LR(1) parser usually has many more
states than the SLR parser.

Many of these states differ only on the lookahead
token. But the lookahead token does not play any
role except on reductions.
Definition : The core of a set of LR(1) items I is
core(I)y = {J | [J,a] € I for some a}
I.e., core(I) is the set of first components of I.

Example . Suppose

I = {[A ——- C-&,a],
[A — ¢+, b],
[B — c.,c]}

Then,

core(I) = {A — ¢+, B —>Cs}

CSE Department

Merging sets of LR(1) Items

e If sets of items with the same core are merged, the
parser behaves essentially as before.

However, some redundant reductions might be done
before an error is detected.

e core(goto(I, X)) depends only on core(I), SO goto's
of merged sets may themselves be merged.

e Suppose we take a set Cp of sets of LR(1) items
for a given grammar, and merge those sets of items

that have the same core to get a set (i of sets of
LR(1) items.

LR(1) parse table construction using Ci will not
introduce any new shift/reduce conflicts compared
to Ch.

However, this can introduce new reduce/reduce con-
flicts.

CSE Department

Example of reduce/reduce conflicts due to merging :

Consider the grammar given by

S — aAd | bBd | aBe | bAe
A=3c
B —-—c

CSE Department

S —+aAd | bBd | aBe | bAe
A—c |
B —-—c lucui

d
*S>aA.d,$ I_'l*SéaAd.,$‘

A
B*S%aB.m$I£1*S%aBe”$‘
*S>a.Ad,$
a *S%a.Be,$
///”+ A>.c,d *A>c.d
B>.c,e C *B>c.e No Conflict
*S>.aAd$ => LR(1) Grammar
*S>.bBd,$.
*S>.aBe,$ | -83¢-¢
*S>.bAe,$ S
*S>b.Bd,$

~___ |*s>b.ae8| g d
b A->.ce ——4*39b8.¢$rﬁ*sebsd”$‘

B->.cd

K\Ir\\4*89bA.m$}31*SébAe”$‘

CSE Department

S —+aAd | bBd | aBe | bAe
A=—-—3c
B =

Merge

Contains
reduce-reduce conflict
- not LALR(1)

CSE Department

UCR

SAMPLE PROBLEMS

CSE Department

S2>A
A->aAa]e

Shift-Reduce Conflicts
when input token is a
~a € FOLLOW (A)

*) _—

CSE Department

S2>A

A->aAa]e

*

\ /&;hift-Reduce Conflicts

CSE Department

when input token is a

R

S2>CC ¢ [rs>cc.s !UCR

C>cC|d =*s-c.c ¢
C>.cC,$
cC->. d$ Cl*c>c.c,$
_C/' C>.cC,$
*SQCC,$ *Ced $|‘/ C%d,$ <
C->.cC,cld C -
C->.d,cl/ld
c *C>cC.$ ‘
d *C>c.C,cld| ¢
C%.cC,cld—’*Cecc-,CId‘
C~->.d,c/d
% -

*C>d., c/d ‘

CSE Department

S >A UCR

A>(B)| a
B>OBA|A
v (
A>(.B)|_]
Se,kA' gz'iA B_+»A->(B.))vAé(B).
A ' B>B.A
(|A7 (B A>.(B)
Se.A "A%.a (Aea A'/B%BA.
A->.(B) Al :
A->.a BYA.
d d
a g
A->a.

No Conflicts!

CSE Department

S>E
E>(L)|a
LS>EL|E

CSE Department

S>E
E>(L)|a
LS>EL|E

R

CSE Department

