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Abstract
Runtime monitoring support serves as a foundation for the impor-
tant tasks of providing security, performing debugging, and im-
proving performance of applications. Often runtime monitoring
requires the maintenance of information associated with each of
the application’s original memory location, which is held in cor-
responding shadow memory locations. Unfortunately, existing ro-
bust shadow memory implementations are inefficient. In this paper,
we present a shadow memory implementation that is both efficient
and robust. A combination of architectural support (in the form of
ISA support and augmentations to the cache coherency protocol)
and operating system support (in the form of coupled allocation
of memory pages used by the application and associated shadow
memory pages) is proposed. By coupling the coherency of shadow
memory with the coherency of the main memory, we ensure that
the shadow memory instructions execute atomically with their cor-
responding original memory instructions. Our page allocation pol-
icy enables fast translation of original addresses into correspond-
ing shadow memory addresses; thus allowing implicit addressing
of shadow memory. This approach obviates the need for page table
entries for shadow pages. Our experiments show that the overheads
of runtime monitoring tasks are significantly reduced in compari-
son to previous software implementations.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging – debugging aids, monitors

General Terms Design, Reliability, Performance, Experimenta-
tion

Keywords Shadow Memory, Coupled coherence

1. Introduction
There has been significant research on the online monitoring of run-
ning programs using software techniques for a variety of purposes.
For example, LIFT (Qin et al. 2006) and Taint-Check (Newsome
and Song 2005) are software tools that perform taint analysis to
ensure the execution of a program is not compromised by harm-
ful inputs; Memcheck (Nethercote and Seward 2007a) is a popular
memory checking tool that is widely used to detect memory bugs;
and Eraser (Savage et al. 1997) is a tool for detecting data races.
A common element among these tools is that they make use of
shadow memory (Nethercote and Seward 2007a). With each mem-
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ory location used by the application, a shadow memory location is
associated to store information about that memory location. Orig-
inal instructions in the application that manipulate memory loca-
tions are accompanied by instructions that manipulate correspond-
ing shadow memory locations. For example, in taint analysis, with
every memory location a taint value is associated that indicates
whether that memory location is data dependent on an (tainted)
input. Each original instruction that stores the value of a register
into a memory location is accompanied by an additional store that
moves the taint value of the register into the shadow memory lo-
cation. Similarly each original instruction that loads a value from
a memory location to a register is accompanied by an instruction
that loads the corresponding taint value from shadow memory lo-
cation. Thus, monitoring requires that loads and stores present in an
application be accompanied by shadow memory loads and stores.

Although the need for shadow memory support across variety
of monitoring tasks is well recognized, supporting robust shadow
memory that can be efficiently accessed and manipulated remains
a challenge that has not been successfully addressed. There are two
key issues at the heart of this challenge:

• Shadow Memory Management. An important issue in shadow
memory design, that affects the speed and the robustness of
the shadow memory implementation, is the organization of the
shadow memory in the address space of the application process
(Nethercote and Seward 2007a). A simple half-and-half scheme
(Cheng et al. 2006; Qin et al. 2006) roughly divides the vir-
tual memory into two halves, the original memory and the cor-
responding shadow memory. While this has the advantage of a
fast translation of original addresses into corresponding shadow
memory addresses, its less flexible layout means that it fails for
some programs in linux and is incompatible with operating sys-
tems with restrictive layouts (Nethercote and Seward 2007a).
Moreover, it does not scale when we need to associate more than
one shadow value per memory location. To improve robustness,
Valgrind’s Memcheck tool (Nethercote and Seward 2007a) im-
plements a two-level page table in software. Although, several
optimizations are proposed, the slowdown can still be as high as
22x for SPEC programs, about half of which is due to shadow
memory accesses (Nethercote and Seward 2007a).

• Atomic Updates. For multithreaded programs, it is essential that
original memory instructions (OMIs) and the shadow memory in-
structions (SMIs) accompanying them be carried out atomically
in order to correctly maintain the shadow values. Since OMIs
and SMIs are really separate instructions, maintaining atomicity
incurs an additional cost. Existing software monitoring schemes
(Nethercote and Seward 2007b,a) prevent race conditions that can
lead to incorrect shadow values by ensuring that a thread switch
does not occur in the middle of execution of OMI and its corre-
sponding SMI. Unfortunately, the problem still exists when the
multithreaded program is being run on, the now ubiquitous, mul-
tiprocessors. To overcome this problem of concurrent updates,



existing techniques serialize the execution of threads, which es-
sentially means that a multithreaded program is forced to run on
one processor. Naturally, this is not an efficient way to handle
multithreaded programs.

In this paper, we present architectural support for handling
robust shadow memory on multiprocessors that addresses the above
challenges of efficient shadow memory management and atomic
updates. Our design couples shadow memory management (i.e.,
its allocation, addressing, and coherence) with the management of
original memory in a manner that enables the required goals to be
met. The key elements of the proposed solution are as follows:
• Instruction Set Support. All memory instructions (loads and

stores) are generated such that they explicitly refer to original
memory addresses. However, instruction set support is provided
to identify an OMI and its accompanying instrumentation code
that includes SMIs that must execute atomically. In the case of
a shadow memory instruction, during address translation, the
original memory address is translated into the corresponding
shadow memory address.

• Efficient Address Translation. To enable efficient translation of
original memory addresses into shadow memory addresses we
take the following approach. A page of memory belonging to
the application and the corresponding shadow memory page are
allocated such that they are adjacent to each other – a shadow
page follows the original memory page. Thus, from the address of
a original memory location, the address of corresponding shadow
memory location can be efficiently computed. Furthermore, we
ensure that at any point in time if an original memory page
resides in main memory then the corresponding shadow memory
page also resides in main memory. Thus, while page table entries
are created for original memory pages, no page table entries are
required for the corresponding shadow memory pages.

• Atomic Updates. To enforce atomicity of SMIs with their corre-
sponding OMIs, we explore two approaches. In the locking ap-
proach, we associate locks with various memory regions. The
thread that wants to perform a SMI along with the OMI, grabs
a lock associated with that memory region and releases the lock
after completion. We leverage shadow memory support to effi-
ciently manage the numerous locks. However, this approach suf-
fers from overhead of executing additional instructions (includ-
ing the expensive atomic instructions). To avoid the execution of
additional instructions associated with locking, we also propose a
modified cache coherence protocol which couples the coherence
of shadow values along with original values, to achieve the effect
of atomicity.

Our experiments show that the execution overheads involved in
ensuring atomicity and performing address translation are signifi-
cant for a variety of runtime monitoring tasks (DIFT, Eraser, Mem-
check and MemProfile). Using the architectural support proposed
in this paper, viz. implicit addressing and coupled cache coherency
protocol, enabled us to largely eliminate the above overheads.

This paper is organized as follows. Section 2 describes our
approach in detail including the instruction set support, OS support,
and the actions performed as part of the cache coherence protocol
to guarantee atomicity. In section 3, we evaluate the performance
of shadow memory implementation. Related work and conclusions
are given in sections 4 and 5.

2. Shadow Memory: Design
In this section we describe the design of our shadow memory in de-
tail including the OS support, ISA support and our modified cache
coherence protocol. But first we look at some common monitoring

tasks that use shadow memory, to infer its properties and require-
ments to help us in our design.

Let us consider three popular monitoring tasks that require
maintenance of meta information for each memory location used
by an application:
• DIFT (Qin et al. 2006; Newsome and Song 2005; Cheng et al.

2006) (Dynamic Information Flow Tracking) is used to track
whether contents of memory locations are data dependent upon
insecure inputs. With each memory location a taint bit is associ-
ated, which indicates whether that memory location is data de-
pendent on an input. Consequently, the taint bit has to be manip-
ulated for every memory instruction. For every load (store), the
taint bit corresponding to the loaded (stored) memory location
has to be read (updated).

• Eraser (Savage et al. 1997) is used to track information to enable
data race detection. With every memory word we associate the
status and the lockset. The status tells if the current word is
shared across threads or exclusive to one thread, while the lockset
indicates the set of locks used to access that memory location.
Thus, each memory access, either by a load or a store, must be
accompanied with reading and writing of both status and lock-set.

• Memcheck (Nethercote and Seward 2007a) is used for debug-
ging memory bugs. Every location is associated with two values,
the A bit and the V bits. While the A bit indicates if that partic-
ular memory location is addressable, the V bits indicate whether
the corresponding bits in the memory location have been defined.
The A bit and the V bits have to be read on every load and updated
on every store.

Table. 1 summarizes the needs of each of the above monitoring
tasks. Considering these monitoring tasks we identify the following
important characteristics of the monitoring tasks:
• Association of Atomic Shadow Operations. We observe that

every OMI is associated with SMIs. Moreover, an OMI and its
associated SMIs must be performed atomically. For example,
if during DIFT a value in an original memory location and its
taint bit are read, atomicity must guarantee that the taint bit
corresponds to the value read from the original memory location
and not to some old value that once resided in the memory
location.

• Symmetric vs. General Shadow Operations. Note that the
SMIs in DIFT are symmetric, i.e. for every original load there is
an associated shadow load and for every original store, there is
a shadow store. However, in general, for every original memory
access (load, store), the associated shadow memory may need to
be both read and updated. In fact this is the case for Eraser.

• Single vs. Multiple Shadow Values. The number of distinct
items of information to be associated with a memory location can
vary. While DIFT associates just one value, the taint bit, for every
memory location, Eraser and Memcheck associate two values
per memory location. Thus, in general, capability of associating
multiple shadow values for every memory location is needed.

In the remainder of this section we describe our design of
shadow memory which satisfies the above demands of all the above
monitoring tasks. Our design consists of three components: (i) OS
support for devising a robust shadow memory in which translation
of original memory addresses to shadow memory addresses is quite
simple and thus efficient; (ii) Instruction set support for identifying
memory instructions that must be executed atomically as well as
distinguishing OMI from SMIs; and (iii) Fine grained locking and
the coupled cache coherence protocol that ensures atomic updates
of original memory locations and corresponding shadow memory
locations.



Table 1. Some Uses of Shadow Memory in Monitoring.
Application Shadow Memory For Load Instrumentation Store Instrumentation
DIFT (Qin et al. 2006; Newsome and Song 2005; Cheng et al. 2006) Taintedness bit per byte Access Taint bit Update Taint bit
Eraser (Savage et al. 1997) ‘Lock-Set’ and ‘status’ per word Update ‘status’ and ‘Lock-Set’ Update ’status’ and ‘Lock-Set’
Memcheck (Nethercote and Seward 2007a) ‘A’ bit per byte, ‘V’ bit per bit Update ‘A’ bit, Access ‘V’ bits Update ‘A’ bit and ‘V’ bits

2.1 Shadow Memory: Addressing and OS Support

The process of addressing shadow memory needs to be both ro-
bust and efficient. We simultaneously meet these goals through the
following design:
• Robustness. We use the same virtual address to reference an

original memory location and the corresponding shadow mem-
ory location. During translation to physical addresses, different
physical addresses are produced for the original and SMIs refer-
ring to the same virtual address. In particular, for every original
page there is a corresponding shadow memory page and during
page translation virtual page is translated to different physical
pages – original vs shadow. This approach is robust as unlike the
half-and-half strategy it does not require an application to reserve
a significant part of its virtual address space for shadow memory.

• Efficiency. With OS support, every original memory page and
its corresponding shadow page are allocated physical pages that
are adjacent to each other. In fact, these pages are treated as
a single entity – when the OS decides to swap out an original
page into the disk, it also swaps out the associated shadow page.
Similarly, both original page and its associated shadow page
are swapped in together. Thus after the virtual page has been
translated into a physical page by consulting the TLB, we need
to simply add one to it to obtain the physical page number of the
shadow memory. Thus, the translation process is highly efficient.
A consequence of this scheme is that shadow memory does not
require any additional TLB entries. If there is a requirement for
associating multiple shadow values with each memory location,
the OS allocates multiple shadow pages one for each shadow
value. All shadow pages are allocated adjacent to the original
memory page and by adding an offset of i to the physical page
number of the original memory page, the physical page number
corresponding to the ith shadow value is determined. Fig. 1
summarizes the above translation process. The determination of
the Shadow Value Count which determines which shadow page
is to be accessed will be described in the next section.
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Figure 1. Address Translation

Finally, since an application may not require monitoring, we add
an extra flag to the process descriptor, which indicates whether that
particular process requires shadow memory support; and if so, the
number of shadow pages to be allocated for every original page.
When this flag is set, the OS allocates shadow page(s) along with
every original page that it allocates; otherwise no shadow pages are
allocated.
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Figure 2. Handling Small-sized Shadow Values

Handling Small-sized Shadow values For some monitoring
tasks, each word of original application space does not require
an equal size shadow value. For example, in DIFT each memory
byte is associated with only a shadow bit. Association of a byte
of shadow value with every byte of original application, in this in-
stance, will lead to wastage of memory. In our scheme, we provide
partial support of small-sized shadow values. More specifically we
allow each original word to be associated with half-word and byte
sized shadow values. Fig. 2 illustrates how we handle byte sized
shadow values for every original memory word (4 bytes). The key
idea is to use superpages; In this example we use superpages (Orig-
inal pages 1 through 4 form a superpage) which are four times the
size of the original page, since each shadow value is one-fourth
the size of original value. Since we use superpages two of the bits
(bits x and y) originally part of virtual page, now become a part of
the offset. Along with an original superpage, we allocate a shadow
page (of normal size). The shadow page stores the shadow values
for original values present in the superpage. As illustrated, the first
byte in the shadow page contains the shadow values for the first
word in the original page1 and so on. The address translation for
a shadow access proceeds as follows. As before, an offset (one) is
added to the fetched physical page number from the TLB. The first
two bits of the offset are made zero for the shadow access, since
the shadow page is one-fourth the size of the superpage. To make
it access the correct byte, the last two bits of the offset are set to x
and y respectively.

2.2 Instruction Set Support

We saw in the previous section that the OMI and SMI have the same
virtual address to enable fast translation. Hence, there is a need
to provide a means for distinguishing regular memory instructions
from SMIs. Moreover, since each OMI can be associated with
several SMIs, all of which have to be executed atomically, we need
a mechanism for identify an atomic block of instructions for the
processor.
Explicitly identifying an atomic block. Two new instructions,
shadow-start and shadow-end, are introduced to enclose each
OMI and its following instrumentation code to form an atomic
block. While the shadow-end instruction, does not have any
operands, the shadow-start instruction has an n-bit operand con-
sisting of n shadow write bits, one for each shadow value associated
with the original memory location. If the instrumentation code con-
tains a write to the ith shadow value, then the ith shadow write bit



must be set. The presence of these instructions guides the actions
of the cache coherence protocol to ensure atomicity – these actions
will be discussed in the next section.
Implicitly distinguishing shadow instructions. The OMIs are
implicitly distinguished from SMIs by having the compiler gener-
ate instructions within an atomic block in the following stylized
fashion. The first instruction in the atomic block is the OMI be-
ing instrumented and all other instructions represent the instrumen-
tation code. All memory instructions in the instrumentation code
that access the same virtual address as the OMI are recognized as
shadow instructions. Furthermore, we assume that multiple shadow
reads (writes) correspond to different shadow values – the first read
(write) refers to the shadow value located in the first shadow page,
the second read (write) refers to the shadow value located in the
second shadow page and so on. We are able to do this since each
shadow memory location is read and written once in an atomic
block. Note that it is not necessary to explicitly read (or write)
to the same shadow memory location more than once inside the
atomic block – the shadow memory value can be copied on to the
stack, manipulated and then copied back. Finally, it is worth not-
ing that our design decision for SMIs to follow the OMI is only a
matter of convenience for the ease of explanation; we might as well
have OMI follow the SMIs if the application demands it.

Fig. 3 illustrates the above using the example of Eraser. Here an
original load instruction is instrumented to perform a read and write
each to update each of the shadow values – status and lockset. As
we can see, all load and store instructions in the atomic block refer
to the same virtual address vaddr. When the code is executed, the
reference to vaddr in the first load instruction results in reading of
a value from original memory location. During the execution of the
instrumentation code, in the first and second loads (stores), vaddr
is translated to refer to status and lockset respectively.

load/store
Original

addr

other

shadow−start
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vaddr = addr
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other
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Figure 4. Generating Shadow Value Count for Address Transla-
tion.

Having described the manner in which code in atomic blocks
is organized, we now show how this organization can be used
to generate the Shadow Value Count (SVC) needed for address
translation in Fig. 1. The state machine in Fig. 4 generates the
value of SVC. The state machine is in initial state “Outside Atomic
Block” and when shadow-start is encountered it moves to state
”Inside Atomic Block” initializing SVC to 0. When the OMI (load
or store) is encountered – the virtual address is remembered in
vaddr; counts LoadSVC and StoreSVC are set to 0; and transition
to state ”Inside Instrumentation Code” takes place. In this state
when a shadow load (store) is encountered, LoadSVC (StoreSVC)
is incremented and its value is assigned to SVC for use by address
translation logic. If shadow-end is encountered, transition to initial
state “Outside Atomic Block” occurs.

2.3 Atomic Updates of Shadow Memory

As we have already discussed, in a multithreaded application, an
OMI and its SMI(s) must be performed atomically. To see why, let

Figure 5. Atomic Updates of shadow memory.

us consider the example in Fig. 5. Processor A executes two store
instructions (St1 and St2) and their corresponding shadow store
instructions (SSt1 and SSt2) while Processor B executes a load in-
struction Ld and its corresponding shadow load SLd. We assume
that all these instructions target the same virtual address. As we
can see in Fig. 5a, if no special care is taken, Ld in Processor B
may see the value produced by St1 while SLd may see a value
produced at SSt2. Atomic SMIs will guarantee that Ld and SLd
see either values produced by (St1,SSt1) or (St2,SSt2) as shown
in Fig. 5b. In this section we explore two solutions that guaran-
tees atomicity without compromising on concurrency: a software
solution that implements locking and a hardware solution using a
modified Coupled Coherence protocol.

2.3.1 Locking

In existing software based monitoring schemes (Nethercote and Se-
ward 2007b,a), atomicity is enforced by the serialization of threads
and ensuring that a thread is not descheduled in the middle of exe-
cuting an atomic block. In other words, a thread obtains a coarse-
grained lock which enabled it to execute the OMI and its corre-
sponding SMI(s) atomically. Instead of using one (coarse-grained)
lock for implementing atomicity, we can associate a lock with
different memory regions of the application memory space. Each
thread that wants to execute OMI and its corresponding SMIs atom-
ically, grabs the lock associated with the memory region and re-
leases the lock at the end of the atomic block. Thus, this approach
only serializes original and shadow instructions that operate on the
same region; the size of the region is a trade-off between space and
time. However, the disadvantage of using a locking scheme is that
we need to potentially execute several instructions (including ex-
pensive atomic instructions), to implement locking for every mem-
ory instruction. Furthermore, using a fine-grained locking scheme
requires us to manage the potentially numerous locks associated
with memory regions. Fortunately, we can treat the locks as yet an-
other set of shadow values, and can be efficiently addressed using
our implicit translation scheme.

2.3.2 Coupled Coherence Protocol

To obviate the need to execute additional instructions for locking
and unlocking, we propose a hardware solution that uses a mod-
ified cache coherence protocol to guarantee atomicity. In particu-
lar, to achieve atomicity, the cache coherence protocol we develop
ensures Dependence Mirroring between OMI and SMIs. Depen-
dences exercised among SMIs are made to mirror the dependences
exercised among OMIs. Let M1 and M2 denote a pair of OMIs and
SM1 and SM2 denote their corresponding SMIs. If M2 is depen-
dent (e.g., RAW) upon M1 during an execution, then SM2 must
be similarly dependent upon SM1. If we revisit the example in
Fig. 5b, dependence mirroring must guarantee that Ld and SLd see



Atomic Block Begins shadow-start (11)
Original Load Operation reg1← [vaddr] – vaddr is the virtual address
Instrumentation Code Begins reg2← [vaddr] – load status into reg2

reg2← newstatus(reg2) – compute new status
[vaddr]← reg2 – store updated status
reg2← [vaddr] – load lockset into reg2
reg2← newlockset(reg2) – compute new lockset

Instrumentation Code Ends [vaddr]← reg2 – store updated lockset
Atomic Block Ends shadow-end

Figure 3. Instrumentation Example.

either values produced by (St1,SSt1) or (St2,SSt2). In this sec-
tion we will present our modified coupled cache coherence protocol
that supports the above property. This protocol will be presented in
context of a bus based shared memory multiprocessor where each
processor has a local writeback, write allocate cache that are kept
coherent with an invalidation based coherence protocol. It is worth
noting that while the coupled coherence protocol will be presented
in the above context, it is equally applicable in the context of other
coherence protocols, including the directory based protocol (Patter-
son and Hennessy 1990).

(Coupled Coherence) We enforce dependence mirroring by
coupling the coherency of the shadow memory with the that of orig-
inal memory. The OMIs are made to generate coherence events for
not only themselves but also for all the shadow memory instruc-
tions belonging to the same atomic block. Thus, the shadow store
and load instructions do not trigger explicit coherence actions as
their coherence is achieved by actions triggered by corresponding
original store and load instructions.

Figure 6. Dependence Mirroring for RAW.

To see how coupled coherence works, let us consider the exam-
ple shown in Fig. 6(a). Note that the dashed box shown in the figure
represents an atomic block. As we can see, there is a RAW depen-
dency St → Ld between the OMIs. Let us assume that before the
first store St is executed, each of the processors have shared copies
of both original and shadow memory blocks. In our coupled coher-
ence protocol, the original store St, will trigger invalidates for not
only the original memory block, but also the shadow memory block.
This is because the shadow store SSt is a part of the atomic block
that includes the original store St. Hence, both original memory
block and its corresponding shadow block in processor B will be
invalidated. Consequently, the load Ld from processor B will result
in a cache miss. In our coupled coherence scheme, this will trigger
a read miss for not only the original block, but also the shadow

block. Thus, both the original and the shadow memory blocks are
brought into processor B, when the load Ld is executed. However it
is important to observe that processor A should provide the shadow
block only after the shadow store SSt has finished executing; oth-
erwise it may end up providing a stale value. This ensures that the
shadow block is guaranteed to be in the cache, when the shadow
load S Ld is executed and the RAW dependency between the SMIs,
S St→ SLd is enforced.

Fig. 6 (b) shows a variation of the earlier scenario, where Ld
from processor B is issued before SSt finishes execution. Here
the load Ld from processor B generates a read miss for both the
original and shadow memory blocks as before. However the coher-
ence reply for the shadow block is deferred until the shadow store
SSt has finished executing. This results in load Ld stalling until
SSt is executed in processor A, and in effect serializes the exe-
cution of atomic blocks from the two processors. We implement
deferred coherence replies by associating a ready bit with every
cache block; the ready bit is reset at the time of entering the atomic
block and only set (meaning the block is ready) when exiting the
atomic block. Thus, coupled coherence semantics ensures depen-
dence mirroring for RAW dependencies. Dependence mirroring for
WAW dependencies are satisfied in a similar fashion.

Figure 7. Dependence Mirroring for WAR.

Let us now consider the scenario from Fig. 7(a) to illustrate how
dependency mirroring is achieved for WAR dependencies. Since
the store St1 from processor A executes after the load Ld from pro-
cessor B, the load reads the value from the earlier store St. Thus
there is a WAR dependency Ld → St1 between the OMIs. How-
ever, note that the shadow store SSt1 from processor A executes
before the shadow load SLd from processor B. If conventional co-
herence semantics had been followed, the shadow load SLd would
have read the value written by the shadow store SSt1. However,



with coupled coherence, the shadow value for SLd would have al-
ready been transferred to processor B when the load Ld was exe-
cuted. Thus the shadow load SLd reads the value from the shadow
store SSt and hence the WAR dependency S Ld → SSt1 is en-
forced. Finally, Fig. 7(b) illustrates a similar scenario where the
original load from processor B is also associated with a shadow
store, SSt2. Consequently, the original load Ld2 from processor B,
invalidates the shadow block in processor A. Thus when St1 exe-
cutes in processor A, it results in a cache miss for the shadow block.
The shadow block is later transferred from processor B when it fin-
ishes executing the atomic block. As before, St1 is made to stall
until this time.

Coherence Events for Requests from Processor

1. switch (instruction)
2. case shadow-start(w1, w2...wn)
3. for(i = 1 to n) shadow.writei = wi

4. case original ld/st
5. Access original address in cache
6. if ld and cache-miss Place read-miss for original block
7. else Place write-miss for original block
8. for(i = 1 to n)
9. Access shadow.addri in cache
10. if shadow.writei Place write-miss for ith shadow block
11. if !shadow.writei and cache-miss

12. Place read-miss for ith shadow block
13. end if
14. set ith shadow block not ready

15. end for
16. case shadow ld/st
17. Access shadow address in cache
18. Assert(cache-hit)
19. case shadow-end
20. for(i = 1 to n)
21. set ith shadow block ready

22. end for
23. end switch

Coherence Events for Requests from Bus

24. switch (message)
25. case read-miss (block)
26. if block is in exclusive state
27. set the block to shared state
28. while block is !ready

29. place block on bus
30. end if
31. case write-miss (block)
32. set the block to invalid state
32. if block is in exclusive state
34. set the block to invalid state
35. while block is !ready

36. place block on bus
37. end if
38. end switch

Figure 8. Coherence Algorithm

The coherence semantics is now summarized in Fig. 8. This al-
gorithm first presents the coherence actions taken while handling
requests from the processor. Then the coherence actions for re-
quests from the bus are described. The algorithm makes use of
the ready bit, which is is an additional bit associated with every
cache block, used to implement deferred coherence replies. For the
following discussion let us assume that each shadow memory loca-
tion is associated with n additional shadow locations. Thus, the n

write bits w1, w2...wn associated with the shadow-start instruc-
tion specify whether the corresponding shadow memory location is
written inside the atomic block considered (step 3). Recall that the
first memory instruction following the shadow-start instruction
refers to the OMI (which is associated with other SMIs). Steps 5
through 15 describe the coherence events for OMIs. We first ac-
cess the original address in the cache and place a read or a write
miss depending on whether the OMI is a load or a store (steps 5
through 7). These steps are similar to actions performed for nor-
mal memory instructions. In our modified coherence scheme, we
also access the shadow addresses for each shadow value associated
with the OMI. We place a write-miss for the ith shadow block, if
the ith shadow value is going to be written into. Otherwise, we
place a read miss for the shadow block, if it is unavailable in the
cache (steps 11-13). We then reset the ready bit associated with
the shadow block, to indicate that the block is not yet ready to be
transferred, if there is a request from the bus. Steps 16 through 18
describe the coherence events when a shadow store or load is en-
countered. Shadow accesses are guaranteed to be cache hits in our
scheme, since we already fetched the shadow blocks. Finally, when
we encounter a shadow-end we set the ready bit associated with
the shadow blocks, to indicate that the shadow blocks have been
updated and are ready to be transferred (step 21).

Steps 24 through 38 describe the coherence events for requests
from the bus. In our modified coherence scheme, a cache block
is placed in bus as a response to a coherence request, only when
the ready bit for the block has been set. For example, if a cache
receives a read-miss on the bus, and the block is in exclusive state,
the requested block is placed in the bus, only when it is ready. A
write-miss on the bus is handled similarly.

Finally, we briefly discuss how we can handle events which
can interrupt the processor within an atomic block, i.e., within the
shadow-start and shadow-end instructions. We handle thread
switches, as it was handled in a prior scheme in Valgrind (Nether-
cote and Seward 2007b), in which the thread scheduler is made
aware of SMIs and is forced to switch threads only after the SMIs
for an original instruction is completed. In our scheme, we can ex-
pose the Inside atomic block flag to the scheduler, so that the sched-
uler is aware of atomic blocks and will only switch threads only
when the processor is Outside atomic block. As far as page faults
are concerned, it is worth noting that a SMI cannot cause a page
fault on its own because, the shadow pages and its corresponding
original page is treated as a single entity in our scheme.

3. Experimental Evaluation
In this section, we perform experimental evaluation of our shadow
memory support. But before we discuss our experimental results,
we briefly discuss our implementation.

3.1 Implementation

We implemented our shadow memory support including the OS and
coherence algorithms in the SESC (Renau et al. 2005) simulator,
targeting the MIPS architecture. The simulator is a cycle accurate
multiprocessor simulator which also simulates primary functions of
the OS including memory allocation and TLB handling. To imple-
ment ISA changes, we used unused opcodes of the MIPS instruc-
tion set to implement the shadow-start and shadow-end instruc-
tions. We then modified the decoder of the simulator to decode the
new instructions and identify original and SMIs. We implemented
our address translation support by modifying the OS page alloca-
tion algorithm to allocate additionally the shadow pages along with
the original pages. We also modified the page replacement algo-
rithm to consider the original and shadow pages as a single entity
and replace them together. Finally, we implemented our coherence
algorithms for an invalidate based snooping protocol for a multi-



core architecture with shared L2 cache. The architectural param-
eters for our implementation are presented in Table. 2. We eval-

Table 2. Architectural Parameters
Processor 4 processor, out of order
L1 Cache 64 KB 4 way 1 cycle latency
L2 Cache shared 1024 KB 8 way 9 cycle latency
Memory 4 GB, 500 cycle latency

Coherence Bus based invalidate

uated our shadow memory support with four monitoring/profiling
applications viz. DIFT(Qin et al. 2006), Memcheck(Nethercote and
Seward 2007a), Eraser(Savage et al. 1997) and finally MemPro-
file(Angiolini et al. 2005) , a simple memory profiler that keeps a
count of number of reads and writes to each memory location. This
tool has potential uses in situation where we require memory local-
ity information; for instance to allocate memory words to scratch-
pad memory(Angiolini et al. 2005). We very briefly describe how
we performed the instrumentation for each of the monitoring tasks.
For implementing DIFT, we associated a byte of shadow value for
every original memory word that kept track of the taintedness of
that word. We modified the system calls (that were emulated by the
simulator) to initialize the taint values. Eraser is a tool for iden-
tifying data races. We implemented the first part of the algorithm
which characterizes each memory word as virgin, exclusive, shared
or shared-modified. We did not implement the second part of the
algorithm that then uses this information to maintain the locksets.
With each memory word, we associated two bytes of information:
one byte for maintaining the above four states, and another byte
for maintaining the thread-id of the thread that last accessed that
memory location. We implemented Memcheck-lite, a version of
Memcheck in which the register level V-bits propagation is not
implemented. We implemented a version that has been optimized
for word based memory operations. For implementing MemProfile,
we associated two words of data along with each original memory
word, used for maintaining the number of reads and writes to that
memory word.

We performed instrumentation by modifying the assembler out-
put generated by the gcc-4.1 compiler, utilizing the shadow-start
and shadow-end instructions to enable shadow memory support.
One limitation of using the assembler for performing instrumen-
tation, is that the library files are not instrumented. However, the
performance results are likely to be close to our experimental re-
sults since the SPLASH-2 programs spend relatively lesser time in
the libraries. It is worth noting that our shadow memory support is
equally applicable to other binary translation systems (Luk et al.
2005; Nethercote and Seward 2007b). We only used the help of the
assembler to perform the instrumentation, since we were not aware
of publicly available dynamic translation tools that let us perform
instrumentation for the MIPS architecture. We used the SPLASH-
2 (Woo et al. 1995), a standard multithreaded suite (Table 3.1),
benchmarks for our evaluation. We could not get the program VOL-
REND to compile using the compiler infrastructure that targets the
simulator and hence we omitted VOLREND from our experiments.

3.2 Efficiency of Shadow Memory Support

Recall that shadow memory support has two components: ad-
dress translation and atomicity. Address translation can be either
achieved using a Valgrind style software implemented page table
structure (VAL) or using our hardware assisted implicit addressing
scheme (SM). Atomicity can be achieved using thread serializa-
tion (ser) that is currently used in Valgrind; or with the help of
fine-grained locking (fgl); or using the coupled coherency protocol

Programs LOC Input Description
BARNES 2.0K 8192 Barnes-Hut alg.
FMM 3.2K 256 fast multipole alg.
OCEAN 2.6K 258 × 258 ocean simulation
RADIOSITY 8.2K batch diffuse radiosity alg.
RAYTRACE 6.1K tea ray tracing alg.
WATER-NSQ 1.2K 512 nsquared
WATER-SP 1.6K 512 spatial

Table 3. SPLASH-2 Benchmarks Description.

proposed in this paper (coh). In this experiment, we explore the per-
formance of implementing various monitoring tools with different
ways of achieving address translation and atomicity. The results
of this experiment are presented in Fig. 9, which shows the exe-
cution time overhead of performing 4 different monitoring tasks:
DIFT, Memcheck, Eraser and MemProfile. In each of the graphs
the first bar represents the performance of using Valgrind’s address
translation with thread serialization, VAL:serial. The second bar
represents the performance of using Valgrind’s address translation
with fine-grained locking, VAL:fgl. The third bar represents the per-
formance of using our implicit addressing scheme with fine grained
locking, SM:fgl and finally the last bar represents the performance
of using implicit addressing with coupled coherency protocol for
achieving atomicity, SM:coh.

As we can see, the overhead of performing monitoring using
VAL:ser can be quite high. On an average it slows down the pro-
gram by a factor of 25x for performing DIFT, 45x for Memcheck,
35x for Eraser, and 27x for MemProfile. Using fine-grained locking
VAL:fgl obviates the need for thread serialization and reduces over-
head to a factor of 13x slowdown for DIFT, 20x for Memcheck,
21x for Eraser, 15x for MemProfile. Using implicit addressing of
shadow memory proposed in this paper along with fine-grained-
locking SM:fgl obviates the need for performing address translation
in software and further reduces the overhead to a factor of 9x for
DIFT, 14.4x for Memcheck, 16x for Eraser, 9.5x for MemProfile.
Finally using our coupled coherence protocol SM:coh all but elimi-
nates the cost for performing locking and reduces the overhead to a
factor of 4.3x slowdown for performing DIFT, 9.6x for Memcheck,
8.4x for Memcheck, 5x for MemProfile.

3.3 Break-Up of Overheads

To make more sense of the experimental results observed we break
down the costs of performing monitoring into three categories:
address translation cost, instrumentation cost and atomicity cost.
While address translation cost involves execution of instructions
to compute the shadow memory addresses for the original mem-
ory addresses and then access the shadow memory, instrumenta-
tion cost involves the execution of instructions for performing the
particular monitoring task and atomicity cost refers to the cost of
ensuring that OMIs and its corresponding SMIs are executed atom-
ically. For this section, let us limit our discussion to the results of
MemProfile.

First, let us consider the VAL:ser implementation. As we can
see from Fig. 9, the atomicity costs dominate VAL:ser. This is
not surprising as atomicity is enforced by thread serialization and
since SPLASH-2 programs scale well, serialization almost quadru-
ples the slowdown (we used 4 processors in our simulation). Fine-
grained-locking offers a slightly better alternative compared to se-
rialization as we can infer from the results for VAL:fgl. However,
as we can see, using fine grained locks to implement atomicity ad-
ditionally slows down the program by a factor of 2. This is because
additional instructions (including costly atomic instructions) need
to be executed for implementing locking.
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Figure 9. Monitoring Overhead with various shadow memory implementations.

Next, let us compare the overheads of SM:fgl with VAL:fgl.
Since we use implicit addressing in SM:fgl, the cost of address
translation is all but eliminated. The only cost of address translation
is the small cost of executing the shadow-start and shadow-end

instructions for identifying SMI. However, this cost is negligible
compared to overall instrumentation overhead. Finally, as we can
see in SM:coh, the cost of implementing atomicity is greatly re-
duced. This is because using our coupled coherency protocol, there
is no need to execute additional instructions to perform locking.
However, recall that our coupled coherence protocol automatically
serializes OMI and SMI from two processors, if they race with each
other. As we can see from Fig. 9, the cost for performing this lim-
ited serialization is small across all benchmarks for various moni-
toring tools.

Finally, it is important to note that that the overhead of perform-
ing monitoring using SM:coh is almost equal to the instrumentation
cost that is inherent to each monitoring task. Thus we observe that
the two forms of architectural support added in this work: implicit
addressing support and cache coherence are effective in limiting
the overhead of performing a variety of monitoring and profiling
tasks.

Variation across Monitoring Tasks: We observe that while in-
strumentation costs vary across various monitoring tasks (highest
for Memcheck and lowest for DIFT), the address translation cost
stays almost the same across the various monitoring tasks. It is also
worth noting that the cost of implementing atomicity is slightly
larger for Eraser and MemProfile in comparison with DIFT and
Memcheck. This is because Eraser and MemProfile involve general
SMIs – more specifically, original memory reads in these monitor-
ing tools are accompanied by both reads and writes to correspond-
ing shadow memory values. Thus shared reads in the original ap-
plication, which would have caused read hits will now cause misses
for corresponding accesses, causing additional slowdown.

3.4 Memory System Performance

In this section, we evaluate the memory system performance of
our shadow memory scheme in more detail. In particular, we mea-
sure the overhead introduced by our coupled coherence protocol
for maintaining atomicity and the overhead introduced due to the
handling of additional shadow values.
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Figure 10. Percentage overhead due to coupled coherence imple-
mentation for various monitoring applications

Overhead introduced by Coupled Coherence Protocol: Re-
call that our coupled coherence protocol automatically serializes
OMI and SMI from two processors, if they race with each other.
This serialization, albeit limited, causes additional overhead and in
this section we measure this overhead. As we can see from Fig. 10,
the cost for performing this limited serialization is less than 18%
across all the benchmark, for various monitoring applications. First,
let us observe the trends across different monitoring applications.
We observe that coupled coherency protocol introduces greater



overhead for MemProfile (average 11%) and Eraser (average 10%),
which consists of general SMIs compared to DIFT (average 4.3%)
and Memcheck (average 2.1%), which use symmetric SMIs. This
is due to the fact that we need to additionally enforce dependence
mirroring for RAR in case of general SMIs. MemProfile and DIFT
incur greater overhead for enforcing atomicity as apposed to Eraser
and Memcheck owing to the fact that the latter monitoring applica-
tions are associated with heavier instrumentation, because of which
the relative cost of enforcing atomicity becomes cheaper.

Second, let us observe the variation across different bench-
marks. It is interesting to note that OCEAN and FMM incur high
cost for monitoring applications with general SMI (MemProfile
and Eraser) owing to the relatively larger concurrent shared mem-
ory reads in these applications. Other than this, in general, we ob-
serve that the cost of enforcing atomicity via coupled coherence is
inversely related to the instrumentation costs in each of the bench-
marks.

Overhead due to extra shadow values: Each of the monitoring
applications are required to support additional shadow memory
values, which can potentially slow down the application due to
additional page faults and cache pollution.

First, we attempted to measure the effect of additional page
faults. We found that we could not observe any measurable degra-
dation in performance due to additional page faults. This is because
of the fact that the memory footprint for these applications were
small enough, so that the increased shadow pages could easily be
accommodated in the main memory.
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Figure 11. L1 Miss rates for various applications

Then we measured the effect of the additional shadow values
on the miss rates of the caches. Fig. 11 shows the L1 miss rates
for various monitoring applications. First, we observe that the miss
rates of the original unmonitored run in quite low (around 1%). As
we can see, the miss rate increases marginally to 1.06% for DIFT;
while it increases further to 1.35% for Memcheck; Eraser has a
L1 miss rate of 1.7% and MemProfile has a similar miss rate of
1.8%. Thus, we can observe only marginal increase in the cache
miss rate for various monitoring applications (from 1% to 1.8%)
due to additional shadow values.

4. Related Work
There has been significant research on monitoring a program as the
program executes. Monitoring techniques can be broadly divided
into hardware and software based approaches.

Hardware-based Monitoring Schemes: While hardware based
monitoring (Dalton et al. 2007; Narayanasamy et al. 2006; Venkatara-
mani et al. 2007, 2008; Suh et al. 2004; Xu et al. 2003) tools
are fast, they require specialized hardware support in the form of
wholesale changes to the processor pipeline, memory management

and the caches. For example, hardware based DIFT (Dalton et al.
2007; Suh et al. 2004) requires that loads and stores in the program
also load and store the respective taint values. More importantly,
the hardware changes are specific to the monitoring task, which
means each monitoring task requires a different set of hardware
changes. However, recent work (Chen et al. 2008) proposes a flexi-
ble hardware solution that is applicable over a range of monitoring
applications. The above work can be used in conjunction with the
shadow memory support provided in this work, to further reduce
the instrumentation cost.

Software-based monitoring schemes: On the contrary, soft-
ware based monitoring schemes, use program instrumentation tech-
niques (Luk et al. 2005; Nethercote and Seward 2007b) to instru-
ment the original application with additional code that is able to
perform the monitoring. Unfortunately, the main issue with soft-
ware monitoring has been the speed. For example Dynamic taint
checking (Newsome and Song 2005), which is one of the first
schemes for software based monitoring causes very high overhead,
in the order of 40 fold for SPEC programs. There has been several
efforts (Qin et al. 2006; Cheng et al. 2006; Nethercote and Seward
2007a) to optimize the high overhead of software monitoring. In
this paper, we identify shadow memory as an integral part of all
software based monitoring tasks and provide ISA and OS support
to efficiently support shadow memory. Thus, the support provided
is able to be used efficiently in a variety software based applica-
tions. Another important limitation of software based monitoring
schemes is its inefficiency in dealing with multithreaded programs.
Currently, multithreaded programs have to be serialized to maintain
correctness (Nethercote and Seward 2007b). This is because of the
need to execute the OMIs and the SMIs atomically. In this paper,
we deal with this problem without the serialization of the threads,
by making small changes to the coherence protocol.

Half-and-half memory schemes: Several runtime monitor-
ing approaches that use shadow memory (Cheng et al. 2006; Qin
et al. 2006; Venkataramani et al. 2008, 2007) split virtual address
space apriori so that the translation between original address to
the shadow address can be achieved very efficiently. However, it
was found by (Nethercote and Seward 2007a) that these class of
approaches (known as half-and-half scheme) due its less flexible
layout means that it fails for some programs in linux and is incom-
patible with operating systems with restrictive layouts (Nethercote
and Seward 2007a). Moreover, it does not scale when we need to
associate more than one shadow value per memory location. To
improve robustness, Valgrind’s Memcheck (Nethercote and Seward
2007a) implements a two-level page table in software. In this paper,
we propose simple support to achieve the efficiency of the former,
without sacrificing on the robustness.

TM for atomicity: There has been a recent proposal (Chung
et al. 2008) to use transactional memory support to execute the
SMIs and the OMIs concurrently, but is does not discuss the ef-
ficient addressing of SMIs which is also an important inefficiency
in current software based shadow memory tools. TM support (Her-
lihy and Moss 1993) or hardware atomicity support proposed in
(Neelakantam et al. 2007), if available, could also be used in con-
junction with our efficient addressing scheme to enforce atomicity.
However, our coupled coherence scheme, in comparison with TM,
does not require support for checkpointing (Martı́nez et al. 2002)
or conflict detection since there is no rollback or re-execution.

Other work: The idea of dependence mirroring was proposed
earlier in our preliminary work (Nagarajan and Gupta 2008). How-
ever, we could handle only symmetric SMIs in our prior work.
On the contrary, that limitation is eliminated in the current work
which can handle general SMIs, which enables us to handle mon-
itoring applications such as Memcheck and Eraser. Finally, the ad-
dress translation and OS support proposed in this work is related



to support provided for handling superpages (Talluri and Hill 1994;
Swanson et al. 1998). However, while the above work focuses on
mainly increasing the performance and the reach of the TLB, we
use the extra shadow pages for the purpose of monitoring.

5. Conclusion
In this paper, a combination of architectural support (in form of ISA
support and augmentations to the cache coherency protocol) and
operating system support (in form of coupled allocation of mem-
ory pages used by the application and associated shadow memory
pages) was used, to derive a shadow memory implementation that
is both efficient and robust. By coupling the coherency of shadow
memory with the coherency of the main memory, we ensure that
the SMIs execute atomically with their corresponding OMIs. Our
page allocation policy enables fast translation of original addresses
into corresponding shadow memory addresses; thus allowing im-
plicit addressing of shadow memory.

We implemented our shadow memory support in a cycle accu-
rate multiprocessor simulator (Renau et al. 2005), which also mod-
els OS services. We evaluated our approach with four monitoring
tasks DIFT, Memcheck, Eraser and MemProfile and found that our
shadow memory implementation was able to ensure atomicity of
OMIs and SMIs efficiently. Furthermore, it was also able to signif-
icantly reduce the overhead involved in address translation.

Acknowledgments
This work is supported by NSF grants CNS-0810906, CNS-
0751961, CCF-0753470, and CNS-0751949 to the University of
California, Riverside. We would like to thank the anonymous re-
viewers for providing useful comments to improve the paper.

References
Federico Angiolini, Luca Benini, and Alberto Caprara. An efficient profile-

based algorithm for scratchpad memory partitioning. IEEE Trans. on
CAD of Integrated Circuits and Systems, 24(11):1660–1676, 2005.

Shimin Chen, Michael Kozuch, Theodoros Strigkos, Babak Falsafi,
Phillip B. Gibbons, Todd C. Mowry, Vijaya Ramachandran, Olatunji
Ruwase, Michael Ryan, and Evangelos Vlachos. Flexible hardware ac-
celeration for instruction-grain program monitoring. In ISCA, pages
377–388, 2008.

Winnie Cheng, Qin Zhao, Bei Yu, and Scott Hiroshige. Tainttrace: Efficient
flow tracing with dynamic binary rewriting. ISCC, pages 749–754, 2006.

JaeWoong Chung, Michael Dalton, Hari Kannan, and Christos Kozyrakis.
Thread-safe binary translation using transactional memory. In HPCA,
2008.

Michael Dalton, Hari Kannan, and Christos Kozyrakis. Raksha: a flexible
information flow architecture for software security. In ISCA, pages 482–
493, 2007.

Maurice Herlihy and J. Eliot. B. Moss. Transactional memory: Architec-
tural support for lock-free data structures. In ISCA, 1993.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-
wood. Pin: building customized program analysis tools with dynamic
instrumentation. In PLDI, pages 190–200, 2005.
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