
I E E t IRANSAC710NS O N SOFTWARE ENGINkERING. VOL 16. NO. 1. APRIL IWO 42 I

Region Scheduling: An Approach for Detecting and
Redistributing Parallelism

RAJIV GUPTA A N D MARY LOU SOFFA

Absfruct-In dekeloping compi ler techniques f o r p rog rams targeted
f o r paral le l execution, i t is imperat ive that a p rog ram representation
be ut i l ized that no t onl? facil i tates the detection a n d scheduling o f par-
allelism bu t also easil? enables p rog ram transformat ions that increase
opportuni t ies f o r parallelism. These requirements are the d r i v i n g force
behind region scheduling, a technique applicable t o b o t h tine g ra in a n d
coarse g r a i n parallelism. Th is technique eniplo! s a p rog ram represen-
tat ion that divide% a p rog ram in to regions eonsi\t ing o f source a n d in-
termediate level statements a n d enables the expression o f b o t h data
a n d con t ro l dependencies. Gu ided b j estimates o f the paral le l ism pres-
ent in regions, the region scheduler redistr ibutec code, thus p rov id ing
opportuni t ie$ for paral le l ism in those regions containing insufficient
paral le l ism compared t o the capabil it ies o f the e w c u t i n g architecture.
The p rog ram representation a n d the transformat ions are applicable t o
bo th structured a n d unstructured programs, niahing region whedu l i ng
i iseful fur a wide range o f application\. T h e results o f esperiment5 con-
ducted using the technique in the generation o f code fur a reconfigur-
able long instruct ion w o r d archi tecture are presented. The adbantageh
o f region scheduling over trace scheduling, another technique f o r
t rans fo rm ing and detecting tine g r a i n paral le l ism i n progranis. are dis-
cussed.

Itidex Terms-Code opt imimtions, code scheduling, paral le l isni de-
tection, p rog ram dependence graph, p rog ram transformations. trace
sc hedu I i ng .

I . INTK0I)UCTION

N important compiler component for parallel archi- A tectures is a technique that detects and schedules the
parallelism in a sequential program. possibly by applying
code transformations to etfectively utilize the system re-
sources. This process of detecting and scheduling paral-
lelism is done by examining the code for fine grain oper-
ations (i.e., parallel operations within and among source
statements) and/or coarse grain operations (e.g., vector
operations or loop parallelization), depending on the tar-
get architecture. Coarse grain parallelism is best detected
using the program source code while the detection of fine
grain parallelism usually requires an intermediate levcl
program representation.

One problem in the development of scheduling tech-
niques for both levels of granularity is that of finding suf-

Manuscript recc1Lc.d August I . 19x8: re\ ised A U ~ L I \ I 8. 1989. Recon-
mended b) M Evangelist Th1\ w o r k \\;I\ \upported in pari h> the National
Science Foundation under tirant CCR-XXOI 104 I o the Uni\cr\it! 01 Piti\-
burgh.

R . Gupta I \ M i th Philip\ l i lboratoric\. 345 Scarhorough Road. Bi-iarclill
Manor. N Y 10510.

M. L . Solla i \ ui th the Dep;u-tmcnt 01 Coinputet- Sciencc. Uni\ct-\lt! 0 1
Pitt\hurgh. Pitl\hurFh. PA 15260.

IEEE LO? Nulnhcr XY33747.

ficient parallelism to utilize all of the system resources.
Programs employing coarse grain parallel operations such
as vectors may have a number of scalar operations that
are done serially, thus reducing the overall benefits of
vectorization. Basic blocks, which are straight-line code
segments with a single entry and a single exit. are typi-
cally used in detecting fine grain parallelism and may be
too small to contain sufficient parallelism for the available
processors.

To increase the size of the code considered for fine grain
parallelism, straight line code segments can be combined
into one segment. By doing this. statements possibly re-
quiring different control conditions may be included in the
combined segment. This complicates the scheduling pro-
cess. for not only is more global data flow information
needed but so is information about the contained control
dependencies. Another approach to the above problem is
to intermix the execution of coarse grain parallel opera-
tions with the fine grain operations. assuming architec-
tural support of each type. To do this, some unusable
coarse grain parallelism can be converted to fine grain
parallelism. The execution of operations resulting from
this conversion would then be intermixed with the exe-
cution of sequential operations to achieve a faster overall
schedule.

In this paper, we present a technique called region
scheduling that employs both of the above approaches in
attempting to effectively schedule the parallelism in a pro-
gram. An intermediate program representation is em-
ployed that enables the detection of both coarse grain and
fine grain parallelism in programs. The representation is
an extended form of the Program Dependence Graph
(PDG) [5] , which divides a program into regions contain-
ing statements requiring the same control conditions. Thus
each region consists of one or more straight line code seg-
ments. Guided by the estimates of the parallelism present
in the program regions. the region scheduler repeatedly
transforms the extended PDG, uncovering potential par-
allelism in the process until an estimate of the parallelism
in each region matches the parallel capabilities of the un-
derlying architecture, or no transformations are applica-
ble. The transformations defined for region scheduling can
redistribute fine grain parallelism among regions through
the transfer of code from one region to another and con-
vert coarse grain parallelism to fine grain parallelism.
Thus, excess parallelism from one region can be trans-
ferred to another region with insufficient parallelism. The

0098-5589/90/0400-042 l$Ol .OO O 1990 IEEE

422 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL 16. N O -1. APRIL 1990

representation and the transformations are applicable to
both structured and unstructured programs, thus making
region scheduling useful for a wide range of applications.
The technique is architecture independent and only re-
quires parallelism at a fine uni t of granularity.

A compiler that employs region scheduling consists of
three main phases. During the first phase, the extended
PDG is constructed, which is then used to perform tradi-
tional global optimizations as well as detect vectorizable
and loop invariant computations. Transformations such as
loop interchange. expansion of a scalar to a vector vari-
able and node splitting that make code vectorizable can
be applied 121, [I I] . I n the second phase. the region
scheduler performs transformations on the extended PDG
to increase parallelism. In the final phase, transformations
such as height reduction of data flow dependencies can be
applied, followed by the identification of parallelism and
the generation of machine instructions. All three phases
use only the extended PDG as the program representation.

In subsequent sections, we first present an overview of
the PDG representation and then describe the extensions
for region scheduling. Next the transformations and the
algorithm used to apply the transformations are detailed.
Results of some experiments conducted to evaluate the
performance of region scheduling are presented. The mer-
its of region scheduling and a comparison with trace
scheduling [6], a related and currently used technique, are
discussed.

11. BACKGROUND
Techniques for the detection of both coarse and fine

grain parallel operations have been developed to take ad-
vantage of various parallel architectures. These tech-
niques include the detection of coarse grain parallelism
useful in generation of code for loosely coupled multipro-
cessor systems. Coarse grain parallelism found in sequen-
tial programs is mainly in the form of vectorizable com-
putations. Considerable research attention has been
devoted to the detection of vectorizable loops in Fortran
programs. As an example. Parafrase, a compiler devel-
oped at Illinois for vector machines and multiprocessor
systems. relies on global data dependence information and
transformations of the source code to produce highly par-
allel code [131. In work done by Allen and Kennedy [21,
automatic techniques to carry out loop interchanges re-
sulting in vectorizable code are presented. The PTRAN
project at IBM is also aimed at exploiting coarse grained
parallelism in Fortran programs [3], [1.51. I n each of the
above major research efforts, only coarse grain parallel-
ism was considered, as the target architectures were not
designed for fine grain parallelism.

Research in the detection and utilization of fine grain
parallelism has also received some attention. I n the de-
tection of fine grain parallelism, Sites [161 developed code
reordering algorithms for straight line code to obtain im-
proved performance for the scalar pipelined un i t of the
Cray. Techniques to reorder code in a basic block to ob-
tain improved performance for MIPS. a pipelined re-

d u c ed - i n s t ru c t i o n - s e t p roc e s so r w i t h mu I t i p I e function a I
units, were developed by Hennessy and Gross [I O] . The
major drawback of such work is that the reordering of
code is done on a per basic block basis. The basic blocks
in programs are usually small and hence little parallelism
can be found, with the result that not much improvement
in speed can be obtained.

A technique that has eft'ectively tackled the probletn of
detecting fine grain parallelism across basic blocks is trace
scheduling which uses a control flow graph representation
of a program [I] . 141. 161. The trace scheduler. in an at-
tempt to increase the number of statements and thus the
opportunity for parallel operations. uses the control flow
graph to trace a path consisting of a number of basic
blocks from which to schedule code. I t repeatedly traces
out paths and passes each path to a code generator for
machine code translation. The operations in the trace arc
reordered to generate an efficient schedule of parallel in-
structions. In this scheme. the choice of traces is crucial
to achieving good performance. The traces are chosen
based on compile-time determination of execution fre-
quency estimates of the statements. The underlying as-
sumption of trace scheduling is that the most likely exe-
cution paths through a program can be predicted at com-
pile time, and for this reason, it is oriented towards sci-
entific programs. Trace scheduling is not expected to be
successful for programs whose control structures are not
simple and predictable. Another drawback of trace sched-
uling is that it does not take into account the processing
capability of the system while constructing traces.

Although the control flow graph is the traditional pro-
gram representation used by compilers, a newly devel-
oped representation is the Program Dependence Graph
(PDG), developed by Ferrante. Ottenstein. and Warren
[SI. This program representation expresses both control
and data dependencies and can be utilized for efficiently
performing traditional compiler optimizing transforma-
tions and vectorization transformations. The PDG also
permits the incremental data flow update after each trans-
formation. The PDG is summarized in the next section.
as this representation forms the basis for the representa-
tion used in region scheduling.

111. THE PROGRAM REPRESENTATION

The program representation used in region scheduling
is an extension of the PDG [SI. We first present a brief
overview of the PDG and then discuss the extensions.

A . Pi-og rut ii Dop P I 1 der I CP Grcrpli
The PDG is a graph representation of a program that

expresses both relevant control and data dependencies in
a program. The nodes in the graph are statements and
predicate expressions and the edges represent the depen-
dencies. A statement Si is control dependent upon a pred-
icate P, if the value of P, immediately controls the exe-
cution of s,. The control dependencies are derived from
the control flow graph through control flow analysis. A
data dependence exists between two statements if a vari-

able used in one of the statements will have an incorrect
value if the order in which the two statements are exe-
cuted is reversed [1 I] . Data flow analysis on the control
flow graph is used to compute all the data dependencies
in a program. The PDG representation allows uniform
treatment of data and control dependences which makes
transformations such as vectorization easy to perform. At
the same time. the hierarchical nature of the representa-
tion allows treatment of control and data dependences at
separate levels.

A control dependence subgraph is constructed as part
of the PDG and is useful when performing transforma-
tions that alter the control flow structure of a program. In
order to determine whether a change in the control struc-
ture can be made or not. data dependency information is
needed which is also available through the PDG. Reor-
dering of statement and predicate nodes can only be car-
ried out if no data dependencies are violated. The PDG
supports incremental update of data dependency infor-
mation and thus, supports the incremental application of
optimizations.

In the control dependence subgraph of the PDG, the
statements and predicate expressions are represented as
nodes and the control conditions for their execution as the
edges between the nodes. There are three kinds of nodes
in this graph: statement nodes (S i) , predicate nodes (P ,) ,
and region nodes (R,) . A region node points to a set of
nodes representing parts of a program that require the
same set of control conditions for their execution, and the
edges connecting different regions show the flow of con-
trol. Depending on the level of granularity desired, a
statement node can represent either an intermediate level
statement or a high-level nonconditional statement. Fig.
1 shows the control dependence subgraph for the follow-
ing sequence of statements. Region node R I points to re-
gion R8. which represents loop L , , and predicate P , in-
dicating that L , and PI require the same set of control
conditions for their execution.

L , : for i = 1 to N do X I :
if P I then S , ;

if P, then S,: go to < label >
else if P3 then < label >: S,

else S,
endif

endif
else S2

endif

B. Extensions to [he Progrutn Deperidencr Gruph
(EPDG)

To utilize the PDG for applying transformations to re-
distribute statements and increase parallelism in some re-
gions. a number of extensions are made to the PDG. In
particular the control dependence subgraph (CDG) of the
PDG is extended (EPDG) for use in region scheduling as
follows:

1) The nodes pointed to by a region or predicate node
are ordered. When nodes are to be moved from region R,

Fif . I . Control dependence graph

to R,, the nodes in RI that are closest to R, are considered
first. The ordering of the nodes in each region enables
examination of the nodes in the desired order. The order
also helps in determining the data dependency informa-
tion needed to ascertain whether a statement node can be
moved from one point in the CDG to another. The order
of the nodes corresponds to the order of the statements in
the source program. The leftmost node corresponds to the
part of the program that occurs first and the rightmost
node to the part of the program that occurs last for the
region.

2) To move a subgraph defined by a region node to
another region, we must ascertain that the two subgraphs
do not intersect, and thus we define a “structure prop-
erty” for the nodes. Each node in the graph is marked as
structured if the set of statements represented by the
subgraph rooted at the node is structured. To do this. loop-
back edges must be distinguished from the rest of the
edges in the CDG. A loop-back edge is essentially an edge
in the CDG that represents the flow of control between
successive iterations of a loop [I] . The edge from region
Rg to R8 in Fig. 1 is a loop-back edge. A node is structured
if after removing all loop-back edges in the graph the fol-
lowing conditions hold for each of its child nodes: a) the
child node is structured: and b) the child node has exactly
one edge pointing to i t . For example, in Fig. I node R,
is structured but node R, is unstructured. The structured
property of the nodes is essential to determine the appli-
cability of some code motion transformations described
in Section I V .

3) Loops consisting only of statement nodes are suit-
able for unrolling. Such loops are distinguished from the
rest of the loops by labeling their representative region
nodes by L,.

4) Each region node is marked with an estimate of po-
tential parallelism in the region. This allows the applica-
tion of the transformations until the region has either
enough potential parallelism to utilize the system re-
sources fully or no more transformations can be applied.
An estimate of the amount of parallelism in a region is
used to decide which regions should be transformed. The
parallelism 6, present in a region R, is defined as the ratio

~

424

Fig. 2 . Duplicating a whilc loop prcdicatc

A
Fig. 3 . Coniblning predicate>

O,/D, , where 0; is the number of operations in the region
and D, is the length of the longest data dependency chain
in the region. The length of the tallest path can be found
by examining the data dependences in a region. The value
6, is an estimate that essentially indicates, on an average,
the number of operations that can be performed in parallel
at any given time. The maximum number of operations
that the system can physically perform in parallel, as de-
termined by the architecture, is 6,. The goal of the sched-
uler is to make 6; approach 6, for all regions so that the
system resources are utilized efficiently.

5) The aim of region scheduling is to construct regions
with significant amounts of parallelism. Therefore an at-
tempt is made to construct a CDG which has a small num-
ber of large regions. Fig. 2 shows how the evaluation of
a while loop predicate may be carried out in parallel with
some of the operations preceding and within a loop if the
loop predicate is duplicated. essentially creating a repeat
loop. The transformation shown in Fig. 2 reduces the
number of regions in the CDG by one. Fig. 3 shows how
predicates P I and P2 may be combined to reduce the num-
ber of regions in the CDG. This allows evaluation of the
combined predicates in parallel. Architectural support
should be provided to enable ignoring of traps arising due
to errors in P , in the event P , evaluates to false. Thus, in
constructing the EPDG, while loops are represented as
repeat loops and the predicates are collapsed, as shown in
Fig. 2 and Fig. 3 .

1v. TRANSFORMA.I.IONS A N D UPI1ATk.S TO EPDG
The transformations performed by the region scheduler

modify code that is either a single statement node, an en-

IEEE TRANSACTIONS OK SOFTWARE kNGINEERIWG. VOL. 16. N O 1. A P R I L I Y Y O

tire subgraph rooted at a region node. or a predicate node.
Data flow information is provided in the EPDG to check
that the transformations are legal before being applied.
Various transformations described in this paper rearrange
the order in which the statement nodes appear. Reordering
of statement and predicate nodes can only be carried out
if no data dependencies are violated. The incremental up-
date of the information after a transformation has been
applied is also done [5] , [141. The three basic kinds of
transformations applied by the region scheduler are loop
transformations, region copying and collapsing transfor-
mations and fonvardlbackward code motion transforma-
tions. The loop transformations include loop unrolling and
invariant code motion. The region copying and collapsing
transformations create larger regions by merging two re-
gions, each with insufficient parallelism. The forward/
backward code motion transformations move code from
one region to a lower/higher region in the graph with in-
sufficient parallelism. Application of some of these trans-
formations to parts of the EPDG requires updating of other
parts of the EPDG to maintain the semantics of the pro-
gram. The updating involves the copying of code to other
regions so that the code is executed under exactly the same
conditions as it was before a transformation was applied.
First the transformations are discussed in detail and then
the updating procedures are described. The order of ap-
plying the transformations is given in Section V.

A . Loop Trunsforrnntioris
The two loop related transformations performed are

loop unrolling and invariant code motion. Both transfor-
mations increase the parallelism in region R, by adding
code to i t .

T ” ~ ~ , , , , Unrolls I N iterations of the loop in region L, and
puts them in region RI, the immediate parent
of Li (i . e . , R;, Ly -+ Ri + L y , Lyp’”) [see Fig.
4(a)]. This results in an increase of parallel-
ism in region RI. Loop unrolling is also used
to increase the parallelism within the loop
body L, (i.e.. L, -+ (L , + L l + l) ” ~ ’) .

Moves a loop invariant computation S2 in region
R, to region R, outside the loop (i . e . . R, -+ R I)
[see Fig. 4(b)]. This transformation may re-
quire updating of the EPDG which is de-
scribed later in this section.

T,,,,:,,

Forward and backward code motion transformation
move code either up the graph or down the graph to in-
crease the parallelism present in some region RI . These
transformations are always applicable to structured nodes.
data dependencies permitting. To move a subgraph rooted
at an unstructured node requires analysis to first determine
if the unstructured node and the region node R, have com-
mon descendants. The movement of such a node would
then require additional analysis to ascertain the necessary
modifications of the control dependence graph if common

425 G l l P I A A N I) S O F F A REGIOK SCHI-IILII.ING

descendants did exist. Thus, if there are no common de-
scendants, the unstructured node can be moved; other-
wise, the node is not moved. For example, in Fig. I , the
unstructured subgraph rooted at P, will not be moved from
region R5 to region R?.

Moves code forward or backward to region Ri
from an adjacent region Rj (i .e . , R, + R i) .
There are two forward (T;~,,,, 7 k,,,) [see Fig.
5(a)-(i), S(a)-(ii)] and two backward
(T:",,,, [see Fig. 5(b)-(i), 5(b)-(ii)l
move transformations. The transformations
7kove and T",',,, are applied when the regions
Rj and RI are connected directly by an edge.
The transformations T:,,,, and T:,"~ are ap-
plied when the regions are connected through
a predicate node Pi. These transformations are
applied if they either increase the parallelism
in both the regions or if they transfer excess
parallelism in one region to another region
with insufficient parallelism.

When the forward transformation T.:~),, in Fig. 5(a)-(i)
is applied, the code moved from R, to RI will be executed
even when the control to Ri does not come through R;.
Similarly when transformation T:~,, in Fig. 5(b)-(ii) is ap-
plied, the code being moved from R, to R, is executed
irrespective of whether the predicate PI evaluates to true
or false. However, this will not reduce the execution speed
of the program as in either case the transformation is ap-
plied only when Ri has insufficient parallelism and hence
some processors in the system are idle during the execu-
tion of Ri. The forward transformation 7f2move in Fig. 5(a)-
(ii) and backward transformation 7:o\.e in Fig. 5(b)-(i) re-
quire further updating of the graph which is described at
the end of this section.

7,,,,

C. Region Copving and Collapsing
Region copying and collapsing transformations take a

region R, with insufficient parallelism and either copy its
code into each of its parent regions and thus eliminate the
region or merge it with another region. These transfor-
mations eliminate the need for a branch instruction, in-
creasing the speed of the operation if processors are pipe-
lined.

Creates a copy of all the nodes in the structured
subgraph rooted at region node Ri in each of

T , , ~ ~

(li) Cove
(1) ~kvc

(b)

Fig. 5. Transformation r,,,,,,,: (R , + R ,) . (a) Forward code n io t ion . (h)
Backward code motion.

its parent nodes. This is achieved by applying
the following transformations:

1) If a parent of RI is a region node (R ,) then
R, is made the parent of copies of all the nodes
in region RI [see Fig. 6(a)l.

2) If a parent of RI is a predicate node (P I)
then a copy of the subgraph rooted at RI is made
and P, is made the parent of this new subgraph
[see Fig. 6(b)].

These transformations make the program more struc-
tured by eliminating unconditional branches. Applying the
above transformations may create redundant region nodes
which are removed by another transformation.

7Lerge Merges Ph, R, with RI , where Ph is the only par-
ent of RI and R,, to form statement node s,
(i .e . , RI , Ph, R, + S,) (see Fig. 7). After
7Lerge has been applied, the operations in PL,
RI , and R, are treated as a single unit for the
purpose of applying further transformations.
The predicate and the two regions are exe-
cuted in parallel and depending upon the value
of the predicate, the result from executing one
of the regions is discarded. This transforma-
tion can only be used if the architecture al-
lows discarding of values; otherwise, the con-
ditional branch instruction cannot be deleted
and this transformation is not applicable.

7kerge Merges region RI with region R, forming a sin-
gle region RL (i . e . , R I , R, + R,) (see Fig. 8) .
This transformation deletes redundant region
nodes that may be created due to the appli-
cation of other transformations.

426 IEEF. TRANSACTIONS O N SOFTWARE ENGINEERING. VOL 16. N O 1 APRIL IYYO

(a) (b)

Fig. 6. Transformation rL,tl,\.

Fig. 7. Transformation T,:,,,,,: (R,. P , . R, - S,).

A
Fig. 8. Transformation T:,,,,,. i R,. R, - R,)

n

(b)
Fig. 9. Updating the EPDG.

D. Updates Due to Transformations
The application of certain transformations require up-

dating of the EPDG to ensure preservation of program
semantics. This situation occurs when relocated code
would not be executed under conditions that it should be
executed. When code is moved from region R I , to region

have to be created for each of the parents of R t r other than
R,,,, as shown in Fig. 9(a). When transformations ~ (2 , , , \ ~ is
applied, a copy of the moved code has to be made as
shown in Fig. 9(b). Applying transformation T , , , ~) and the
above updates may cause redundant region nodes to be

R,,, using transformations T , ~ ~ ~ ~ or T,,,,,, 11 I copies of the code

created in the graph. These are,eliminated by subse-
quently applying transformation T ; ~ " ~ , , ~ .

v. ALGORITHM FOR APPLYING 'THE TRANSFORMATIONS
The transformations described can be applied repeat-

edly to the EPDG to increase the parallelism present in
regions. The repeated application is required because ap-
plication of one transformation may enable application of
others in subsequent steps. In order to find all of the par-
allelism in a program that the above transformations can
uncover, the transformations can be repeatedly applied as
long as they continue to increase the parallelism in the
regions. However, in practice the system on which the
program is to be executed will have a finite amount of
resources, thus limiting the amount of parallelism that can
be exploited. For this reason an algorithm which applies
the transformations until regions have sufficient parallel-
ism for the architecture under consideration is developed.

The algorithm in Fig. I O summarizes the manner in
which the transformations are applied by the region
scheduler. In this algorithm. transformations are applied
as long as regions with insufficient parallelism exist. Thus
instead of unrolling a loop a fixed, predetermined number
of times, as is done in traditional compilers. it is unrolled
only if more parallelism is needed in a region. I n ordering
the transformations, those transformations that only con-
sider adjacent region nodes, and thus need only a local
view of the graph. are first performed. Next, transfor-
mations requiring a global view of the graph are applied,
during which if a region node (R I) with insufficient par-
allelism is connected along a path to a region node (R ,)
with excess parallelism, transformation T ~ , ~ , , , ~ is applied
repeatedly to move excess parallelism from R, to R I . If
region Rk does not contain excess parallelism then excess
parallelism is created by applying one of the transforma-
tions T,,,,,~~, T,,,,,, T ~ , , ~ ~ , or locally. The path chosen
is the smallest one for which the global transformation
can be applied. In a structured program each region node
has at most one parent and in an unstructured program.
application of transformation T ? , , ~) reduces the number of
parents of a region node with insufficient parallelism to
one whenever possible. For example, in Fig. 6(a) after
the application of T ~ , , ~ ? . region RI has a single parent. This
limits the number of paths along which transformation
T,,,, can be applied to one in most cases.

The transformations are first performed locally and then
globally because more overhead is involved in applying
global transformations. The order in which the transfor-
mations are applied has been chosen based on their eRec-
tiveness and overhead. T ~ ~ ~ , , ~ ~ and T,,,,,, are applied before
T,,,,,,,~ because they are less expensive to perform. The
transformation T ~ , , ~) is applied next because, although ef-
fective in increasing parallelism and reducing branches,
it causes more duplication of code than T ~ , ~ , ~ , ~ . Transfor-
mation is applied last as it only reduces the number
of branch instructions in a program.

Fig. 1 1 shows how the control dependence subgraph of
Fig. 1 [1 l(a)] can be modified after the transformations

G U P I A AND SOFFA R F G l O h S C H F D U L l h b 417

Local Transformauon Phase
[
Compute 6, for all R,
Imp I

Construct list S I R , 6,-6,>~]
for all R, C S

apply LmuKJ-?* R,+L'",L~'")

else apply K ~ ~ J R , ~ RJ d rm,.(RL4 R,) has not been applied before

else apply T&JR,,P,.R,+S~ d 61+S,56.
update the EPDG if needed and apply

el= apply 7mv.rW,4R,)

else apply rwpvR)

to any applicable nodes
] until S=$V lransformauons cannot be applied

I

Global Transformation Phase
I
Compute for all R,
Imp I

Consmcr list S=(R,:6,-6,Z)
for all R, tS

if 3 a path R,R,+, R, st
&>S, V is made so by applying T,&. K,,,, Tmpy or K&

then apply the series of transfornations
K,,,~AR~+ R k - i) ~ ~ m v e R . i - + R ~ - , ,) A L,&+ I-&)

update the E P M ~ if needed and apply K&* to any applicable nodes
] until S=$ V transformations cannot be applied
I

Fig. I O . Rcgion acheduler

(e) (f)

Fig. I I . Applying transtortnationa.

have been applied. Assuming that R6 has insufficient par-
allelism, transformation T,, ,~) (R h) is first applied and then
7!,erge(Rb, P 3 , R 7) creating node S, during the local trans-
formation phase [see Fig. 1 I(b) and (c)]. Then assuming
R4 has insufficient parallelism during the global transfor-
mation phase. the series of transformations 7unr,,ll (R I . L:'
+ RI + Ly , Ly-" ') , 7 ",,,,,(RI + R 2) and T ,,,,,, c (R 2 + R,)
are applied [see Fig. 1 I(d), (e), and (f)] . In this series of
transformations, the excess parallelism in R I created by
unrolling the loop Ll is transformed to I?, through R?. It
should be noted that the portion of code moved by trans-
formations T,,,,,,? (R I + R 2) and 7 ,,,,,\ I' (R7 -+ R,) is not the
same. SI can only be moved to R, after excess parallelism

is created in R, through loop unrolling and code motion
from R I to R 7 . The resulting EPDG has five regions as
opposed to seven in the untransformed graph. Moreover
the regions in the transformed graph are much larger than
the ones in the original graph and thus are likely to con-
tain more parallelism. The code resulting from the trans-
formations is as follows:

L l l : x,: x2; * . . xy 2 :

if PI then LI2: X , v ~ 2

else SI; S,:

,; * . * X,v;
if P, then S , ; Sj; S,;

endif

S2 :
else L12: X N ! ? + ,: . * . X,,):

endif

After the control dependence subgraph has been trans-
formed and parallelism redistributed, data dependence
subgraphs for the individual regions are constructed. by
performing data flow analysis. The data dependence
subgraphs are linked by the data flow information. The
code generator can now schedule the code in the individ-
ual regions. Traditional optimizations such as common
subexpression elimination, constant folding. copy propa-
gation, and induction variable simplification and forward
substitution may be performed on the regions. Tree height
reduction [121 techniques can be applied to increase the
parallelism in the data dependence subgraphs before code
generation.

VI. EXPERIMENTAL RESULTS
The local transformation phase of region scheduling was

implemented on a VAX 11/780 as part of a prototype
compiler for a reconfigurable long instruction word
(RLIW) architecture [8], 191, which supports fine grain
parallelism. The long instruction word enables simulta-
neous initiation of a set number of fine grain operations.
The prototype compiler was used to perform experiments
in order to gain some insight into the effectiveness of re-
gion scheduling. In these experiments. 6, was set to eight
to represent eight simultaneous operations. First, the im-
provement in performance due to detection of parallelism
using individual regions instead of individual basic blocks
was evaluated. Next, in order to study the merits of the
transformations performed by the region scheduler, the
speedups obtained by using transformed program depen-
dence graphs were compared to the speedups obtained by
using untransformed graphs. The speedups were com-
puted by taking the ratio of the time spent on executing
the sequential code on a pipelined machine and the time
spent on executing the parallel code on the RLIW ma-
chine. The results of the experiments are presented in Ta-
ble I. The first set of results (basic blocks) indicates the
speedup obtained due to the parallelism detected only in
individual basic blocks. The second set of results (un-
transformed regions) indicates the speedup obtained due
to the parallelism detected in regions to which no trans-
formations were applied by the region scheduler. The third

IEEE TRANSACTIONS ON SOFTWARE ENGIKEERING. VOL Ih. NO. -1. A P R I L I Y Y O

FFT
SORT

COLOR

1 . 3 1 1 1.54 2.52
1.85 I 2.44 2.44
1.16 I 1.64 1.64

set of results (transformed regions) indicates the speedup
obtained due to the parallelism detected in regions to
which transformations were applied by the region sched-
uler. In these experiments, no optimizations or transfor-
mations other than the transformations performed by the
region scheduler were performed on the EPDG.

From the results i t can be seen that the speedup ob-
tained due to the parallelism detected in basic blocks is
lower than that obtained due to parallelism detected in
regions. The fact that a region is at least as large in size
as a basic block accounts for this increase in parallelism
for regions. Furthermore the results indicate that the ap-
plication of transformations by the region scheduler
caused a significant increase in the overall speedup
achieved. For the programs TAYLOR1 . TAYLOR2. EX-
ACT, and FFT the parallelism detected by the region
scheduler is limited by the size of the machine and the
input to the program. Thus further improvement in per-
formance can be obtained. No additional improvement in
performance was obtained due to region scheduling for
programs SORT and COLOR, for no regions in these pro-
grams had excess parallelism. and it was not possible to
create excess parallelism by applying loop unrolling.

VII. COMPARISON OF TRACE A N D REGION SCHEDULING
Region scheduling has a number of advantages over

trace scheduling, a technique currently being used in a
compiler to process fine grain parallelism for a long word
instruction machine 171. Trace scheduling uses the control
flow graph representation of a program. It starts with in-
nermost loop-free code and based upon predictions for the
branch selections, chooses a path of basic blocks, called
a trace, with the highest probability of execution. A single
data dependence graph is constructed for the entire trace.
Special edges are added to this graph to prevent the sched-
uler from performing illegal code motions across basic
blocks. Next the scheduler treats this graph as a single
basic block and generates a parallel instruction schedule.
After scheduling the parallel code, the code motions
across the jumps in the trace are examined, and compen-
sation code is added at the entries and exits of the trace
to preserve the semantics of the program. This is similar
to updates involving copying of code when certain trans-
formations are performed during region scheduling. The
above process is repeated by selecting the next most likely
trace until the entire program has been processed. I n trace
scheduling, the generation of traces and code generation
are done together. In other words, construction of a new

trace does not start until code has been generated for the
trace last constructed. Through its ability to reorder code
across .jumps. trace scheduling allows detection o f paral-
lelism across basic blocks.

One of the advantages of region scheduling is that is
uses a common program structure for traditional optimi-
zations, parallelization. and scheduling. Many optiniiza-
tions can be performed more efficiently than if a control
flow graph, inherent in trace scheduling. is used IS]. The
transformations for increasing parallelism in structured
programs [1 J and traditional optimizations can be applied
to the EPDG. In addition. the transformations described
in the last section. valid for both structured and unstruc-
tured programs. can be applied.

The transformations performed by the region scheduler
are not heuristical in nature and thus, unlike trace sched-
uling, the performance of region scheduling does not vary
with the structure of the input program. Both region and
trace scheduling use reordering of code to generate a
schedule of instructions that enables parallel execution.
In trace scheduling, transformations are applied based on
the statistical predication of execution frequency. In re-
gion scheduling, transformations are driven by the detec-
tion of parallel opportunities. A region scheduler can ex-
ploit at least as much parallelism present in the program
as the trace scheduler, for any reordering that can be per-
formed by a trace scheduler can be performed by a region
scheduler. The transformations performed by the trace
scheduler on the control flow graph enable it to move
statement nodes across joins and splits in the control flow
graph. The region scheduler can perform the same trans-
formations through fonvardlbackward code motion. In
addition, the region scheduler is capable of moving entire
subgraphs, for example, an if-statement. from one region
to another. The region scheduler can apply more trans-
formations, namely the loop transformations and region
collapsing and merging transformations, thus enabling the
detection of more parallelism.

Consider Figs. 12(a)-(c), which display transforma-
tions performed by the trace scheduler and the equivalent
transformations as performed by the region scheduler
using the EPDG. Figs. 12(a) and (b) show how the trace
scheduler achieves reordering of operations B and C. In
Fig. 12(a) it does so by moving operation C above a join
in the control flow graph and in Fig. 12(b) by moving
operation C past a conditional split. The region scheduler
achieves the same effect by applying 7{&,,e(Rl -+ R 2) and
including B and C in the same region, R2. The trace
scheduler can also move operations above joins involving
unconditional branches. The region scheduler can achieve
the same effect using the transformation 7.i:,0ve. The code
motion in Fig. 12(c) shows how the two schedul-
ers achieve reordering of operation P A and C. The re-
gion scheduler in this case applies transformation
7 i (R ? + R I) .

The transformation in Fig. 12(c) is applied by the trace
scheduler when the probability of the predicate A being
true is higher than that of i t being false. This causes the

mace scheduling region scheduling
(a)

trace scheduling region scheduling
(h)

vace scheduling region scheduling

(C)

Fig. I ? . Trace hcheduling \ersuh region scheduling

trace scheduler to perform poorly if the probability of
conditionals being true or false is equal, because trace
scheduling generates a faster schedule for the trace more
likely to be executed at the expense of the other. I n region
scheduling this drawback is avoided because the transfor-
mations are directed towards increasing the parallelism in
the regions that do not have enough at the expense of the
regions that contain excess parallelism. The transforma-
tion in Fig. 12(c) is only applied by the region scheduler
when region R I has insufficient parallelism to utilize the
system resources.

In trace scheduling the generation of traces and code
generation are done together while in region scheduling
the code generation is done after all the transformations
have been performed on the regions. A disadvantage of
the approach taken by the trace scheduler is that it does
not take into account the system’s processing capability
when constructing traces. Thus some traces chosen by a
trace scheduler may have more parallelism than the sys-
tem can exploit while others may not have enough. Better
code would be generated if the traces were modified so
that the excess parallelism of one trace is distributed
among the traces that do not have enough parallelism. An-
other disadvantage of constructing traces and generating
code together is that the trace scheduler might duplicate
code without actually utilizing the parallelism that the du-
plication might create. The example in Fig. 13 demon-
strates this. Trace Ti. which is created by duplicating F.
is treated as a separate trace instead of being merged with
T I . This happens because TI was the first trace to be cho-
sen and the code for it had been generated before Ti was
created. It is likely that better code would be generated if
traces T , and T, are merged.

Fig. 13. Duplication u i t h o u t utiliring parallcli\in

Sometimes in trace scheduling the trace prematurely
stops growing. thus reducing the opportunities for the de-
tection of parallelism [4]. This happens because the trace
scheduler constructs traces based on the probabilities of
execution of statements. This problem does not exist in a
region scheduler. for regions are not constructed by any
heuristic but are defined by the control structure of the
program. In the example (41 in Fig. 14. trace TI consists
of only A , PI and P 2 , although it could have been longer.
This situation arises when the execution estimate of
branch from P2 to P, is less than the execution estimate
of branch from P2 to F and the most likely path leading
to F is through P,. However in the EPDG for the same
piece of code, region R I consists of A , P I . P,. Pi. and G
and hence parallelism among them can be utilized.

To exploit the parallelism present among the statements
before and after a loop, it should be possible to include
these statements in the same trace. Thus a trace must be
able to extend across loop boundaries. As described by
Fisher [6] this requires additional analysis to determine
the order in which the loops should be processed. In re-
gion scheduling this is not needed as the statements before
and after the loop are already in the same region. The
example in Fig. 15 demonstrates this. Statements A and
C are in the same region R I and thus the region scheduler
is able to exploit the parallelism between them. This is
not done in trace scheduling because A and C are not in-
cluded in the same trace.

Both region scheduling and trace scheduling may in-
crease the size of the program exponentially. However.
in the worst case region scheduling does not increase the
size of the code as much as trace scheduling and, impor-
tantly, maintains control over whether or not to duplicate
code. In both scheduling schemes, code is duplicated
when operations are moved across branches and the worst
case arises when the following sequence of if-statements
occurs:

if P I then A , else B ,
if P2 then A2 else B?
if P,, then A,, else B,,

In trace scheduling. code explosion may increase the
code size to O (n ”) . where I? is the number of if-state-
ments [4]. However, region scheduling, in the worst case.

p2 b PI

mce schcdulmg

b e ,
rcgion schcduling

Fig. 11 Premature teriiiin:ition of :I tr:ice

uacc schcduling rcgion schcduling

Fig. I S . Pnrallelisni ac rov loops

will increase the code size to O (n 2 ") as shown in Fig.
16. Code duplication can be easily avoided in region
scheduling as the extent of duplication that will occur due
to a transformation is known before it is applied. unlike
trace scheduling where it is known only after a schedule
for a trace has been generated. Thus, in region scheduling
duplication of code can be controlled by avoiding dupli-
cation in parts of the program that are less likely to be
executed.

When duplication of code is performed. redundant cop-
ies of code may be created. A redundant copy of code is
one which if deleted does not affect the results of execu-
tion of a program. This will make the generated code less
than optimal. When the trace scheduler moves code across
both a join and a split, redundant code is generated. In
the example in Fig. 17. the trace scheduler in the process
of reordering P A and D creates a redundant copy of D . On
the other hand the region scheduler does not need to du-
plicate code to reorder f,, and D as they are already in the
same region. Thus, the region scheduler will not generate
redundant code when a statement node is moved across
both a join and a split. For structured programs, no re-
dundant code is ever generated by the region scheduler
during the local transformation phase.

Lastly, the application of some transformations in re-
gion scheduling reduces the number of branches present
in the program. This results in the improvement in the
performance of pipelined machines.

IFEE TRAKSACTIONS O N SOP-IWARI- ENGINFERING. VOL Ih. NO 1. APRII. 1990

(11)

Fis. 16. Code duplication

Trace Scheduling

Region Scheduling

Fig. 17. Redundant code

VIII. CONCLUSION
A technique for detecting and redistributing fine grain

parallelism is presented in this paper. The technique uses
an extension of the PDG and thus inherits the advantages
of using this representation. such as the use of a common
structure for efficiently applying both traditional optirni-
zations and vectorizing transformations and incrementally
updating data dependency information.

The extension permits the use of the same representa-
tion in also detecting and redistributing fine grain paral-
lelism and code generation. The redistribution is driven
by an estimate of the parallelism in each region. The use
of an intermediate representation of a program makes i t
applicable to programs written in a wide range of lan-
guages. and both structured and unstructured programs

.-

43 I

can be represented. In addition. it is architecture indepen-
dent in that any architecture that has fine grain parallel
capabilities can use the technique.

Experiments performed demonstrate the effectiveness
of the transformations. Although region scheduling em-
ploys the EPDG which is more expensive to construct than
a control flow graph, its advantages, especially its appli-
cability to a wide range of programs and increased power,
make it an attractive alternative to trace scheduling. Al-
though the use of the EPDG in this work has been ori-
ented to the detection and distribution of fine grain par-
allelism, future work will consider the use of the EPDG
for detection of coarse grain units for multiprocessing.

ACKNOWLEDGMENT
We are grateful to J . Ferrante and K. Ottenstein for their

comments and suggestions on this work. We also thank
the referees for their suggestions in improving this paper.

REFERENCES
[I] A. V. Aho. R. Sethi. and J . D. Ullnian. Corupi/cr.\: Priricip/c$. T d -

r i i q i t e s . trritl Too/.\.
121 J . Allen and K . Kennedy. "Automatic loop interchange." in Proc,.

S lGPLAN Syrup. Corripi/cr Cori.trrrrc.tiori. vol. 19. n o . 6. 1984. pp.
233-246.

131 M. Burke. R. Cytron. J . Ferrante. W . Hsieh. V. Sarkar. and D.
Shields. "Automatic discovery of parallelism: A tool and a n experi-
ment." in PI-oc.. ACMISICPLAN S w i p Ptrrci//c(Pr [~ ,gr - [i i f i f~ i i i i ,q~ E t -
prrirrrc.c, nYfh Applicu/iorl.s. Ltr~r~giurgc.\ (i t i d S\.s/c>rji.\. July. 1988. pp.
77-84.

[4] J . R. Ellis. Birlldog: A Conipilrr ,fiw VLlW Ar(~ / i i /cc . r i r re . Cam-
bridge. MA: MIT Press. 1986.

151 J . Ferrante. K . Ottenstein. and J . Warren. "The prograiii dependence
graph and its use in optimization." ACM Trtrm. Progrmi. L m g . Sytr..
vol. 9. n o . 3. pp. 319-349. J u l y 1987.

161 J . A. Fisher. "Trace scheduling: A technique for global microcode
compaction." / € € E Trcrris. Corriprrr.. vol. C-30. pp. 478-490. J u l y
1981.

171 -, "VLIW architectures: Superconiputing via overlapped execu-
tion." in /'roc.. S r c . o f i c / Couf: Sir /~ [, r""rr i /~ i i / i~ i~g . vol. 1. May 1987.
pp. 353-361.

181 R. Gupta. "A reconfigurable LIW architecture and its compiler."
Ph.D. dissertation. Dep. Comput. Sci.. U n i \ . Pittsburyh. Tech. Rep.
87-3. Aug. 1987.

191 R . Gupta and M . L . SofYa. "A recontigurable LIW architecture." i n
Pr-oc. /U/. Cor?/ Ptrrerllcl f r o c w s i r i , g . Aug. 1987. pp. 893-900.

Reading. MA: Addison-Wesley. 1986.

I IO] J . Hcnnc\sy and T . Gros\. '.Po\tpas\ code optimiiation (11. pipeline
con\traint\." A C M Trom. Pro,prorti. Lciriq, Sv.\r.. \ o l . 3 . n o . S. pp.
472-448. 1983.

[I I] D. J . K u c k . R . H . K u h n . D. A . Padua. B . Lcasurc. and M . WoIIc.
"Dependence graph\ and compiler optimiLation\." ii) f r w . N f h A r i r i i i .

218.
D. J . K u c k . T/iC S/ritc'/irrc,
New Yorh: Wile). 1978.

113) D A . Padua. D. J . Kuch. and D. Lawrie. "High-speed multiproccs-
s o n and coinpilation techniques." lEEE Tmri.\. Cow/~ir/ . . vol. C-29.
n o . 9 . pp. 763-776. 1980.

I IJ] L. L . Polloch and M . L. SoHa. "A incremental vcrsion of iterative
data Row analysis." lEEE T r ~ i m . Soj/ii.trrc, Er ig . . vol. IS. n o . 12.
Dec 1989.

[I S] V. Sarkar and J . Hennessy. "Compile tinie partitioning and sched-
uling of parallel programs." in Pro(. . Svuip. Corripi/cr Com/rir<,/iori.

[161 R. Sites. "Instruction ordering for thc Cray-l computer." Dep.
EECS. U n i v . California at San Diego. Tech. Rep. CS-073. July 1978.

A C M .Y\r?l/J. Prirrc~lple o / f r ~ > , g r ~ l f ~ ~ f l f ; r f , g Ltrrr,qrrti,gc,.\. I98 I . pp. 207-

[I ?] c<J!Jl/)/[/['r\ l i t i d c~~~fi/~lr/ci/i~>Jl.\. \'()I. 1

1986. pp. 17-26.

Rajiv Gupta received the B.Tech. dcgrcc in elec-
trical engineering froin the Indian Insti tute (1 1
Technology. New Delhi. India. in 1982. and the
Ph.D. degree in computer science from the Uni-
versity of Pittsburgh. Pittsburgh, PA. in 1987.

Since then he has been a senior member of Rc-
search Swlt' in the Computer Architecturc and
Programming Systems group at Philips Labora-
tories. Briarclif Manor. NY. His primary re-
search interests include compilation techniques for
parallel systems. parallel architecture\. and ini-

Dr. Gupta is a member of the Association for Computing Machinery.
plementation of progrminiing languages.

Sigplan. and the IEEE Computer Society.

Board Tor Coiripirtrr L1
Computing Machinery.

Rlary Lou Soffa received the Ph.D. degree in

computer science from the University of Pitts-
burgh. Pithburgh. PA. i n 1977.

She has been on the faculty at the Univenity
of Pittsburgh since 1977 and is currently an As-
sociate Professor in the Department of Coniputcr
Science. Her main areas of research interest are
compiling techniques for parallel systems, incre-
mental compilation, implementation of prograiii-
mine languages. and \oftware tools.

Dr. S o f a seryes on thc Editorial Advisory
! t r ig i rc i ,gc~s and i s a member of the Association for
Sigplan. Sigsoft. and the IEEE Computer Society.

