
I E E t  IRANSAC710NS O N  SOFTWARE ENGINkERING. VOL 16. NO. 1. APRIL IWO 42 I 

Region Scheduling: An Approach for Detecting and 
Redistributing Parallelism 

RAJIV GUPTA A N D  MARY LOU SOFFA 

Absfruct-In dekeloping compi ler  techniques f o r  p rog rams  targeted 
f o r  paral le l  execution, i t  is imperat ive that  a p rog ram representation 
be ut i l ized that no t  onl? facil i tates the detection a n d  scheduling o f  par-  
allelism bu t  also easil? enables p rog ram transformat ions that increase 
opportuni t ies f o r  parallelism. These requirements are the d r i v i n g  force 
behind region scheduling, a technique applicable t o  b o t h  tine g ra in  a n d  
coarse g r a i n  parallelism. Th is  technique eniplo! s a p rog ram represen- 
tat ion that divide% a p rog ram in to  regions eonsi\t ing o f  source a n d  in- 
termediate level statements a n d  enables the expression o f  b o t h  data 
a n d  con t ro l  dependencies. Gu ided  b j  estimates o f  the paral le l ism pres- 
ent in regions, the region scheduler redistr ibutec code, thus p rov id ing  
opportuni t ie$ for paral le l ism in those regions containing insufficient 
paral le l ism compared t o  the capabil it ies o f  the e w c u t i n g  architecture. 
The  p rog ram representation a n d  the transformat ions are applicable t o  
bo th  structured a n d  unstructured programs, niahing region whedu l i ng  
i iseful fur a wide range o f  application\. T h e  results o f  esperiment5 con- 
ducted using the technique in the generation o f  code fur a reconfigur- 
able long instruct ion w o r d  archi tecture are presented. The  adbantageh 
o f  region scheduling over trace scheduling, another technique f o r  
t rans fo rm ing  and  detecting tine g r a i n  paral le l ism i n  progranis. are dis- 
cussed. 

Itidex Terms-Code opt imimtions, code scheduling, paral le l isni  de- 
tection, p rog ram dependence graph, p rog ram transformations. trace 
sc hedu I i ng . 

I .  INTK0I)UCTION 

N important compiler component for parallel archi- A tectures is a technique that detects and schedules the 
parallelism in a sequential program. possibly by applying 
code transformations to etfectively utilize the system re- 
sources. This process of detecting and scheduling paral- 
lelism is done by examining the code for fine grain oper- 
ations (i.e.,  parallel operations within and among source 
statements) and/or coarse grain operations (e.g., vector 
operations or loop parallelization), depending on the tar- 
get architecture. Coarse grain parallelism is best detected 
using the program source code while the detection of fine 
grain parallelism usually requires an intermediate levcl 
program representation. 

One problem in the development of scheduling tech- 
niques for both levels of granularity is that of finding suf- 
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ficient parallelism to utilize all of the system resources. 
Programs employing coarse grain parallel operations such 
as vectors may have a number of scalar operations that 
are done serially, thus reducing the overall benefits of 
vectorization. Basic blocks, which are straight-line code 
segments with a single entry and a single exit. are typi- 
cally used in detecting fine grain parallelism and may be 
too small to contain sufficient parallelism for the available 
processors. 

To increase the size of the code considered for fine grain 
parallelism, straight line code segments can be combined 
into one segment. By doing this. statements possibly re- 
quiring different control conditions may be included in the 
combined segment. This complicates the scheduling pro- 
cess. for not only is more global data flow information 
needed but so is information about the contained control 
dependencies. Another approach to the above problem is 
to intermix the execution of coarse grain parallel opera- 
tions with the fine grain operations. assuming architec- 
tural support of each type. To do this, some unusable 
coarse grain parallelism can be converted to fine grain 
parallelism. The execution of operations resulting from 
this conversion would then be intermixed with the exe- 
cution of sequential operations to achieve a faster overall 
schedule. 

In this paper, we present a technique called region 
scheduling that employs both of the above approaches in 
attempting to effectively schedule the parallelism in a pro- 
gram. An intermediate program representation is em- 
ployed that enables the detection of both coarse grain and 
fine grain parallelism in programs. The representation is 
an extended form of the Program Dependence Graph 
(PDG) [ 5 ] ,  which divides a program into regions contain- 
ing statements requiring the same control conditions. Thus 
each region consists of one or more straight line code seg- 
ments. Guided by the estimates of the parallelism present 
in the program regions. the region scheduler repeatedly 
transforms the extended PDG, uncovering potential par- 
allelism in the process until an estimate of the parallelism 
in each region matches the parallel capabilities of the un-  
derlying architecture, or no transformations are applica- 
ble. The transformations defined for region scheduling can 
redistribute fine grain parallelism among regions through 
the transfer of code from one region to another and con- 
vert coarse grain parallelism to fine grain parallelism. 
Thus, excess parallelism from one region can be trans- 
ferred to another region with insufficient parallelism. The 
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representation and the transformations are applicable to 
both structured and unstructured programs, thus making 
region scheduling useful for a wide range of applications. 
The technique is architecture independent and only re- 
quires parallelism at a fine uni t  of granularity. 

A compiler that employs region scheduling consists of 
three main phases. During the first phase, the extended 
PDG is constructed, which is then used to perform tradi- 
tional global optimizations as well as detect vectorizable 
and loop invariant computations. Transformations such as 
loop interchange. expansion of a scalar to a vector vari- 
able and node splitting that make code vectorizable can 
be applied 121, [ I  I ] .  I n  the second phase. the region 
scheduler performs transformations on the extended PDG 
to increase parallelism. In the final phase, transformations 
such as height reduction of data flow dependencies can be 
applied, followed by the identification of parallelism and 
the generation of machine instructions. All three phases 
use only the extended PDG as the program representation. 

In subsequent sections, we first present an overview of 
the PDG representation and then describe the extensions 
for region scheduling. Next the transformations and the 
algorithm used to apply the transformations are detailed. 
Results of some experiments conducted to evaluate the 
performance of region scheduling are presented. The mer- 
its of region scheduling and a comparison with trace 
scheduling [6], a related and currently used technique, are 
discussed. 

11. BACKGROUND 
Techniques for the detection of both coarse and fine 

grain parallel operations have been developed to take ad- 
vantage of various parallel architectures. These tech- 
niques include the detection of coarse grain parallelism 
useful in generation of code for loosely coupled multipro- 
cessor systems. Coarse grain parallelism found in sequen- 
tial programs is mainly in the form of vectorizable com- 
putations. Considerable research attention has been 
devoted to the detection of vectorizable loops in Fortran 
programs. As an example. Parafrase, a compiler devel- 
oped at Illinois for vector machines and multiprocessor 
systems. relies on global data dependence information and 
transformations of the source code to produce highly par- 
allel code [ 131. In work done by Allen and Kennedy [21, 
automatic techniques to carry out loop interchanges re- 
sulting in vectorizable code are presented. The PTRAN 
project at IBM is also aimed at exploiting coarse grained 
parallelism in Fortran programs [3], [ 1.51. I n  each of the 
above major research efforts, only coarse grain parallel- 
ism was considered, as the target architectures were not 
designed for fine grain parallelism. 

Research in  the detection and utilization of fine grain 
parallelism has also received some attention. I n  the de- 
tection of fine grain parallelism, Sites [ 161 developed code 
reordering algorithms for straight line code to obtain im- 
proved performance for the scalar pipelined un i t  of the 
Cray. Techniques to reorder code in a basic block to ob- 
tain improved performance for MIPS. a pipelined re- 

d u c ed - i n s t ru c t i o n - s e t p roc e s so r w i t h mu I t i p I e function a I 
units, were developed by Hennessy and Gross [ I O ] .  The 
major drawback of such work is that the reordering of 
code is done on a per basic block basis. The basic blocks 
in programs are usually small and hence little parallelism 
can be found, with the result that not much improvement 
in speed can be obtained. 

A technique that has eft'ectively tackled the probletn of 
detecting fine grain parallelism across basic blocks is trace 
scheduling which uses a control flow graph representation 
of a program [ I ] .  141. 161. The trace scheduler. in an at- 
tempt to increase the number of statements and thus the 
opportunity for parallel operations. uses the control flow 
graph to trace a path consisting of a number of basic 
blocks from which to schedule code. I t  repeatedly traces 
out paths and passes each path to a code generator for 
machine code translation. The operations in the trace arc 
reordered to generate an efficient schedule of parallel in- 
structions. In this scheme. the choice of traces is crucial 
to achieving good performance. The traces are chosen 
based on compile-time determination of execution fre- 
quency estimates of the statements. The underlying as- 
sumption of trace scheduling is that the most likely exe- 
cution paths through a program can be predicted at com- 
pile time, and for this reason, it  is oriented towards sci- 
entific programs. Trace scheduling is not expected to be 
successful for programs whose control structures are not 
simple and predictable. Another drawback of trace sched- 
uling is that it does not take into account the processing 
capability of the system while constructing traces. 

Although the control flow graph is the traditional pro- 
gram representation used by compilers, a newly devel- 
oped representation is the Program Dependence Graph 
(PDG), developed by Ferrante. Ottenstein. and Warren 
[SI. This program representation expresses both control 
and data dependencies and can be utilized for efficiently 
performing traditional compiler optimizing transforma- 
tions and vectorization transformations. The PDG also 
permits the incremental data flow update after each trans- 
formation. The PDG is summarized in the next section. 
as this representation forms the basis for the representa- 
tion used in region scheduling. 

111. THE PROGRAM REPRESENTATION 

The program representation used in region scheduling 
is an extension of the PDG [SI. We first present a brief 
overview of the PDG and then discuss the extensions. 

A .  Pi-og rut ii  Dop P I  1 der I CP Grcrpli 
The PDG is a graph representation of a program that 

expresses both relevant control and data dependencies in 
a program. The nodes in the graph are statements and 
predicate expressions and the edges represent the depen- 
dencies. A statement Si is control dependent upon a pred- 
icate P, if the value of P, immediately controls the exe- 
cution of s,. The control dependencies are derived from 
the control flow graph through control flow analysis. A 
data dependence exists between two statements if a vari- 



able used in one of the statements will have an incorrect 
value if the order in which the two statements are exe- 
cuted is reversed [ 1 I ] .  Data flow analysis on the control 
flow graph is used to compute all the data dependencies 
in a program. The PDG representation allows uniform 
treatment of data and control dependences which makes 
transformations such as vectorization easy to perform. At 
the same time. the hierarchical nature of the representa- 
tion allows treatment of control and data dependences at 
separate levels. 

A control dependence subgraph is constructed as part 
of the PDG and is useful when performing transforma- 
tions that alter the control flow structure of a program. In 
order to determine whether a change in the control struc- 
ture can be made or not. data dependency information is 
needed which is also available through the PDG. Reor- 
dering of statement and predicate nodes can only be car- 
ried out if no data dependencies are violated. The PDG 
supports incremental update of data dependency infor- 
mation and thus, supports the incremental application of 
optimizations. 

In the control dependence subgraph of the PDG, the 
statements and predicate expressions are represented as 
nodes and the control conditions for their execution as the 
edges between the nodes. There are three kinds of nodes 
in this graph: statement nodes (S i ) ,  predicate nodes ( P , ) ,  
and region nodes (R,) .  A region node points to a set of 
nodes representing parts of a program that require the 
same set of control conditions for their execution, and the 
edges connecting different regions show the flow of con- 
trol. Depending on the level of granularity desired, a 
statement node can represent either an intermediate level 
statement or a high-level nonconditional statement. Fig. 
1 shows the control dependence subgraph for the follow- 
ing sequence of statements. Region node R I  points to re- 
gion R8. which represents loop L , ,  and predicate P ,  in- 
dicating that L ,  and PI require the same set of control 
conditions for their execution. 

L , :  for i = 1 to N do X I :  
if P I  then S , ;  

if P,  then S,: go to < label > 
else if P3 then < label >:  S, 

else S, 
endif 

endif 
else S2 

endif 

B. Extensions to [he Progrutn Deperidencr Gruph 
(EPDG) 

To utilize the PDG for applying transformations to re- 
distribute statements and increase parallelism in some re- 
gions. a number of extensions are made to the PDG. In 
particular the control dependence subgraph (CDG) of the 
PDG is extended (EPDG) for use in region scheduling as 
follows: 

1 )  The nodes pointed to by a region or predicate node 
are ordered. When nodes are to be moved from region R, 

Fif .  I .  Control dependence graph 

to R,, the nodes in RI that are closest to R, are considered 
first. The ordering of the nodes in each region enables 
examination of the nodes in the desired order. The order 
also helps in determining the data dependency informa- 
tion needed to ascertain whether a statement node can be 
moved from one point in the  CDG to another. The order 
of the nodes corresponds to the order of the statements in 
the source program. The leftmost node corresponds to the 
part of the program that occurs first and the rightmost 
node to the part of the program that occurs last for the 
region. 

2 )  To move a subgraph defined by a region node to 
another region, we must ascertain that the two subgraphs 
do not intersect, and thus we define a “structure prop- 
erty” for the nodes. Each node in the graph is marked as 
structured if the set of statements represented by the 
subgraph rooted at the node is structured. To do this. loop- 
back edges must be distinguished from the rest of the 
edges in the CDG. A loop-back edge is essentially an edge 
in the CDG that represents the flow of control between 
successive iterations of a loop [ I ] .  The edge from region 
Rg to R8 in Fig. 1 is a loop-back edge. A node is structured 
if after removing all loop-back edges in the graph the fol- 
lowing conditions hold for each of its child nodes: a )  the 
child node is structured: and b) the child node has exactly 
one edge pointing to i t .  For example, in Fig. I node R, 
is structured but node R, is unstructured. The structured 
property of the nodes is essential to determine the appli- 
cability of some code motion transformations described 
in Section I V .  

3 )  Loops consisting only of statement nodes are suit- 
able for unrolling. Such loops are distinguished from the 
rest of the loops by labeling their representative region 
nodes by L,.  

4) Each region node is marked with an estimate of po- 
tential parallelism in the region. This allows the applica- 
tion of the transformations until the region has either 
enough potential parallelism to utilize the system re- 
sources fully or no more transformations can be applied. 
An estimate of the amount of parallelism in a region is 
used to decide which regions should be transformed. The 
parallelism 6, present in a region R,  is defined as the ratio 
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Fig. 2 .  Duplicating a whilc loop prcdicatc 

A 
Fig. 3 .  Coniblning predicate> 

O,/D, ,  where 0; is the number of operations in the region 
and D, is the length of the longest data dependency chain 
in the region. The length of the tallest path can be found 
by examining the data dependences in a region. The value 
6, is an estimate that essentially indicates, on an average, 
the number of operations that can be performed in parallel 
at any given time. The maximum number of operations 
that the system can physically perform in parallel, as de- 
termined by the architecture, is 6,. The goal of the sched- 
uler is to make 6;  approach 6, for all regions so that the 
system resources are utilized efficiently. 

5 )  The aim of region scheduling is to construct regions 
with significant amounts of parallelism. Therefore an at- 
tempt is made to construct a CDG which has a small num- 
ber of large regions. Fig. 2 shows how the evaluation of 
a while loop predicate may be carried out in parallel with 
some of the operations preceding and within a loop if the 
loop predicate is duplicated. essentially creating a repeat 
loop. The transformation shown in Fig. 2 reduces the 
number of regions in the CDG by one. Fig. 3 shows how 
predicates P I  and P2 may be combined to reduce the num- 
ber of regions in the CDG. This allows evaluation of the 
combined predicates in parallel. Architectural support 
should be provided to enable ignoring of traps arising due 
to errors in P ,  in the event P ,  evaluates to false. Thus, in 
constructing the EPDG, while loops are represented as 
repeat loops and the predicates are collapsed, as shown in 
Fig. 2 and Fig. 3 .  

1v. TRANSFORMA.I.IONS A N D  UPI1ATk.S TO EPDG 
The transformations performed by the region scheduler 

modify code that is either a single statement node, an en- 
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tire subgraph rooted at a region node. or a predicate node. 
Data flow information is provided in the EPDG to check 
that the transformations are legal before being applied. 
Various transformations described in this paper rearrange 
the order in which the statement nodes appear. Reordering 
of statement and predicate nodes can only be carried out 
if no data dependencies are violated. The incremental up- 
date of the information after a transformation has been 
applied is also done [ 5 ] ,  [ 141. The three basic kinds of 
transformations applied by the region scheduler are loop 
transformations, region copying and collapsing transfor- 
mations and fonvardlbackward code motion transforma- 
tions. The loop transformations include loop unrolling and 
invariant code motion. The region copying and collapsing 
transformations create larger regions by merging two re- 
gions, each with insufficient parallelism. The forward/ 
backward code motion transformations move code from 
one region to a lower/higher region in the graph with in- 
sufficient parallelism. Application of some of these trans- 
formations to parts of the EPDG requires updating of other 
parts of the EPDG to maintain the semantics of the pro- 
gram. The updating involves the copying of code to other 
regions so that the code is executed under exactly the same 
conditions as it was before a transformation was applied. 
First the transformations are discussed in detail and then 
the updating procedures are described. The order of ap- 
plying the transformations is given in Section V. 

A .  Loop Trunsforrnntioris 
The two loop related transformations performed are 

loop unrolling and invariant code motion. Both transfor- 
mations increase the parallelism in region R, by adding 
code to i t .  

T ” ~ ~ , , , ,  Unrolls I N  iterations of the loop in region L, and 
puts them in region RI, the immediate parent 
of Li ( i . e . ,  R;, Ly -+ Ri + L y ,  Lyp’”) [see Fig. 
4(a)]. This results in an increase of parallel- 
ism in region RI. Loop unrolling is also used 
to increase the parallelism within the loop 
body L, (i.e..  L, -+ ( L ,  + L l + l ) ” ~ ’ ) .  

Moves a loop invariant computation S2 in region 
R, to region R, outside the loop ( i . e . .  R, -+ R I )  
[see Fig. 4(b)]. This transformation may re- 
quire updating of the EPDG which is de- 
scribed later in this section. 

T,,,,:,, 

Forward and backward code motion transformation 
move code either up the graph or down the graph to in- 
crease the parallelism present in some region RI .  These 
transformations are always applicable to structured nodes. 
data dependencies permitting. To move a subgraph rooted 
at an unstructured node requires analysis to first determine 
if the unstructured node and the region node R, have com- 
mon descendants. The movement of such a node would 
then require additional analysis to ascertain the necessary 
modifications of the control dependence graph if common 
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descendants did exist. Thus, if there are no common de- 
scendants, the unstructured node can be moved; other- 
wise, the node is not moved. For example, in Fig. I ,  the 
unstructured subgraph rooted at P, will not be moved from 
region R5 to region R?. 

Moves code forward or backward to region Ri 
from an adjacent region Rj ( i .e . ,  R, + R i ) .  
There are two forward ( T;~,,,, 7 k,,,) [see Fig. 
5(a)-(i), S(a)-(ii)] and two backward 
( T:",,,, [see Fig. 5(b)-(i), 5(b)-(ii)l 
move transformations. The transformations 
7kove and T",',,, are applied when the regions 
Rj and RI are connected directly by an edge. 
The transformations T:,,,, and T:,"~ are ap- 
plied when the regions are connected through 
a predicate node Pi. These transformations are 
applied if they either increase the parallelism 
in both the regions or if they transfer excess 
parallelism in one region to another region 
with insufficient parallelism. 

When the forward transformation T.:~),, in Fig. 5(a)-(i) 
is applied, the code moved from R, to RI will be executed 
even when the control to Ri does not come through R;. 
Similarly when transformation T:~,, in Fig. 5(b)-(ii) is ap- 
plied, the code being moved from R, to R, is executed 
irrespective of whether the predicate PI  evaluates to true 
or false. However, this will not reduce the execution speed 
of the program as in either case the transformation is ap- 
plied only when Ri has insufficient parallelism and hence 
some processors in the system are idle during the execu- 
tion of Ri. The forward transformation 7f2move in Fig. 5(a)- 
(ii) and backward transformation 7:o\.e in Fig. 5(b)-(i) re- 
quire further updating of the graph which is described at 
the end of this section. 

7,,,, 

C. Region Copving and Collapsing 
Region copying and collapsing transformations take a 

region R, with insufficient parallelism and either copy its 
code into each of its parent regions and thus eliminate the 
region or merge it with another region. These transfor- 
mations eliminate the need for a branch instruction, in- 
creasing the speed of the operation if processors are pipe- 
lined. 

Creates a copy of all the nodes in the structured 
subgraph rooted at region node Ri in each of 

T , , ~ ~  

(li) Cove 
(1) ~kvc 

(b) 

Fig. 5. Transformation r,,,,,,,: ( R ,  + R , ) .  ( a )  Forward code n io t ion .  ( h )  
Backward code motion. 

its parent nodes. This is achieved by applying 
the following transformations: 

1) If a parent of RI is a region node ( R , )  then 
R, is made the parent of copies of all the nodes 
in region RI [see Fig. 6(a)l. 

2) If a parent of RI is a predicate node ( P I )  
then a copy of the subgraph rooted at RI is made 
and P, is made the parent of this new subgraph 
[see Fig. 6(b)]. 

These transformations make the program more struc- 
tured by eliminating unconditional branches. Applying the 
above transformations may create redundant region nodes 
which are removed by another transformation. 

7Lerge Merges Ph, R, with RI ,  where Ph is the only par- 
ent of RI and R,, to form statement node s, 
( i .e . ,  RI ,  Ph, R, + S,) (see Fig. 7). After 
7Lerge has been applied, the operations in PL, 
RI ,  and R, are treated as a single unit for the 
purpose of applying further transformations. 
The predicate and the two regions are exe- 
cuted in parallel and depending upon the value 
of the predicate, the result from executing one 
of the regions is discarded. This transforma- 
tion can only be used if the architecture al- 
lows discarding of values; otherwise, the con- 
ditional branch instruction cannot be deleted 
and this transformation is not applicable. 

7kerge Merges region RI with region R, forming a sin- 
gle region RL ( i . e . ,  R I ,  R, + R,) (see Fig. 8) .  
This transformation deletes redundant region 
nodes that may be created due to the appli- 
cation of other transformations. 
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(a) (b)  

Fig. 6.  Transformation rL,tl,\. 

Fig. 7. Transformation T,:,,,,,: ( R,. P , .  R, - S, ). 

A 
Fig. 8. Transformation T:,,,,,. i R,.  R, - R, ) 

n 

(b)  
Fig. 9. Updating the EPDG. 

D. Updates Due to Transformations 
The application of certain transformations require up- 

dating of the EPDG to ensure preservation of program 
semantics. This situation occurs when relocated code 
would not be executed under conditions that it should be 
executed. When code is moved from region R I ,  to region 

have to be created for each of the parents of R t r  other than 
R,,,, as shown in Fig. 9(a). When transformations ~ ( 2 , , , \ ~  is 
applied, a copy of the moved code has to be made as 
shown in Fig. 9(b). Applying transformation T , , , ~ )  and the 
above updates may cause redundant region nodes to be 

R,,, using transformations T , ~ ~ ~ ~  or T,,,,,, 11 I copies of the code 

created in the graph. These are,eliminated by subse- 
quently applying transformation T ; ~ " ~ , , ~ .  

v. ALGORITHM FOR APPLYING 'THE TRANSFORMATIONS 
The transformations described can be applied repeat- 

edly to the EPDG to increase the parallelism present in 
regions. The repeated application is required because ap- 
plication of one transformation may enable application of 
others in subsequent steps. In order to find all of the par- 
allelism in a program that the above transformations can 
uncover, the transformations can be repeatedly applied as 
long as they continue to increase the parallelism in the 
regions. However, in practice the system on which the 
program is to be executed will have a finite amount of 
resources, thus limiting the amount of parallelism that can 
be exploited. For this reason an algorithm which applies 
the transformations until regions have sufficient parallel- 
ism for the architecture under consideration is developed. 

The algorithm in Fig. I O  summarizes the manner in 
which the transformations are applied by the region 
scheduler. In this algorithm. transformations are applied 
as long as regions with insufficient parallelism exist. Thus 
instead of unrolling a loop a fixed, predetermined number 
of times, as is done in traditional compilers. it is unrolled 
only if more parallelism is needed in a region. I n  ordering 
the transformations, those transformations that only con- 
sider adjacent region nodes, and thus need only a local 
view of the graph. are first performed. Next, transfor- 
mations requiring a global view of the graph are applied, 
during which if a region node ( R I )  with insufficient par- 
allelism is connected along a path to a region node ( R , )  
with excess parallelism, transformation T ~ , ~ , , , ~  is applied 
repeatedly to move excess parallelism from R, to R I .  If 
region Rk does not contain excess parallelism then excess 
parallelism is created by applying one of the transforma- 
tions T,,,,,~~, T,,,,,, T ~ , , ~ ~ ,  or locally. The path chosen 
is the smallest one for which the global transformation 
can be applied. In a structured program each region node 
has at most one parent and in an unstructured program. 
application of transformation T ? , , ~ )  reduces the number of 
parents of a region node with insufficient parallelism to 
one whenever possible. For example, in Fig. 6(a) after 
the application of T ~ , , ~ ? .  region RI has a single parent. This 
limits the number of paths along which transformation 
T,,,, can be applied to one in most cases. 

The transformations are first performed locally and then 
globally because more overhead is involved in applying 
global transformations. The order in which the transfor- 
mations are applied has been chosen based on their eRec- 
tiveness and overhead. T ~ ~ ~ , , ~ ~  and T,,,,,, are applied before 
T,,,,,,,~ because they are less expensive to perform. The 
transformation T ~ , , ~ )  is applied next because, although ef- 
fective in increasing parallelism and reducing branches, 
it causes more duplication of code than T ~ , ~ , ~ , ~ .  Transfor- 
mation is applied last as it only reduces the number 
of branch instructions in a program. 

Fig. 1 1  shows how the control dependence subgraph of 
Fig. 1 [ 1 l(a)] can be modified after the transformations 
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Local Transformauon Phase 
[ 
Compute 6, for all R, 
Imp I 

Construct list S I R ,  6,-6,>~] 
for all R, C S  

apply LmuKJ-?* R,+L'",L~'") 

else apply K ~ ~ J R , ~  RJ d rm,.(RL4 R,) has not been applied before 

else apply T&JR,,P,.R,+S~ d 61+S,56. 
update the EPDG if needed and apply 

el= apply 7mv.rW,4R,) 

else apply rwpvR) 

to any applicable nodes 
] until S=$V lransformauons cannot be applied 

I 

Global Transformation Phase 
I 
Compute for all R, 
Imp I 

Consmcr list S=(R,:6,-6,Z) 
for all R, tS 

if 3 a path R,R,+, .... R, st 
&>S, V is made so by applying T,&. K,,,, Tmpy or K& 

then apply the series of transfornations 
K,,,~AR~+ R k - i ) ~ ~ m v e R . i - + R ~ - , , ) A  ......L,&+ I-&) 

update the E P M ~  if needed and apply K&* to any applicable nodes 
] until S=$ V transformations cannot be applied 
I 

Fig. I O .  Rcgion acheduler 

( e )  ( f )  

Fig. I I .  Applying transtortnationa. 

have been applied. Assuming that R6 has insufficient par- 
allelism, transformation T,, ,~) ( R h )  is first applied and then 
7!,erge(Rb, P 3 ,  R 7 )  creating node S,  during the local trans- 
formation phase [see Fig. 1 I(b) and (c)]. Then assuming 
R4 has insufficient parallelism during the global transfor- 
mation phase. the series of transformations 7unr,,ll ( R I .  L:' 
+ RI  + Ly ,  Ly-" ' ) ,  7 ",,,,,(RI + R 2 )  and T ,,,,,, c ( R 2  + R, )  
are applied [see Fig. 1 I(d), (e), and (f)] .  In this series of 
transformations, the excess parallelism in R I  created by 
unrolling the loop Ll is transformed to I?, through R?. It 
should be noted that the portion of code moved by trans- 
formations T,,,,,,? ( R I  + R 2 )  and 7 ,,,,,\ I' ( R7 -+ R,) is not the 
same. SI can only be moved to R, after excess parallelism 

is created in R, through loop unrolling and code motion 
from R I  to R 7 .  The resulting EPDG has five regions as 
opposed to seven in the untransformed graph. Moreover 
the regions in the transformed graph are much larger than 
the ones in the original graph and thus are likely to con- 
tain more parallelism. The code resulting from the trans- 
formations is as follows: 

L l l :  x,: x2; * . . xy 2 :  

if PI then LI2: X , v ~ 2  

else SI; S,: 

,; * . * X,v; 
if P, then S , ;  Sj; S,; 

endif 

S2 : 
else L12: X N ! ?  + ,: . * . X,,): 

endif 

After the control dependence subgraph has been trans- 
formed and parallelism redistributed, data dependence 
subgraphs for the individual regions are constructed. by 
performing data flow analysis. The data dependence 
subgraphs are linked by the data flow information. The 
code generator can now schedule the code in the individ- 
ual regions. Traditional optimizations such as common 
subexpression elimination, constant folding. copy propa- 
gation, and induction variable simplification and forward 
substitution may be performed on the regions. Tree height 
reduction [ 121 techniques can be applied to increase the 
parallelism in the data dependence subgraphs before code 
generation. 

VI.  EXPERIMENTAL RESULTS 
The local transformation phase of region scheduling was 

implemented on a VAX 11/780 as part of a prototype 
compiler for a reconfigurable long instruction word 
(RLIW) architecture [8], 191, which supports fine grain 
parallelism. The long instruction word enables simulta- 
neous initiation of a set number of fine grain operations. 
The prototype compiler was used to perform experiments 
in order to gain some insight into the effectiveness of re- 
gion scheduling. In these experiments. 6, was set to eight 
to represent eight simultaneous operations. First, the im- 
provement in performance due to detection of parallelism 
using individual regions instead of individual basic blocks 
was evaluated. Next, in order to study the merits of the 
transformations performed by the region scheduler, the 
speedups obtained by using transformed program depen- 
dence graphs were compared to the speedups obtained by 
using untransformed graphs. The speedups were com- 
puted by taking the ratio of the time spent on executing 
the sequential code on a pipelined machine and the time 
spent on executing the parallel code on the RLIW ma- 
chine. The results of the experiments are presented in Ta- 
ble I. The first set of results (basic blocks) indicates the 
speedup obtained due to the parallelism detected only in 
individual basic blocks. The second set of results (un- 
transformed regions) indicates the speedup obtained due 
to the parallelism detected in regions to which no trans- 
formations were applied by the region scheduler. The third 
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set of results (transformed regions) indicates the speedup 
obtained due to the parallelism detected in regions to 
which transformations were applied by the region sched- 
uler. In these experiments, no optimizations or transfor- 
mations other than the transformations performed by the 
region scheduler were performed on the EPDG. 

From the results i t  can be seen that the speedup ob- 
tained due to the parallelism detected in basic blocks is 
lower than that obtained due to parallelism detected in 
regions. The fact that a region is at least as large in size 
as a basic block accounts for this increase in parallelism 
for regions. Furthermore the results indicate that the ap- 
plication of transformations by the region scheduler 
caused a significant increase in the overall speedup 
achieved. For the programs TAYLOR1 . TAYLOR2. EX- 
ACT, and FFT the parallelism detected by the region 
scheduler is limited by the size of the machine and the 
input to the program. Thus further improvement in per- 
formance can be obtained. No additional improvement in 
performance was obtained due to region scheduling for 
programs SORT and COLOR, for no regions in these pro- 
grams had excess parallelism. and it  was not possible to 
create excess parallelism by applying loop unrolling. 

VII. COMPARISON OF TRACE A N D  REGION SCHEDULING 
Region scheduling has a number of advantages over 

trace scheduling, a technique currently being used in a 
compiler to process fine grain parallelism for a long word 
instruction machine 171. Trace scheduling uses the control 
flow graph representation of a program. It starts with in- 
nermost loop-free code and based upon predictions for the 
branch selections, chooses a path of basic blocks, called 
a trace, with the highest probability of execution. A single 
data dependence graph is constructed for the entire trace. 
Special edges are added to this graph to prevent the sched- 
uler from performing illegal code motions across basic 
blocks. Next the scheduler treats this graph as a single 
basic block and generates a parallel instruction schedule. 
After scheduling the parallel code, the code motions 
across the jumps in the trace are examined, and compen- 
sation code is added at the entries and exits of the trace 
to preserve the semantics of the program. This is similar 
to updates involving copying of code when certain trans- 
formations are performed during region scheduling. The 
above process is repeated by selecting the next most likely 
trace until the entire program has been processed. I n  trace 
scheduling, the generation of traces and code generation 
are done together. In other words, construction of a new 

trace does not start until code has been generated for the 
trace last constructed. Through its ability to reorder code 
across .jumps. trace scheduling allows detection o f  paral- 
lelism across basic blocks. 

One of the advantages of region scheduling is that is 
uses a common program structure for traditional optimi- 
zations, parallelization. and scheduling. Many optiniiza- 
tions can be performed more efficiently than if a control 
flow graph, inherent in trace scheduling. is used IS]. The 
transformations for increasing parallelism in structured 
programs [ 1 J and traditional optimizations can be applied 
to the EPDG. In addition. the transformations described 
in the last section. valid for both structured and unstruc- 
tured programs. can be applied. 

The transformations performed by the region scheduler 
are not heuristical in nature and thus, unlike trace sched- 
uling, the performance of region scheduling does not vary 
with the structure of the input program. Both region and 
trace scheduling use reordering of code to generate a 
schedule of instructions that enables parallel execution. 
In trace scheduling, transformations are applied based on 
the statistical predication of execution frequency. In re- 
gion scheduling, transformations are driven by the detec- 
tion of parallel opportunities. A region scheduler can ex- 
ploit at least as much parallelism present in the program 
as the trace scheduler, for any reordering that can be per- 
formed by a trace scheduler can be performed by a region 
scheduler. The transformations performed by the trace 
scheduler on the control flow graph enable it to move 
statement nodes across joins and splits in the control flow 
graph. The region scheduler can perform the same trans- 
formations through fonvardlbackward code motion. In 
addition, the region scheduler is capable of moving entire 
subgraphs, for example, an if-statement. from one region 
to another. The region scheduler can apply more trans- 
formations, namely the loop transformations and region 
collapsing and merging transformations, thus enabling the 
detection of more parallelism. 

Consider Figs. 12(a)-(c), which display transforma- 
tions performed by the trace scheduler and the equivalent 
transformations as performed by the region scheduler 
using the EPDG. Figs. 12(a) and (b) show how the trace 
scheduler achieves reordering of operations B and C. In  
Fig. 12(a) it does so by moving operation C above a join 
in the control flow graph and in Fig. 12(b) by moving 
operation C past a conditional split. The region scheduler 
achieves the same effect by applying 7{&,,e(Rl -+ R 2 )  and 
including B and C in the same region, R2. The trace 
scheduler can also move operations above joins involving 
unconditional branches. The region scheduler can achieve 
the same effect using the transformation 7.i:,0ve. The code 
motion in Fig. 12(c) shows how the two schedul- 
ers achieve reordering of operation P A  and C. The re- 
gion scheduler in this case applies transformation 
7 i ( R ?  + R I ) .  

The transformation in Fig. 12(c) is applied by the trace 
scheduler when the probability of the predicate A being 
true is higher than that of i t  being false. This causes the 
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trace scheduler to perform poorly if the probability of 
conditionals being true or false is equal, because trace 
scheduling generates a faster schedule for the trace more 
likely to be executed at the expense of the other. I n  region 
scheduling this drawback is avoided because the transfor- 
mations are directed towards increasing the parallelism in 
the regions that do not have enough at the expense of the 
regions that contain excess parallelism. The transforma- 
tion in Fig. 12(c) is only applied by the region scheduler 
when region R I  has insufficient parallelism to utilize the 
system resources. 

In  trace scheduling the generation of traces and code 
generation are done together while in  region scheduling 
the code generation is done after all the transformations 
have been performed on the regions. A disadvantage of 
the approach taken by the trace scheduler is that it does 
not take into account the system’s processing capability 
when constructing traces. Thus some traces chosen by a 
trace scheduler may have more parallelism than the sys- 
tem can exploit while others may not have enough. Better 
code would be generated if the traces were modified so 
that the excess parallelism of one trace is distributed 
among the traces that do not have enough parallelism. An- 
other disadvantage of constructing traces and generating 
code together is that the trace scheduler might duplicate 
code without actually utilizing the parallelism that the du- 
plication might create. The example in Fig. 13 demon- 
strates this. Trace Ti. which is created by duplicating F.  
is treated as a separate trace instead of being merged with 
T I .  This happens because TI was the first trace to be cho- 
sen and the code for it had been generated before Ti was 
created. It is likely that better code would be generated if  
traces T ,  and T, are merged. 

Fig. 13. Duplication u i t h o u t  utiliring parallcli\in 

Sometimes in trace scheduling the trace prematurely 
stops growing. thus reducing the opportunities for the de- 
tection of parallelism [4]. This happens because the trace 
scheduler constructs traces based on the probabilities of 
execution of statements. This problem does not exist in a 
region scheduler. for regions are not constructed by any 
heuristic but are defined by the control structure of the 
program. In the example (41 in Fig. 14. trace TI consists 
of only A ,  PI and P 2 ,  although it  could have been longer. 
This situation arises when the execution estimate of 
branch from P2 to P,  is less than the execution estimate 
of branch from P2 to F and the most likely path leading 
to F is through P,. However in the EPDG for the same 
piece of code, region R I  consists of A ,  P I .  P,. Pi. and G 
and hence parallelism among them can be utilized. 

To exploit the parallelism present among the statements 
before and after a loop, it should be possible to include 
these statements in the same trace. Thus a trace must be 
able to extend across loop boundaries. As described by 
Fisher [6] this requires additional analysis to determine 
the order in which the loops should be processed. In re- 
gion scheduling this is not needed as the statements before 
and after the loop are already in the same region. The 
example in Fig. 15 demonstrates this. Statements A and 
C are in the same region R I  and thus the region scheduler 
is able to exploit the parallelism between them. This is 
not done in trace scheduling because A and C are not in- 
cluded in the same trace. 

Both region scheduling and trace scheduling may in- 
crease the size of the program exponentially. However. 
in the worst case region scheduling does not increase the 
size of the code as much as trace scheduling and, impor- 
tantly, maintains control over whether or not to duplicate 
code. In both scheduling schemes, code is duplicated 
when operations are moved across branches and the worst 
case arises when the following sequence of if-statements 
occurs: 

if P I  then A ,  else B ,  
if P2 then A2 else B? 
if P,, then A,, else B,, 

In trace scheduling. code explosion may increase the 
code size to O ( n ” ) .  where I? is the number of if-state- 
ments [4]. However, region scheduling, in the worst case. 
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will increase the code size to O ( n 2 " )  as shown in Fig. 
16. Code duplication can be easily avoided in region 
scheduling as the extent of duplication that will occur due 
to a transformation is known before it  is applied. unlike 
trace scheduling where it is known only after a schedule 
for a trace has been generated. Thus, in region scheduling 
duplication of code can be controlled by avoiding dupli- 
cation in parts of the program that are less likely to be 
executed. 

When duplication of code is performed. redundant cop- 
ies of code may be created. A redundant copy of code is 
one which if deleted does not affect the results of execu- 
tion of a program. This will make the generated code less 
than optimal. When the trace scheduler moves code across 
both a join and a split, redundant code is generated. In 
the example in Fig. 17. the trace scheduler in the process 
of reordering P A  and D creates a redundant copy of D .  On 
the other hand the region scheduler does not need to du- 
plicate code to reorder f,, and D as they are already in the 
same region. Thus, the region scheduler will not generate 
redundant code when a statement node is moved across 
both a join and a split. For structured programs, no re- 
dundant code is ever generated by the region scheduler 
during the local transformation phase. 

Lastly, the application of some transformations in re- 
gion scheduling reduces the number of branches present 
in the program. This results in the improvement in the 
performance of pipelined machines. 
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VIII. CONCLUSION 
A technique for detecting and redistributing fine grain 

parallelism is presented in  this paper. The technique uses 
an extension of the PDG and thus inherits the advantages 
of using this representation. such as the use of a common 
structure for efficiently applying both traditional optirni- 
zations and vectorizing transformations and incrementally 
updating data dependency information. 

The extension permits the use of the same representa- 
tion in also detecting and redistributing fine grain paral- 
lelism and code generation. The redistribution is driven 
by an estimate of the parallelism in each region. The use 
of an intermediate representation of a program makes i t  
applicable to programs written in a wide range of lan- 
guages. and both structured and unstructured programs 

.- 
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can be represented. In addition. it  is architecture indepen- 
dent in that any architecture that has fine grain parallel 
capabilities can use the technique. 

Experiments performed demonstrate the effectiveness 
of the transformations. Although region scheduling em- 
ploys the EPDG which is more expensive to construct than 
a control flow graph, its advantages, especially its appli- 
cability to a wide range of programs and increased power, 
make it  an attractive alternative to trace scheduling. Al- 
though the use of the EPDG in this work has been ori- 
ented to the detection and distribution of fine grain par- 
allelism, future work will consider the use of the EPDG 
for detection of coarse grain units for multiprocessing. 
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