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By studying the behavior of several programs that crash due to memory errors, we observed that

locating the errors can be challenging because significant propagation of corrupt memory values
can occur prior to the point of the crash. In this paper, we present an automated approach for
locating memory errors in the presence of memory corruption propagation. Our approach leverages

the information revealed by a program crash: when a crash occurs, this reveals a subset of the
memory corruption that exists in the execution. By suppressing (nullifying) the effect of this known
corruption during execution, the crash is avoided and any remaining (hidden) corruption may then
be exposed by subsequent crashes. The newly-exposed corruption can then be suppressed in turn.

By iterating this process until no further crashes occur, the first point of memory corruption
– and the likely root cause of the program failure – can be identified. However, this iterative
approach may terminate prematurely, since programs may not crash even when memory corruption

is present during execution. To address this, we show how crashes can be exposed in an execution
by manipulating the relative ordering of particular variables within memory. By revealing crashes
through this variable re-ordering, the effectiveness and applicability of the execution suppression
approach can be improved. We describe a set of experiments illustrating the effectiveness of
our approach in consistently and precisely identifying the first points of memory corruption in
executions that fail due to memory errors. We also discuss a baseline software implementation of
execution suppression that incurs an average overhead of 7.2x, and describe how to reduce this
overhead to 1.8x through hardware support.
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1. INTRODUCTION

Software programming is a complicated and error-prone activity. It is commonly
known that programs do not always behave as intended, and this is often caused by
the presence of errors in program source code. When an error is traversed during
execution of a program, this can cause an infection, in which the executing program
state differs from what is intended by the programmer. Sometimes, infected execu-
tions can result in a failure, which is an externally-observable, abnormal program
behavior such as a crash or the outputting of incorrect values. Unfortunately, due
to the prevalence of software systems in use around the world, program errors have
the potential to cause widespread disaster and even loss of life. As a result, the task
of locating, understanding, and fixing errors in programs is of the utmost impor-
tance. This task is known as software debugging. Debugging is an important and
necessary phase of software development that promotes more robust and reliable
software.

Memory errors represent an important class of software error that causes mis-
handling of memory during program execution. One example of mishandling of
memory occurs when a program attempts to read from or write to an incorrect
memory location. Such memory errors often manifest themselves in the form of a
program crash. Some common types of memory errors are the following.

—Buffer overflows: This occurs when memory locations are accessed that are out-
side of proper buffer boundaries. Such overflows can cause unexpected corruption
of program data that can eventually cause a crash. Stack smashing is one type
of problem that can arise due to a buffer overflow, which corrupts the return
address of a function on the call stack.

—Uninitialized reads: This occurs when the value contained in a memory location
is loaded before any proper value has been stored into that location. This can
lead to unexpected program behavior due to an arbitrary value being loaded.

—NULL dereferences: This occurs when the pointer used to access a memory
location is unexpectedly NULL. A NULL dereference may occur due to an unini-
tialized read or to prematurely assigning the value NULL to a pointer variable.

—Dangling pointers: A dangling pointer is one that does not point to a valid
object of the appropriate type in memory. One cause is when a memory object is
explicitly deallocated, while a pointer to that object retains its original address
value. Subsequent uses of this dangling pointer can lead to unexpected program
behavior.

—Double frees: This occurs when a call to function free() is performed using a
deallocated address that has already been previously freed. Such an error may
lead to a program abort.

In general, a memory error manifests itself by undergoing three specific events at
one or more execution points during program execution.

(1) Traversal of the error. This is when the portion of code ultimately responsible
for a program failure is executed.

(2) First point of memory corruption. When an execution has become infected due
to traversal of an error, a first point of memory corruption may then occur,
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at which point memory is mishandled in some way. This can in turn cause
memory to be mishandled at subsequent execution points as well (i.e., memory
corruption may propagate during execution).

(3) Failure. This is the point at which a developer can actually observe that an
execution has become infected. Not all infections, however, may lead to failures.
One type of failure that often results from memory corruption is a program
crash, though not all memory corruption may lead to a crash, and there are
other types of failures such as producing incorrect output.

Once a failure occurs during execution, a developer must find the location of the
error so that it can be eliminated. However, in general the error may not be at the
same point at which the failure occurs. The infected portion of execution, separating
the traversal of the error from the actual failure, may be very long. We conducted
a study involving 11 programs that can crash due to memory errors, to study how
memory corruption can propagate during an infected execution (described in detail
in Section 2). We found that not only can the length of an infected execution
be very large, but there can also be a significant amount of memory corruption
propagation during the infected execution that can effectively conceal the location
of the true error. Further complicating matters is the possibility that different
inputs traversing the same error can lead to different failures at different execution
points. The goal of our work is to describe an automated technique that will
account for these issues and significantly reduce the burden placed on developers
for locating memory errors.

Our approach for assisting developers in locating memory errors is based on two
key ideas: execution suppression and variable re-ordering. We use our execution
suppression technique to identify the first point of memory corruption in an infected
execution that fails due to a crash caused by a memory error. We assume that
the first point of memory corruption is either at, or very close to, the memory
error. Suppression is the idea of omitting one or more instructions during program
execution. We use the concept of suppression iteratively to gradually isolate the first
point of memory corruption. When a crash occurs, this reveals that the memory
location(s) accessed at the point of the crash is corrupt. In essence, each crash
reveals a subset of the memory corruption in an infected execution. This subset of
known memory corruption, and everything else in the infected execution directly or
indirectly dependent upon it, is then suppressed during re-execution of the program
by simply omitting the effect of the associated instructions during execution. This
effectively causes only the subset of the original execution to be re-executed, that
does not involve or depend upon the identified memory corruption. Note that this
guarantees that the original crash, and any crashes that might have occurred due
to the suppressed instructions, will be avoided in the re-execution. This is because
the effect of all instructions directly or indirectly dependent upon any suppressed
instruction will be omitted during re-execution. At the end of the re-execution, if
the result is that no other crashes occur, then the last suppressed point of memory
corruption is likely to be the first point of memory corruption in the execution.
On the other hand, if another crash does occur, then this reveals that additional
memory corruption remains in the execution and so the process should be repeated
to isolate the first point of memory corruption.
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The idea of execution suppression fundamentally relies on the assumption that if
memory corruption exists in an execution, then a program crash will occur. How-
ever, this assumption does not always hold in practice because memory corruption
will not always lead to a crash. Our second key idea, variable re-ordering, is a tech-
nique that can sometimes expose crashes due to memory corruption in an execution
that does not otherwise result in a crash. The intuition is as follows: even though
the relative ordering of variables in memory should not affect the correctness of a
program, in the presence of memory errors, the relative ordering can in fact affect
where and when crashes might occur. We describe an approach that systematically
tries different variable orderings in memory to attempt to expose crashes due to
memory corruption. By combining execution suppression with variable re-ordering,
the effectiveness and applicability of our approach is greatly improved.

Our approach is designed to be iterative so that the first point of memory cor-
ruption can be identified even in executions with significant propagation of memory
corruption. Our approach is also fully automated, which makes it useful for quickly
determining whether different inputs exhibiting different program failures are due
to the same error. Moreover, our approach is general and can be applied to any
memory errors that involve corrupted memory and can result in a program crash.

To implement our approach, we describe a software implementation of execution
suppression (not including variable re-ordering) that results in an average overhead
of 7.2x. We then show how this can be reduced to an average overhead of 2.7x by
making use of hardware support in Itanium processors that was originally intended
for deferred exception handling. Finally, we show how to reduce the average over-
head to 1.8x by extending the cache, main memory, and data bus with an extra
bit for each word. Our performance studies were conducted on the SESC simulator
targeting the MIPS instruction set.

We describe experimental results of running our approach using a set of 11 real
programs with known memory errors to show that the first point of memory cor-
ruption can be precisely identified by our approach in all benchmark programs. In
these programs, the first point of memory corruption is always either at, or very
close to, the actual memory error.

The contributions of this paper are as follows.

—A new, automated approach for locating memory errors in the presence of mem-
ory corruption propagation that incorporates the ideas of execution suppression
and variable re-ordering.

—A detailed study of memory corruption using a set of 11 real programs with
known memory errors to motivate the development of our approach.

—Discussion and overhead comparison of different software and hardware imple-
mentations of execution suppression.

—An experimental evaluation of our approach using 11 real programs containing
memory errors and a set of crashing and non-crashing inputs to those programs.

The rest of this paper is organized as follows. In the next section, we describe a
detailed study of memory corruption we conducted to motivate the development of
our approach. Section 3 describes our approach in detail. Software and hardware is-
sues for implementing execution suppression, along with a performance comparison
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Table I. Memory error programs analyzed in our memory corruption study.

Program Name # Lines Error Type Error Location Program Description
of Code

gzip-1.2.4 6.3 K GO gzip.c: 828 file compression
man-1.5h1 10.8 K GO man.c: 979 display manual pages
bc-1.06 10.7 K HO storage.c: 176 arbitrary precision calculator
pine-4.44 211.9 K HO bldaddr.c: 7270 Internet news and e-mail
mutt-1.4.2.1 65.9 K HO utf7.c: 152 e-mail client
ncompress-4.2.4 1.4 K SO compress42.c: 886 file compression
polymorph-0.4.0 1.1 K SO polymorph.c: 191 filename converter
xv-3.10a 69.2 K SO xvbmp.c: 165 image manipulation
tar-1.13.25 28.4 K ND incremen.c: 180 archiving utility
tidy-34132 35.9 K ND parser.c: 854 HTML quality enhancer
cvs-1.11.4 104.1 K DF near server.c: 992 versioning system

of several different implementations, are presented in Section 4. An experimental
study illustrating the effectiveness of our approach is given in Section 5. Section 6
discusses related work, and our conclusions are summarized in Section 7.

2. MEMORY CORRUPTION STUDY

2.1 Subject Programs and Results

We conducted a study of memory corruption using 11 real programs containing
known memory errors to motivate the development of our approach for automati-
cally locating the first point of memory corruption in an execution. The programs
used in our study were obtained from [Lu et al. 2005; Narayanasamy et al. 2005;
Zhou et al. 2004] and are described in Table I. The first column in the table shows
the program name and version number. The second column shows the number of
lines of code (in thousands). In the third column, the following abbreviations are
used to indicate the memory error type: global buffer overflow (GO); heap buffer
overflow (HO); stack buffer overflow (SO); NULL dereference (ND); and double free
(DF). The fourth column shows the file name and line number of the location of
the memory error. The right-most column gives a brief description of the program.
We selected these subject programs because they have been used as benchmarks in
prior research and they contain a variety of types of memory errors.

The goal of our study was to understand the nature of memory errors to motivate
the development of an effective approach for automatically locating them. For each
memory error, we identified the following: the location of the error (already known
beforehand); the first point of memory corruption; and the failure point (this was
always the point of execution termination, which was either a crash, or an observed
wrong output). To be able to specify the first point of memory corruption, we used
the following definition for memory corruption.

Definition 2.1.1. Memory corruption occurs during the execution of a pro-
gram when either an incorrect memory location is accessed (read or written when
it should not have been), or an incorrect memory address value is assigned to a
(pointer) variable.

The above definition for memory corruption captures the act of mishandling
memory addresses as well as the propagation of corrupt memory address values.
Note that memory corruption can propagate through other non-address values that
may become infected due to memory corruption in an execution. However, infected
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Table II. Results for each analyzed input for each subject program. In the column heading
for “Distance”, the following abbreviations are used: error traversal (ERROR), first point of

memory corruption (CORRUPT), and point of execution termination (END).

Program Name Input Type Distance: [ERROR→CORRUPT] + [CORRUPT→END]
# Static Dependence Edges # Executed Instr. Instances

gzip-1.2.4
No Crash 0 + 1 0 + 41,168
Crash Point 1 0 + 1 0 + 36,902

man-1.5h1 Crash Point 1 1 + 8 296 + 14,239,521

bc-1.06
No Crash 1 + 0 8 + 33,567
Crash Point 1 1 + 1 8 + 5,004

pine-4.44
No Crash 5 + 20 1,103 + 1,390,483
Crash Point 1 5 + 14 1,103 + 10,165

mutt-1.4.2.1
No Crash 0 + 9 0 + 140,750
Crash Point 1 0 + 8 0 + 5,697

ncompress-4.2.4
No Crash 0 + 1 0 + 7,318
Crash Point 1 0 + 2 0 + 11,616
Crash Point 2 0 + 1 0 + 19,637

polymorph-0.4.0
No Crash 1 + 2 4,294 + 99,723
Crash Point 1 1 + 2 4,321 + 99,762
Crash Point 2 1 + 1 4,354 + 113,083

xv-3.10a
No Crash 1 + 2 122 + 185,818
Crash Point 1 1 + 1 124 + 158,640

tar-1.13.25 Crash Point 1 0 + 1 0 + 210,505
tidy-34132 Crash Point 1 0 + 2 0 + 57
cvs-1.11.4 Crash Point 1 1 + 0 5,164 + 0

non-address values are not considered to be “memory corruption” according to our
definition, since they cannot directly cause a crash unless they are later used to
compute an incorrect memory address. Essentially, we define “memory corruption”
to be a mishandling of memory that can directly cause a program crash.

The data we collected for each subject program in our study is reported in Ta-
ble II. For each of the subject programs, we created a variety of different inputs
that we knew traversed the error and triggered memory corruption. We then ob-
served whether or not a crash occurred, and if so, at which program statement the
crash occurred. For each distinct execution outcome (either no crash, or a crash at
a particular statement), we selected one representative input associated with that
outcome (listed in column 2) and studied it in detail. From the execution of each in-
put, we measured the distance from the traversal of the error until the first point of
memory corruption, and from the first point of memory corruption until execution
termination. This distance was measured first in terms of static dependence edges
(column 3), showing the extent to which memory corruption can propagate during
execution. The static dependence edges were identified by looking at the program
code statically, following the chain of data and control dependencies observed in the
source code. The distance was also measured in terms of dynamic instruction in-
stances in the execution (column 4), indicating the length of the program execution
between these particular execution points.

For example, for program gzip that has a global buffer overflow in a call to
strcpy(), we were able to create one memory-corruption-inducing input that did
not crash, and another input that caused a crash at one program point. For both
inputs, the static dependence and dynamic instruction instance distances from the
error traversal to the first point of memory corruption is 0. This indicates that in
this program, the traversal of the error occurs precisely at the first point of memory
corruption. On the other hand, both inputs have a static dependence distance of 1
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from the first point of memory corruption until the point of execution termination,
and a corresponding dynamic instruction instance distance of 41,168 instructions
(the non-crashing input) and 36,902 instructions (the crashing input).

2.2 Key Observations

From the results presented in Table II, it can be seen that static dependence dis-
tances from the point of error traversal until the point of execution termination
are usually more than 1, and sometimes considerably more than 1 (e.g., programs
man, pine, and mutt). Even when static dependence distances are relatively small,
the instruction instance distances can be quite large (e.g., programs polymorph

and xv). Thus, the first observation we make from our study concerns these total
distances.

Observation 2.2.1. (Total distances) The total distance, both in terms of static
dependence edges as well as dynamically-executed instruction instances, between
the point of error traversal and the point of execution termination, can be large.

The above observation suggests that in crashing executions, the memory error
may be difficult to manually locate from the point of the crash. Traversal of the
error may have occurred much earlier in time than the point of the crash. There
may also be a large degree of memory corruption propagation during execution.
Thus, an automated approach to help developers isolate the first point of memory
corruption can be of great help in locating memory errors.

An interesting result pertaining to static dependence distance occurs for the
non-crashing input of program bc. In this case, the dependence distance from
the first point of memory corruption until execution termination is 0, but this
is because there happens to be no memory corruption propagation during this
execution. In the execution, a buffer overflow causes an unexpected write to another
memory location, but this memory location is associated with a variable that is
never accessed during the rest of the execution.

The second important observation we make from the results of our study deal with
the types of inputs we analyzed. All analyzed inputs triggered memory corruption,
but they often had different execution outcomes.

Observation 2.2.2. (Inputs triggering memory corruption) Different inputs
triggering memory corruption may lead to crashes at different program locations,
or they may result in no crash at all.

If different inputs lead to crashes at different program locations, this can be mis-
leading and may cause a developer to suspect that the inputs reveal multiple distinct
errors when in fact they may all be due to the same error. An automated approach
to help locate memory errors can help a developer to quickly group crashing inputs
according to their associated errors. One useful application of this capability would
be to allow developers to prioritize the fixing of errors by determining which errors
are associated with the most undesirable crashing inputs.

Inputs that trigger memory corruption but do not result in any crash may conceal
the fact that a memory error exists. Even if wrong output is produced, a developer
may not be able to easily tell whether the wrong output is due to a memory error
or to a non-memory error. In order to improve software reliability, it would be
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desirable for an input that triggers memory corruption to result in a crash. This
guarantees that the memory error will be revealed and encourages the developer to
address the problem.

The inputs we created for program man represent an interesting case from among
the programs with buffer overflows. This is the only program with a buffer overflow
in which we could only create inputs that trigger memory corruption and then crash.
For this program, it turns out that the error is such that if at least one memory
location gets corrupted, then a crash will happen. Thus, we could not create any
inputs for this program that triggered corruption but did not crash.

A third observation we make concerns the relative distance from error traversal
to the first point of memory corruption, compared to the distance from the first
point of memory corruption to the point of execution termination.

Observation 2.2.3. (Relative distances) Across all programs in our study, the
relative distance from error traversal to the first point of memory corruption, is gen-
erally considerably less than the distance from the first point of memory corruption
to the point of execution termination.

In all programs except pine, the static dependence distance from the root cause
to the first point of memory corruption is always 0 or 1. As a result, an automated
approach to isolate memory errors can still be very effective if it seeks to only isolate
the first point of memory corruption. From the first point of memory corruption,
a developer should only need to exert minimal effort to find the actual error.

Together, the three main observations resulting from our study of memory errors
and memory corruption motivate our approach that is based on the ideas of execu-
tion suppression and variable re-ordering. In the next section, we describe in detail
our approach for isolating the first point of memory corruption in an execution that
fails due to a memory error.

3. APPROACH

Given a failing execution that involves memory corruption due to a memory error,
our approach uses the key ideas of execution suppression and variable re-ordering
to automatically locate the first point of memory corruption. This can help a devel-
oper to quickly locate the error itself. We first describe the execution suppression
technique. Then, we describe the variable re-ordering technique that can be used
to improve the effectiveness and applicability of execution suppression. Finally, we
describe the complete approach that incorporates both techniques.

3.1 The Execution Suppression Component

The notion of execution suppression involves omitting one or more statements (in-
structions) during program execution. This idea can be used iteratively to reveal the
first point of memory corruption in an execution. In general, when there are multi-
ple instances of memory corruption that exist in an execution, then eventually one
of these instances may cause a crash. If we suppress (omit execution of) the associ-
ated statements directly causing this crash, as well as any other statements directly
or indirectly dependent upon these suppressed statements, this would avoid the
crash and allow execution to proceed further. This provides the remaining memory
corruption opportunity to cause other crashes. This, in turn, reveals more of the
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memory corruption, until finally the first point of memory corruption is revealed.
The first point of corruption is assumed to be identified when no further crashes
occur, because suppressing the first point of memory corruption will ensure that the
program will not produce any further crashes. This is the essence of the execution
suppression approach. We stress that execution suppression is a dynamic approach
that involves runtime tracking of memory location accesses (as opposed to a more
static approach that might rely on compiler analysis, which we do not consider).

Care must be taken when implementing execution suppression, since the naive
approach of simply omitting arbitrary program statements can lead to an inconsis-
tent program state in which crashes may result due to the suppression itself. To
address this problem, whenever one statement is suppressed in an execution, then
all subsequent statements that would be influenced by the suppressed statement
are themselves suppressed. This guarantees that all executed statements are those
which do not depend on any suppressed statement. In this way, any subsequent
crashes that may occur must be due to an error in the program, and not to the
suppression itself.

To illustrate the functionality and usefulness of execution suppression, consider
the sample code presented in Figure 1. In this snippet of code, there exists a copy-
paste error at line 4 (the programmer copies lines 1 and 2, pastes into lines 3 and
4, and then forgets to change variable x into variable y at line 4). The effect of this
error is that pointers p2 and q2 mistakenly refer to the same memory location. As
a result, when a value is stored into location ∗q2 at line 8, then this clobbers the
value originally stored there at line 6. Any subsequent uses of the value at location
∗p2/∗q2 then make use of an infected memory location, which can lead to further
infection at other memory locations (lines 9, 10, and 11). Essentially, the error
at line 4 immediately causes memory corruption that propagates through multiple
locations until eventually a program crash may occur (potentially at lines 12, 13,
and 15).

Suppose the code in Figure 1 is exercised on some input. This is represented
pictorially in Figure 2 (A). Initially, pointer q2 is corrupted at line 4 since it points
to an incorrect memory location. That memory location is then infected at line 8,
where the value previously stored at that location is mistakenly overwritten. Then,
the definition at location a (line 9) is infected since it uses the infected value from
location ∗p2/∗q2. The definition for location b (line 10) is similarly infected. This
further results in infection of location c (line 11). Now, suppose that the program
crashes at line 12 due to infected array index c accessing an illegal address outside
the bounds of array intArray. This is a buffer overflow failure. When the buffer
overflow failure is observed at line 12, identifying the root cause at line 4 is not
obvious since in practice we do not know the first point of memory corruption and
how the corruption might propagate during infection.

As a first step to begin searching for the root cause of the program crash at
line 12, we re-execute the program while suppressing the memory corruption we
currently know about that directly causes the crash. This is depicted in Fig. 2 (B).
To do this, we notice at line 12 that the value at location c is used, along with the
base address for variable intArray, to compute the effective memory address to
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Let x and y be pointers to two malloc’ed memory
regions, each able to hold two integers.

Let intArray be a heap array of integers.
Let structArray be a heap array of pointers to

structs with a field f .

1: int * p1 = &x[1];
2: int * p2 = &x[0];

3: int * q1 = &y[1];
4: int * q2 = &x[0]; // copy-paste error:

// should be &y[0]

5: *p1 = readInt();
6: *p2 = readInt(); // gets clobbered at line 8
7: *q1 = readInt();
8: *q2 = readInt(); // clobbers line 6 definition

9: int a = *p1 + *p2; // uses corrupted *p2/*q2
10: int b = *q1 + *q2; // uses corrupted *p2/*q2
11: int c = a + b + 1; // uses corrupted a and b

12: intArray[c] = 0; // buffer overflow
13: structArray[*p2]−>f = 0;

// NULL dereference
14: free(p2);

15: free(q2); // double free

Fig. 1. Example code to illustrate the functionality and usefulness of execution suppression.

access. Since either of these used locations could be infected, we identify the last
definitions of both (though for intArray, this is not shown in the figure). Location
c is last defined at line 11. We then re-execute the program on the same input, but
during execution we suppress the definition of the base address for intArray (not
shown in the figure) as well as the definition of c at line 11 (by not performing the
store to location c). Accordingly, execution of any subsequent statements directly
or indirectly influenced by these definitions are also suppressed. In our example,
only lines 11 and 12 are suppressed when the program is re-executed. However,
suppose that now the execution reaches line 13 and another crash occurs. This
is possible since infected location ∗p2 is used as an index into an array of struct
pointers. In our example, suppose that structArray[*p2] is actually NULL. Then
line 13 will result in a segmentation fault since NULL is dereferenced. The root
cause of this fault is still at line 4, but its location is not obvious at this point.

We re-execute the program again to suppress the newly-revealed memory corrup-
tion directly involved in the crash at line 13. This is depicted in Figure 2 (C). This
time, we suppress the last definition of location ∗p2, which is at line 8, plus the
other statements that are directly or indirectly influenced by the definition at line 8
(similarly for the last definition of the base address for structArray, not shown in
the figure). Note that line 8 is the appropriate last definition of ∗p2, since pointer
q2 actually refers to the same location as p2. In our example, during execution we
therefore suppress lines 8, 9, 10, 11, 12, and 13. Note that lines 14 and 15 are not
suppressed since the infected location defined at line 8 (which happens to be pointed
to by both p2 and q2) does not actually influence the locations of the pointers p2
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Fig. 2. The original run and 3 execution suppression runs for the code in Figure 1. Solid circles are

executed statements, and dotted circles are suppressed statements. Statements defining a memory
location are annotated with information showing whether the location is infected/corrupt (x) or
not infected/corrupt (check).

and q2 themselves used at lines 14 and 15. With these new suppressions, however,
the program crashes yet again. The problem here is that at line 15, the program
aborts due to a double free of the same memory location (last defined at line 4).

Finally, we re-execute the program a third time as shown in Figure 2 (D). Here,
we further suppress the definition of pointer q2 at line 4, plus its subsequent use
at line 15. In total, we therefore execute only lines 1, 2, 3, 5, 6, 7, and 14. In this
case, the program proceeds normally (without any crash) since all memory cor-
ruption has been suppressed during execution. In other words, only the statements
involving un-infected memory locations are exercised. As a result, we conclude that
the most-recently identified statement for suppression – line 4 – contains the error,
because it is the root cause of all the memory corruption that led to the program
crashes. Overall, our example shows how execution suppression gradually isolates
the first point of memory corruption by suppressing program crashes to iteratively
reveal more memory corruption. This continues until no further crashes occur when
the first point of memory corruption is revealed and suppressed.

The algorithm for our execution suppression approach is shown in Figure 3.
The approach requires as input a program and an associated test case for which a
program crash occurs due to memory corruption. The approach iteratively searches
for points of memory corruption in the execution and suppresses the effects of these
points until the first point of memory corruption is found (which is assumed to be
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input:

Program P and test case t causing a crash due to a memory bug.
output:

Stmt(s) identified as the first point of memory corruption in execution of t on P .
algorithm ExecutionSuppressionApproach
begin

1: Sdef := “undefined”;
2: Initial Suppression Points := {};
3: while a program crash C occurs during execution of t on P do

4: Scrash := the stmt instance directly causing crash C;
5: Loc := accessed memory location(s) causing crash C at stmt instance Scrash;
6: Sdef := the stmt instance(s) originally defining the value(s) in Loc

prior to its use at Scrash;
7: if Sdef does not exist then

8 Sdef := the stmt instance(s) originally defining the address(es) of Loc

prior to its use at Scrash;
endif

9: add Sdef to set Initial Suppression Points;
10: re-execute t on P while suppressing (nullifying) the effects of

(1) all stmt instances in Initial Suppression Points;
(2) all stmt instances directly/indirectly influenced by some stmt instance

in Initial Suppression Points

endwhile

11: report the program statement(s) associated with the latest Sdef ;
end ExecutionSuppressionApproach

Fig. 3. Execution suppression algorithm to identify the first point of memory corruption in an

execution that crashes due to a memory error.

at or near to the memory error). The approach iterates as long as a program crash
occurs. It is assumed that if memory corruption exists in an execution, then a
crash will occur. Thus, when no further crashes occur, the most recent point(s) of
suppression is assumed to be the first point of memory corruption in the execution.

The main loop comprising our approach is shown in lines 3–10 in Figure 3. This
loop iterates as long as a crash occurs. On each iteration, the corrupted/infected
memory location and the associated statement instance causing the crash are iden-
tified (lines 4 and 5). In some cases, such as crashing array accesses that involve
both a base address as well as an index value, there may be more than one location
that could be corrupted/infected; all such locations are considered. The statement
instance that defined this corrupted memory location is identified (line 6). However,
an accessed memory location may have no prior definition in cases where the ad-
dress of the accessed location itself is incorrect. In this case, the statement instance
that defined the incorrect address is identified instead (lines 7 and 8). Again, in
the case where more than one location is identified at line 5, then the same number
of associated statement instances will be identified in line 6 or 8. Lines 6 through
8 essentially give preference to the possibility of an incorrect value in a memory
location as opposed to the possibility of the memory location itself being incorrect.
However, this approach is effective and worked well in our experiments. This is

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.



Execution Suppression: An Automated Iterative Technique for Locating Memory Errors · 13

because if the memory location itself is incorrect, then it is unlikely for there to be
a prior definition to that location (so line 8 is highly likely to be executed in this
case). When looking for the last definition, the original definition of the infected
value is identified (bypassing any copies that may occur, for instance, by passing
values through function calls). This is because the original definition of an infected
value is the one that is ultimately responsible for the crash caused by that infected
value. Once the definition statement(s) is identified, it is then added to the set of
“initial suppression points”, the execution points at which suppression should be
initiated upon program re-execution (line 9). The key step of our approach is then
performed (line 10), in which the program is re-executed using the same input.
During execution, the direct and indirect effects of all statement instances in the
set of initial suppression points are suppressed. The effect of this suppression is
that the previously-occurring crash will be avoided, since the memory corruption
directly causing it will have been suppressed. Thus, either a new crash will occur
in the execution – in which case the loop iterates again – or else no crash will occur
and the last-identified initial suppression point is identified as the likely first point
of memory corruption in the execution (line 11). On rare occasions, more than one
likely first point of memory corruption may be outputted by our approach at line
11, since lines 6 and 8 may identify more than one statement instance. In these sit-
uations, a developer may have to manually analyze a few statements to determine
which one is the true first point of corruption. However, this situation did not arise
in our experiments, as our approach always outputted a single identified statement
in our benchmark programs.

We now illustrate our execution suppression algorithm using the example de-
picted in Figure 4. This figure shows a crashing execution associated with a mem-
ory error in the pine program. In the figure, the root cause (error), the first point
of memory corruption, and the point of the crash, are highlighted. Solid arrows
between statements represent propagation of incorrect values during the crashing
execution: thin arrows from the point of the root cause until the first point of
memory corruption represent propagation of non-address incorrect values; thick ar-
rows from the first point of memory corruption until the crash show propagation
of memory corruption. Arrows with dotted lines represent control flow. To follow
the path leading up to the failure, start at the point of the root cause and follow
the arrows until the point of the crash is reached.

In this example execution, the memory error (root cause of the failure) occurs
in file bldaddr.c, line 7270. At this statement, a size value is estimated to be too
small because it does not account for the possibility of special characters in an input
string. This infected size value propagates through several statements until it is used
at line 7126 to allocate a heap buffer. We consider this pointer variable assignment
to be the first point of memory corruption because the buffer is allocated based on
an incorrect size. A pointer to this buffer is then passed through several function
calls until function rfc822 cat in file rfc822.c is executed. Within this function,
data is written into the buffer and the buffer is overflowed. Control then eventually
reaches file bldaddr.c, line 7134, where the pointer to the infected buffer is returned
to file mailindx.c, line 4502. The pointer is finally passed to file fs unix.c, line
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mailindx.c

int set_index_addr (…) {

4502: a_string = addr_list_string(…);

4508: fs_give((void **)&a_string);

}

fs_unix.c

void fs_give (void **block) {

60: free (*block);

}

bldaddr.c

int est_size (ADDRESS *a) {

7270: cnt += (a->mailbox ? strlen(a->mailbox) : 0);

7271: cnt += (a->adl ? strlen(a->adl) : 0);

7272: cnt += (a->host ? strlen(a->host) : 0);

7284: cnt += 10;

7287: return (max(cnt, 50));

}

char * addr_list_string (ADDRESS *adrlist, …) {

7126: list = (char *)fs_get((size_t)est_size(adrlist));

7128: rfc822_write_address_decode(list, …);

7134: return (list);

}

addrbook.c

void rfc822_write_address_decode (char *dest, …) {

7153: rfc822_address (dest, …);

}

rfc822.c

void rfc822_address (char *dest, …) {

234: rfc822_cat (dest, …);

}

void rfc822_cat (char *dest, …) {

253: dest += strlen (dest);

254: *dest++ = '"';

258: strncpy (dest,src,i = s-src);

259: dest += i;

260: *dest++ = '\\';

261: *dest++ = *s;

265: *dest++ = '"';

266: *dest = '\0';

}

ROOT CAUSE

CRASH

1st MEM CORRUPT

Fig. 4. Selection of statements from the pine program illustrating how traversal of a memory
error can lead to memory corruption in an execution and ultimately trigger a crash. Thin solid
arrows between statements represent propagation of incorrect non-address values. Thick solid

arrows represent memory corruption propagation. Dotted arrows represent flow of control.

60, where a call to free() occurs that finally results in a program crash. The crash
occurs because of the earlier buffer overflow corrupting an important value that is
needed by the free() function.

It turns out that for this execution, there are 5 static dependence edges (1,103
dynamic instruction instances) from the point of error traversal until the first point
of memory corruption, and an additional 14 static dependence edges (10,165 dy-
namic instruction instances) from the first point of memory corruption until the
point of the crash. Thus, there is considerable propagation of incorrect values and
corrupt memory locations in this crashing execution. Further, 19 static dependence
edges and over 11,000 dynamic instruction instances separate the root cause from
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the crash. This illustrates the potential for memory errors to have complicated
effects on program execution, and demonstrates why memory errors can be difficult
to locate.

When running our execution suppression approach on this program execution to
isolate the first point of memory corruption, it is determined that the program crash
in function free() is caused by an unexpected software abort, due to accessing a
single particular memory location. The original definition of this location happens
to be the definition of variable list at line 7126 of file bldaddr.c. This is actually
the first point of memory corruption, since the buffer is allocated to be too small at
this point. As a result, the execution suppression approach re-executes the program
while suppressing this definition and all of its effects. In this case, all memory
corruption is avoided (since all statements influenced by the too-small buffer are
suppressed) and therefore no program crash occurs. The approach then reports the
correct first point of memory corruption in this execution. Thus, even though pine

has a large degree of memory corruption propagation in this case, our approach is
able to bypass many memory corruption dependence edges when isolating the first
point of memory corruption. Whether or not this is possible in general depends
upon which corrupted memory locations directly cause a crash in a given execution.
In the case of pine, we were lucky in that the first corrupted memory location
directly led to the first crash, so our approach identified the ideal result very quickly.
However, as we will show in our experimental study, our approach may sometimes
require several iterations to identify the first point of memory corruption.

3.2 The Variable Re-ordering Component

The execution suppression approach relies on the fundamental assumption that
memory corruption in an execution will cause a program crash. This assumption
may not hold in cases where corrupted memory is never accessed, or in cases where
it may be accessed in such a way that no crash happens to occur. Evidence that this
can happen was seen in our memory corruption study (Section 2) in which we were
able to create inputs in certain cases that trigger memory corruption but do not
result in a crash. As a result, this exposes two limitations of execution suppression.
First, the approach is not applicable to executions that do not originally crash,
even though they may traverse an error and cause memory corruption. Second,
the approach may terminate prematurely in cases where no crash occurs during a
suppression execution even though memory corruption still exists in the execution.
Premature termination would mean that the approach would identify some point
of memory corruption along the path from the error to the point of the failure, but
it would not be the first point of memory corruption. To address these flaws, we
propose the idea of variable re-ordering to expose crashes due to memory corrup-
tion where crashes may not otherwise occur. Variable re-ordering involves altering
the relative ordering of variable locations in memory, prior to using them during
execution. The idea is based on the observation that memory errors often lead to
unexpected reading or writing of memory locations (other variables) at execution
points when those variables should not have been accessed. Depending upon which
variables are unexpectedly accessed, a crash may or may not occur. For instance,
overflowing a buffer may cause other program variables to be unexpectedly over-
written. As another example, writing to the location pointed to by an infected
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input:

Program execution E that does not result in any crash.
(Optional): set of known corrupt memory locations Corrupt.

output:

A variable ordering O that causes execution E to result in a crash, or else
NULL if no such O can be found.

algorithm VariableReordering
begin

1: Vaccessed := set of global, stack, and heap variables accessed during execution E;
2: Spaces := {global, stack, heap};
3: Spaces := sort Spaces so those associated with at least one address

in Corrupt (if specified) are ordered first; break ties in increasing
order of # of associated variables in Vaccessed;

4: for each type of memory space space ∈ Spaces taken in sorted order do

5: V ar Orderings := set of distinct variable orderings involving variables
in Vaccessed that are associated with memory space space;

6: for each variable ordering O ∈ V ar Orderings do

7: if variable ordering O applied to execution E causes E to crash
then report O;

endfor

endfor

8: report NULL;
end VariableReordering

Fig. 5. General variable re-ordering algorithm to expose crashes in an execution that triggers
memory corruption.

pointer variable may cause some other variable to be unexpectedly overwritten.
Our general approach for variable re-ordering to expose crashes is presented in

Figure 5. The approach is essentially a search algorithm that tries different variable
orderings to try to find one that leads to a crash. The input to our algorithm is
a non-crashing execution. A second, optional input is a set of memory locations
previously known to be corrupt; this information may be available if the execution
suppression approach was previously run to identify a subset of the corrupted mem-
ory, prior to invoking the variable re-ordering algorithm. This optional information
can be useful for prioritizing the variables to re-order, to try to expose crashes more
quickly. The first step of the approach is to identify the set of all variables accessed
at some point during the execution (line 1). These variables may be in global space,
on the stack, or in the heap. Only the accessed variables need to be considered as
candidates for re-ordering, since non-accessed variables in the execution cannot
lead to any crashes. Next, the global, stack, and heap memory spaces to consider
are ordered so that if any of these spaces involve known corrupted memory, they
are ordered first; ties are broken by ordering the spaces in increasing order of the
number of accessed variables associated with each space (lines 2–3). Considering
the memory spaces in this order (loop in lines 4–7) increases the chances that a
crash will be exposed quickly. This is because memory spaces already known to
involve memory corruption might be more likely to cause crashes if the variables
within these spaces are re-ordered. For the variables in each memory space, the
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set of distinct variable orderings to try are found (line 5). Heuristics may need
to be used here to limit the number of orderings in cases where there may be a
large number of potential orderings to try. In the next paragraph, we describe how
we did this for our experiments. Next, for each variable ordering, that ordering is
applied to the given execution to see if a crash occurs; if so, then the particular
ordering causing the crash is reported (lines 6–7). If no crashes occur after trying
all variable orderings, then the value NULL is returned (line 8) to indicate that no
ordering was found.

In practice, there are likely to be many possible variable orderings for a par-
ticular execution. For example, for program xv used as one of our experimental
benchmarks, it turns out that one of the executions we analyzed involved access-
ing over 400 distinct global variables. To blindly try all possible permutations of
these global variables in memory would take a very long time. Instead, we fol-
lowed a heuristic that significantly limits the number of variable orderings to try,
while still likely exposing crashes through variable re-ordering when it is possible
to do so. This heuristic is based on the observation that crashes are usually caused
by infection of address-related variables (either pointer variables, or variables that
are used to compute addresses, such as array index variables). Moreover, these
variables are most likely to become infected when they are placed immediately af-
ter buffers, because potential buffer overflows may unexpectedly overwrite these
variables. Thus, our heuristic considers only those accessed variables that are ei-
ther associated with buffers, or else are used to compute addresses. Further, these
variables are re-ordered only to ensure that different address-related variables are
placed immediately after different buffers (no need to try all possible permutations
of the variables). In our experiments, this allowed us to significantly reduce the
number of accessed variables to consider for re-ordering, and drastically reduced
the total number of variable re-orderings that needed to be performed. Moreover,
we should note that each program execution that performs variable re-ordering can
account for multiple (buffer, address-variable) pairs. For example, if there are 5
distinct buffers and 5 distinct address-variables under consideration, then there are
25 (buffer, address-variable) pairs of interest; however, we actually only need a total
of 5 executions to account for all of these, since 5 different (buffer, address-variable)
pairs can be accounted for on each execution.

For each of the global, stack, and heap spaces, we use different techniques to
re-order the associated variables. In global space, considered variables are simply
rearranged in global memory prior to program execution. One way to implement
this would be to modify a compiler to alter the layout of globals in memory. How-
ever, we followed a different approach in which we used the Valgrind dynamic
binary translation framework [Nethercote and Seward 2007] to simulate this. We
allocated our own memory space for global variables and then mapped each global
variable to a corresponding (specially-ordered) location in our own memory space.
Then we ensured than any subsequent accesses to global variables operated on our
own allocated space. In stack space, considered local variables at the start of each
function call are rearranged on the call stack by instrumenting within Valgrind to
modify the order in which they are pushed onto the call stack; references to the
local variables within the function call are then adjusted accordingly. For func-

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.



18 · Dennis Jeffrey et al.

compress42.c

void comprexx (char **fileptr) {

882: int fdin;

883: int fdout;

884: char tempname[MAXPATHLEN];

886: strcpy (tempname,*fileptr);

}

STACK OVERFLOW

Fig. 6. Selection of statements from the ncompress program to illustrate variable re-ordering.

tion calls that involve at least one accessed stack buffer, we ensure that one of
the attempted variable orderings involves placing the function call return address
immediately after a stack buffer (to encourage stack smashing when it is possible).
Also, re-ordering of local variables may involve moving them to global space, which
is semantically correct as long as a particular function is known to have at most
one activation record on the call stack at any given time. Finally, the problem of
variable re-ordering in heap space is more challenging because these variables are
dynamically allocated and deallocated during execution. For simplicity, we chose to
handle only the heap variables specially by associating a special “magic value” that
is located adjacent to each heap variable. At the time of variable deallocation or
execution termination, this magic value is checked to see if it has been overwritten;
if so, a program abort (crash) is produced indicating which program instruction
overwrote that magic value. Thus, we do not actually re-order heap variables in
memory.

The heuristics proposed in this section to make variable re-ordering practical were
done with our experimental benchmark programs in mind. These programs mostly
involve buffer overflow errors, and so we designed our heuristics to be effective in
the presence of buffer overflows. However, for other kinds of memory errors, it may
turn out that the proposed heuristics may be less effective at exposing crashes.
For instance, an uninitialized read may cause an arbitrary memory address to be
accessed, and this memory address may not be directly associated with any address-
related variables or buffers (which are the focus of our heurisitics). As a result, the
proposed set of heuristics may have to be refined or altered to be effective in the
presence of other kinds of memory errors besides buffer overflows. However, the
basic technique of altering the layout of variables in memory is a general idea that
we believe can be made practical and effective for a variety of memory errors.

Figure 6 shows a selection of statements from the ncompress program analyzed
in our study of memory errors in Section 2. In this program, the stack buffer
tempname in function comprexx is allocated with a fixed size. Thus, the strcpy()
at line 886 can overflow this buffer if fileptr, which points to an input string of
arbitrary length, is too long. For this program, one of the inputs analyzed in our
memory error study caused the buffer to be overflowed, but resulted in no crash.
This is because, on the call stack, the local integer variables fdin and fdout were
positioned in memory directly after the buffer tempname, but before the function
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call return address. In the non-crashing input, it turned out that the overflow was
relatively small and only infected the values of the two local integer variables, whose
infected values were not subsequently used in a way that could result in a program
crash. However, through variable re-ordering, one of the considered alternative
orderings is one in which the function call return address is placed immediately
after the overflowed buffer on the call stack. Under this variable ordering, the same
buffer overflow now corrupts the function call return address, leading to a crash.

3.3 The Complete Approach

Figure 7 shows our complete approach incorporating both the execution suppres-
sion technique and the variable re-ordering technique. Note that the required input
to this approach is simply a program and corresponding input that causes mem-
ory corruption. Because of variable re-ordering, it is no longer necessary for the
program input to initially result in a crash. Given a program execution involving
memory corruption (line 1), the execution suppression technique is executed (line
3). Execution suppression might terminate immediately if the initial execution does
not end in a crash. Otherwise, the execution suppression technique will proceed
until an execution results in no crash. In the case that the identified statement
is not the true first point of memory corruption, there is a chance that variable
re-ordering will expose a new crash. Thus, the variable re-ordering technique is
initiated to see whether any further crashes can be found to expose more memory
corruption (line 4). If a variable ordering causing a crash is found, then the mod-
ified execution with appropriate variable ordering to cause the crash is identified
(lines 5–6). This crashing execution is then passed once again to the execution sup-
pression technique to resume isolating the first point of memory corruption (back
at line 3). The approach iterates until finally there are no crashes in the execution
suppression technique and the variable re-ordering technique cannot find any fur-
ther crashes. At this point, the most recent statement identified by the execution
suppression technique is reported as the likely first point of memory corruption
(line 8). As described earlier for execution suppression, the output of our approach
may include more than one statement in certain cases. However, this situation did
not arise in our experiments.

There are several observations to make about our approach. First, the idea of
execution suppression is effective because it works in the general case when memory
corruption propagation occurs in a distributed fashion – with each infected memory
location potentially influencing multiple other memory locations – rather than in a
straight-line fashion. Even though suppressing some corruption may avoid one fail-
ure, there is a chance that any remaining corruption would still lead to subsequent
failures. The approach can also be effective when multiple independent memory
errors exist in a program simultaneously. On each iteration of our approach, the
algorithm gets closer to identifying the first point of memory corruption for some
memory error (the approach is not sensitive to which memory error). Once a first
point of memory corruption is found, the associated error can be fixed and then
the approach can be run again on the modified program to identify any remaining
memory errors. Also, the technique of variable re-ordering is a general technique
for exposing crashes that may work not only for buffer overflows, but also for other
types of memory corruption as well. Other techniques – such as setting and check-
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input:

Program P and test case t causing memory corruption due to a memory error.
output:

Stmt(s) identified as the first point of memory corruption in the execution
of t on P .

algorithm IsolateFirstPointOfMemoryCorruption
begin

1: E := the execution of test case t on program P ;
2: do

3: Identified Statement := run execution suppression approach using E;
4: V ariable Ordering := run variable re-ordering approach using the most

recent suppression execution performed in line 3 above;
5: if (V ariable Ordering != NULL) then

6: E := the new crashing execution using V ariable Ordering computed
in line 4 above;

7: while (V ariable Ordering != NULL);
8: report Identified Statement;
end IsolateFirstPointOfMemoryCorruption

Fig. 7. Complete approach to isolate the first point of memory corruption in an execution.

ing “magic values” at the boundaries of particular variables – are primarily useful
for only certain kinds of memory corruption such as buffer overflows.

Finally, our approach can be used to isolate root causes for a variety of memory
errors. This is because the approach views memory errors in terms of accesses to
corrupted memory locations during program execution, and this trait is shared by
most memory errors. For example, consider a dangling pointer to a deallocated
memory location. Suppose this memory location is later re-allocated and used,
but in the meantime (due to the dangling pointer), an unexpected write occurs to
this memory location, causing a crash once the infected value at that location is
accessed. In general, this type of error can be particularly tricky to find, especially
since the offending write can be associated with a completely different type than
the type associated with the access that causes the crash. However, in this situation
our approach can immediately identify the last instruction performing the offending
write. This is because our implementation (described in the next section) considers
instructions and memory accesses at the binary level, and so the associated types of
memory locations are not considered. As a result, our approach is able to quickly
identify the offending write due to the dangling pointer in this case. On the other
hand, our approach assumes that crashes are caused by memory corruption; our
approach is not designed to handle memory errors and crashes that do not involve
memory corruption. An important class of such memory errors is the memory leak,
in which allocated memory is not deallocated when it is no longer needed. This can
eventually cause a crash when the program runs out of available memory. However,
memory leak errors do not generally involve memory corruption, so our approach
is likely to be ineffective for locating the root causes of memory leaks.
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4. IMPLEMENTATION OF EXECUTION SUPPRESSION

We now describe some details for implementing execution suppression in our ap-
proach (not including variable re-ordering). First, we present a general imple-
mentation that is described at a conceptual level. Then, we discuss a software-
only implementation that makes use of the Valgrind dynamic binary translation
framework [Nethercote and Seward 2007]. Next, we discuss how we can take
advantage of some hardware support available in Itanium processors (originally
meant for deferred exception handling) to reduce overhead. Finally, we describe a
hardware-intensive implementation of execution suppression, using hardware simi-
lar to that in dynamic information flow tracking (DIFT) approaches [Dalton et al.
2007; Venkataramani et al. 2008], to further reduce overhead. We then compare
the overheads for these different implementations. All implementations consider
program executions at the binary instruction level.

4.1 General Implementation

Figure 8 shows the conceptual steps involved in any implementation of execution
suppression. The first main step is to identify the instruction instance that is re-
sponsible for defining a memory location that directly causes a crash. To enable
this, we maintain a global counter representing a dynamic instruction count (vari-
able global cnt). Every register and memory word is associated with a count value,
which represents the instruction that last defined it. Thus, for every instruction
that defines a memory word or a register, we increment global cnt and store it in
the counter associated with the defined location (line 1). To allow us to pinpoint
the instruction instance responsible for a crash, we store the instruction counts
associated with the two sources (lines 2–3). Thus, if a crash occurs at the current
instruction, we can easily identify the instruction instance responsible for defining
the memory location causing the crash.

Once we have identified the instruction instance directly causing the crash, we
re-execute the program and begin suppression starting at the appropriate instruc-
tion instance (determined by the condition at line 4). The fact that we are in
suppression mode is represented by a global suppress flag (the flag is set in line 5).
In addition to setting this flag, we also mark the target of the current instruction
as corrupt to indicate that it is corrupt/infected (line 6). Once the suppress flag is
set, each executed instruction from this point follows the suppression semantics if
either source location is marked as corrupt (line 9), otherwise it follows the regular
semantics (lines 11–12). If the suppression semantics are followed due to at least
one of the sources being marked corrupt, we simply flow the corruption bit by set-
ting the target (defined memory location) of the instruction to be corrupt. If the
regular semantics are followed, the instruction executes normally, and the target
(defined memory location) of the instruction is marked as not corrupt since it was
computed using only non-corrupt values (this step is necessary in case the target
location was previously marked as corrupt in the execution). Note that the descrip-
tion in Figure 8 shows the steps for all data transfer and arithmetic instructions.
In a control transfer function, we skip both branches if the predicate is marked
corrupt.
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Global variables:

- global_cnt: the current dynamic instruction count

- suppress_cnt1, suppress_cnt2: potential suppression points in the event of a crash

- suppress: flag that indicates if in suppression mode, initially false

Variables associated with every register and memory word:

- cnt: global count value associated with the instruction last defining this 

register/memory word

- corrupt: a boolean that is true if register/memory word is corrupt, false otherwise

Case: target = src1 op src2          // target, src1, src2 can be register or memory word

1.  target.cnt = ++global_cnt // update target to current instruction count value

2.  suppress_cnt1 = src1.cnt // note suppression points in case program crashes here

3.  suppress_cnt2 = src2.cnt

4.  if (global_cnt == suppress_cnt1 or global_cnt == suppression_cnt2)    

5. suppress = true // initiate suppression mode

6.    target.corrupt = true       // mark this first corrupted location

7. if (suppress) 

8.     if (src1.corrupt or src2.corrupt) 

9.        target.corrupt = true // suppression semantics

10.    else  

11.       target = src1 op src2      // regular semantics

12.       target.corrupt = false

Fig. 8. General implementation of execution suppression.

4.2 Software Implementation

Our approach is implemented fully in software based on the high-level system design
shown in Figure 9. Our design consists of three main components: the Valgrind
Core, the Suppression Execution Tool, and the Memory Bug Root Cause Isolator.

(Valgrind Core) The Valgrind infrastructure [Nethercote and Seward 2007] pro-
vides a synthetic CPU in software and allows for dynamic binary instrumentation
of an executable program. Valgrind includes a set of tools that perform certain
profiling and debugging tasks, but new tools can be added to the infrastructure to
perform customized instrumentation tasks.

(Suppression Execution Tool) We created the Suppression Execution Tool as a
new tool for Valgrind. The tool takes as input an executable program with an
associated input, and a set of (possibly empty) instruction instances whose effects
should be suppressed during execution (called “suppression points”). The tool then
performs the execution while simultaneously carrying out two tasks required by our
approach: tracing and execution suppression. The tracing is required to see which
memory locations are accessed and when. The execution suppression is required to
nullify the effects of the instructions during execution that involve infected memory,
when searching for the first point of memory corruption.

For tracing during a given execution, the tool records a trace of the memory
locations accessed (loaded from and stored to) during the execution. To do this,
the tool instruments each non-suppressed load and store instruction to record the
current program counter, its associated instance number, the type of instruction
(i.e., load or store), and the address of the accessed memory location. This in-
formation makes it possible to identify which accessed memory location directly
caused a memory failure, and which instruction instance last defined that mem-
ory location. The identified instruction instance can then be specified as one of
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Execution 

Tool

Valgrind
Core

Fig. 9. High-level system design for the software implementation of our approach. The bi-
directional arrows represent interactions between the system components.

the suppression points for the next execution (i.e., for the next invocation of the
Suppression Execution Tool).

For suppression during a given execution, the Suppression Execution Tool per-
forms “suppression information flow tracking” at all instructions, as well as “actual
suppression” at the appropriate load and store instructions. To do the suppression
information flow tracking, we associate every memory location and register with
a shadow location that contains information about whether or not the associated
location needs to have its effects suppressed. Initially, all shadow locations are
marked as “not suppressed.” At an instruction, if at least one of the used memory
locations or registers is marked as “suppressed,” then any defined memory locations
or registers are also marked as “suppressed.” On the other hand, if none of the used
locations are marked as suppressed, then any defined locations are marked as “not
suppressed.” Tracking this information during execution ensures that any instruc-
tions directly or indirectly influenced by a suppressed location can have their effects
suppressed as well. Memory locations are initially marked as suppressed when they
are used in an instruction instance that is specified as a suppression point.

Besides tracking suppression information, “actual suppression” is performed at
memory load and store instructions. At a store instruction instance that uses a
suppressed location, the effect of the store is suppressed by not writing to the
destination location. The effect is as if the store never occurred and the destination
location retains whatever value was originally contained there. Similarly, for a load
instruction instance that uses a suppressed location, the load is suppressed by not
reading from the source location. The effect is as if the load never occurred and the
destination register being loaded into retains whatever arbitrary data was originally
contained there. This arbitrary data will never be used since anything dependent
upon it will be suppressed as well.

There are a few special considerations to make when suppressing. If an infected
location is used in a conditional check, then we suppress the entire conditional
structure involving the infected location. For example, we would suppress an entire
“if/else” structure or an entire loop if the associated condition uses an infected loca-
tion at some point during execution. This solution is simple and worked well in the
benchmark programs we studied. In order to determine where a conditional struc-
ture ends, we relied on static analysis of the program structure at source code level,
and mapped this information back to binary level as needed; Valgrind provides facil-
ities for mapping source code statements to their associated binary instructions, as
long as the instrumented program is compiled with debugging information. Special
consideration must also be made for infection of the return address of a function
call. This must be specially handled because we cannot suppress the function re-
turn, and we cannot simply jump to an arbitrary address upon function return.
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Instead, we use profiling data from the current and other test executions to cause
the function to return to a known, valid address. Finally, infected input to system
calls must also be handled. To do this, we simply refrain from making system calls
when they involve at least one infected input value. The same approach can be
used to handle library calls if desired, although we have not currently implemented
this. We observe that suppressing system and/or library calls when they involve
at least one infected input value is an approximation. A more precise approach
would be to only suppress those instructions within the function calls that actually
depend upon the infected inputs. However, for system calls in particular, we cannot
use Valgrind to instrument instructions within a system call itself, since Valgrind
actually executes system calls on the real CPU. Thus, our approximation of omit-
ting system calls entirely when they involve at least one infected input, was done
for implementation reasons. However, this approximation was still able to lead to
good results in our experiments.

(Memory Bug Root Cause Isolator) This is the main driver module for our ap-
proach that manages the suppression re-executions and identifies the suppression
points. Given a faulty program and its associated input, this module first invokes
the Suppression Execution Tool using an empty set of suppression points to record
memory access tracing information from the test case execution. From this, a first
suppression point is identified which is passed as input to a second invocation of
the Suppression Execution Tool. If another program crash occurs, then another
suppression point is identified and another re-execution is performed. Eventually,
no crash will occur and the latest identified suppression point(s) is reported.

4.3 Using Hardware Support for Deferred Exception Handling

This implementation is motivated by the similarity of our general execution suppres-
sion approach to the hardware support provided in Itanium processors for deferred
exception handling. Itanium processors allow instructions to be executed specu-
latively. However, speculative instructions can cause exceptions, which should be
reported only when any non-speculative instruction uses any speculatively-produced
values. To implement this, whenever a speculative instruction causes an exception,
the target (defined register) of the instruction is tagged with a special value, known
as NaT (“not a thing”). The flow of the NaT has to be propagated as the program
executes. Finally, when a non-speculative instruction uses any of the values tagged
as NaT, an exception must be reported. To implement this, Itanium processors
associate a NaT bit with every register; the hardware automatically propagates
NaT bits for register-based instructions.

We observe that the NaT bit is analogous to the corrupt bit in our general
implementation, and the propagation semantics of the NaT bit is identical to the
propagation semantics of our corrupt bit. Thus, we take advantage of the NaT
bits and the propagation hardware for implementing execution suppression. This
essentially means that lines 7–12 in our general implementation (Figure 8), are
now automatically taken care of by the hardware. This results in significantly
reduced overhead for the execution suppression approach. However, since there
are no NaT bits associated with memory words in the Itanium processor, we still
require software implementation for the propagation of corrupt bits for memory
instructions.
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Itanium Processor + Augmentation

(NaT bit propagation for registers + memory)

Processor + Register NaTs + Memory NaTs + 

Propagation HW 

Registers    NaTs Cache       NaTs Bus  NaTs Memory      NaTs

Residual Instrumentation

1.  Maintaining cnts for all instructions.

Itanium Processor (without augmentation)

(NaT bit propagation for registers)

Processor + Register NaTs + Propagation HW 

Registers       NaTs

Residual Instrumentation:

1.  Maintaining cnts for all instructions

2.  Propagation for memory instructions

Fig. 10. Itanium processor with and without augmentation.

4.4 Memory Augmentation Support

In this approach, we augment the Itanium processor with additional support so
that propagation of NaT bits is handled for memory instructions as well. To enable
this, we associate NaT bits with every memory word; this results in the addition
of a NaT bit for every memory word in main memory, as well as for every word in
caches and in the external data bus. This further reduces the execution overhead.
Figure 10 shows the architecture for the Itanium processor both with and without
this augmentation.

4.5 Overhead Comparison

We compared the overheads of the execution suppression approach for each of our
implementations. While our actual software implementation using the Valgrind
infrastructure is targeted toward x86 machines, our other implementations were
implemented in a simulator. We used the SESC simulator targeting the MIPS
instruction set. Our simulations targeted an in-order processor with a 16-KB 4-
way L1 cache and a 512-KB 2-way L2 cache, with a memory latency of 250 cycles.
We implemented support for handling deferred exceptions into the simulator, in
addition to supporting NaT bits for both register and memory locations. To obtain
a fair comparison between all approaches, we ran the software implementation in the
simulator as well (the regular Valgrind-based implementation incurs an overhead
of around 50x – 100x, but this is because Valgrind is designed for ease of writing
complex instrumentation tools, and not for optimizing runtime performance). We
performed instrumentation by modifying gcc-4.1 to generate the instrumentation
code.

Figure 11 shows the overhead for all three approaches normalized to original
execution time, for one run of each of the programs analyzed in our memory cor-
ruption study in Section 2. The right-most entry in the graph shows the average
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Fig. 11. Execution time overheads for different execution suppression implementations.

results. As expected, the software-only overhead is highest, with 7.2x overhead on
average. Using the deferred exception hardware support available in the Itanium
processor, we can significantly reduce this overhead to 2.7x on average. Finally,
using the memory augmentation approach, we can further reduce this overhead to
an average of 1.8x.

5. EXPERIMENTS

For our experiments, we used the same set of memory error programs and inputs
described previously in Tables I and II in Section 2. First, we considered every
crashing input and executed the basic execution suppression approach without vari-
able re-ordering. The results are shown in Table III. For each crashing input, the
table shows the total number of program executions required by the execution sup-
pression approach to isolate the first point of memory corruption (“# Exec. Req.”).
Also, the statement identified by the approach is reported (“Identified Statement”),
along with the dependence distances from the identified statement to the first point
of memory corruption (“1st Corrupt”), and from the identified statement to the ac-
tual memory error (“Error”). For example, in the crashing execution for program
man, a total of 2 program executions are required by the execution suppression ap-
proach: the first is the original crashing execution, and the second is a suppression
re-execution that resulted in no further crashes. A statement was identified that
happened to be 1 dependence edge away from the first point of memory corruption,
and 2 edges away from the error. Although the first point of memory corruption
was missed in this case, the execution suppression approach was able to precisely
identify the first point of memory corruption in the executions for all other inputs
(even for programs ncompress and polymorph where crashes occurred at two differ-
ent program points). As was observed previously in our memory corruption study
and as is shown in Table III, these identified statements were either at, or relatively
close to, the memory errors.
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Table III. Suppression-only results: experimental results when running our approach with
only execution suppression (no variable re-ordering), using different crashing inputs on our sub-

ject programs.

Program Name Input Type # Exec. Identified Dep. Distance To...
Req. Statement 1st Corrupt Error

gzip-1.2.4 Crash Point 1 2 gzip.c: 828 0 0
man-1.5h1 Crash Point 1 2 manfile.c: 243 1 2
bc-1.06 Crash Point 1 2 storage.c: 177 0 1
pine-4.44 Crash Point 1 2 bldaddr.c: 7126 0 5
mutt-1.4.2.1 Crash Point 1 3 utf7.c: 192 0 1

ncompress-4.2.4
Crash Point 1 2 compress42.c: 886 0 0
Crash Point 2 4 compress42.c: 886 0 0

polymorph-0.4.0
Crash Point 1 2 polymorph.c: 198 0 1
Crash Point 2 3 polymorph.c: 193 0 1

xv-3.10a Crash Point 1 4 xvbmp.c: 167 0 2
tar-1.13.25 Crash Point 1 2 incremen.c: 180 0 0
tidy-34132 Crash Point 1 2 parser.c: 854 0 0
cvs-1.11.4 Crash Point 1 2 server.c: 992 0 0

Program man was the only case in which our execution suppression approach was
not able to precisely identify the first point of memory corruption. In this case, the
approach terminated prematurely because no crash occurred even though memory
corruption was still present in the execution. As a result, we tried using our com-
plete approach that includes variable re-ordering to see if the results for man could
be improved. Indeed, as is shown in Table IV, variable re-ordering allows us to pre-
cisely identify the first point of memory corruption in the execution for man. This is
because variable re-ordering exposes one additional crash in the execution that was
not originally observed when running the suppression-only approach. In this case,
forcing an array index variable to be located in memory directly after an overflowed
buffer causes a new crash to occur, revealing some additional corrupted memory
that allows the approach to precisely find the first point of memory corruption.

Another important feature of variable re-ordering is that it enables our execution
suppression approach to be applicable to other inputs that trigger memory corrup-
tion but do not initially result in a program crash. As a result, Table IV also shows
the results of running our complete approach using the seven non-crashing inputs
analyzed earlier in our memory corruption study in Section 2. Without variable re-
ordering, we would not have been able to apply our execution suppression approach
to these non-crashing inputs.

The format of Table IV is the same as Table III, except the column “# Exec.
Req.” has been replaced by two columns: “# Crash Exposed”, indicating how
many additional crashes were found through the use of variable re-ordering before
our approach terminated (1 in all cases except for gzip); and “# Var. Order Ex.”,
indicating the maximum number of variable re-ordering executions required in order
to find the exposed crash (in the case of gzip, the number of re-ordering executions
in order to discover that no crash could be exposed). In the figure, the number
of required variable re-ordering executions is not listed for programs bc, pine, and
mutt. This is because these three benchmarks involve heap-buffer overflows, and
as was described previously in section 3.2, we handle heap buffers differently and
do not perform variable re-ordering with heap variables.

It turns out that for all of the non-crashing inputs except gzip, our approach was
able to find a particular variable re-ordering that exposed a crash in the execution.
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Table IV. Complete approach (execution suppression with variable re-ordering) re-
sults: experimental results when running our complete approach, using different inputs on our

subject programs.

Program Name Input Type # Crash # Var. Identified Dep. Distance To...
Exposed Order Ex. Statement 1st Corrupt Error

gzip-1.2.4 No Crash 0 15 — — —
man-1.5h1 Crash Pt. 1 1 18 man.c: 977 0 1
bc-1.06 No Crash 1 — storage.c: 177 0 1
pine-4.44 No Crash 1 — bldaddr.c: 7126 0 5
mutt-1.4.2.1 No Crash 1 — utf7.c: 192 0 1
ncompress-4.2.4 No Crash 1 5 compress42.c:886 0 0
polymorph-0.4.0 No Crash 1 6 polymorph.c:198 0 1
xv-3.10a No Crash 1 135 xvbmp.c: 168 0 2

In all of these cases, this made the execution suppression approach applicable, which
in turn resulted in the first point of memory corruption being precisely identified
without the need to expose any more crashes through variable re-ordering. For
gzip, the initial input did not crash because a global buffer was overflowed by
1 position, erroneously writing the value NULL into another global variable that
happened to already have value NULL. However, through manual inspection we
discovered that none of the other global variables were accessed in the rest of the
execution in such a way that they could have resulted in a crash if they had been
infected. As a result, it would not have been possible for our variable re-ordering
technique to force a crash to happen in this particular case.

In order to expose a crash through variable re-ordering, the maximum number
of program executions required to achieve this for each benchmark ranged from 5
executions for program ncompress, to 135 executions for program xv. The reason xv

requires so many distinct program executions in this case, is because the particular
execution under consideration happens to access 202 different global buffers and 67
different address-related variables (much higher than in all the other benchmarks).
It therefore takes quite a few executions in this case to group these variables in
different ways to try to expose crashes.

Across all of our benchmark programs, the actual time required to execute each
program given our suppression and variable re-ordering implementations never took
more than a few seconds per execution. When considering the number of executions
required for variable re-ordering, this translated to total runtime ranging from sev-
eral seconds (for ncompress and polymorph), to several minutes (xv was the worst
case that required about 5 minutes to run). We believe this timing is reasonable
in a debugging context. However, it is clear that the scalability of our approach
on larger benchmarks will be determined by the variable re-ordering component.
This is because variable re-ordering can potentially require many more program
executions to try to expose new crashes, as compared to the number of suppression
executions. It remains to be seen how variable re-ordering can scale to programs
with larger sets of accessed variables and buffers. The set of heuristics used in
the current work to make variable re-ordering feasible may need to be refined to
make the technique more practical and useful when more variables and buffers are
present.
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6. RELATED WORK

Locating Memory Errors. We first proposed the idea of execution suppression
for locating memory errors in [Jeffrey et al. 2008b]. In that work, the basic execu-
tion suppression approach was described, and some experimental results were given
that highlighted the effectiveness of execution suppression in locating memory er-
rors that were associated with a set of crashing program executions. The current
work extends that paper and is much more comprehensive. In the current work, we
consider a superset of the subject programs analyzed in the prior work, including a
few new programs with even more complicated memory corruption propagation pat-
terns. We studied the memory errors in our subject programs in detail, and gained
some valuable insights into the nature of memory errors and memory corruption
propagation. These observations motivated not only our original execution sup-
pression idea, but also the new variable re-ordering idea that significantly improves
the effectiveness and applicability of execution suppression. In the current work
we also describe and compare different software and hardware implementations of
execution suppression.

The execution suppression approach attempts to isolate only the first point of
memory corruption in a crashing execution, which is likely to be very close to the
memory error. Other approaches for locating code involving memory errors can
potentially report a large set of program statements that must be examined by
hand until the error is found. For example, static slicing [Weiser 1984] identifies
a subset of program statements that may influence the value of a variable at a
program location. Dynamic slicing [Agrawal and Horgan 1990; Korel and Laski
1988; Zhang et al. 2006b] finds the statements that actually do influence a variable
value in a particular execution. The related concept of Relevant Slicing [Agrawal
et al. 1993; Gyimothy et al. 1999] has also been studied. In general, program
slicing identifies a set of statements that can potentially represent many chains of
dependencies in a program, from which it may take considerable time to find the
error.

Valgrind [Nethercote and Seward 2007] and Purify [Hastings and Joyce 1992] can
be used to detect memory errors, but are restrictive in that they look for particular
kinds of memory errors. In one sense, our approach is more general because it
can be used to locate any errors involving corrupted memory. On the other hand,
Valgrind and Purify can detect some errors that may not lead to crashes, such as
memory leaks. CCured [Necula et al. 2002] is an approach for verifying type-safety
of pointers both statically and during runtime, which can be used to find potential
memory errors. However, their approach requires modifications to program source
code, which is not required by our approach.

There has been a variety of work on techniques for detecting buffer overflows. For
example, Write Integrity Testing (WIT) [Akritidis et al. 2008] uses a combination
of static analysis and runtime instrumentation to ensure that instructions do not
write to unintended storage locations, and control does not transfer to unintended
targets; the average space and runtime overhead of their approach is around 10%.
Ruwase and Lam’s CRED tool [Ruwase and Lam 2004] performs bounds-checking
in order to detect buffer overflow attacks, incurring an overhead of 1% to 130%.
While these techniques incur relatively low overhead, the main difference compared
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to our approach is that the bounds-checking approaches are designed specifically to
capture out-of-bounds memory accesses. On the other hand, buffer overflows are
only one type of memory error that can be located using execution suppression.
Other errors that may not involve out-of-bounds memory accesses, such as double
frees and uninitialized reads, can also be located by our approach.

Tolerating Memory Errors. Although our current work focuses on locat-
ing memory errors, there has been significant research on tolerating the effects of
memory errors. These techniques can be useful especially for deployed software, in
which it is often vital to avoid program failures. The Ph.D. dissertation of Michael
Bond [Bond 2008] describes two techniques for tolerating memory leak errors. The
first technique, Melt [Bond and McKinley 2008], identifies stale objects that a pro-
gram is not accessing, stores these stale objects to disk, and activates these objects
only if a program subsequently accesses them. The second technique, leak prun-
ing [Bond and McKinley 2009], predicts leaked objects based on data structure
usage patterns, and then reclaims these objects at runtime; an error is thrown if
any reclaimed object is later accessed. Other recent work on detecting memory
leaks has resulted in the development of Hound [Novark et al. 2009], a runtime
system that helps identify the sources of memory leaks and bloat in C and C++

applications, that results in no false positives.

There has been recent work on protecting against heap-based memory errors to
improve program reliability. DieHard [Berger and Zorn 2006] provides memory
safety with high probability by randomizing the location of objects in a large heap
and by replicating execution. The goal of DieHard is the opposite of variable
re-ordering: whereas DieHard spaces out heap blocks to reduce the likelihood of
crashes, variable re-ordering changes the layout of variables in memory in order to
expose new crashes. Archipelago [Lvin et al. 2008] allocates heap objects far apart
in virtual address space to combat buffer overflows, and protects against dangling
pointer errors by preserving freed objects after they are freed. Exterminator [Novark
et al. 2007] pinpoints heap-based memory errors and derives runtime patches to
avoid them in the current and subsequent executions. Unlike these approaches that
are targeted toward heap-based memory errors, our current work targets a more
general class of memory errors that involve corrupted memory, which may involve
memory other than the heap. Also, our work seeks to locate errors after they cause
a failure, rather than to tolerate their effects during runtime.

While our current work attempts to isolate memory corruption in an execution,
the Samurai system [Pattabiraman et al. 2008] provides safeguards against corrup-
tion of critical data through a memory model called critical memory. Their system
uses replication and forward error correction to ensure that non-critical updates do
not corrupt critical data. However, the system requires that critical memory be
explicitly identified by a programmer.

The idea of data diversity has been proposed [Ammann and Knight 1988] to
achieve fault tolerance. Data diversity observes that when a program fails due to
certain input, in some cases the program failure can be avoided if the program input
is changed in some minor way (according to the program specification). Further,
if multiple copies of the same program are executed in parallel on slightly-different
input sets, then a voting scheme can be applied to select the program output that
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is most likely to be correct. The variable re-ordering component of our approach
is related to the concept of data diversity, because re-ordering involves making
minor changes to the relative ordering of variables in memory, prior to executing
the program. However, variable re-ordering only changes the layout of variables in
memory, not the actual input values to the program.

Tallam et. al. [Tallam et al. 2008] described a technique for avoiding program
failures that uses the concept of safe execution perturbations. The key idea is to
use a checkpointing/logging mechanism to capture a program execution into an
event log. When a failure occurs, the system searches for a perturbation of the
execution that will avoid the failure, by altering the event log and then replying the
execution. If a failure-avoiding perturbation is found, it is recorded as a dynamic
patch that can be applied to future executions to prevent a repeat of the failure.

General Fault Localization. A variety of other approaches for locating errors
in software have been proposed that are not specifically designed to handle memory
errors. These approaches do not explicitly account for the propagation of corrupted
memory that can result due to memory errors.

Predicate Switching [Zhang et al. 2006a] attempts to isolate erroneous code by
identifying “critical” predicates whose outcomes can be altered during a failing run
to cause it to become successful. However, critical predicates may not be found in
all cases. Moreover, once a critical predicate is found, then it may still be difficult
to pinpoint the error based upon the critical predicate. A critical predicate may be
used to identify a subset of statements that might be likely to contain the error,
but like for slicing, this set of statements may not uniquely identify the error. Our
approach seeks to identify a single statement that is highly likely to be at, or near
to, the error.

In Delta Debugging, failure-inducing input is identified [Zeller and Hildebrandt
2002] that allows for the computation of cause-effect chains for failures [Zeller 2002],
which can in turn be linked to faulty code [Cleve and Zeller 2005]. This approach
involves substituting state (the values of variables) between passing and failing
runs. A related Value Replacement idea was proposed [Jeffrey et al. 2008a] that
attempts to replace the values used at certain statement instances with alternative
sets of values; if any value replacement causes a failing run to become successful,
then the statement associated with the value replacement may be erroneous. The
Nearest Neighbor approach [Renieris and Reiss 2003] compares the spectra for two
similar executions (one successful and one failing) to identify the most suspicious
parts of a program. Tarantula [Jones et al. 2002] is a statistical approach that ranks
program statements according to suspiciousness values determined by how many
failing versus passing tests exercise each statement. In general, these approaches
analyze the information from multiple test cases to try to identify likely faulty
statements in a program. Our approach, in contrast, considers only a single failing
execution and tries to isolate the first point of memory corruption by repeatedly
revealing and suppressing additional memory corruption in the execution.

Exposing errors. Our variable re-ordering idea can be viewed as a technique
for exposing errors in software (with a specific focus on causing a program to crash).
The problem of exposing software errors has been extensively studied. For exam-
ple, Eclat [Pacheco and Ernst 2005] infers an operational model of correct program
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behavior and identifies inputs that violate this model. ESC/Java [Flanagan et al.
2002] identifies certain programming errors at compile-time using an annotation
language. Check ’n’ Crash [Csallner and Smaragdakis 2005] derives error condi-
tions statically and then attempts to generate test cases to dynamically verify the
existence of errors. Daikon [Ernst et al. 2001] and DIDUCE [Hangal and Lam
2002] automatically extract program invariants and monitor for violations during
execution. Other error-exposing approaches are designed for specific kinds of errors.
CP-Miner [Li et al. 2006] searches for copy-paste errors in large-scale software, and
EXPLODE [Yang et al. 2006] identifies data integrity errors in storage systems.

Hardware Support for Debugging. There has been some work on providing
hardware support for techniques to aid in debugging memory errors. AccMon [Zhou
et al. 2004] describes hardware support for an invariant-based approach that iden-
tifies program instructions that typically access different memory locations. Heap-
Mon [Shetty et al. 2006] takes advantage of extra cores to improve the efficiency of
error monitoring for heap memory errors. PathExpander [Lu et al. 2006] provides
support to increase the path coverage of dynamic error-detection tools by executing
non-taken paths in a sandbox environment. This allows for error detection in paths
that would have otherwise not been analyzed. FlexiTaint [Venkataramani et al.
2008] and Raksha [Dalton et al. 2007] are recent works describing hardware sup-
port for dynamic information flow tracking (DIFT). In our work, we also evaluate
hardware support for the execution suppression approach, which uses ideas similar
to DIFT. Recent work [Chen et al. 2008] describes how deferred exception handling
in the Itanium processor can be used to perform DIFT efficiently.

7. CONCLUSIONS

This paper presented an automated approach for assisting developers in locating
memory errors in software. The approach iteratively identifies and suppresses the
effects of known corrupted memory locations in a crashing execution, until the first
point of memory corruption in the execution is identified. This point is likely to be
at, or near to, the error. We also showed how the idea of variable re-ordering can
be used to expose crashes due to memory corruption in cases where crashes may
not otherwise occur. By combining the ideas of execution suppression and variable
re-ordering, our approach is both general and highly effective.

To motivate the development of our approach, we presented a detailed study of
11 real-world benchmark programs containing known memory errors that involve
varying degrees of memory corruption propagation. We conducted an experimen-
tal analysis of our approach using the 11 benchmark programs. In all cases, our
approach was able to precisely identify the first point of memory corruption in an
execution, and this point was always either at, or very close to, the memory error.
Finally, we discussed software and hardware implementation issues for execution
suppression (not including variable re-ordering), and we compared the overheads
of several different implementations. We were able to reduce the average overhead
of a software-only implementation from 7.2x to 1.8x by adding hardware support.
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