
Whole Execution Traces and
Their Applications

XIANGYU ZHANG and RAJIV GUPTA
University of Arizona

Different types of program profiles (control flow, value, address, and dependence) have been col-
lected and extensively studied by researchers to identify program characteristics that can then be
exploited to develop more effective compilers and architectures. Because of the large amounts of
profile data produced by realistic program runs, most work has focused on separately collecting
and compressing different types of profiles. In this paper, we present a unified representation of
profiles called Whole Execution Trace (WET), which includes the complete information contained
in each of the above types of traces. Thus, WETs provide a basis for a next-generation software tool
that will enable mining of program profiles to identify program characteristics that require under-
standing of relationships among various types of profiles. The key features of our WET representa-
tion are: WET is constructed by labeling a static program representation with profile information
such that relevant and related profile information can be directly accessed by analysis algorithms
as they traverse the representation; a highly effective two-tier strategy is used to significantly
compress the WET; and compression techniques are designed such that they minimally affect the
ability to rapidly traverse WET for extracting subsets of information corresponding to individual
profile types as well as a combination of profile types. Our experimentation shows that on, an
average, execution traces resulting from execution of 647 million statements can be stored in 331
megabytes of storage after compression. The compression factors range from 16 to 83. Moreover the
rates at which different types of profiles can be individually or simultaneously extracted are high.
We present two applications of WETs, dynamic program slicing and dynamic version matching,
which make effective use of multiple kinds of profile information contained in WETs.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Compilers,
debuggers, optimization; C.4 [Performance of Systems]: Measurement Techniques

General Terms: Algorithms, Measurement, Performance

Additional Key Words and Phrases: Profiling, control flow, dependences, addresses, values,
compression

A preliminary version of this paper appeared in MICRO 2004.
Supported by grants from Microsoft, IBM, Intel, and NSF grants CCR-0324969, CCR-0220262,
CCR-0208756, and EIA-0080123 to the University of Arizona.
Authors’ address: University of Arizona, Department of Computer Science, Tucson, AZ 85721;
email: {xyzhang,gupta}@cs.arizona.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 1544-3566/05/0900-0301 $5.00

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005, Pages 301–334.

302 • X. Zhang and R. Gupta

1. INTRODUCTION

A software tool for collection, maintenance, and analysis of detailed program
profiles for realistic program runs can greatly benefit compiler and architec-
ture researchers. This is because program profiles can be analyzed to identify
program characteristics that can then be exploited by researchers to guide the
design of superior compilers and architectures. The key challenge that one
faces in developing a software tool is that the amounts of profile information
generated during realistic program runs can be extremely large. One approach
to reducing the amount of profile data is by using lossy compression or sum-
marization techniques. Lossy compression of variety of profiles has been car-
ried out including, dynamic dependence profiles in Agrawal and Horgan [1990],
dynamic control flow in Ball and Larus [1996], and dynamic values in Calder
et al. [1997]. Although, for many, applications summarization is adequate, for
others they have proved to be inadequate. For example, it has been shown that
summarization of dynamic data dependences results in high levels of inaccu-
racy in dynamic data slices [Zhang et al. 2003].

Researchers have developed lossless compression techniques to limit the
memory required to store different types of profiles. These techniques for
several different types of profiles have been separately studied. Compressed
representations of control flow traces can be found in Larus [1999] and Zhang
and Gupta [2001]. These profiles can be analyzed for presence of hot program
paths or traces [Larus 1999], which have been exploited for performing path-
sensitive optimizations [Young and Smith 1998; Ammons and Larus 1998;
Bodik et al. 1998; Gupta et al. 1998] and path-sensitive prediction techniques
[Jacobson et al. 1997]. Value profiles have been compressed using value pre-
dictors [Burtscher and Jeeradit 2003; Burtscher 2004] and used to perform
code specialization [Calder et al. 1997], data compression [Zhang and Gupta
2002], value speculation [Lipasti and Shen 1996], and value encoding [Yang
and Gupta 2002]. Address profiles have also been compressed [Chilimbi 2001]
and used for identifying hot data streams that exhibit data locality, which can
help in finding cache-conscious data layouts [Rubin et al. 2002] and developing
data-prefetching mechanisms [Chilimbi and Hirzel 2002; Joseph and Grunwald
1997]. Dependence profiles have been compressed in Zhang and Gupta [2004]
and used for computation of dynamic slices [Zhang and Gupta 2004], study-
ing the characteristics of performance-degrading instructions [Zilles and Sohi
2000], and studying instruction isomorphism [Sazeides 2003].

Each of the above works has studied the handling of a single type of profile.
The next step in profiling research is to develop a software tool that unifies the
maintenance and analysis of all of the above types of profiles. An effective tool
cannot be created by simply using the above-mentioned techniques in combi-
nation. If we use the above techniques as is, the stream of values representing
control flow, values, and addresses will be separately compressed. If a request is
now made for the profile information related to the execution of a statement, we
will have to search through each of the compressed streams to gather this infor-
mation. In other words, the above representation will not provide easy access
to related profile information. The goal of designing a unified representation

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

Whole Execution Traces and Their Applications • 303

is to overcome the above drawback and enable the understanding of
program behavior involving interactions among the different program char-
acteristics captured by these profiles. This will lead to exploration of advanced
compiler and architecture techniques that simultaneously exploit multiple
types of profiles.

In this paper we present an unified representation and show that it is pos-
sible to maintain and make use of such a representation. There are three key
challenges that are addressed in this paper in developing such a unified repre-
sentation, which we call whole execution traces (WETs). First, WETs, provide an
ability to relate different types of profiles (e.g., for a given execution of a state-
ment, we can easily find the control flow path, the data dependences, values,
and addresses involved). This goal is achieved by designing WET so it is con-
structed by labeling a static program representation with profile information,
such that relevant and related profile information can be directly accessed by
analysis algorithms as they traverse the representation. Second, we develop an
effective two-tier compression strategy to reduce the memory needed to store
WETs. First, we use customized compression techniques for different types of
profiles and then we use a generic compression technique to compress streams of
values corresponding to all types of profile information. Third, the compression
is achieved in such a way that WETs can be rapidly traversed to extract subsets
of information corresponding to individual profile types (i.e., control flow, value,
address, and dependence) as well as subsets of related information, including
all types of profiles (e.g., dynamic slices of WETs corresponding to computa-
tion of a value). The customized compression schemes are designed such that
they minimally affect the cost of traversing the WETs. The generic compres-
sion scheme is designed to enable bidirectional traversal, i.e., given a position
of a value in the stream, it is possible to find the immediately preceding and
following values with equal ease. In Burtscher and Jeeradit [2003], it is shown
that value predictor-based compression techniques outperform other generic
compression techniques, such as gzip, bzip, and Sequitur [Nevil-Manning and
Witten 1997]. In comparison to Burtscher and Jeeradit [2003], our generic com-
presion scheme supports bidirectional traversability while, at the same time,
having similar compression ability.

We have implemented the unified WET representation using the Trimaran
compiler infrastructure [Trimaran 1997]. Extrapolation from our experimen-
tal results shows that whole execution trace corresponding to a program run
involving execution of 3.9 billion intermediate-code statements can be stored
in 2 gigabytes of memory, which is commonly available on machines today.
Being able to hold profiles of a few billion instructions in memory is a criti-
cal milestone because other works have shown that behaviors of long program
runs can be effectively characterized by considering smaller program runs or
smaller segments of longer program runs that are few billion instructions long
[KleinOsowski and Lilja 2002; Perelman et al. 2003]. In KleinOsowski and
Lilja [2002], program inputs with smaller program runs that effectively char-
acterize program behavior were identified for Spec benchmarks. In Perelman
et al. [2003] it was shown that by appropriate selection of smaller segment of a

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

304 • X. Zhang and R. Gupta

longer program run, program’s execution can be effectively characterized. We
have also evaluated the ease and, hence, the speed at which subsets of profile
information can be extracted from WET in response to a variety of queries. Our
results show that these queries, which ask for related profile information, can
be responded to rapidly. We also present two applications of WETs, dynamic
program slicing and dynamic version matching, which make effective use of
multiple kinds of profile information contained in WETs.

The rest of the paper is organized as follows. Section 2 describes the uncom-
pressed WET representation. Section 3 presents first tier-compression methods
for control flow, data dependences, values, and addresses. The key characteris-
tic of first-tier compression is that it does not negatively impact the speed with
which the profile information can be accessed. Section 4 presents a generic
scheme for compressing a stream of values. This scheme is used to compress
the stream of values corresponding to all types of profile information. Section 5
presents results of experiments aimed at measuring the space and time costs of
storing and using WETs. In Section 6, we present two applications of WETs—
dynamic program slicing and version matching. Conclusions are given in
Section 7.

2. WHOLE EXECUTION TRACE

The WET is a unified representation that holds full execution history including,
control flow, value, address, and dependence (data and control) histories. WET
is essentially a static representation of the program that is labeled with the
dynamic profile information. This organization provides a direct access to all
relevant profile information associated with every execution instance of every
statement. A statement in WET can correspond to a source-level statement,
intermediate-level statement, or a machine instruction. In our discussion we
assume that each statement is an intermediate-code statement.

In order to represent profile information of every execution instance of every
statement, it is clearly necessary that we are able to distinguish between execu-
tion instances of statements. The WET representation we develop distinguishes
between execution instances of a statement by assigning unique timestamps to
them. To generate the timestamps, we maintain a time counter that is initial-
ized to one and each time a basic block is executed. The current value of time is
assigned as a timestamp to the current execution instances of all the statements
within the basic block; time is then incremented by one. Timestamps assigned
in this fashion essentially allow us to remember the ordering of all statements
executed during a program execution. The notion of timestamps is also key to
representing and accessing the dynamic information contained in WET.

The WET is essentially a labeled graph whose form is defined next. A label
associated with a node or an edge in this graph is an ordered sequence where
each element in the sequence represents a subset of profile information asso-
ciated with an execution instance of a node or edge. The relative ordering of
elements in the sequence corresponds to the relative ordering of the execution
instances. We denote a sequence of elements e1, e2. . . as [e1e2 . . .]. For ease of
presentation we assume that each basic block contains one statement, i.e., there
is one-to-one correspondence between statements and basic blocks.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

Whole Execution Traces and Their Applications • 305

Definition: The Whole Execution Trace (WET) is represented in form of a
labeled graph G[N , E(CF, CD, DD)], where N is the set of statements in the
program. Each statement s ∈ N is labeled with a sequence of ordered pairs:
[< ts, vals >] where statement s was executed at time ts and produced the value
vals. Note that, in general, when a node contains multiple statements, instead
of a single value in each ordered pair, we have a set of values one each for every
statement in the basic block.

E is the set of edges. The edges are bidirectional so that the graph can be
traversed in either direction. (s → d) denotes direction of the edge that takes
us from the source s of the dependence to the destination d of the dependence,
while (s ← d) is used to denote the reverse direction. The edges are subdivided
into three disjoint categories.

� DD is the set of data dependence edges in the program. Each edge (sdd → s) ∈
DD is labeled with a sequence of ordered pairs: [< ts, tsdd >], where statement
s was executed at time ts using an operand whose value was produced by
statement sdd at time tsdd.

� CD is the set of control dependence edges in the program. Each edge
(scd → s) ∈ CD is labeled with a sequence of ordered pairs: [< ts, tscd >],
where statement s was executed at time ts as a direct result of the outcome
of predicate scd executed at time tscd.

� CF is the set of control flow edges in the program. These edges are unlabeled.

The example in Figure 1 illustrates the form of WET. A control flow graph and
control flow trace of one possible execution is given in Figure 1a. Since the entire
WET for the example is too large, we show the subgraph of WET that captures
the profile information corresponding to the executions of node 8. The label on
node 8 says that statement 8 is executed five times at timestamps 7, 37, 57, 77,
and 97 producing values c, d, d, d, and c, respectively. Executions of statement
8 are control dependent upon statement 6 and data dependent on statements
4, 2, and 15. Therefore, CD and DD edges are introduced whose labels express
the dependence relationships between execution instances of statements 6, 4,
2, and 15 with statement 8. Unlabeled control flow edges connect statement 8
with its predecessor 6 and successor 9 in the control flow graph.

2.1 Queries

Next we show how WET can be used to respond to a variety of useful queries
for subsets of profile information. The ability to respond to these queries

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

306 • X. Zhang and R. Gupta

Fig. 1. An example of (a) CFG and its control flow trace; (b) WET subgraph of node 8.

demonstrates that the WET representation incorporates all of the control flow,
data and control dependence, value, and address profile information.

2.1.1 Control Flow Path. The path taken by the program can be gener-
ated from WET using the combination of static control flow edges (CF) and the
sequences of timestamps associated with nodes (N). If a node is labeled with
< t, − >, the node that is executed next must be labeled with < t + 1, − >. Us-
ing this observation, we can generate the complete path or part of the program
path starting at any execution point.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

Whole Execution Traces and Their Applications • 307

2.1.2 Values and Addresses. The value and address profiles are captured
by the values contained in [< t, v >] sequences associated with nodes. Some
values represent data while others represent addresses the distinction can be
made by examining the use of the values. Values produced by executions of a
statement can be obtained by simply examining its [< t, v >] sequence. Ad-
dresses corresponding to executions of a specific statement can be obtained
by simply examining the [< t, v >] sequences of statements that produce the
operands for the statement of interest. On the other hand, if we are interested
in examining the sequence of values (addresses) that are produced (referenced)
during program execution, we need to follow the control flow path taken as
described earlier and then examine the relevant < t, v > pair of each node as
it is encountered.

2.1.3 Data and Control Dependences. All instances of data and control
dependences are captured explicitly by labeled edges (CD and DD). Chains
of data dependences, control dependences, or combinations of both types of
dependences can all be easily found by traversing the WET.

We have shown the organization of all types of profile data in the WET
representation, which allows a variety of queries to be responded to with ease.
Given the large amounts of profile information, the sizes of WETs are expected
to be extremely large. Therefore the next challenge we face is to compress the
WETs in a manner that does not destroy the ease or efficiency with which
queries for information can be handled. In the next two sections we present a
two-tier compression strategy that accomplishes these goals.

3. CUSTOMIZED COMPRESSION

The first tier of our compression strategy focuses on developing separate com-
pression techniques for each of the three key types of information labeling in the
WET graph: (a) timestamps labeling the nodes; (b) values labeling the nodes;
and (c) timestamp pairs labeling the dependence edges. The compression is
accompanied with minimal impact on the ease and efficiency of accessing the
profiles. These compression strategies essentially aim to minimize the redun-
dancy in the profile information.

3.1 Timestamps Labeling Nodes

The total number of timestamps generated is equal to the number of basic
block executions and each of the timestamp labels exactly one basic block. We
can reduce the space taken up by the timestamp node labels as follows. Instead
of having nodes that correspond to basic blocks, we create a WET in which nodes
can correspond to Ball–Larus paths [Ball and Larus 1996] that are composed of
multiple basic blocks. Since a unique timestamp value is generated to identify
the execution of a node, now the number of timestamps generated will be fewer.
In other words when a Ball–Larus path is executed, all nodes in the path share
the same timestamp. By reducing the number of timestamps, we save space
without having any negative impact on the traversal of WET to extract the
control flow trace.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

308 • X. Zhang and R. Gupta

Fig. 2. Reducing number of timestamps.

As an example, the execution shown in Figure 1a involves 103 executions of
basic blocks and, hence, generates 103 timestamps. However, the entire execu-
tion can be broken down into a total of 10 executions of four distinct Ball–Larus
paths, as shown in Figure 2. Thus, if we use the transformed graph shown in
Figure 2 where edges represent flow of control across Ball–Larus paths, we only
need to generate 10 timestamps as shown.

3.2 Values Labeling Nodes

It is well known that subcomputations within a program are often performed
multiple times on the same operand values; this observation is the basis for
widely studied techniques for reuse based redundancy removal [Sazeides 2003].
Next we show how the same observation can be exploited in devising a com-
pression scheme for sequence of values associated with statements belonging
to a node in the WET.

We describe the compression scheme using the example below in which the
value of x is an input to a node and using this value, the values of y and z are
computed. Further assume that while the node is executed four times, only two
unique values of x (x1 and x2) are encountered in the value sequence Vals[0..3] =
[x1x2x1x2]. Given the nature of the computation, the values of y and z also follow
similar patterns. We can compress the value sequences by storing each unique
value produced by a statement only once in the UVals[0..1] array. In addition,
we remember the pattern in which these unique values are encountered. This
pattern is, of course common to the entire group of statements. The pattern
[0101] gives the indexes of values in the UVals[] array that are encountered
in each position. Clearly the Vals[0..3] corresponding to each statement can be
determined using the following relationship.

Vals[i] = UVals[Pattern[i]]

Before
Statement V als[0..3]

x [x1x2x1x2]
y = f (x) [y1 y2 y1 y2]

z = g (x, y) [z1z2z1z2]

After: Pattern=[0101]
Statement U V als[0..1]

x [x1x2]
y = f (x) [y1 y2]

z = g (x, y) [z1z2]

The above technique yields compression because by storing the pattern only
once, we are able to eliminate all repetitions of values in value sequences

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

Whole Execution Traces and Their Applications • 309

associated with all statements. The ease with which the sequence of values
can be generated from the unique values is a good characteristic of this com-
pression scheme. The compression achieves space savings at the cost of slight
increase in the cost of recovering the values from WET.

In the above discussion, the situation considered is such that all of the state-
ments shared a single pattern. In general, multiple patterns may be desirable
because different subsets of statements may depend upon different subsets of
inputs that are either received from outside the node or are read through input
statements within the node. Statements belonging to a node are subdivided into
disjoint groups as follows. For each statement the input variables that it de-
pends upon (directly or indirectly) is first determined. Groups are first formed
by including all statements that exactly depend upon the same inputs into the
same group. Next, if a group depends upon a set of inputs that are a proper
subset of inputs for another group, then the two groups are merged. Finally,
input statements within the node on which many groups depend is included in
exactly one of the groups. Once the groups are formed, a pattern is found for
each group and the values are compressed according to the group’s pattern.

In Figure 3, formation of groups for node P3 is illustrated. The top part of
the figure shows the value sequences associated with statements before com-
pression. The statements depend upon values of u and v from outside the node
and the value of x that is read by a statement inside the node. Two groups are
formed because some statements depend upon values of x and v, while other
statements depend upon values of x and u. The statement that reads the value
of x is added to one of the groups. Once the groups have been identified, patterns
are formed for each group as shown.

3.3 Timestamp Pairs Labeling Edges

Each dependence edge is labeled with a sequence of timestamp pairs. Next we
describe how the space taken by these sequences can be reduced. Our discus-
sion focuses on data dependences; however, similar solutions exist for handling
control-dependence edges [Zhang and Gupta 2004].

While, in general, we need to remember all dynamic instances of all depen-
dences, we next show that all dynamic instances need not be explicitly remem-
bered. We develop optimizations that have the effect of eliminating timestamp
pairs. These optimizations can be divided into the the following three categories:

1. Inference. Static edge is introduced for a dependence and the timestamp
pairs corresponding to the dynamic instances of the dependence are inferred
and thus need not be explicitly remembered.

2. Transformation. While some timestamp pairs cannot be inferred from the
original static dependence graph, transformations can be applied to the
static graph so that the timestamp pairs can be inferred from the trans-
formed graph. Thus, these transformations enable inferring of timestamp
pairs.

3. Redundancy Removal. There are situations in which different dependence
edges are guaranteed to have identical timestamp pairs. Redundant copies
of timestamp pairs can thus be discarded.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

310 • X. Zhang and R. Gupta

Fig. 3. Value compression.

Given an execution instance of a use u(tu), to find the corresponding defi-
nition, we need to find the corresponding execution instance of the relevant
definition d (td). There are two steps to this process: (finding d) in general,
many different definitions may reach the use, but we need to find the relevant
definition for u(tu); and (finding td) even if the relevant definition d is known,
we need to find the execution instance of d , i.e., d (td), that computes the value
used by u(tu). The following optimizations show how the above determinations
can be made, even in the absence of some timestamp pairs.

3.4 (OPT-1) Inference

3.4.1 (OPT-1a) Inference of Local Def-Use for Full Elimination. Consider a
definition d and a use u that are local to the same basic block, d appears before
u, and there is no definition between d and u that can ever prevent d from
reaching u. In this case there is one-to-one correspondence between execution
instances of d and u. Since d and u belong to the same basic block, the times-
tamps of corresponding instances are always the same, i.e., given a dynamic

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

Whole Execution Traces and Their Applications • 311

Fig. 4. Effect of applying OPT-1a.

data dependence du(td , tu) it is always the case that td = tu. Therefore, given
the use instance u(tu), the corresponding d is known statically and the corre-
sponding execution instance is simply d (tu). Thus we do not need to remember
dynamic instances individually—it is enough to introduce a static edge from u
to d .

When no optimization is used, we begin with a static set of nodes (basic
blocks) and introduce all dependence edges dynamically. To take advantage of
the above optimization, we simply introduce the edge from u to d statically
prior to program execution. No new information will be collected or added at
runtime for the use u as the edge from u to d does not need any timestamp
labels. In other words, all dynamic instances of the def-use edge from u to d are
statically replaced by a single shared representative edge.

The impact of this optimization is illustrated using a dependence graph in
Figure 4. Basic block 1 contains a labeled local def-use edge that is replaced by
a static edge, which need not be labeled by this optimization. We draw static
edges as dashed edges to distinguish them from dynamic edges.

3.4.2 (OPT-1b) Inference Local Def-Use for Partial Elimination. In the
above optimization, it was important that a certain subpath was free of def-
initions of the variable involved (say v) so that a dependence edge involving
v that is free of labels could be used. In programs with pointers, the presence
of a definition of a may alias of v may prevent us from applying the optimiza-
tion, although at runtime this definition may rarely redefine v. To enable the
application of preceding optimization in presence of definitions of may aliases
of v, we proceed as follows. We introduce a static unlabeled edge from one defi-
nition to its potential use. If, at runtime, another may alias turns out to truly
refer to v, additional dynamic edges labeled with timestamp pairs will be added.
The effect of this optimization is that the timestamp labels corresponding to the
statically introduced data dependence are eliminated, while the labels for the
dynamically introduced data-dependence edge are not, i.e., labels have been
partially eliminated.

During traversal, first the labels on dynamic edges are examined to locate
the relevant dependence. If the relevant dependence is not found, then it must

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

312 • X. Zhang and R. Gupta

Fig. 5. Effect of applying OPT-1b.

be the case that the dependence involved corresponds to the static edge, which
can then be traversed. It should also be clear that greater benefits will result
from this optimization if the edge being converted to an unlabeled edge is the
more frequently exercised dependence edge. Thus, if profile data is available, we
can make use of it in applying this optimization.

In the example shown in Figure 5, let us assume that ∗P is a may alias
of X and ∗Q is a may alias of Y . Further assume that the code fragment is
executed twice, resulting in the introduction of the following labeled dynamic
edges: between the uses of X and definitions of X and ∗P and between the
uses of Y and the definitions of Y and ∗Q . We introduce the following static
unlabeled edges: from the use of X to the definition of X (as in OPT-1a) and,
later, the use of Y to the earlier use of Y (as in OPT-2a described later). The
dynamic edges introduced are from the use of X to the definition of ∗P and
from the later use of Y to the definition of ∗Q . Thus some, but not all, labels
have been removed.

3.5 (OPT-2) Transformation

3.5.1 (OPT-2a) Transform Non-Local Def-Use to Local Use-Use. Consider
two uses u1 and u2 such that u1 and u2 are local to the same basic block, u1 and
u2 always refer to the same location during any execution of the basic block, and
there is no definition between u1 and u2 that can cause the uses to see different
values. Now let us assume that a non-local definition d reaches the uses u1 and
u2. In this case, each time u1 and u2 are executed, two non-local def-use edges
du1(td , tu1) and du2(td , tu2) are introduced. Let u1 appear before u2. We can re-
place the non-local def-use edge du2(td , tu2) by a local use-use edge u1u2. The
latter does not require a timestamp label because tu1 is always equal to tu2 . By
replacing a non-local def-use edge by a local use-use edge, labels on the edge are
eliminated. During slicing, an extra edge (the use-use edge) will be traversed.
Moreover, use-use edges are treated differently. In particular, a statement vis-
ited by traversing a use-use edge is not included in the dynamic slice.

Using static analysis, we can identify uses local to basic blocks, which al-
ways share the same reaching definition. Once having identified these uses,
we statically introduce use-use edges from later uses to the earliest use in the
basic blocks. After having introduced these edges, there will not be any need to
collect or introduce any dynamic information corresponding to the later uses.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

Whole Execution Traces and Their Applications • 313

Fig. 6. Effect of applying OPT-2a.

The impact of this optimization is illustrated by further optimizing the de-
pendence graph obtained by applying OPT-1a. As shown in Figure 6, basic block
2 contains a two uses of X each having the same reaching definition from block
1. The labeled non-local def-use edge from the second use to the definition is
replaced by an unlabeled static use-use edge by this optimization. We draw
use-use edge using a dashed edge.

3.5.2 (OPT-2b) Transform Non-Local Def-Use to Local Def-Use. Let us as-
sume that there is a non-local def-use edge du(td , tu) between basic blocks bd
and bu. Moreover, this edge is always exercised whenever a path p, which con-
tains bd and bu, is executed. We can convert this non-local dynamic edge into a
local dynamic edge du(t ′

d , t ′
u) by creating a specialized node for p. While for the

original edge du(td , tu), the values of td and tu are not equal. For the modified
edge du(t ′

d , t ′
u), the values of t ′

d and t ′
u are equal. At runtime, if the dependence

between d and u is established along path p, then that dependence would be
represented by an unlabeled edge local to node for path p. However, if the de-
pendence is established along some path other than p, it is represented using
a labeled non-local edge between bd and bu.

The consequence of earlier optimizations was that the initial graph that
we start out with contains some statically introduced data-dependence edges.
The consequence of this optimization is that instead of starting out with a
graph that contains only basic block nodes, we start out with a graph that
contains additional nodes corresponding to paths that have been specialized.
During execution we must detect when specialized paths are executed. This
is necessary for construction of the Dynamic Dependence Graph because of
the following reasons. The value of global timestamps must be incremented
after the execution of code corresponding to a node in the graph. Thus, we
no longer will increment the timestamp each time a basic block is executed
because nodes representing specialized paths contain multiple basic blocks. At
runtime we must distinguish between executions of a block that correspond to
its appearance in a specialized path from the rest of its executions so that when
we introduce a dynamic data-dependence edge in the graph we know which
copy of the block to consider.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

314 • X. Zhang and R. Gupta

Fig. 7. Effect of applying OPT-2b.

The impact of this optimization is illustrated by further optimizing the op-
timized dependence graph from Figure 6. As shown in Figure 7, if we create a
specialized node for path along basic blocks 1, 2, and 4, many of the previously
dynamic non-local def-use edges are converted to dynamic local def-use edges
within this path. The def-use edges established along this path can now be
statically introduced within the statically created node representing this path.
Thus, the timestamp labels for these def-use edges are no longer required. Since
block 2 can only be executed when path 1-2-4 is executed, we do not need to
maintain a separate node for 2 once node for path 1-2-4 has been created. How-
ever, the same is not true for blocks 1 and 4. Therefore, we continue to maintain
nodes representing them to capture dynamic dependences that are exercised
when path 1-2-4 is not followed.

After applying multiple optimizations to the dependence graph of Figure 4,
we have eliminated all but one of the labels in the dependence graph. In fact
this label can also be eliminated by creating another specialized node for path
containing blocks 3 and 4.

Finally it should be noted that the above optimization only eliminates la-
bels corresponding to dependence instances exercised along the path for which
a specialized node is created. Thus, greater benefits will be derived if the path
specialized is a frequently executed path. As a result, selection of paths for spe-
cialization can be based upon profile data.

3.6 (OPT-3) Redundancy Across Non-Local Def-Use Edges

In all the optimizations considered so far, we have identified and created situa-
tions in which the labels were guaranteed to have a pair of identical timestamps.
Now we present an optimization that identifies pairs of dynamic edges between
different statements that are guaranteed to have identical labels in all execu-
tions. Thus, the statements can be clustered so that they can share the same
edge and thus a single copy of the list of labels. Given basic blocks bd and bu
such that definitions d1 and d2 in bd have corresponding uses u1 and u2 in bu. If
it is guaranteed that along every path from bd to bu either both d1 and d2 will

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

Whole Execution Traces and Their Applications • 315

Fig. 8. Effect of applying OPT-3.

reach u1 and u2 or neither d1 nor d2 will reach u1 and u2, then the labels on the
def-use edges d1u1 and d2u2 will always be identical. The example in Figure 8
shows that the uses of Y and X always get their definitions from the same
block and thus dependence edges for Y and X can share the labels. A shared
edge between clusters of statements (shown by dashed boxes) is introduced by
this optimization.

4. STREAM COMPRESSION

For the next step in compression we view the information labeling the WET as
consisting of streams of values arising from the following sources: a sequence of
< t, v > pairs labeling a node gives rise to two streams, one corresponding to the
timestamps (t ’s) and the other corresponding to the values (v’s): The sequence
of < ts2 , ts1 > pairs labeling a dependence edge also gives rise to two streams,
one corresponding to the first timestamps (ts2 ’s) and the other corresponding to
the second timestamps (ts1 ’s). Each of the above streams are compressed using
the same algorithm that is developed in this section.

The stream compression algorithm should be designed such that the com-
pressed stream of values can be rapidly traversed. An analysis algorithm using
the WET representation may traverse the program representation in forward
or backward direction (recall that is why all edges in WET are bidirectional).
Thus, during a traversal, it is expected that the profile information and, hence,
the values in above streams, will be inspected one after another either in for-
ward or backward direction. Unfortunately most of the existing algorithms for
effectively compressing streams are unidirectional, i.e., the compressed stream
can be uncompressed only in one direction, typically starting from the first value
and going toward the last. Examples of such algorithms include compression
algorithms designed from value predictors which were used for compressing
value and address traces in Burtscher and Jeeradit [2003]. The problem with
using a unidirectional predictor is that while it is easy to traverse the value
stream in the direction corresponding to the order in which values were com-
pressed, traversing the stream in the reverse direction is expensive. The only
way to efficiently traverse the streams freely in both directions is to uncompress
them first, which is clearly undesirable. Sequitur [Nevil-Manning and Witten
1997] which was used for compressing control flow traces in Larus [1999] and
address traces in Chilimbi [2001] yields a representation that can be traversed

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

316 • X. Zhang and R. Gupta

in both directions. However, it is well known that Sequitur is not nearly as ef-
fective as the above unidirectional predictors when compressing value streams
[Burtscher and Jeeradit 2003].

To overcome the above problem with existing compression algorithms, we
have developed a novel approach to constructing bidirectional compression
algorithms. The approach can be used to convert an unidirectional value
predictor-based compression algorithm [Burtscher and Jeeradit 2003] into a
bidirectional one. Let us consider the highly effective FCM predictor [Sazeides
and Smith 1997a, 1997b]. A unidirectional FCM predictor compresses a stream
in the forward direction such that a value is successfully compressed if it can
be correctly predicted from its left context (i.e., pattern of immediately preced-
ing n values); otherwise the value is saved in uncompressed form. A look-up
table TB is maintained to store predictions corresponding to a limited number
of left-context patterns encountered in the past. The index of the entry at which
the prediction for a pattern is stored is derived by hashing the pattern into a
number.

If a value is correctly predicted by the look-up table TB using the left context,
a bit 1 is created in the compressed stream. If a prediction v provided by the look-
up table TB using the left context does not match the value v′ being compressed,
then a bit sequence of < v · 0 > is created in the compressed stream while the
look-up table TB is updated using v′ to enable future predictions. Here v denotes
the bits for v. Clearly for a stream compressed in the above fashion, only forward
traversal is possible.

4.1 Bidirectional Compression Derived from the FCM Predictor

Now let us look at the design of a bidirectional predictor. In particular, we look
at a bidirectional counterpart of the FCM predictor [Sazeides and Smith 1997a,
1997b]. A bidirectional differential FCM predictor [Goeman et al. 2001] can be
constructed in a similar way. Normal FCM is forward compressed and then
forward traversed. If we change the direction of table lookup from using left
context to using right context, which means we use future values to predict
the current value instead of using previous values to predict next value, we
can get a forward compressed and backward traversed FCM. Similarly, we can
construct a backward compressed and forward traversed FCM. By using these
two FCMs back to back, we get a bidirectional FCM (BFCM).

Before we present the algorithms for bidirectional traversal of the value
stream, we introduce the notation we use. Let m be the length of the uncom-
pressed value stream, n be the context size, a BFCM can be viewed as a tuple
of < Strm, FRTB, BLTB, i, l , r, Context > where:

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

Whole Execution Traces and Their Applications • 317

� Strm is the compressed bit stream composed of two substreams: FR and BL.
FR is obtained by compressing values at positions 1 through (i−1) in forward
direction (F) using right context (R). BL is obtained by compressing values
at positions (i + n) through (m − 1) in the backward direction (B) using the
left context (L).

� Context is a buffer that contains the current context of n uncompressed values
from position i to position (i + n − 1).

� FRTB is the look-up table for FR, while BLTB is the look-up table for BL.
� Finally, l is the end bit position in Strm of FR, while r is the starting bit

position of BL in Strm. The reason for providing extra bits (BUF) between
positions l and r will be discussed in greater detail later—essentially these
bits provide extra space needed to accommodate the differences between
forward and backward compression rates.

There are four types of basic operations for a BFCM on which the traver-
sal operations are built. FORWARD COMPRESS compresses a value v into
Strm starting at bit position l using FRTB. Parameter Context is the right
context for v. The difference between this operation and the forward com-
pressing operation in a conventional FCM is that FORWARD COMPRESS
uses the right context instead of left context. Using right context to com-
press forward provides the capability to uncompress in the backward direction.
BACKWARD UNCOMPRESS consumes bits in the backward direction start-
ing at l , which were generated earlier by FORWARD COMPRESS operation,
to uncompress the value to the left of the current context. The other two
operations, FORWARD UNCOMPRESS and BACKWARD COMPRESS can be
constructed in a similar way. The details of all four operations are given in
Figure 9.

To traverse one step forward, BFCM first forward uncompresses the value
to the right of Context, Ui+n, by looking at the bits starting at Strmr and then
shifts Context one step forward and uses the new Context to forward compress
the value to the left. Backward traversal can also be similarly defined. The
implementation of the traversal operations in terms of the four basic operations
is given in Figure 10. Note that we are assuming a 32-bits machine is used.
Hence if a value is predicted, it consumes one bit space; if not, it consumes
32 + 1 bits of space.

The example in Figure 11 illustrates the above algorithm. The first figure
shows a portion of the uncompressed stream while the second figure shows
the state of the stream and look-up tables corresponding to four consecutive
positions of the context, which consists of three uncompressed values. No matter
whether the stream is traversed forward or backward, the sequence of states
encountered is the same.

4.2 Accounting for Difference in Forward and Backward Compression Rates

One implementation problem arises due to different prediction rates of the two
FCMs. As a result, the amount of space needed to store the stream will vary
at different points of the traversal. To handle this problem, our goal is to allo-
cate enough extra space so that at any point during traversal there is enough

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

318 • X. Zhang and R. Gupta

Fig. 9. Four basic operations used by BFCM.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

Whole Execution Traces and Their Applications • 319

Fig. 10. Forward and backward traversal by a single step.

space available to handle the stream. The space allocation is performed in a
manner that at any point in time the context (uncompressed values) are held
in the Context buffer while all other values (forward and backward compressed
values) are kept in Strm storage. The space allocated between l and r in Strm
(referred to as BUF) accommodates the difference between forward and back-
ward compression rates. For example, when we move forward or backward by
one step, it is possible that the value that is uncompressed frees up one bit (i.e.,
the value had been compressed to one bit) while the value that is compressed
requires 33 bits (i.e., the value cannot be successfully compressed). The addi-
tional bits allocated accommodate these extra bits. In fact, we compute the BUF
size to be such that whenever extra space is needed it is available.

To ensure that there is sufficient extra space allocated in BUF so that
forward and backward traversals never cause the compressed stream size to
overflow the allocated space, we use the algorithm described in Figure 12. This
algorithm first forward compresses all the values into a temporary bit stream
Tmp. However, Tmp is not yet bidirectional traversable. A backward traver-
sal is performed to determine the amount of additional space that needs to
be allocated. Lines 13 to 17 in the algorithm preallocate extra space. Con-
dition r < l + 33 being true means that the next BACKWARD COMPRESS
operation may overwrite the bits generated by FORWARD COMPRESS oper-
ation previously. In other words, both the FCMs encounter low prediction rate
and then the allocated space may not be sufficient. In this case, BFCM inserts
some buffer space between FR and BL. After backward traversing Tmp once
with allocating buffer space to tolerate different prediction rates, the BFCM
< Strm, FRTB, BLTB, Context, 0, l , r > is ready to be used for bidirectional
traversal.

4.3 Bidirectional Compression Derived from a Last n Predictor

Another predictor which has been used for unidirectional compression is the
last n predictor [Lipasti and Shen 1996; Burtscher and Zorn 1999]. We also
derived a bidirectional compression algorithm using the last n predictor. This

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

320 • X. Zhang and R. Gupta

Fig. 11. Example of bidirectional FCM compression.

is because studies have shown that while overall performance of both FCM
and Last n predictors is quite good, there are also specific situations where one
predictor works well while the other does not and vice versa [Burtscher and
Jeeradit 2003]. The full details of bidirectional compression algorithm based
upon last n predictor are omitted due to space limitations. However, the main
cases of forward compression of a value are summarized in Figure 13. Backward
compression is similar. Unlike the bidirectional FCM predictor only a single
look-up table TB is used for both forward and backward compression.

4.4 Selection

For each stream, we selected from one of several bidirectional versions of com-
pression methods. Initially we use all methods to compress the stream. After

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

Whole Execution Traces and Their Applications • 321

Fig. 12. Preparing Strm for bidirectional traversal.

Fig. 13. Bidirectional Last n compression.

a certain number of instances, we pick the method that performs the best up
to that point. We implemented the FCM, differential FCM (this is an adap-
tation of FCM that works on strides [Goeman et al. 2001]), last n, and last n
stride methods. For each type we created three versions with differing context
size.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

322 • X. Zhang and R. Gupta

Table I. WET Sizes

Stmts Executed Orig. WET Comp. WET Orig./
Benchmark Input (Millions) (MB) (MB) Comp.

099.go training 685.28 10369.32 574.65 18.04
126.gcc ref/insn-emit.i 364.80 5237.89 89.03 58.84
130.li ref 739.84 10399.06 203.01 51.22
164.gzip training 650.46 9687.88 537.72 18.02
181.mcf testing 715.16 10541.86 416.21 25.33
197.parser training 615.49 8729.88 188.39 46.34
255.vortex training/lendian 609.45 8747.64 104.59 83.63
256.bzip2 training 751.26 11921.19 220.70 54.02
300.twolf training 690.39 10666.19 646.93 16.49

Avg. n/a 646.90 9588.99 331.25 41.33

5. EXPERIMENTAL RESULTS

We have implemented the WET construction and compression techniques pre-
sented in this paper. In addition, we have also developed implementations
of several queries for subsets of profile information that were described in
Section 2. To carry out this work, we used the Trimaran [Trimaran 1997] com-
piler infrastructure to profile several benchmarks from the SpecInt 2000 and
1995 suites. We used SpecInt 1995 versions of some programs because the ver-
sion of Trimaran we used did not compile the SpecInt 2000 versions of these
programs. The statements correspond to Trimaran’s intermediate level state-
ments. The program is executed on the simulator, which avoids introduction
of intrusion as no instrumentation is needed. We do not count pseudo state-
ments and we do not maintain result values for intermediate statements that
do not have a def port (e.g., stores and branches). In our implementation, for
labeling dependences, instead of using global timestamps to identify statement
instances, we use local timestamps for each statement because this approach
yields greater levels of compression. These experiments were carried out on
a Pentium IV 2.4 GHz machine with 2 gigabyte RAM and 120 gigabyte hard
disk. Our evaluation focuses on two main aspects of WETs. First, we evaluate
the practicality of WETs by considering the sizes of WETs in relation to the
length of the program execution. We also examine in detail the effectiveness of
the two-tier compression strategy. Second, we evaluate the speeds with which
queries requesting subsets of profile information can extract the information
from a compressed WET.

5.1 WET Sizes

Table I lists the benchmarks considered and the lengths of the program runs
which vary from 365 and 751 million intermediate-level statements. WETs
could not be collected for complete runs for most benchmarks, although we
tried using Trimaran-provided inputs with shorter runs. The effect of our two-
tier compression strategy is summarized in Table I. While the average size of
the original uncompressed WETs (Orig. WET) is 9589 megabytes, after com-
pression their size (Comp. WET) is reduced to 331 megabytes, which represents
a compression ratio (Orig./Comp.) of 41. Therefore, on average, our approach

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

Whole Execution Traces and Their Applications • 323

Table II. Effect of Compression on Node Labels

ts Labels vals Labels
Orig. Orig./ Orig./ Orig. Orig./ Orig./

Benchmark (MB) Tier-1 Tier-2 (MB) Tier-1 Tier-2

099.go 2614.12 37.96 47.13 1847.09 2.48 6.33
126.gcc 1391.60 50.06 126.63 945.03 3.15 17.62
130.li 2822.26 32.47 105.88 1894.48 3.83 17.33
164.gzip 2481.32 30.33 152.76 1733.13 1.66 4.02
181.mcf 2728.12 22.12 127.09 1875.21 2.37 7.02
197.parser 2347.92 30.61 101.82 1615.57 2.05 12.45
255.vortex 2324.87 53.51 176.55 1641.31 3.51 23.82
256.bzip2 2865.81 55.24 1171.6 2154.85 2.46 10.61
300.twolf 2633.64 27.36 69.49 1873.52 2.13 4.36

Avg. 2467.74 37.74 230.99 1731.13 2.63 11.51

Table III. Effect of Compression on Edge Labels

Edge Labels
Benchmark Orig. (MB) Orig./ Tier-1 Orig./ Tier-2

099.go 5908.12 9.00 26.00
126.gcc 2901.26 15.37 118.94
130.li 5682.32 11.36 84.74
164.gzip 5473.42 10.13 60.37
181.mcf 5938.54 7.62 46.56
197.parser 4766.38 15.57 133.92
255.vortex 4781.46 21.75 212.35
256.bzip2 6900.52 32.06 455.44
300.twolf 6159.03 7.05 34.43

Avg. 5390.12 14.43 130.31

enables saving of the whole execution trace corresponding to a program run of
647 million intermediate-level statements using 331 megabytes of storage.

Now let us examine the effectiveness of our two-tier compression strategy in
detail. Table II shows the sizes of node labels, timestamp, and value sequences,
before and after compression, while Table III presents the same information
for edge labels.

The above results show that while the average compression ratios of all
the timestamp sequences are very high (231 for nodes and 130 for edges), the
same is not true for value sequences that label the nodes (compression ratio
for these is only 11.5). Compression of values is much harder although our
value compression algorithm is aggressive, the compression ratios for value se-
quences are modest in comparison to those for timestamp sequences. We would
like to point out that the optimizations described to reduce dynamic dependence
history size (i.e., edge labels of timestamp pairs) were very effective. Only 6%
of the dynamic dependences are explicitly maintained after the proposed opti-
mizations are applied.

In Figure 14, the relative sizes of the three main components of profile
data (node timestamp sequences, node value timestamp sequences, and edge
timestamp sequences) are shown before compression (Original), after first-tier

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

324 • X. Zhang and R. Gupta

Fig. 14. Relative sizes of WET components.

Table IV. Architecture-Specific Information

Space (MB)
Benchmark Branch Load Store

099.go 9.68 12.17 5.87
126.gcc 5.28 6.11 4.09
130.li 11.36 11.16 8.08
164.gzip 9.64 10.95 5.87
181.mcf 12.88 11.93 3.32
197.parser 9.24 10.67 6.39
255.vortex 7.24 14.79 10.49
256.bzip2 10.08 14.51 3.26
300.twolf 9.76 13.38 4.94

Avg. 9.46 11.74 5.81

compression (After Tier-1), and after second-tier compression (After Tier-2). As
we can see, the contribution of value sequences to the total size increases in
percentage following each compression step, since the degree of compression
achieved for value sequences is lower.

Next we show that WETs can be augmented with significant amounts of
architecture-specific information with a modest increase in WET sizes. In par-
ticular, lets consider the augmentation of WETs with branch misprediction,
load miss, and store miss information. For a single execution of a branch, load,
or store the history of misprediction or cache miss can be remembered using one
bit. Table IV shows the additional storage taken by the above uncompressed
execution histories. Clearly the amount of additional storage needed is quite
small.

Next we study the scalability of our approach so that we can estimate the
limit on the length of a program run for which we can realistically keep the
whole execution trace in memory. For this purpose, we study the impact of trace
length on the compression ratios. In Figure 15, we divided the executions into
ten intervals for each benchmark (x axis) and then measured the compression
ratios (y axis) up to each interval. From the results in Figure 15, we notice
that for 7 out of 9 programs, the compression ratios either improve or roughly
remain the same as the length of the run increases. For benchmark 256.bzip2,

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

Whole Execution Traces and Their Applications • 325

Fig. 15. Scalability of compression ratio.

Fig. 16. WET construction times.

we observe a sharp decrease of the compress ratio from the second to the third
interval. We believe that is due to the switch of program phases. The new
phase is substantially more difficult to compress compared to the previous one.
As this phase finishes, its effect gradually fades out and the compression ratio
gradually recovers.

Let us assume that the compression ratio remains constant across the length
of a program run. Further recall that our earlier experiments show that the
compressed WET for execution of 647 million Trimaran intermediate-level code
statements took approximately 331 megabytes of storage. Therefore, we can
extrapolate that the WET corresponding to a program run involving execution
of 3.9 billion Trimaran intermediate-level code statements consumes 2 gigabyte
of space, which is the normal RAM size for a workstation. It is a fairly long trace
and thus can be used effectively to study program behavior when designing
compilers and architectures.

5.2 WET Construction Times and Response Times for Queries

The times taken to construct the compressed WETs for the program runs
are presented in Figure 16. Similar to the prior experiment, we divided the
executions into ten equal-length intervals and then collected the cumulative
construction times up to each interval. We can see that it takes 200–300 min to
construct the WETs for most of the runs, depending on the execution lengths.
We can also observe that the construction time increases almost linearly with
the execution length.

In the preceding section, we studied the effectiveness of our compression
strategy and the scalability of our compressed WET representation. Recall that

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

326 • X. Zhang and R. Gupta

Table V. Response Times for Control Flow Traces

Forward
Tier-1 Tier-2

Benchmark CF Trace (MB) Time (sec.) MB/sec Time (sec.) MB/sec

099.go 2614.12 513.97 5.09 536.57 4.87
126.gcc 1391.60 11.47 121.33 13.11 106.15
130.li 2822.26 14.05 200.87 17.06 165.43
164.gzip 2481.32 16.08 154.31 19.06 130.18
181.mcf 2728.12 17.71 154.04 21.15 128.99
197.parser 2347.92 13.81 170.02 15.66 149.93
255.vortex 2324.87 21.81 106.60 25.11 92.59
256.bzip2 2865.81 7.90 362.76 9.41 304.55
300.twolf 2633.64 45.22 58.24 47.53 55.41

Avg. 2467.74 73.56 148.14 78.30 126.46

Backward
Tier-1 Tier-2

Benchmark Time (sec.) MB/sec Time (sec.) MB/sec

099.go 471.27 5.55 491.21 5.32
126.gcc 11.12 125.14 12.77 108.97
130.li 14.62 193.04 16.02 176.17
164.gzip 15.25 162.71 18.02 137.70
181.mcf 16.73 163.07 22.27 122.50
197.parser 13.83 169.77 16.23 144.67
255.vortex 21.64 107.43 24.59 94.55
256.bzip2 7.43 385.71 9.11 314.58
300.twolf 39.04 67.46 41.26 63.83

Avg. 67.88 153.32 72.39 129.81

the WET representation and compression techniques were designed so as to al-
low access to related profile information with ease and, hence, with good speed.
Next, we study the response times to various queries for profile information. The
response times are provided by using the WET after only first- and second-tier
compression, i.e., after full compression.

5.2.1 Query for Control Flow Trace. Let us consider the request for the
control flow trace. Such a request can be made with respect to any point either
along the execution flow (forward) or in the reverse direction (backward). The
rates at which control flow trace can be extracted from WET in either direction
are given in Table V. The total control flow trace size, the time to extract this
entire trace, and the rate at which it is extracted are given. We can see that,
on average, the entire control flow trace can be extracted in roughly 75 sec in
either direction. The response times after tier-1 and tier-2 compression are very
close and so are the times in forward and backward direction. This indicates
that the bidirectional compression algorithm that we use is very effective for
node timestamp labels.

5.2.2 Query per Instruction Load Value Traces. Let us consider requests
for load values on per instruction basis. Such traces can be useful for designing
load value predictors. In Table VI, the size of complete load value trace, response

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

Whole Execution Traces and Their Applications • 327

Table VI. Response Times per Instruction Load Value Traces

After Tier-1 After Tier-2
Benchmark Ld Value Trace (MB) sec. MB/sec sec. MB/sec

099.go 354.86 775.36 0.46 1105.70 0.32
126.gcc 203.11 73.82 2.75 89.10 2.28
130.li 340.95 52.22 6.53 192.20 1.77
164.gzip 367.49 143.09 2.57 4568.65 0.08
181.mcf 362.70 229.22 1.58 6911.11 0.05
197.parser 354.86 80.80 4.39 191.08 1.86
255.vortex 450.03 36.81 12.23 178.26 2.52
256.bzip2 439.91 44.39 9.91 79.32 5.55
300.twolf 405.95 372.04 1.09 1537.15 0.26

Avg. 364.43 200.86 4.61 1650.29 1.63

Table VII. Response Times per Instruction Load/Store Address Traces

After Tier-1 After Tier-2
Benchmark Address Trace (MB) sec. MB/sec sec. MB/sec

099.go 549.35 1410.27 0.39 2006.47 0.27
126.gcc 335.52 122.54 2.74 149.89 2.24
130.li 572.16 79.90 7.16 588.00 0.97
164.gzip 564.38 179.73 3.14 2790.63 0.20
181.mcf 463.98 270.11 1.72 7004.47 0.07
197.parser 557.64 110.00 5.07 354.84 1.57
255.vortex 761.67 59.87 12.72 341.57 2.23
256.bzip2 549.40 54.23 10.13 139.68 3.93
300.twolf 554.15 512.49 1.08 1590.79 0.35

Avg. 545.36 311.02 4.91 1662.93 1.32

time for extracting this trace, and the rates at which it is extracted after tier-1
and after tier-2 compression are shown. The average times to extract the entire
load value trace after tier-1 and tier-2 compression are a little over 200 and
1650 sec, respectively. Since the values are not compressed as effectively as
timestamps, as expected, there is a notable increase in response time as we go
from using tier-1 to tier-2 compressed representation.

5.2.3 Query per Instruction Load/Store Address Traces. Let us consider
requests for load and store address traces on a per-instruction basis. Such traces
can be useful for designing address predictors for data prefetch mechanisms.
In Table VII, the size of complete address trace, response time for extracting
this trace, and the rates at which it is extracted after tier-1 and after tier-2
compression are shown. The average time to extract the entire address trace
after tier-1 and tier-2 compression are little over 311 and 1662 sec, respectively.
Since addresses are simply part of values in WET representation and values
are not compressed as effectively as timestamps, there is a notable increase in
response time as we go from using tier-1 to tier-2 compressed representation.

The results in this section have shown the versatility of the compressed
WET representation in quickly responding to queries with a wide range of
characteristics: those that require traversal of the graph (control flow traces),

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

328 • X. Zhang and R. Gupta

those that are instruction specific, requiring only the information labeling a
node (load value traces), and those that are instruction specific but also require
limited traversal (load/store address traces).

6. APPLICATIONS OF WETS

In this section we present two important applications that require multiple
types of profiles: dynamic program slicing and version matching. We demon-
strate that using WETs we are able to address the goals of these significant
applications in an efficient and effective manner.

6.1 WET-Based Dynamic Program Slicing

A static program slice of a variable v at a program point p represents the set of
statements that can contribute to the computation of the variable’s value at p
under some program execution. The notion of static program slicing was first
proposed by Mark Weiser [Weiser 1982] as a debugging aid. He gave the first
static slicing algorithm. For programs that make extensive use of pointers, the
highly conservative nature of static data-dependency analysis leads to highly
imprecise and considerably larger program slices. Since the main purpose of
slicing is to identify the subset of program statements that are of interest for
a given application, conservatively computed large slices are undesirable. Rec-
ognizing the need for accurate slicing, Korel and Laski proposed the idea of
dynamic slicing [Korel and Laski 1988]. The dependences that are exercised
during a program execution are identified and a precise dynamic dependence
graph is constructed. Dynamic program slice of a variable is computed by
traversing the dynamic-dependence graph and computing the transitive clo-
sure over data and control dependences, starting at the definition of variable at
point of interest. It has been shown that the dynamic slices can be considerably
smaller than static slices [Venkatesh 1995].

The importance dynamic slicing extends well beyond debugging of programs
[Agrawal et al. 1993; Korel and Rilling 1997]. Increasingly applications aimed
at improving software quality, reliability, security, and performance are being
identified as candidates for making automated use of dynamic slicing. Exam-
ples of these applications include: detecting spyware that has been installed on
systems without the user’s knowledge, carrying out dependence-based software
testing [Duesterwald et al. 1992; Kamkar 1993], measuring module cohesion
for purpose of code restructuring [Gupta and Rao 2001], and guiding the devel-
opment of performance enhancing transformations, based upon estimation of
criticality of instructions [Zilles and Sohi 2000] and identification of instruction
isomorphism [Sazeides 2003].

While the notion of dynamic slicing is very useful for the above-mentioned
applications [Agrawal et al. 1993; Duesterwald et al. 1992; Kamkar 1993; Gupta
and Rao 2001], an impediment to their widespread use in practice has been the
high cost of computing them. As we have already seen, the sizes of dynamic-
dependence graphs can be very large and thus it is not possible to keep them in
memory for realistic program runs. To address this problem, we recently pro-
posed the LP algorithm in Zhang et al. [2003], where the dynamic-dependence

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

Whole Execution Traces and Their Applications • 329

Table VIII. WET Slicesa

Stmts Executed Tier-1 Tier-2 Tier-2/
Benchmark (Millions) (sec.) (sec.) Tier-1

099.go 132.52 58.31 412.44 7.07
126.gcc 139.46 10.91 17.74 1.63
130.li 126.78 10.00 121.42 12.14
164.gzip 123.06 4.20 102.33 24.34
181.mcf 137.31 17.47 76.07 4.35
197.parser 122.12 1.55 4.69 3.02
255.vortex 119.50 4.75 18.09 3.81
256.bzip2 128.25 2.76 3.90 1.42
300.twolf 114.85 19.10 62.15 3.25

Avg. 127.09 14.34 90.98 6.78
aAvg. over 25 slices.

graph is constructed demand in response to dynamic slicing requests from the
execution trace that is saved on disk. While this approach greatly reduces the
size of a dynamic-dependence graph held in memory, the on-demand construc-
tion of the dynamic-dependence graph is quite slow, since it requires repeated
traversals of the trace stored on disk. We found that even after optimizations
aimed at speeding up graph traversal, it took 5 to 25 minutes to compute a
single dynamic slice.

The WET contains all the dynamic information necessary to compute dy-
namic slices. The compacted WETs can be kept in memory and used to com-
pute dynamic slices of reasonably long program runs. Given a value computed
by the execution of a code statement during program execution, the WET slice
is a backward slice over the WET representation starting from the value of
interest. This slice captures the complete flow of control, flow of values across
dependences, and address references that directly or indirectly impacted the
computation of the value of interest. Thus a WET slice provides a superset of
information provided by a traditional dynamic slice [Korel and Laski 1988].
In this application, we cut the prior runs at the boundaries of from 114 and
139 million intermediate-level statements, which are very close to the trace
lengths used in our previous works [Zhang et al. 2003; Zhang and Gupta 2004].
As shown in Table VIII, the average times needed to extract a WET slice after
tier-1 and tier-2 compression are little over 14.34 and 90.98 sec, respectively.
These times are far less than the times of 5 to 25 min provided by our prior
algorithm in Zhang et al. [2003]. We would like to point out that response times
for the 099.go benchmark are higher than other programs. Due to complex con-
trol flow structure of 099.go each node had several incoming edges and thus it
took longer to identify the appropriate relevant edge during traversal.

6.2 Matching

Although compile-time optimizations are important for improving the perfor-
mance of programs, applications are typically developed with the optimizer
turned off. Once the program has been sufficiently tested, it is optimized prior
to its deployment. However, the optimized program may fail to execute correctly

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

330 • X. Zhang and R. Gupta

Fig. 17. Comparison checker.

on an input although the unoptimized program ran successfully on that input.
In this situation, the fault may have been introduced by the optimizer through
the application of an unsafe optimization or a fault present in the original pro-
gram may have been exposed by the optimizations. Determining the source and
cause of fault is, therefore, important.

In prior work, we had developed a technique called comparison checking to
address the above problem [Jaramillo et al. 1999]. A comparison checker exe-
cutes the optimized and unoptimized programs and continuously compares the
results produced by corresponding instruction executions from the two versions
(see Figure 17). At the earliest point during execution that the results differ,
they are reported to the programmer who can use this information to isolate
the cause of faulty behavior. It should be noted that not every instruction in
one version has a corresponding instruction in the other version because opti-
mizations, such as reassociation, may lead to instructions that compute different
intermediate results. While the above approach can be used to test optimized
code thoroughly and assist in location of fault if one exists, it has one ma-
jor drawback. In order for the comparison checker to know which instruction
executions in the two versions correspond to each other, the compiler writer
must write extra code that determines mappings between execution instances
of instructions in the two program versions. Not only do we need to develop a
mapping for each kind of optimization to capture the effect of that optimization,
we must also be able to compose the mappings for different optimizations in or-
der to produce the mapping between the unoptimized and fully optimized code.
The above task is not only difficult and time consuming, it must be performed
each time a new optimization is added to the compiler.

We have developed a WET-based approach for automatically generating the
mappings. The basic idea behind our approach is to run the two versions of
the programs and regularly compare their execution histories. The goal of this
comparison is to find matches between the execution history of each instruction
in the optimized code with execution histories of one or more instructions in the
unoptimized code. If execution histories match closely, it is extremely likely that
they are, indeed, the corresponding instructions in the two program versions.
At each point, executions of the programs are interrupted and their histories
are compared with each other. Following the determination of matches, we
determine if faulty behavior has already manifested itself and, accordingly,
potential causes of faulty behavior are reported to the user for inspection. For
example, instructions in the optimized program, which have been executed
numerous times but do not match anything in the unoptimized code, can be

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

Whole Execution Traces and Their Applications • 331

Table IX. Nodes Matched

Executed Distinct Matched
Program (millions) Executed (%)

099.go 62.4 28701 91.0
130.li 65.1 4325 97.0
164.gzip 66.8 16913 93.5
181.mcf 64.6 4469 91.8
197.parser 62.1 1450 96.1
255.vortex 60.8 32583 97.7
256.bzip2 29.7 12520 96.9
300.twolf 63.3 9419 94.2
Avg. 59.35 13797.5 94.8

reported to the user for examination. In addition, instructions that matched
with each other in earlier part of execution but later did not match can be
reported to the user—this is because the later phase of execution may represent
instruction executions after faulty behavior manifests itself. The user can then
inspect these instructions to locate a fault(s).

The key problem that we must solve to implement the above approach is
to develop a matching process that is highly accurate. We have designed a
WET-based matching algorithm that consists of the following two steps: signa-
ture matching and structure matching. A signature of an instruction is defined
in terms of the frequency distributions of the result values produced by the
instruction and the addresses referenced by the instruction. If signatures of
two instructions are consistent with each other, we consider them as being
tentatively matched. In the second step we match the structures of the data
dependence graphs produced by the two versions. Two instructions from the
two versions are considered to match, if their was a tentative signature match
between them and the instructions that provided their operands also matched
each other. More details of this algorithm can be found in Zhang and Gupta
[2005].

We studied the accuracy of our matching algorithm we implemented to
match execution traces of unoptimized and optimized binaries produced by the
Trimaran compiler [Trimaran 1997]. This compiler is based on the IMPACT sys-
tem that performs a host of optimizations including constant propagation, copy
propagation, common subexpression elimination, constant combining, constant
folding, code motion, strength reduction, dead code removal, and loop optimiza-
tions, etc. When we matched the executed instructions in the two versions, we
achieved highly accurate matches. In Table IX, we show matching results for the
same set of benchmarks except 126.gcc, because, for some reason, Trimaran did
not compile 126.gcc with all the optimizations off. The column Executed gives
the number of statements in millions that were executed during the program
run. The column Distinct Executed gives the number of statically distinct in-
structions that were executed at least once. Finally, the column Matched tells
us for what percentage of instructions that were executed at least once our
matching algorithm found the correct match or matches. On average, for al-
most 95% of the executed statements in the optimized code, one or more corre-
sponding true matches were found. Other instructions are not matched because

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

332 • X. Zhang and R. Gupta

none truly exist—this is due to the features of the VLIW machine used only by
the optimized version and optimizations such as reassociation. Therefore, our
matching algorithm is highly effective in the presence of aggressive transforma-
tions. Our algorithm is also reasonably fast—matching of runs over 60 million
instructions took between 4 to 6 min. We believe that further optimization of
our initial implementation can further reduce this time.

7. CONCLUSIONS

In this paper we presented the design and evaluation of a compressed whole
execution trace representation. The representation presents complete profile
information, including control flow, value, and addresses, and control and data-
dependences, in an integrated manner such that a wide range of queries requir-
ing single or multiple types of profile information can be responded to quickly
and with ease. We presented compression techniques that are highly effective
in reducing the sizes of WETs. In particular, on average, compressed WET
representation for an execution of 647 million statements can be stored in
331 megabytes of storage. Our extrapolation shows that whole profile in-
formation corresponding to a program run involving execution of 3.9 billion
intermediate-level code statements can be stored in 2 gigabytes of space which
can easily fit in the main memory today. Thus, the compressed WET represen-
tation can form the basis of a powerful tool for analyzing profile information
to discover program characteristics that can be exploited to design better com-
pilers and architectures. We demonstrated the power and efficiency of WETs
by developing WET-based algorithms for two applications: dynamic program
slicing and version matching. Although our WETs were designed for sequen-
tial programs, we can adapt the WET representation to allow multithreaded
programs. A stream of values corresponding to thread ids can be maintained.
In addition, edges corresponding to synchronization events can be maintained.

REFERENCES

AGRAWAL, H AND HORGAN, J. 1990. Dynamic program slicing. In Proceedings of the SIGPLAN
Conference on Programming Language Design and Implementation. ACM, New York, 246–256.

AGRAWAL, H., DEMILLO, R., AND SPAFFORD, E. 1993. Debugging with dynamic slicing and back-
tracking. Software Practice and Experience 23, 6, 589–616.

AMMONS, G. AND LARUS, J. R. 1998. Improving data flow analysis with path profiles. In Proceedings
of the SIGPLAN Conference on Programming Language Design and Implementation. ACM, New
York, 72–84.

BALL, T. AND LARUS, J. R. 1996. Efficient path profiling. In Proceedings of the IEEE/ACM Inter-
national Symposium on Microarchitecture. IEEE/ACM, New York, 46–57.

BODIK, R., GUPTA, R., AND SOFFA, M. L. 1998. Complete removal of redundant expressions. In
Proceedings of the SIGPLAN Conference on Programming Language Design and Implementation.
ACM, New York, 1–14.

BURTSCHER, M. 2004. VPC3: A fast and effective trace-compression algorithm. In Proceedings of
the SIGMETRICS Conference. ACM, New York, 167–176.

BURTSCHER, M. AND JEERADIT, M. 2003. Compressing extended program traces using value predic-
tors. In Proceedings of the 12th International Conference on Parallel Architectures and Compila-
tion Techniques. IEEE. 159–169.

BURTSCHER, M. AND ZORN, B. G. 1999. Exploring last n value prediction. In Proceedings of the
International Conference on Parallel Architectures and Compilation Techniques. IEEE. 66–76.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

Whole Execution Traces and Their Applications • 333

CALDER, B., FELLER, P., AND EUSTACE, A. 1997. Value profiling. In Proceedings of the 30th
IEEE/ACM International Symposium on Microarchitecture. IEEE/ACM, New York, 259–269.

CHILIMBI, T. M. 2001. Efficient representations and abstractions for quantifying and exploiting
data reference locality. In Proceedings of the SIGPLAN Conference on Programming Language
Design and Implementation. ACM, New York, 191–202.

CHILIMBI, T. M. AND HIRZEL, M. 2002. Dynamic hot data stream prefetching for general-purpose
programs. In Proceedings of the SIGPLAN Conference on Programming Language Design and
Implementation. ACM, New York, 199–209.

DUESTERWALD, E., GUPTA, R., AND SOFFA, M. L. 1992. Rigorous data flow testing through output
influences. In Proceedings of the 2nd Irvine Software Symposium. 131–145.

GOEMAN, B., VANDIERENDONCK, H., AND BOSSCHERE, K. 2001. Differential FCM: increasing value pre-
diction accuracy by improving table usage efficiency. In Proceedings of the Seventh International
Symposium on High Performance Computer Architecture. IEEE-CS. 207–216.

GUPTA, N. AND RAO, P. 2001. Program execution based module cohesion measurement. In Pro-
ceedings of the 16th IEEE International Conference on Automated Software Engineering. IEEE.
144–153.

GUPTA, R., BERSON, D., AND FANG, J. Z. 1998. Path profile guided partial redundancy elimination
using speculation. In Proceedings of the IEEE International Conference on Computer Languages.
IEEE. 230–239.

JACOBSON, Q., ROTENBERG, E., AND SMITH, J. E. 1997. Path-based next trace prediction. In Proceed-
ings of the 30th IEEE/ACM International Symposium on Microarchitecture. IEEE/ACM, New
York, 14–23.

JARAMILLO, C., GUPTA, R., AND SOFFA, M. L. 1999. Comparison checking: an approach to avoid
debugging of optimized code. In Proceedings of the ACM SIGSOFT 7th Symposium on Founda-
tions of Software Engineering and 8th European Software Engineering Conference. LNCS 1687,
Springer Verlag, New York, 268–284.

JOSEPH, D. AND GRUNWALD, D. 1997. Prefetching using Markov predictors. In Proccedings of the
International Symposium on Computer Architecture. IEEE/ACM, New York, 252–263.

KAMKAR, M. 1993. Interprocedural dynamic slicing with applications to debugging and testing.
PhD Thesis, Linkoping University, Sweden.

KLEINOSOWSKI, A. J. AND LILJA, D. J. 2002. MinneSPEC: a new SPEC benchmark workload for
simulation-based computer architecture research. Computer Architecture Letters 1.

KOREL, B. AND LASKI, J. 1988. Dynamic program slicing. Information Processing Letters 29, 3,
155–163.

KOREL, B. AND RILLING, J. 1997. Application of dynamic slicing in program debugging. In Proceed-
ings of the Automated and Algorithmic Debugging. 43–59.

LARUS, J. R. 1999. Whole program paths. In Proceedings of the SIGPLAN Conference on Pro-
gramming Language Design and Implementation. ACM, New York, 259–269.

LIPASTI, M. H. AND SHEN, J. P. 1996. Exceeding the dataflow limit via value prediction. In Proceed-
ings of the 29th IEEE/ACM International Symposium on Microarchitecture. IEEE/ACM, New
York, 226–237.

NEVIL-MANNING, C. G. AND WITTEN, I. H. 1997. Linear-time, incremental hierarchy inference for
compression. In Proceedings of the Data Compression Conference. IEEE-CS. 3–11.

PERELMAN, E., HAMERLY, G., BIESBROUCK, M. V., SHERWOOD, T., AND CALDER, B. 2003. Using SimPoint
for accurate and efficient simulation. In Proceedings of the SIGMETRICS the International Con-
ference on Measurement and Modeling of Computer Systems. ACM, New York, 318–319.

RUBIN, S., BODIK, R., AND CHILIMBI, T. 2002. An efficient profile-analysis framework for data lay-
out optimizations. In Proceedings of the 29th SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. ACM, New York, 140–153.

SAZEIDES, Y. 2003. Instruction-isomorphism in program execution. In Proceedings of the Value
Prediction Workshop.

SAZEIDES, Y. AND SMITH, J. E. 1997a. The predictability of data values. In Proceedings of the 30th
IEEE/ACM International Symposium on Microarchitecture. IEEE/ACM, New York, 248–258.

SAZEIDES, Y. AND SMITH, J. E. 1997b. Implementations of context based value predictors. Technical
Report ECE-97-8, University of Wisconsin-Madison.

Trimaran Compiler Research Infrastructure, 1997. Tutorial Notes.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

334 • X. Zhang and R. Gupta

VENKATESH, G. A. 1995. Experimental results from dynamic slicing of C programs. ACM Trans-
actions on Programming Languages and Systems 17, 2, 197–216.

WEISER, M. 1982. Program slicing. IEEE Transactions on Software Engineering SE-10, 4, 352–
357.

YANG, J. AND GUPTA, R. 2002. Frequent value locality and its applications. ACM Transactions on
Embedded Computing Systems 1, 1, 79–105.

YOUNG, C. AND SMITH, M. D. 1998. Better global scheduling using path profiles. In Proceedings of
the IEEE/ACM International Symposium on Microarchitecture. IEEE/ACM, New York, 115–123.

ZHANG, Y. AND GUPTA, R. 2001. Timestamped whole program path representation and its ap-
plications. In Proceedings of the SIGPLAN Conference on Programming Language Design and
Implementation. ACM, New York, 180–190.

ZHANG, Y. AND GUPTA, R. 2002. Data compression transformations for dynamically allocated data
structures. In Proceedings of the International Conference on Compiler Construction. LNCS 2304,
Springer Verlag, New York, 14–28.

ZHANG, X., GUPTA, R., AND ZHANG, Y. 2003. Precise dynamic slicing algorithms. In Proceedings
of the IEEE/ACM International Conference on Software Engineering. IEEE/ACM, New York,
319–329.

ZHANG, X. AND GUPTA, R. 2004. Cost effective dynamic program slicing. In Proceedings of the
SIGPLAN Conference on Programming Language Design and Implementation. ACM, New York,
94–106.

ZHANG, X. AND GUPTA, R. 2005. Matching execution histories of program versions. In Proceedings
of the Joint 10th European Software Engineering Conference and 13th SIGSOFT Symposium on
the Foundations of Software Engineering. ACM, to appear. 189–206.

ZILLES, C. B. AND SOHI, G. 2000. Understanding the backward slices of performance degrading
instructions. In Proceedings of the IEEE/ACM 27th International Symposium on Computer Ar-
chitecture. IEEE/ACM, New York, 172–181.

Received March 2005; revised July 2005; accepted July 2005

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

