Synchronization Aware Conflict Resolution for Runtime
Monitoring Using Transactional Memory

Chen Tian, Vijay Nagarajan, Rajiv Gupta
Dept. of Computer Science and Engineering
University of California at Riverside

{tianc,vijay,gupta}@cs.ucr.edu

ABSTRACT

There has been significant research on performing runtime
monitoring of programs using dynamic binary translation
(DBT) techniques for a variety of purposes including pro-
gram profiling, debugging, and security. However, such soft-
ware monitoring frameworks currently handle only sequen-
tial programs efficiently. When handling multithreaded pro-
grams, such tools often encounter racing problems and re-
quire serialization of threads for correctness. The races arise
when application data and corresponding meta data stored
in DBT tools are updated concurrently. To address this
problem, transactional memory (TM) was recently proposed
to enforce atomicity of updating of application data and
their corresponding meta data. However, enclosing legacy
synchronization operations within transactions can cause
livelocks, and thus degrade performance.

In this paper, we consider common forms of synchroniza-
tions and show how they can give rise to livelocks when TM
is used to enable runtime monitoring. In order to avoid
such livelocks, we implement a detector to dynamically de-
tect synchronizations and use this information in performing
conflict resolution. Our experiments show that our synchro-
nization aware strategy can efficiently avoid livelocks for the
SPLASH-2 benchmarks.

General Terms

Monitoring, Transactional Memory, Conflict Resolution

1. INTRODUCTION

There has been significant research on performing runtime
monitoring of programs using software techniques for a va-
riety of purposes. For example, LIFT [12] is a software tool
that perform dynamic information flow tracking to ensure
that the execution of a program is not compromised by
harmful inputs. In these monitoring applications, original
instructions that manipulate application data are accom-
panied by instrumented instructions that manipulate meta
data associated with the application data.

However, for multithreaded programs, it is essential that
original application data and its corresponding meta data
are manipulated atomically in order to correctly maintain
the meta data values [11, 3]. Existing software monitoring
schemes [11] ensure the atomicity by serializing the execu-
tion of threads. Naturally, this is not an efficient way to han-
dle multithreaded programs. To overcome this inefficiency,
the use of transactional memory support has been recently
proposed to enforce atomicity [3]. Specifically, the original
instructions that manipulate application data and the cor-
responding instructions that manipulate the meta data are
put inside a transaction, so that TM mechanisms can auto-
matically enforce atomicity. This obviates the need to fully
serialize the execution of the threads and thus enables the
efficient monitoring of multithreaded programs.

Initially, flag = 0;
T2

-- Start Transaction — -- Start Transaction --

while (flag'=1); flag = 1:

-- Commit Transaction -- -- Commit Transaction --

Figure 1: A livelock caused by synchronization

An important parameter that directly affects the efficiency
of performing monitoring using TM is the length of the
transactions [3]. This is because of the expensive bookkeep-
ing tasks involved in starting and ending transactions. Thus
for example, it will be inefficient to put an individual ba-
sic block of original code (and its accompanying instrumen-
tation) within a single transaction, especially if that basic
block is present in a hot loop. To alleviate this problem, two
techniques are proposed in [3]: (a) creating transactions at
trace granularity and (b) dynamic merging of transactions.
However, employing these techniques may lead to livelocks
if code that performs synchronization (from the original pro-
gram) is put into a transaction. We illustrate this problem
with a simple example shown in Fig. 1.

Let us assume that the transaction start and transaction end
instructions are placed outside the spinning loop to prevent
the creation of a transaction (T1) every loop iteration. Note
that the write that sets the flag (in processor 2) is also part
of a transaction T2. Let us now analyze the sequence of
events on a transactional memory system, more specifically
the LogTM system [10]. First, T1 is created in processor 1
and is not committed until flag is eventually set. By the time
processor 2 tries to set the flag, T2 in processor 2 would have

Initially, counter=lock=0;
T1 T2
-- Start Transaction -- -- Start Transaction —

With eager detection,
conflict is detected, and one

éét_lock(&lock); thread needs to be aborted get_lock(&lock);

counter ++; counter ++;

fé.lease_lock(&lock);

while (counter 1= 2); «——————— Wwhile (counter != 2);
With lazy detection,
no thread can pass while

-- Commit Transaction -- -- Commit Transaction --

(a) Live-lock arises as long as the whole barrier is in a
transaction no matter what kinds of conflict detection and
resolution are used.

Initially, flag = 0;
T2

-- Start Transaction — -- Start Transaction --

A conflict is detected e .
while (counter !=2) ; counter ++;

lCommi(Transaction -- -- Commit Transaction --

(b) Live-lock arises if T2 is the requester and
resolution is requester aborted.

release_lock(&lock);

T1 T2
-- Start Transactionl — - Start Transaction --
80486¢5: mov 0x8049aa4d,%eax \
addl $0x1,0x8049aa4
80486ca: cmp %eax, $2

-- Commit Transaction —
80486¢cc: je 80486¢5

-- Start Transaction2 —
80486ce: movl $0x1,0x8049a98

(C) Live-lock arises if T2 is always the loser in
the conflict resolution

-- Commit Transaction --

-- T2 start transaction --

- T1 start transaction — counter ++;

T1abort T2
while (counter !=2) ;

\ -- T2 restart transaction --
T2 abort T1

counter ++;
- T1restart Transaction —

T1 abort T2
while (counter !=2) ; -- T2 restart transaction —

T2 abort T1 counter ++;

- T1restart Transaction —
T1

while (counter !=2) ;

(d) Live-lock arises if two threads
keep aborting each other.

Figure 2: Livelocks due to synchronization in Transactional Memory

been started. Clearly T2 will conflict with the ongoing T'1 as

data) into a unique transaction.

However, according to

it tries to write to the location (flag) that has already been
read by T1. Since logTM follows the policy of the requester
aborting, T2, which is the requester, is aborted. When it is
restarted, it still remains the requester (T1 has not commit-
ted yet), and so ends up getting aborted repeatedly, causing
a livelock situation.

In this paper, we first analyze the effect of putting vari-
ous synchronizations (including locks, barriers and flag syn-
chronizations) within transactions and find that in several
scenarios, a livelock can arise for a variety of TM policies
(presented in section 2). We then present a synchronization
aware conflict resolution strategy called SCR: Synchroniza-
tion aware Conflict Resolution, where synchronization op-
erations are dynamically identified by our synchronization
detector (presented in section 3) and used to perform con-
flict resolution (presented in section 4). In section 5, we
present experimental results that show that SCR is able to
efficiently avoid livelocks and thus enables the use of TM to
perform software based monitoring for multithreaded pro-
grams. We conclude in section 6.

2. LIVELOCKS IN TM BASED MONITOR-
ING

In this section, we will discuss livelocks scenarios for different
transaction sizes.

2.1 TM Policies

Transactional memory systems [5] enable atomic execution
of blocks of code. The three major functions of TM are
conflict detection, version management and conflict resolu-
tion. Previously proposed TM systems can be separated into
three different categories [2]: LL lazy conflict detection, lazy
version management and committer wins; EL: eager conflict
detection, lazy version management and requester wins; and
EE: eager conflict detection, eager version management and
requester loses.

2.2 Livelock Scenarios

Recall that in software based monitoring, operations in the
original program are accompanied by instrumentation that
manipulates the meta data, both of which need to be atom-
ically executed. A naive way of creating transactions would
be to put each original operation (that modifies application
data) along with its instrumentation (that modifies meta

Chung et al.’s recent work in [3], smaller the transaction
size, more the bookkeeping overhead involved in the cre-
ation and the committing of transactions. To reduce this
overhead, one possible strategy would be to create a trans-
action for every basic block of original program. To fur-
ther increase the transaction size without introducing too
many conflicts, Chung et al. proposed two techniques in
[3], putting traces of frequently executed basic blocks into
transactions and dynamically merging transactions.

Having large transactions has its own share of problems,
particularly if code for performing synchronization fully fits
within an individual transaction. To see why, let us consider
the counter based barrier shown in Fig. 2(a), which is fully
enclosed within a transaction. Let us assume that processor
1 reaches the barrier first and thus wait for the counter to
be 2 after incrementing it (transaction T1). When transac-
tion T2 is subsequently started (when processor 2 reaches
the barrier), it conflicts with T1 since it tries to acquire the
same lock that was earlier acquired by T1. If EE policy
is followed, T2 being the requester, is forced to abort and
this situation keeps repeating since it is always the requester.
Thus a livelock situation arises. If EL policy is instead used,
T2, being the requester, aborts T1. However, T1 becomes
the requester now, and it consequently aborts T2. Thus, in
this situation, transactions keep aborting the other repeat-
edly and cause a livelock. With lazy conflict detection (LL),
neither of the processors can see the value of the updated
value of the counter and hence land into a livelock. Thus,
irrespective of the policy followed, putting barrier entirely
into a transaction, causes a livelock. However, a livelock can
still arise for some policies, if we put only parts of the barrier
code into a transaction.

Let us consider Fig. 2(b) in which the while loop which spins
on the variable counter (and its associated instrumentation)
is put inside a transaction T1, and the increment of counter
is in another transaction T2. Let us assume that processor 1
reaches the while loop first where it spins until the value of
counter is subsequently incremented by processor 2. Thus
T1 is created first and is not committed until T2 commits.
However, if the EE (requester aborts) policy is followed, T2
is always aborted since it is the requester and this leads to a
livelock. It is worth noting that the chances of a livelock are

significantly decreased if we had a transaction for every basic
block as shown in Fig. 2(c). (In this scenario, a T1 is created
every iteration of the spinning read.) This is because, to
cause a livelock T2 has to be the requester every time, which
is probabilistically not possible.

Let us now consider the sequence of events if EL (requester
wins) policy is followed. Let us assume as before that proces-
sor 1 reaches the spin loop first and waits for the value of the
counter to be incremented by processor 2. When processor
2 eventually tries to increment counter, it is a part of T2.
Since T2 is a requester, and we follow the requester wins pol-
icy T1 is aborted and T2 is allowed to committed. However,
if T1 restarts before T2 commits, then T'1 now becomes the
requester and consequently aborts T2. In the worst case,
this situation can be repeated infinitely and thus cause a
livelock. The pattern of aborts is illustrated in Fig. 2(d)
and this pattern of aborts is also called FRIENDLYFIRE
in [2]. It is worth noting that if we had used a strategy of
one basic block per transaction as shown in Fig. 2(c), the
chances of T1 restarting before T2 commits is very low, since
the size of transaction T2 is small, only containing the code
for incrementing count and its associated instrumentation.

If lazy conflict detection is used and the resolution is com-
mitter wins, the livelock can be avoided. This is because
T2 will finish its transaction first and will therefore commit.
When T2 is being committed, a conflict on variable counter
will be detected and thus T1 will be aborted. Therefore,
when T1 is restarted, the counter is already incremented,
and no livelock is caused.

The various livelocks scenarios for different TM policies, and
for various transaction sizes are summarized in Table 1.

[TM Policies | Barrier | Spinning-Read | Basic Block |

EE Yes Yes Not Probable
EL Yes Possible Not Probable
LL Yes No No

Table 1: Livelock scenarios for different TM policies
and Transaction sizes

3. SYNCHRONIZATION DETECTION

To solve livelock problem, HTM systems need to be aware
of the synchronization operations so that the correct conflict
resolution can be performed. In this section we will present
a technique that can dynamically detect busy-waiting syn-
chronizations.

3.1 Pattern of Busy-waiting Synchronization
The simplest mechanism to synchronize two threads is flag
synchronization, because it does not need any special in-
structions such as Test-and-Set and Compare-and-Swap.
Fig. 2(b), which was seen previously, shows an example.
It is very clear that processor 1 performs a spinning read
(while statement) and processor 2 performs a write on a same
shared location flag, and these two statements are those that
cause the synchronization.

Lock is another common synchronization mechanism in mul-
tithreaded programs. A classic Test and Test-and-Set
algorithm, is shown in Fig. 3(a). To acquire the lock, each
thread executes an atomic instruction Test-and-Set (line 2),
which reads and saves the value of the lock. If the lock
is available, then the Test-and-Set instruction returns false,

which makes the winner enter the critical section. Other
threads have to spin on the lock (line 3) until there is a pos-
sibility that the Test-and-Set instruction can succeed. The
reason for the spinning on line 3 is to avoid executing the
Test-and-Set instruction repeatedly which causes the cache
invalidation overhead. From this implementation, we can
see line 3 is a spinning read and line 5 is the remote write,
which race with each other.

1 shared int counter := P;
2 shared bool sense := true;
3 private local_sense := true;

1 shared bool lock := false;

acquire_lock: .

2 while (TS(lock)) { barrier:

3 while(lock); 4 local_sense := NOT sense
4 } 5 LOCK();

6 counter--;

7 if (counter = 0) {

8 counter :=P;
release_lock: 9 sense := local_sense;
5 lock := false; 10 }

11 UNLOCK();

12 while (sense != local_sense) ;

(a) Test and Test-and-Set Lock (b) sense-reversing counter barrier

Figure 3: Lock and Barrier Examples

In Fig. 2(a), we had shown the centralized barrier, where
all threads except the last one are delayed by a spinning read
on variable counter. In this implementation, every thread
also decrements variable counter, causing a remote write to
all earlier-arrived threads.

To make the centralized counter barrier reusable, a sense-
reversing barrier, described in [9], is shown in Fig. 3(b).
Each arriving processor decrements count by exclusively ex-
ecuting line 6 and then waits for the value of variable sense
to be changed by the last arriving processor (line 9). Simi-
lar to the simple counter barrier, line 12 is a spinning read
and line 9 is a write on variable sense, which is the cause of
synchronization races produced due to this barrier.

Having studied the different implementations of various syn-
chronization operations including CLH [7] and MCS lock [9]
and tree barrier, we find that the spinning read and its cor-
responding remote write is a common pattern among the
synchronization operations.

3.2 Detection of the General Pattern

Li et al. have proposed a method for spin detection [13].
However, their scheme does not identify the remote write,
and thus cannot be used for HTM systems to break livelocks.
In this section, we will discuss another dynamic technique
to identify both the spinning read and a remote write.

Spinning Read. To find the spinning read, we first intro-
duce a load table to maintain the information of each load
instruction executed in each thread. The information in-
cludes the PC, the previous address accessed by the load
instruction, the previous value in this address and a vari-
able counter, which essentially maintains the current count
of spin loop. Then, we determine if a load instruction is a
spinning read in a synchronization pattern by checking the
following conditions:

e this load instruction has been repeatedly executed thresh-

old1 number of times with the same values and ad-
dresses;

e two consecutive executions of this load are never in-
terrupted by more than threshold2 other load instruc-
tions;

e after the previous two conditions are satisfied, the value
accessed by this load is changed by another different
thread.

As we can see, the first two conditions depend on two dif-
ferent heuristic value respectively. If we set them too small
or too big, the detection result will become inaccurate. Es-
pecially for threshold2, we need to consider the extra loads
introduced by DBT tools. To determine these two values, we
profiled the benchmarks, and found that 10 and 12 are good
enough for threshold! and threshold?2 respectively. Thus, we
chose them in our implementation.

Remote Write. If a thread performs a store that causes a
spinning read is detected in another thread, then we identify
this store as the remote write.

3.3 Software Implementation

The software based detector can be implemented by DBT
tools. For each thread, we use a global struct variable to
implement the load table, which contains the information
about the most recent 12 loads. When a store is executed,
the current thread will check other threads’ load table to see
if a synchronization pattern is detected. Specifically, if this
store accesses the same location as some load, whose spin
counter has reached 10, in a load table, and the value in this
location is being changed by this store, then a synchroniza-
tion pattern is identified.

The disadvantage of software implementation is the over-
head. According to our experiments, the overhead on aver-
age is over 45x. Even with the optimized implementation
where the loads and stores accessing stack variables are not
monitored, the overhead on average is still over 9x.

3.4 Hardware Implementation

To reduce the overhead, we implement a hardware based de-
tector illustrated in Fig. 4. Light shaded parts are hardware
changes we need to make.

Processor 1 Processor N

Processor pipeline/
Registers

Processor pipeline/
Registers

Load table

* i Load table

Cache Coherence Controller

L1 Cache L1 Cache

Figure 4: Hardware Implementation

The idea is to use a on-chip buffer to implement the load
table for each processor, and leverage the cache coherence
protocol to determine the synchronization pattern. Specifi-
cally, when a write is performed by a processor, the proces-
sor will store the PC' into a cache coherence message, which
will invalidate all copies of the updated shared variable in
the caches of all other processors. When this message is
received by a processor where a spinning read has been dis-
covered, we can identify this synchronization and store the

PC of the load and store into a synchronization table such
that they can be exploited by HTM system later.

Note that in a hardware-based TM with lazy conflict detec-
tion configuration, there is no cache coherence message until
the transaction is being committed. Thus, we cannot detect
the synchronization pattern in time. To tackle this problem,
when a spinning read is detected, we check if the variable
being spun upon by the current processor is modified, i.e.
in the write set, by another processor. If we find a match,
we have identified a synchronization.

4. SYNCHRONIZATION-AWARE CONFLICT
RESOLUTION

Enclosing synchronizations within transactions is the root
cause of livelocks as shown in Section 2. Now that we are
able to find synchronization instructions by using the detec-
tor, we need to make the HT'M system be synchronization-
aware such that a conflict due to synchronization can be
correctly resolved at runtime. More specifically, the HTM
system should commit the synchronization write as soon as
the write instruction is detected and ensure that the spinning
read from the other processor can see the updated shared
variable quickly. In order to do that, we add the following
two rules into the synchronization detector and the HTM
system respectively:
e [f a store instruction in a transaction is determined as
a synchronization write, the detector signals the HTM
system to commit this transaction immediately and
start a new transaction; the detector also notifies the
HTM system of the transaction containing a spinning
read instruction so that it can be aborted;

o If the HTM system uses eager detection and detects
a conflict, the synchronization table is checked to see
if the conflict is caused by synchronization. If so, the
transaction that has the synchronization write will be
committed, and a new transaction will be started for
this thread; the transaction that has the spinning read
will be aborted. If lazy detection is used, the HTM sys-
tem checks synchronization table for each store. Same
action will be taken if there is a match;

The first rule ensures that if a livelock due to synchroniza-
tion has already occurred or will occur, it can be broken
or avoided. The second rule ensures that discovered syn-
chronization can never cause any livelocks in the future.
Intuitively, these two rules dynamically split a transaction
containing a synchronization write into two smaller trans-
actions, and give the priority to a transaction containing
the synchronization write. Note that the splitting process is
done by hardware, no re-instrumentation is needed.

To see how this new resolution works, let’s again consider
the example shown in Fig. 1(a). We assume eager detection
is used and livelock will still occur because T2 keeps being
aborted. However, our detector can quickly find the flag
synchronization. Thus, the detector can signal the HTM
system to immediately commit T2 (which performs a remote
write to the variable flag) and abort T1. Therefore, in its
next trial, T1 is able to see the updated value of flag and
then go ahead (Fig. 5).

Similarly, our solution can also solve livelocks caused by bar-
riers as shown in Fig. 2(a) if eager detection is used. Once

Initially, flag = 0;
T1 T2

-- Start Transaction — -- Start Transaction --

while (flag !=1) ; flag = 1; Commit Transaction
Abort Transaction

-- Restart Transaction —

ﬂ

Figure 5: Avoiding a livelock by committing a trans-
action containing the remote write

-- Commit Transaction --

-- Commit Transaction —

the lock synchronization is detected, the transaction which
released the lock will be committed. Thus, the other trans-
action can enter the critical section and will be committed
after it updates counter as our detector determined that the
update is a remote write. By aborting both transactions in
turn, the livelocks can be eliminated permanently.

If lazy detection is used, and the spinning read on counter
is discovered by T1’s detector, the detector can periodically
send a inquiry message to other processor. Once the detec-
tor finds that T2 has performed a write to counter, synchro-
nization is identified and thus, HTM system can be notified
and take the correct action, which is to commit T2 imme-
diately, to break the livelock. Next time if the same store
comes again, the HTM system can avoid the livelock auto-
matically.

It is worth noting that if FRIENDLYFIRE occurs, our de-
tector can still work correctly. This is because the imple-
mentation of lock() needs to perform both read and write to
the lock. Thus, after certain number of abortions, the lock
synchronization can be identified and the HTM system can
enforce the rules to avoid the livelock.

5. EXPERIMENTS

In this section, we first measure in the worst case how of-
ten livelock situations can arise in SPLASH-2 benchmarks
where busy-waiting synchronizations are widely used. Then
we evaluate the accuracy of hardware-based synchronization
detection scheme. We also evaluate the performance over-
head of dealing with livelocks using SCR strategies. Finally
we estimate the impact of different transaction sizes on the
performance.

5.1 Evaluation Methodology

Our software monitoring infrastructure is built on Intel’s
Pin Infrastructure [6]. We considered dynamic information
flow tracking (DIFT) as our monitoring application [12] and
implemented it in Pin for our experiments.

Our hardware synchronization detector is implemented on
Simics [8] with 4 3GHz x86 processors, 64KB 4-way private
L1 cache and 2MB 8-way unified L2 cache configuration.
We assume the MESI snoopy cache coherence protocol. All
the caches are assumed to be write back and write allocate
caches.

For our transactional memory experiments, we consider a
Hardware TM (HTM) system that uses an EE policy simi-
lar to the logT'M system [10]. We used emulation (in Pin)
to estimate the overhead of transactional memory. We used

a nop instruction to indicate start of a transaction and the
mfence instruction to indicate the end of a transaction. A
memory fence instruction enforces memory ordering of in-
structions before and after it, and since this functionality
is required for Transaction-end, we use the m fence instruc-
tion.

5.2 Characteristics of Benchmarks

We use SPLASH-2 benchmark [14] suite as our subject pro-
grams since it is widely used to facilitate the study of shared
memory multiprocessors. and contains many different type
of synchronizations. The SPLASH-2 benchmarks gives hooks
for us to implement our own synchronization operations and
we used pthread-spin-lock to implement our locks and used
the sense-reversing counter based barrier. The SPLASH-2
programs also contain other busy-waiting synchronization
operations hard coded into the source code.

Programs LOC | Input Sync. # of

Time (%) | Conflicts
BARNES 2.0K | 8192 4.1 34490
FMM 3.2K | 256 7.1 998
OCEAN-1 2.6K | 258 x 258 3.5 6893
OCEAN-2 4.0K | 258 x 258 4.3 6953
RADIOSITY | 8.2K | batch 1.5 237960
RAYTRACE | 6.1K | tea 3.7 76706
VOLREND 2.5K | head -adpt 12.5 2325
WATER-NS 1.2K | 512 8 4205
WATER-SP 1.6K | 512 3.7 4073

Table 2: Characteristics of SPLASH-2 Benchmarks

Table 2 shows the names, number of lines of source code
and inputs, the percentage of time spent in synchroniza-
tion and number of conflicts for each benchmark used. The
time spent on performing synchronizations for each proces-
sor varies from 1.5% to 12.5%. The number of conflicts
represents the potential number of situations which result
in a livelock for the EE strategy. We measured the num-
ber of conflicts by instrumenting the original program and
detecting the number of situations in which two processors
synchronize with each other using shared memory accesses.
As we can see, the number of conflicts are high since we used
busy-waiting synchronization algorithms.

5.3 Accuracy of synchronization detection

Table 3 shows the accuracy of our synchronization detector.
The actual number of synchronizations and the the number

Programs Actual No. | Detected No.
BARNES 33 33
FMM 59 55
OCEAN (non-contiguous) 44 44
OCEAN(contiguous) 42 42
RADIOSITY 60 60
RAYTRACE 19 19
VOLREND 35 35
WATER-NS 24 24
WATER-SPATIAL 28 28

Table 3: Accuracy of Synchronization Detection

of synchronizations we detected by our detector are shown
in the second and third column respectively. Note that only
in one benchmark FMM, we miss 4 patterns, which are all
flag synchronizations. This is because the instructions that
set the flag always execute earlier than the instructions that
check the flag. Since our synchronization is based on spin
detection, we failed to detect these synchronizations in the

above situations as there is no spin. Although our detec-
tor failed to detect them, there is no transaction conflict,
precisely for the same reason (no spin) and thus these syn-
chronizations cannot lead to any livelocks.
5.4 Performance Overhead of Livelock Han-
dling
The baseline strategy of eliminating livelocks is to create
a transaction for each basic block (BB). However, creating
and committing too many small transactions is not cheap.
Based on our experiments, each SPLASH-2 benchmark exe-
cution on an average has 74.8 Million basic blocks. Creating
and committing these number of transactions leads to 67%
overhead on an average (not shown in the graph). It is
worth noting that these are the performance overheads over
and above the instrumentation overhead for performing the
monitoring.

45% T T

W 4-BB Trans,
[12-BB Trans,

HTM Overhead Comparison

BARNES FMM OCEAN-1 OCEAN-2 RADIOS, RAY. VOLREND ~WATER-1 ~ WATER-2 mean

Figure 6: SCR Strategy Overhead.

Our SCR strategy makes it possible to put multiple basic
blocks within a transaction while at the same time it safely
avoids livelocks. We evaluated the performance overhead of
our SCR strategy for different sizes of transactions namely,
4-BB-transaction, 8-BB-transaction and 12-BB-transaction,
the results are shown in Fig. 6. As we can see, using 4-
BB-transactions dramatically decreases the average over-
head from 67% to around 18%. Using 8-BB-transactions
decreases the overhead further to around 11%.

B Abortion
@ Creation/Termination

HTM Overhead Distribution

-

o
=
ob

15%

10%

5%
%

@
3
o

4-BB
2-BB

@ = =
g5 8
4+ 4 4

RADIOSITY WATER-!

4-BB
Z12-BB

OCEAN-T~

Figure 7: HTM Overhead Distribution

However, we observe that the 12-basic-block transaction strat-
egy does not always perform better compared to 8-basic-
block transaction. In fact, for somebenchmarks (OCEAN-2
and RADIOSITY) 8-BB-transactions perform better. Fig. 7
shows the distribution of the TM overhead between over-
head for creation/termination and overhead for aborting the
transactions. As we can see, while the overhead for cre-
ation/termination is lower for larger transactions, the over-
head for aborting a transaction increases with the size of
transactions.

6. CONCLUSION

Transactional memory has been recently proposed for per-
forming software based monitoring of multithreaded pro-
grams. Unfortunately, enclosing legacy synchronizations into
transactions leads to several livelock scenarios. To deal with
these livelocks, we propose a synchronization aware conflict
resolution strategy (SCR), that is able to efficiently avoid
these livelock scenarios.

7. REFERENCE

[1] A.-R. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R.
Murphy, B. Saha, and T. Shpeisman. Compiler and
runtime support for efficient software transactional
memory. In PLDI ’06, pages 26-37, New York, NY,
USA, 2006. ACM.

[2] J. Bobba, K. E. Moore, H. Volos, L. Yen, M. D. Hill,
M. M. Swift, and D. A. Wood. Performance
pathologies in hardware transactional memory. In
ISCA 07, pages 81-91, New York, NY, USA, 2007.

[3] J. Chung, M. Dalton, H. Kannan, and C. Kozyrakis.
Thread-safe binary translation using transactional
memory. In HPCA 08, 2008.

[4] P. Damron, A. Fedorova, Y. Lev, V. Luchangco,

M. Moir, and D. Nussbaum. Hybrid transactional
memory. In ASPLOS 06, pages 336-346, New York,
NY, USA, 2006. ACM.

[5] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures. In
ISCA 793, 1993.

[6] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: building customized program
analysis tools with dynamic instrumentation.
SIGPLAN Not., 40(6):190-200, 2005.

[7] P. Magnusson, A. Landin, and E. Hagersten. Queue
locks on cache coherent multiprocessors. pages
165-171, citeseer.ist.psu.edu/magnusson94queue.html.

[8] P. S. Magnusson, F. Dahlgren, H. Grahn, M. Karlsson,
F. Larsson, F. Lundholm, A. Moestedt, J. Nilsson,

P. Stenstrom, and B. Werner. Simics/sun4m: a virtual
workstation. In ATEC’98, pages 10-10, Berkeley, CA,
USA, 1998. USENIX Association.

[9] J. M. Mellor-Crummey and M. L. Scott. Algorithms
for scalable synchronization on shared-memory
multiprocessors. ACM Trans. Comput. Syst.,
9(1):21-65, 1991.

[10] M. J. Moravan, J. Bobba, K. E. Moore, L. Yen, M. D.
Hill, B. Liblit, M. M. Swift, and D. A. Wood.
Supporting nested transactional memory in logtm.
SIGOPS Oper. Syst. Rev., 40(5):359-370, 2006.

[11] N. Nethercote and J. Seward. Valgrind: a framework
for heavyweight dynamic binary instrumentation.
SIGPLAN Not., 42(6):89-100, 2007.

[12] F. Qin, C. Wang, Z. Li, H. seop Kim, Y. Zhou, and
Y. Wu. Lift: A low-overhead practical information
flow tracking system for detecting security attacks. In
MICRO 06, pages 135-148, 2006.

[13] A. R. L. Tong Li and D. J. Sorin. Spin detection
hardware for improved management of multithreaded
systems. In IEEE TRANS. ON PARALLEL AND
DISTRIBUTED SYSTEMS, VOL. 17, No.6, 2006.

[14] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and
A. Gupta. The SPLASH-2 programs: Characterization
and methodological considerations. In ISCA ’95, pages
24-36, 1995.

