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Abstract - A multiprocessor system capable of exploit- 
ing fine-grained parallelism must support efficient syn- 
chronization and data passing mechanisms. This paper 
demonstrates the use of shared register channels as the 
communication mechanism among processors in a mul- 
tiprocessor chip. A register channel is provided with a 
synchronization bit that is used to ensure that a proces- 
sor succeeds in reading a channel only after the channel 
has been written to. In contrast to a VLIW machine a 
system with channels does not require strict lockstep 
operation of its processors. This reduces the delays 
caused by unpredictable events such as memory bank 
conflicts. Providing channels accessible at the speed of 
registers constrains the number of channels that can be 
supported in hardware. This paper presents compile- 
time techniques that efficiently allocate the channels and 
successfully exploit the fine-grained parallelism using a 
small number of channels. The scheduling of operations 
is carried out in a manner that reduces communication 
among the processors and hence the number of channels 
required. Redundant synchronizations subsumed by 
other synchronizations are eliminated and channels are 
reused whenever possible. Results of experiments 
demonstrating the effectiveness of the techniques in util- 
izing a small number of channels are presented. 
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1. Introduction 

Implicit parallelism present in sequential pro- 
grams is an important source of fine-grained parallelism. 
This parallelism can be divided into two broad 
categories, namely loop level parallelism and extra-loop 
(or non-loop) parallelism. Commercially available mul- 
tiprocessor systems, such as Encore and Alliant, can 
exploit loop level parallelism effectively. However, they 
are ineffective in exploiting extra-loop parallelism 
present in the sequential parts of a program. The Very 
Long Instruction Word (VLIW) [2,5] architectures are a 
family of architectures that can effectively exploit fine- 
grained parallelism present in sequential parts of a pr+ 
gram. The TRACE[l] machine is an example of a com- 
mercially available VLIW machine. The compiler for this 
machine, based upon trace scheduling[3], can detect and 
schedule extra-loop parallelism in sequential parts of the 
program and also exploit loop level parallelism by unrol- 
ling the loops and converting loop level parallelism into 
extra-loop parallelism. A VLIW machine consists of mul- 
tiple processors that operate in lockstep executing 
instructions fetched from a single stream of long instruc- 
tions. The synchronization of the processors is 
guaranteed by the hardware on a per instruction basis. 
The long instruction word allows initiation of several 
fine-grained operations in each instruction. 

A VLIW machine such as the TRACE has two 
major disadvantages. First it cannot be used as a mul- 
tiprocessor as there is a single stream of instructions. 
The second disadvantage arises due to events unpredict- 
able at compile-time. For example bank access conflicts 
cannot always be avoided since the operands required 
for an operation may not be known at compile-time due 
to the use of arrays and pointers. The lockstep opera- 
tion of multiple processors makes the machine intolerant 
to delays caused by unpredictable run-time events. The 
delay in the completion of any one of the operations in a 
long instruction delays the completion of the entire 
instruction. 

The Briarcliff Multiprocessor Project is developing 
a RISC based multiprocessor chip with a small number 
of processors[4]. The processors on this chip can execute 
relatively independent streams of instructions for 
exploiting loop level parallelism and also exploit extra- 
loop parallelism efficiently. The interconnection poten- 
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tial of a multiprocessor chip is being exploited to provide 
highly efficient hardware synchronization mechanisms. 
The goal of this research project is to develop a mul- 
tiprocessor system tolerant of unpredictable delays in 
the progress of individual streams. A synchronization 
mechanism for achieving this goal during the execution 
of parallelized loops, named the fuzzy barrier[5], has 
been developed. This mechanism relies upon the com- 
piler to find useful instructions that a processor can exe- 
cute while it is waiting for other processors to arrive at 
the barrier. A combination of a mechanism for collec- 
tive branching161 of processors and data passing 
mechanism based upon register channels is being used 
to exploit extra-loop parallelism. This paper discusses 
the work done to ascertain the usefulness of a shared set 
of register channels 113,141. A register channel is pro- 
vided with a synchronization bit that is used to ensure 
that a processor reading a channel does so only after 
another processor has written into the channel. Using 
these registers the processors can communicate at high 
speed, The communication of values through channels 
enforces synchronization. The collective branching 
mechanism enables a single processor to control the exe- 
cution paths taken by all the processors. The combina- 
tion of register channels and collective branching allows 
exploitation of instruction level parallelism without 
strict lockstep operation of processors. Thus, delays 
caused by unpredictable operations in a VLIW machine 
can be potentially reduced. 

Techniques such as trace scheduling[3] and region 
scheduling[8] developed for LIW architectures can also 
be used to generate code for the Briarcliff architecture. 
However, additional compile-time techniques to deter- 
mine when channels should be used must also be 
developed. The channels are treated as a set of registers 
that are shared by all the processors. Since the channels 
are addressed as registers only a limited number of chan- 
nels can be provided. The goal of this work is to deter- 
mine whether a small number of channels is sufficient to 
exploit fine-grained parallelism in a system with a small 
number of processors. Compile-time techniques that 
make efficient use of channels by using them only when 
necessary are developed. These techniques have been 
applied to straight line code segments taken from a set 
of scientific programs. The study carried out shows that 
a small number of channels is sufficient, if used intelli- 
gently by the compiler. 

The HEP [10,13] multiprocessor provides poten- 
tially infinite number of channels by adding a synchroni- 
zation bit to every location in the shared memory and 
the register set. This is highly desirable in HEP as the 
channels are visible to the user at language level. The 
channels implemented in memory do not allow high 
speed communication among parallel streams. However, 
this is not a drawback in HEP as it achieves high 
throughput by creating a large number of streams and 
issuing instructions from streams that are ready to exe- 
cute. The HEP approach is not effective for the Briarcliff 
architecture. The channels will be used to exploit fine- 
grained parallelism in a manner similar to VLIW 

machines; thus the number of streams will at most equal 
the number of processors in the system. In such a SYS- 
tern it is essential to provide fast channels. Register 
channels are much more efficient than memory channels, 
especially in a load-store architecture. Another desir- 
able result of using register channels, instead of memory 
channels, is that contention for shared memory is 
reduced instead of being increased. Although only a lim- 
ited number of channels can be provided this is not a 
drawback for the Briarcliff architecture as the channels 
are allocated by a parallelizing compiler and are not 
visible at the language level. 

In subsequent sections the operations that can be 
performed on the channels and theoretical bounds on the 
number of channels required are presented. Next, 
instruction scheduling and channel allocation algorithms 
that attempt to reduce the number of channels required 
to exploit the parallelism in straight line code are 
presented. Experimental results demonstrating the 
effectiveness of the allocation strategies are also 
presented. 

2. Channel Operations 

The channels are globally shared among all the 
processors in the system. Typically at any given point 
in time a single pair of processors communicate using a 
channel. The operations that can be performed on the 
channels are as follows: (i) Clear - The channel is 
cleared by setting the synchronization bit to zero which 
indicates that the channel is empty. (ii) Non- 
destructive Read - If the channel is empty the reader 
is blocked till another processor writes to the channel. 
Once the channel is full the read can take place. The 
synchronization bit is left unchanged; thus the value can 
be read again from the channel. (iii) Destructive Read 
- If the channel is full the value is read and the syn- 
chronization bit is set to zero indicating that the chan- 
nel is empty. If the channel is empty the reader blocks 
till another processor writes to the channel. (iv) Non- 
destructive Write - If the channel is empty the value 
is written and the synchronization bit is set to one indi- 
cating that the channel is full. If the channel is full the 
writer blocks till the channel becomes empty. (v) Des- 
tructive Write - The value is written and the syn- 
chronization bit is set to one indicating that the channel 
is full. 

At the beginning of a program all channels are 
empty. To send an one word message from one processor 
to another the sender uses a non-destructive write and 
the reader uses a destructive read. However, if the value 
is to be read by multiple processors the readers use a 
non-destructive read. On the other hand if a value writ- 
ten to a channel is no longer useful it can be overwritten 
using a destructive write. By examining the dependency 
graph for a computation, the operations that can be exe- 
cuted in parallel are determined and then scheduled for 
execution on different processors. If an operand needed 
for an operation scheduled on processor p, is computed 
by another processor Pj, a channel is used to send this 
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operand from p1 to p,. In addition, the channels can 
also be used to signal the occurrence of events. Consider 
the situation in whrch an access to an array element aijl 
must not precede the assignment to u/i/ because i and j 
may have the same value. A channel can be used to sig- 
nal the completion of the assignment as opposed to send- 
ing a data value. The channels are also useful for exe- 
cuting loop iteratrons in parallel. Across processor loop 
carried dependencies can be enforced through channels. 
in this paper the problem of allocating channels in 
parallelized loops is not addressed. 

3. Bounding the Number of Channels 

In this section theoretical lower and upper bounds 
on the number of channels that should be provided in a 
p processor system for exploiting parallelism in straight 
line code are derived. In this analysis N, denotes the 
number of channels and NB denotes the the total 
number of instructions in the straight line code segment 
being scheduled on the p processors in the system. If 
trace scheduling is used by the compiler then for all 
practical purposes it can be assumed that iv, >> p. 
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Fig. 1. Lower Bound 

Lower Bound: The lower bound on the number of 
channels is the minimum number of channels needed to 
correctly execute an instruction schedule generated 
assuming the availability of channels. A processor in 
the system may need to send a value to any other pro- 
cessor In the system. Thus, a channel from each proces- 
sor to every other processor must be provided. The 
minimum number of channels needed in the system is 
therefore given by the following: 

NC > Pb-1) 

Next it is shown that a single channel from one 
processor to another is sufficient for correctly executing 
any mstructron schedule. This can be easily demon- 
strated as follows. If the values generated by processor 
p, for processor p, are generated in the same order as 
they are used by p, then a single channel is sufficient for 
correct execution. This IS because the semantics of the 
channel guarantees that p, will not be able to write a 
new value to the channel till the previous value gen- 
erated by p, has been consumed by p,. If the order in 
which two values are produced is not sa.me as the order 
m which they are consumed, then it is always the case 
that communication of one of the values does not require 
synchronrzation; hence the use of a channel. This value 
can be communicated through shared memory. This is 
Illustrated in Fig. 1. The vertical lines represent the 
instruction schedules of individual processors and a 
directed edge from p, to p, is used to indicate that a 
value computed by p, is used by p,. The dotted line 

from p, to p, represents a commumcation that can be 
carried out without synchronization. Thus the lower 
bound on the number of channels that should be pro- 
vided is as follows: 
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Fig. 2. Upper Bound 

Upper Bound: The upper bound on the number of 
channels is the number of channels that must be pro-2 
vided to ensure that a processor never blocks upon a 
write to a channel because the channel is not free. To 
compute the upper bound assume that the operations m 
the code segment are distributed equally among the p 
processors. This IS because distribution of operations 
among the processors creates the need for the use of 
channels. Thus, ILT,‘/p operations are scheduled on each 
processor. Next we derive the maximum number of 
channels needed from processor p, to processor p,. 

The number of channels needed is the maximum if 
processor p, continues to produce values and p, contin- 
ues to delay their use. This is because each of the 
unused values will occupy a channel. Fig. 2 illustrates 
the situation in which maximum number of channels are 
needed. In each of the first N,/Zp instructions proces- 
sor p, computes a value needed by processor p,. Proces- 
sor p, delays using these values till after N,/2p instruc- 
tions. Thus each of the values must be assigned a dis- 
tinct channel. Any value generated by p, after the first 
NB/2p instructions can be communicated without 
requiring any additional channels. This is because the 
synchronization constramt due to the communicatron of 
this value will cause at least one of the previously 
enforced synchronizations to become redundant as the 
edges from p, to pl will cross. This situation was shown 
earlier in Fig, 1. Thus, the upper bound on the number 
of channels that must be provided is as follows: 

NC 5 NBp(p-l) = 
NAP -1) 

2P 2 

From the above analysis we can estimate the 
range for the number of channels that should be pro- 
vided for a system with certain number of processors. 
The average size of basic blocks in programs is usually 
small. However, scientific programs tend to have larger 
basic blocks and techniques such as trace scheduling 
result in straight line code with higher number of 
instructions. For basic blocks of size 40 instructions and 
a four processor system, the number of channels needed 
lie in the following range: 

NAP-1) 
P (p-1) I NC I n 
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12 5 N, 5 60 
The experimental results presented at the end of paper 
show that the minimum number 12 was more than ade- 
quate, for the sample of programs considered, if the tech- 
niques developed in this paper are used. 

4. Channel Assignment 

The need for the use of channels is dependent 
upon the instruction schedule Thus before the assign- 
ment of channels can be carried out, the instruction 
schedule must be generated. A naive approach for gen- 
erating schedules is list scheduling in which the opera- 
tions ready to be scheduled are determmed and one by 
one scheduled upon the processors. If the number of pro- 
cessors is greater than or equal to the number of ready 
operations then all of the ready operations are 
scheduled. On the other hand if the number of opera- 
tions ready to be scheduled is higher, the operations that 
lie on the taller unscheduled paths are scheduled first. 
The directed acyclic graph (DAG) representing the data 
dependencies is examined to determine the operations 
ready to be scheduled and the next set of operations is 
scheduled. This process is repeated till all operations 
have been scheduled. The run-time complexity of the 
list scheduling algorithm is O(] da), where Id denotes 
the number of nodes in the dependence graph. Once a 
schedule has been generated a channel can be assigned 
every time a value computed by a processor is required 
by some other processor. This naive approach will serve 
as a basis for evaluating the performance of an intelli- 
gent approach presented next. 

In the above approach no attempt was made to 
minimize the number of channels needed. Next a supe- 
rior approach consisting of following steps is discussed: 
(i) instruction schedule generation - in a manner 
requiring fewer channels than list scheduling, without 
sacrificing the execution speed; (ii) redundant syn- 
chronization elimination - synchronizations subsumed 
by other synchronizations are eliminated thus further 
reducing channel usage; and (iii) channel assignment - 
in a manner that reuses channels whenever possible. 
The algorithms presented can be used to carry out chan- 
nel assignment for instruction schedules generated for 
traces consisting of one or more basic blocks that lie 
along an execution path. At the points in the control 
flow graph where two traces meet, compensation code 
must be inserted to ensure that the channels are in 
proper state. This is analogous to introduction of code to 
carry out data movements at the beginning of a trace 
for a VLIW machine and is handled in a similar 
fashion(2]. 

4.1. Top Down Instruction Scheduling 

In this section the drawbacks of the list scheduling 
algorithm are discussed and an alternative scheduling 
algorithm is developed. The first drawback is illustrated 
by the example in Fig. 3. The list scheduler may assign 
different processors to a parent node and each of its chil- 
dren (Fig. 3(i)). In this case a channel will be needed to 

enforce the data dependency due to each of the children. 
Without sacrificing any parallelism the parent node can 
be assigned to one of the processors assigned to its chil- 
dren. This will reduce the number of channels required 
by one channel (Fig. 3(11)). 
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Fig. 9. Processor Assignment 

Iii 

h P2 

PI Pl 

Pl 
fi 

Pl PI PI 
0 0 

P2 P2 
fT?l Pl Pt P2 P2 
0 

Fig. 4. Top-Down Assignment 

For a computation containing more parallelism 
than the processors in the system can exploit, list 
scheduling in attempting to exploit this parallelism, may 
generate schedules requiring a larger number of chan- 
nels. Consider the processor assignment in Fig. 4(i) found 
using list scheduling for a two processor system. This 
assignment requires the use of channels. An equally fast 
processor assignment shown in Fig. 4(ii) requires no 
channels at all. To generate assignments of this type the 
following approach is taken. First of all the scheduling is 
carried out in a top down fashion instead of the bottom 
up fashion used by list scheduling. As a result this stra- 
tegy will generate the last instruction to be executed 
first and the first instruction to be executed last. An 
operation is ready to be scheduled if all its parents have 
been scheduled. Preference is given to nodes with max- 
imum height, where the height of a node is the length of 
the longest path from the node to the bottom of the 
DAG. Next, if the number of operations ready to be 
scheduled is greater than or equal to the number of pro 
cessors, then several nodes from the subgraphs rooted at 
these nodes are scheduled on each of the processors. 
Thus, for the DAG shown in Fig. 4, this will cause entire 
subgraphs to be scheduled on the same processor. When 
an entire subgraph is scheduled the operations are 
scheduled by traversing the graph in a top down and 
breadth first fashion. A node cannot be scheduled if at 
the time of scheduling one of its parent nodes has not 
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been scheduled yet then the node is not scheduled. This 
situation did not arise in the example presented in Fig. 4 
because none of the nodes has more than one parent. By 
scheduling the operations in th; above fashion the 
number of channels needed is reduced. 

One of the advantages of list scheduling is that it 
tries to distribute the work equally among the proces- 
sors, which results in fast schedules. It is therefore desir- 
able to mcorporate this characteristic into the top down 
scheduling approach. This can easily be done by ensur- 
ing that when entire subgraphs of nodes are being 
scheduled on the processors, the number of nodes 
scheduled on each processor equals the number of nodes 
in the smallest subgraphs. This is illustrated by the 
example in Fig. 5. The processor assignment shown in 
Fig. 5(i) results in a poor schedule although it uses no 
channels. To obtain a faster schedule as shown in Fig. 
5(ii), equal number of nodes are scheduled from each 
subgraph on the two processors. The remaining nodes in 
the bigger subgraph are then distributed among the two 
processors. Thus, this scheduling algorithm tries to 
minimize the number of channels needed without 
sacrificing the degree of parallelism exploited. The algo- 
rithm is summarized in Fig. 6. 
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Fig. 5. Equal Distribution 

So far it was assumed that all operations take the 
same amount of time. The algorithm can be easily 
modified to allow operations requiring variable amount 
of time. If the operations take varying amounts of time, 
the height of a node should be defined as the maximum 
of the number of time units needed to execute each of 
the paths from the node to the bottom of the DAG. 
Similarly when scheduling equal amounts of work on 
each of the processors, the work should be computed in 
terms of time units and not number of operations. 
Run-time Complezity: Computing the heights of all 
nodes takes O(ld) time. U dating the status of the 
nodes to ready also takes 0( d) time. Maintaining the P 
list of ready nodes sorted according to their heights 
takes O(l d/Iogl V/) t’ ime. Before choosing a processor on 
which to schedule a node the algorithm must check if 
any of the processors on which its parents are scheduled 
are free or not. This will take at most O(ld) time. Thus, 
the run-time complexity of the top down scheduling 

algorithm is O(l147 

Top-down-scheduling 
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loop { 
Construct S = nl, n, . . . . . , nm 

st V n, E S the parents of n, have been 
scheduled h height(nl) > height(n,+J 

Let p be the number of processors available 
for (i=l; i<minimum(p,lSI); i++) 
if possible schedule nt on processor p, st p, has 
one of the parent nodes of nr scheduled on it 

else choose any available processor; 

if lSl>p then { 
V n,, i=l..p schedule a set of operations S, on p, 

st V ncS ) ne subtree rooted at n, and 
Is,l=ls~=.....=ls,l 

1 
} until all operations have been scheduled 

1 

pig. 6. Top-down Scheduling 

4.2. Conditions for Reuse of Channels 

The conditions under which the same channel may 
or may not be used for communicating values at 
different points in the schedule are described next. The 
use of a channel can be denoted as a pair of operations 
consisting of a write followed by a read (W,,R,), where 
the write and read operations are performed by different 
processors. The goal of the channel allocation algorithms 
is to assign a channel for each such pair of operations 
and minimize the number of channels used in the pro- 
cess. To minimize the number of channels used, several 
pairs of write-read’s are mapped to the same channel. 
The following result specifies the condition under which 
the same channel cannot be used for different operations. 

pi pj pk Pi pj Pk Pi Pj pk PI 

Fig, 7, Situations for Unsafe Sharing 

Claim-l: Let ( W,,R J and ( W,RJ be pairs of operations 
to which channels have to be assigned. The same chan- 
nel cannot be assigned to the two operations if the order 
in which the writes ( W, and WJ are performed is not 
known and/or the’order in which the reads (R, and RJ 
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are performed is not known at compile-time. the second case 
Prooh The result is obvious from the cases considered in 
Fig. 7. In the first case the order of writes is known but 
the order of reads is not known. If the same channel is 
used it is possible that after p, performs W, processor p, 
may perform R, before pk performs read R,. Thus, the 
value meant for processor pt will be consumed by p,. 
Similarly by examining the other two cases one can see 
that the same channel cannot be used for both ( W,,R,) 
and (W,R.j. 0 
Claim-Z: If the order in which the reads (R, and RJ are 
performed and the order in which the writes 
( W, and We) are performed is known precisely, then 
either the same channel can be assigned for both 
( W,,R,) and ( W,RJ or one of the operations does not 

4.3. Eliminating Redundant Synchronizations 

require synchronization and hence the use of channel. 
Proof: There are two possible orderings for the opera- 
tions: (i) IV, precedes W, and R, precedes Rd or (ii) W, 
precedes W, and R, precedes R,. In the first case the 
same channel can be used for both ( W,,R,) and ( W,RJ, 
since this will guarantee that the order in which the 
operations will occur 1s W,R,W&2 In the second case 
channels need not be assigned for both ( W,,R,) and 
( W,RJ. The order in which the operations should occur 
is W, WJ?.#l. Thus, if a channel is assigned to guaran- 
tee the order WaRR, the ordering IV,R, is automatically 
guaranteed. q 

As mentioned earlier in the proof for Claim-d, 
every time a processor generates a value for another pro- 
cessor a channel may not be needed. If the processor 
usmg the value is guaranteed to read the value after it 
has been generated by the other processor then the value 
can be transmitted through shared memory without 
explicitly synchronizing the two processors. This is illus- 
trated by the examples presented in Fig. 10. In both 
cases R, is guaranteed to occur after IV, if the orderings 
for the other write and read operations are enforced. 
Before channels are actually assigned, the instruction 
schedules can be examined to eliminate those cross- 
processor dependencies that are automatically ensured if 
the remaining dependencies are enforced using channels. 

Pi Pj 

w1 Wl I - -- 

w2 ‘k 
wz 

1 r-id 

R2 
R2 

R3 
w3 

Rl RI 

(i) (ii) 

Fig. 10. Redundant Synchronizations 
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Fig. 8. Conditions for Safe Reuse 
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Fig. 9. Eficient Ezecution Time 

Although the same channel can be reused if the 
order in which reads and writes are performed is known 
precisely, it may not always be advisable to do so. This 
is illustrated by the examples in Fig. 9. Although the 
semantics of the channel will guarantee that R, is per- 
formed before W, it is desirable for processor p, to have 
performed R, when processor p, performs W,so that the 
executton of instructions by p, is not blocked. If the 
example in Fig. 9(i) is compared with the example in Fig. 
9(ii) it can see that it is highly likely for processor p, to 
block in the second case if the same channel is reused. 
Thus, for fast execution two channels should be used in 

Pi Pf Pk 

The elimination of the redundant synchronizations 
can be carried out in any order. This is due to the fol- 
lowing result. Let (W,,R,)-+( Wj,R,) denote that 
guaranteeing the write before read order for (W,,Ri) 
automatically guarantees the write before read order for 
(kV,,R,). The relation 4 is transitive i.e., 

(( W,,Rd-( W,4JN W&-( W,Rs)) 
-x W,,R,H W,RJ). 

Thus, the order in which ( W,R,j and (W,RJ are elim- 
inated has no bearing on the final outcome. 

(i) CroS-PmWor (ii) Implied ~iii)Non-redundant 
Dependencies Synchronkaations Syncronizations 

Fig. 11. Removal of Redundant Synchronizations 

The algorithm for the removal of redundant syn- 
chronizations consists of three steps. In the first step a 
graph is constructed, the nodes of which are the nodes 
from the DAG. The edges in the graph represent the 
order in which the operations must be performed to 
ensure cross-processor dependencies. In addition the 
nodes scheduled on the same processor are also con- 
nected by edges to indicate the order in which they will 
be executed. In the second step the graph constructed is 
traversed to determine for each operation node n 
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scheduled on a processor, the earliest Instructions in the 
schedules for the other processors that must wait for the 
completion of n. This information essentially represents 
*.dditional synchronizations referred to as implied syn- 
chronlzations, that are guaranteed if the cross-processor 
dependencies are enforced. Finally the above informa- 
tion is used to elimmate the redundant synchronizations. 
This IS achieved by inspecting a cross-processor depen- 
dency and determining if it is automatically enforced by 
another dependency in which case It can be eliminated. 
The result of its application to an example is illustrated 
in Fig. 11. The run-time complexity of this algorithm is 
O(l E,I+I VI), where lEcl is the number of cross-processor 
dependencies and 1 fl is the number of nodes in the 
graph. 

4.4. Channel Assignment Strategy-l 

In this section and the next, two algorithms for 
channel allocation are presented. These algorithms try 
to minimize the number of channels used by reusing the 
channels and assume that additlonal channels are 
always available if required. After presenting these algo- 
rithms it is shown how the algorithms can be adapted to 
function for a fixed number of channels. 

ChanneL4ssignment 
I 
Assign(n,channel-num) 
t 
if 3 n, st edge n-n, is yet to be assigned a channel ( 

assign channeLnum to edge n-tn,; let n, be the next 
operation executed by the processor that executes n, 

1 

Assign(nl,channel-num); 

else { let nI be the next operation node to be executed 
by the processor that executes node n 

> 

Assign(nJ,channel-num); 

1 

channel-num = 0; 
V operation nodes n 
if 3 an edge that from node n that should be assigned a 

channel and has not been assigned yet { 
channel-num = channel-num + 1; 
Assign(n,channel-num); 

Fig. 12. Channel Assignment Algorithm 

The algorithm presented here allocates channels 
in such a way that a channel is reused only if it can be 
guaranteed that at the point of reuse the channel will be 
free. Thus, it is guaranteed that at run-time a processor 
writing to a channel never blocks due to the channel 
being full. To ensure this, the same channel is allocated 
for ( W,,R,) and ( W],R,) if and only if, the precise order- 
ings for the reads and writes are known and the writes 
are not performed by the same processor. The algorithm 
takes one channel at a time and tries to resolve as many 
non-redundant cross-processor dependencies as possible. 

This process is repeatedly employed using additional 
channels till all dependencies have been enforced. The 
algorithm is summarized in Fig. II! The procedure 
Assign asslgns a given channel to enforce as many 
dependencies as possible. 
Run-time Complezity of Strategy-l: Assume that the Iti 
operations In the DAG are evenly distributed among p 
processors. Let I@ denote the number of cross- 
processor dependencies, after removal of redundant syn- 
chromzations, for which channels have to be assigned. In 
each step of the algorithm a channel is assigned to 
enforce as many cross- 
and in the process I VP 

rocessor dependencies as possible 
/p instructions are examined. In 

the worst case only single dependency will be resolved in 
each step and thus the overall run-time complexity of 
the algorithm wiII be o(IE~I d/p). 

pi pj pk 

Cl 

Assign C2 k/=4 - c2 (-1 

Fig. 19. Channel Assignment - An Example 

4.5. Channel Assignment Strategy-2 

H H H 

(ii) (iii) 

Fig. 14. Implied Synchronizations 

As channels are assigned additional synchroniza- 
tions due to resource usages are introduced. These addi- 
tional synchronizations may make some of the other syn- 
chronizations for cross-processor dependencies redun- 
dant. In Fig. 14(i) there are three dependencies that 
must be enforced through channels. If channel C1 is 
assigned to enforce the two dependencies from p, to p,, 
as shown in Fig. 14(ii), an additional synchronization 
shown by a dotted edge is implied. This causes the syn- 
chronization due to dependency from p, to p, to become 
redundant. 

The algorithm presented in this section takes 
advantage of the above observation. The allocation of 
channels to enforce dependencies for each ordered pair of 
processors is carried out one at a time. After channels 
have been assigned to an ordered processor pair (p,,p,), 
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synchronizations implied by resource usage are com- 
puted. Next the synchronizations that have not been 
assigned channels yet and are now redundant are 
removed. The algorithm is summarized in Fig. 15. It 
should be noted that the order in which channel alloca- 
tion is carried out influences the number of channels 
used. This is because the synchronizations made redun- 
dant due to reuse of channels cannot be known till some 
amount of allocation has already been done. It is also 
the case that as channels are allocated to enforce depen- 
dencies, some of the dependencies for which channels 
had already been assigned may become redundant. How- 
ever, it may not be possible to deallocate channels at 
this stage. 
Run-time Complezity of Strategy-R: In this algorithm, as 
the allocation of channels is carried out additional edges 
are added to the graph constructed for removing redun- 
dant synchronizations. Let IEs be the number of cross- 
processor edges. Since an edge is added every time two 
cross edges are assigned to the same channel, at most 
I@-I additional edges may be added. Updating the 
graph constructed for the elimination of redundant syn- 
chronizations takes O(plEg) time, O(p) time for each 
ed e. Removing redundant synchronizations in all takes 
0( Eg+I V!) time. Finally, the assi k nment of channels to 
cross-processor edges takes O(l E, ) time. Thus, the 9 
overall run-time 
O(l vi+pLqg). 

complexity of the algorithm is 

Strategy-2 

{ 
for each ordered pair of processors (p,,p,) st instructions 
executed by p, are dependent upon instructions executed 
by pi and enforcing these dependencies requires channels 
{ 
Remove all redundant dependencies of p, on p,. 
V dependence edges from p, to p, assign 
channels chosen as follows: 
{ 
Let n,+n, be the edge under consideration 
If one of the instructions preceding instruction n, 
in the schedule for p, reads from a channel and 
since then it has not been allocated to be written by 
either processor pi or p, then it can be 
used to enforce the dependency n,+ nl. 

If none of the already used channels can be assigned 
allocate a new channel. 

Introduce additional synchronizations guaranteed by the 
assignment of channels just carried out. 

Fig. 15. Strategy-d 

4.6. Allocating a Fixed Number of Channels 

The algorithms presented in the preceding sections 
assumed that there is an unlimited number of channels 
available. However, in practice the number of channels 
will be fixed by a specific hardware implementation. 
Next it is shown how the above algorithms can be 
applied even if the number of channels is fixed. In deriv- 

ing the lower bound for the number of channels that a 
system must support, it was shown that as long as there 
is a single channel dedicated from each processor to 
every other processor, any schedule can be correctly exe- 
cuted. The same idea is used to ensure that all depen- 
dencies can be enforced using a fixed number of chan- 
nels. 

The total number of channels is divided into two 
groups Unconstrained and Constrained. The number of 
channels in the Constrained set is the number of ordered 
pairs of processors that require the use of a channel due 
to cross-processor dependencies. This is the minimum 
number of channels needed to enforce all dependencies. 
The remaining channels are put in the Unconstrained 
set. The channel assignment algorithm allocates chan- 
nels from the Unconstrained set and attempts to resolve 
as many dependencies as possible. During this process, 
if all dependencies for an ordered processor pair get 
resolved then the channel reserved for this pair in the 
Constrained set can be moved to the Unconstrained set. 
The channels are allocated until either all dependencies 
have been resolved or the Unconstrained set is empty. In 
the latter case it is guaranteed that the Constrained set 
will have enough channels to resolve the remaining 
dependencies. The algorithm is summarized in Fig. 16. 

AllocateJxed 
{ 
Constrained = Set of channels st one channel is reserved for 
every ordered pair (p,,p,) of processors st there are 
cross-processor dependencies from pi to p,. This can 
be at most p(p-11, where p is the number of processors. 

Unconstrained = rest of the channels 

Applying the Channel Assignment algorithm continue to 
allocate channels from the Unconstrained set. If 
all channel requirements for an ordered processor pair 
have been fulfilled then remove a channel from the 
Unconstrained set and include it in the 
Constrained set. 

If Unconstrained set is empty and all edges have 
not been allocated channels then assign the channels 
from the Constrained set as follows: 
Choose a channel from Constrained set and assign 
it to all the edges of an ordered processor pair. 
The number of channels should be exactly the number of 
ordered processor pairs that still have an edge requiring 
a channel. 

> 
Fig. 16. Allocating Limited Number of Channels 

Assignment of the same channel to enforce all 
remaining dependencies from one processor to another in 
the final step of the above algorithm will result in 
schedules that may execute slower as a processor may 
have to wait between performing successive writes to the 
channel. Another approach for the allocation of a fixed 
number of channels is to modify the schedule so that it 
requires no more than the available number of channels. 
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The latter approach is unlikely to perform better than 
the suggested approach because to generate a schedule 
that requires fewer channels some parallelism will be left 
unexploited. Scheduling of operations on the same pro- 
cessor instead of different processors not only reduces 
the number of channels required but also the degree of 
parallelism exploited. 

5. Experimental Results 

Instruction schedules and channel allocations were 
carried out for a sample of data dependency graphs 
obtained from real programs. These graphs had been 
constructed by Rodeheffer[I2] for the inner loops of a set 
of scientilic programs. Use of scientific programs is more 
appropriate for obtaining data dependency graphs 
because in general they tend to have longer basic blocks 
and hence are likely to require greater number of chan- 
nels. Furthermore, these dependence graphs were con- 
structed by coverting control dependencies into data 
dependencies to construct longer sequences of uncondi- 
tional code. Techniques to do so were developed by Kuck 
et al.!lI] The test programs include the following: 

ALGl - The Generalized Eigenvalue Problem. 
ALGO, - Solving Linear Equations Using Residue Arithmetic. 
ALG3 - Solution of Ordinary Differential Equations. 
ALG4 - Discrete Chebychev Curve Fit. 
ALG5 - Evaluation of Normalized Taylor Coefficients. 
ALG6 - Calculation of Fourier Integrals. 
ALG7 - Exact Cumulative Distribution of the Kolmogorov- 
Smirnov Statistic for Small Samples. 

The results of the experiments conducted demon- 
strate the effectiveness of the instruction scheduling and 
channel allocation strategies presented in this paper. 
The results in Table 1 provide a comparison between the 
naive approach and the efficient approach. In the naive 
approach the number of cross-processor dependencies is 
large and equal to the number of channels used. On the 
other hand the use of top-down scheduling results in a 
significantly smaller number of cross-processor depen- 
dencies (#DEPS). The use of efficient channel assign- 
ment strategy (strategy-l) further reduces the number of 
channels (#GHAN) needed by reusing them whenever 
possible. The naive approach used up to I9 channels 
while the efficient approach employed a maximum of 7 
channels. The number of channels used is fairly small 
which makes it feasible to implement channels that are 
addressed and accessed as registers. 

Next the performance of the top-down scheduling 
is compared with that of list scheduling. First let us 
compare the quality of schedules generated by the two 
scheduling techniques in terms of the parallelism 
exploited. In Table 2 the total number of nodes (N,) and 
the number of nodes along the longest path (NL) in each 
DAG are given. Assuming that each operation takes unit 
time, the fastest possible schedule for a DAG on a p pro- 
cessor system is equal to max( [ iVs/p 1 , N,). By exa- 
mining the execution times for the schedules generated 
by both the scheduling strategies it can be seen that not 

Table 1: Number of Channels 

I sxivr i EFFICIEST 

; #CHAN ! #DEPS j +CHAY I 

.UG lBB1 , / ,; I ; 
I 

ILGlBB2 1 / 2 I ., 

.iLGZBBl 2 I 1 I I i 

.iLC 2BB2 ‘1 / 5 ( 4 

.u.#G2BB3 i 3 / 3 

.iLG3BBl .3 i .: I 2 

:UCXBBl 

! .ILG6BB5 

0 I 0 j 9 ] 

6 ; 5 I 3 ’ 

,\LGBBl 
I 

4 1 3 I 2 

only do both strategies perform equally weil, but they 
also generated the fastest possible schedules for a four 
processor system. Next the channel assignment algo- 
rithm was applied to the schedules generated by both 
the scheduling strategies. A maximum of ten channels 
were used for the schedules generated by list scheduling 
which is higher than the maximum number of seven 
channels required for the schedules generated using top 
top-down scheduling. Thus, top-down scheduling gen- 
erates schedules that are not only as fast as the 
schedules generated using list scheduling but also require 
fewer channels. 

Table 2: Expected Ezecution Times (p-4) 

An alternative approach for implementing chan- 
nels is to provide dedicated channels from each processor 
to every other processor. This is easier to implement in 
hardware because a channel is no longer globally accessi- 
ble to all processors. By introducing a queue of fixed 
length, effectively multiple channels can be provided 
between a pair of processors. The allocation of such 
channels is a trivial task. The schedules for the test 
cases were analyzed and it was found that a queue 
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length of four channels would have been sufficient. 
Further reduction in the number of channels of this kind 
may be possible because the top-down scheduling algo- 
rithm tries to reduce the overall number of channels and 
not the number of channels between a pair of processors. 

6. Conclusion 

This paper explored the possibility of employing 
channels implemented as registers with synchronization 
bits, to exploit fine-grained parallelism in sequential pro- 
grams. Compile-time techniques for allocation of such a 
resource were developed. The results of experiments per- 
formed show that a small number of channels are 
sufficient to exploit parallelism in code segments of 
significant size. The use of channels will provide 
improvement in performance over VLIW machines as the 
multiple processors are no longer constrained to execute 
in lockstep. 
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