
Employing Register Channels for the Exploitation
of Instruction Level Parallelism

Rajiv Gupta
Philips Laboratories

North American Philips Corporation
345 Scarborough Road

Briarcliff Manor, NY 10510
e-mail: gupta@philabs.Philips.com

Abstract - A multiprocessor system capable of exploit-
ing fine-grained parallelism must support efficient syn-
chronization and data passing mechanisms. This paper
demonstrates the use of shared register channels as the
communication mechanism among processors in a mul-
tiprocessor chip. A register channel is provided with a
synchronization bit that is used to ensure that a proces-
sor succeeds in reading a channel only after the channel
has been written to. In contrast to a VLIW machine a
system with channels does not require strict lockstep
operation of its processors. This reduces the delays
caused by unpredictable events such as memory bank
conflicts. Providing channels accessible at the speed of
registers constrains the number of channels that can be
supported in hardware. This paper presents compile-
time techniques that efficiently allocate the channels and
successfully exploit the fine-grained parallelism using a
small number of channels. The scheduling of operations
is carried out in a manner that reduces communication
among the processors and hence the number of channels
required. Redundant synchronizations subsumed by
other synchronizations are eliminated and channels are
reused whenever possible. Results of experiments
demonstrating the effectiveness of the techniques in util-
izing a small number of channels are presented.

Keywords - Fine-grained Parallelism, Instruction
Scheduling, Channels, Multiprocessor System.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1990 ACM 089791-350-7/90/0003/0118 $1.50

1. Introduction

Implicit parallelism present in sequential pro-
grams is an important source of fine-grained parallelism.
This parallelism can be divided into two broad
categories, namely loop level parallelism and extra-loop
(or non-loop) parallelism. Commercially available mul-
tiprocessor systems, such as Encore and Alliant, can
exploit loop level parallelism effectively. However, they
are ineffective in exploiting extra-loop parallelism
present in the sequential parts of a program. The Very
Long Instruction Word (VLIW) [2,5] architectures are a
family of architectures that can effectively exploit fine-
grained parallelism present in sequential parts of a pr+
gram. The TRACE[l] machine is an example of a com-
mercially available VLIW machine. The compiler for this
machine, based upon trace scheduling[3], can detect and
schedule extra-loop parallelism in sequential parts of the
program and also exploit loop level parallelism by unrol-
ling the loops and converting loop level parallelism into
extra-loop parallelism. A VLIW machine consists of mul-
tiple processors that operate in lockstep executing
instructions fetched from a single stream of long instruc-
tions. The synchronization of the processors is
guaranteed by the hardware on a per instruction basis.
The long instruction word allows initiation of several
fine-grained operations in each instruction.

A VLIW machine such as the TRACE has two
major disadvantages. First it cannot be used as a mul-
tiprocessor as there is a single stream of instructions.
The second disadvantage arises due to events unpredict-
able at compile-time. For example bank access conflicts
cannot always be avoided since the operands required
for an operation may not be known at compile-time due
to the use of arrays and pointers. The lockstep opera-
tion of multiple processors makes the machine intolerant
to delays caused by unpredictable run-time events. The
delay in the completion of any one of the operations in a
long instruction delays the completion of the entire
instruction.

The Briarcliff Multiprocessor Project is developing
a RISC based multiprocessor chip with a small number
of processors[4]. The processors on this chip can execute
relatively independent streams of instructions for
exploiting loop level parallelism and also exploit extra-
loop parallelism efficiently. The interconnection poten-

118

tial of a multiprocessor chip is being exploited to provide
highly efficient hardware synchronization mechanisms.
The goal of this research project is to develop a mul-
tiprocessor system tolerant of unpredictable delays in
the progress of individual streams. A synchronization
mechanism for achieving this goal during the execution
of parallelized loops, named the fuzzy barrier[5], has
been developed. This mechanism relies upon the com-
piler to find useful instructions that a processor can exe-
cute while it is waiting for other processors to arrive at
the barrier. A combination of a mechanism for collec-
tive branching161 of processors and data passing
mechanism based upon register channels is being used
to exploit extra-loop parallelism. This paper discusses
the work done to ascertain the usefulness of a shared set
of register channels 113,141. A register channel is pro-
vided with a synchronization bit that is used to ensure
that a processor reading a channel does so only after
another processor has written into the channel. Using
these registers the processors can communicate at high
speed, The communication of values through channels
enforces synchronization. The collective branching
mechanism enables a single processor to control the exe-
cution paths taken by all the processors. The combina-
tion of register channels and collective branching allows
exploitation of instruction level parallelism without
strict lockstep operation of processors. Thus, delays
caused by unpredictable operations in a VLIW machine
can be potentially reduced.

Techniques such as trace scheduling[3] and region
scheduling[8] developed for LIW architectures can also
be used to generate code for the Briarcliff architecture.
However, additional compile-time techniques to deter-
mine when channels should be used must also be
developed. The channels are treated as a set of registers
that are shared by all the processors. Since the channels
are addressed as registers only a limited number of chan-
nels can be provided. The goal of this work is to deter-
mine whether a small number of channels is sufficient to
exploit fine-grained parallelism in a system with a small
number of processors. Compile-time techniques that
make efficient use of channels by using them only when
necessary are developed. These techniques have been
applied to straight line code segments taken from a set
of scientific programs. The study carried out shows that
a small number of channels is sufficient, if used intelli-
gently by the compiler.

The HEP [10,13] multiprocessor provides poten-
tially infinite number of channels by adding a synchroni-
zation bit to every location in the shared memory and
the register set. This is highly desirable in HEP as the
channels are visible to the user at language level. The
channels implemented in memory do not allow high
speed communication among parallel streams. However,
this is not a drawback in HEP as it achieves high
throughput by creating a large number of streams and
issuing instructions from streams that are ready to exe-
cute. The HEP approach is not effective for the Briarcliff
architecture. The channels will be used to exploit fine-
grained parallelism in a manner similar to VLIW

machines; thus the number of streams will at most equal
the number of processors in the system. In such a SYS-
tern it is essential to provide fast channels. Register
channels are much more efficient than memory channels,
especially in a load-store architecture. Another desir-
able result of using register channels, instead of memory
channels, is that contention for shared memory is
reduced instead of being increased. Although only a lim-
ited number of channels can be provided this is not a
drawback for the Briarcliff architecture as the channels
are allocated by a parallelizing compiler and are not
visible at the language level.

In subsequent sections the operations that can be
performed on the channels and theoretical bounds on the
number of channels required are presented. Next,
instruction scheduling and channel allocation algorithms
that attempt to reduce the number of channels required
to exploit the parallelism in straight line code are
presented. Experimental results demonstrating the
effectiveness of the allocation strategies are also
presented.

2. Channel Operations

The channels are globally shared among all the
processors in the system. Typically at any given point
in time a single pair of processors communicate using a
channel. The operations that can be performed on the
channels are as follows: (i) Clear - The channel is
cleared by setting the synchronization bit to zero which
indicates that the channel is empty. (ii) Non-
destructive Read - If the channel is empty the reader
is blocked till another processor writes to the channel.
Once the channel is full the read can take place. The
synchronization bit is left unchanged; thus the value can
be read again from the channel. (iii) Destructive Read
- If the channel is full the value is read and the syn-
chronization bit is set to zero indicating that the chan-
nel is empty. If the channel is empty the reader blocks
till another processor writes to the channel. (iv) Non-
destructive Write - If the channel is empty the value
is written and the synchronization bit is set to one indi-
cating that the channel is full. If the channel is full the
writer blocks till the channel becomes empty. (v) Des-
tructive Write - The value is written and the syn-
chronization bit is set to one indicating that the channel
is full.

At the beginning of a program all channels are
empty. To send an one word message from one processor
to another the sender uses a non-destructive write and
the reader uses a destructive read. However, if the value
is to be read by multiple processors the readers use a
non-destructive read. On the other hand if a value writ-
ten to a channel is no longer useful it can be overwritten
using a destructive write. By examining the dependency
graph for a computation, the operations that can be exe-
cuted in parallel are determined and then scheduled for
execution on different processors. If an operand needed
for an operation scheduled on processor p, is computed
by another processor Pj, a channel is used to send this

119

operand from p1 to p,. In addition, the channels can
also be used to signal the occurrence of events. Consider
the situation in whrch an access to an array element aijl
must not precede the assignment to u/i/ because i and j
may have the same value. A channel can be used to sig-
nal the completion of the assignment as opposed to send-
ing a data value. The channels are also useful for exe-
cuting loop iteratrons in parallel. Across processor loop
carried dependencies can be enforced through channels.
in this paper the problem of allocating channels in
parallelized loops is not addressed.

3. Bounding the Number of Channels

In this section theoretical lower and upper bounds
on the number of channels that should be provided in a
p processor system for exploiting parallelism in straight
line code are derived. In this analysis N, denotes the
number of channels and NB denotes the the total
number of instructions in the straight line code segment
being scheduled on the p processors in the system. If
trace scheduling is used by the compiler then for all
practical purposes it can be assumed that iv, >> p.

pi p.i

‘I

L I

,.

‘1
I -I

t-4
Fig. 1. Lower Bound

Lower Bound: The lower bound on the number of
channels is the minimum number of channels needed to
correctly execute an instruction schedule generated
assuming the availability of channels. A processor in
the system may need to send a value to any other pro-
cessor In the system. Thus, a channel from each proces-
sor to every other processor must be provided. The
minimum number of channels needed in the system is
therefore given by the following:

NC > Pb-1)

Next it is shown that a single channel from one
processor to another is sufficient for correctly executing
any mstructron schedule. This can be easily demon-
strated as follows. If the values generated by processor
p, for processor p, are generated in the same order as
they are used by p, then a single channel is sufficient for
correct execution. This IS because the semantics of the
channel guarantees that p, will not be able to write a
new value to the channel till the previous value gen-
erated by p, has been consumed by p,. If the order in
which two values are produced is not sa.me as the order
m which they are consumed, then it is always the case
that communication of one of the values does not require
synchronrzation; hence the use of a channel. This value
can be communicated through shared memory. This is
Illustrated in Fig. 1. The vertical lines represent the
instruction schedules of individual processors and a
directed edge from p, to p, is used to indicate that a
value computed by p, is used by p,. The dotted line

from p, to p, represents a commumcation that can be
carried out without synchronization. Thus the lower
bound on the number of channels that should be pro-
vided is as follows:

pi pj

t
N /2P

“i ,-- I. .- -

N

-___.
t

zi /2P
3

Fig. 2. Upper Bound

Upper Bound: The upper bound on the number of
channels is the number of channels that must be pro-2
vided to ensure that a processor never blocks upon a
write to a channel because the channel is not free. To
compute the upper bound assume that the operations m
the code segment are distributed equally among the p
processors. This IS because distribution of operations
among the processors creates the need for the use of
channels. Thus, ILT,‘/p operations are scheduled on each
processor. Next we derive the maximum number of
channels needed from processor p, to processor p,.

The number of channels needed is the maximum if
processor p, continues to produce values and p, contin-
ues to delay their use. This is because each of the
unused values will occupy a channel. Fig. 2 illustrates
the situation in which maximum number of channels are
needed. In each of the first N,/Zp instructions proces-
sor p, computes a value needed by processor p,. Proces-
sor p, delays using these values till after N,/2p instruc-
tions. Thus each of the values must be assigned a dis-
tinct channel. Any value generated by p, after the first
NB/2p instructions can be communicated without
requiring any additional channels. This is because the
synchronization constramt due to the communicatron of
this value will cause at least one of the previously
enforced synchronizations to become redundant as the
edges from p, to pl will cross. This situation was shown
earlier in Fig, 1. Thus, the upper bound on the number
of channels that must be provided is as follows:

NC 5 NBp(p-l) =
NAP -1)

2P 2

From the above analysis we can estimate the
range for the number of channels that should be pro-
vided for a system with certain number of processors.
The average size of basic blocks in programs is usually
small. However, scientific programs tend to have larger
basic blocks and techniques such as trace scheduling
result in straight line code with higher number of
instructions. For basic blocks of size 40 instructions and
a four processor system, the number of channels needed
lie in the following range:

NAP-1)
P (p-1) I NC I n

120

12 5 N, 5 60
The experimental results presented at the end of paper
show that the minimum number 12 was more than ade-
quate, for the sample of programs considered, if the tech-
niques developed in this paper are used.

4. Channel Assignment

The need for the use of channels is dependent
upon the instruction schedule Thus before the assign-
ment of channels can be carried out, the instruction
schedule must be generated. A naive approach for gen-
erating schedules is list scheduling in which the opera-
tions ready to be scheduled are determmed and one by
one scheduled upon the processors. If the number of pro-
cessors is greater than or equal to the number of ready
operations then all of the ready operations are
scheduled. On the other hand if the number of opera-
tions ready to be scheduled is higher, the operations that
lie on the taller unscheduled paths are scheduled first.
The directed acyclic graph (DAG) representing the data
dependencies is examined to determine the operations
ready to be scheduled and the next set of operations is
scheduled. This process is repeated till all operations
have been scheduled. The run-time complexity of the
list scheduling algorithm is O(] da), where Id denotes
the number of nodes in the dependence graph. Once a
schedule has been generated a channel can be assigned
every time a value computed by a processor is required
by some other processor. This naive approach will serve
as a basis for evaluating the performance of an intelli-
gent approach presented next.

In the above approach no attempt was made to
minimize the number of channels needed. Next a supe-
rior approach consisting of following steps is discussed:
(i) instruction schedule generation - in a manner
requiring fewer channels than list scheduling, without
sacrificing the execution speed; (ii) redundant syn-
chronization elimination - synchronizations subsumed
by other synchronizations are eliminated thus further
reducing channel usage; and (iii) channel assignment -
in a manner that reuses channels whenever possible.
The algorithms presented can be used to carry out chan-
nel assignment for instruction schedules generated for
traces consisting of one or more basic blocks that lie
along an execution path. At the points in the control
flow graph where two traces meet, compensation code
must be inserted to ensure that the channels are in
proper state. This is analogous to introduction of code to
carry out data movements at the beginning of a trace
for a VLIW machine and is handled in a similar
fashion(2].

4.1. Top Down Instruction Scheduling

In this section the drawbacks of the list scheduling
algorithm are discussed and an alternative scheduling
algorithm is developed. The first drawback is illustrated
by the example in Fig. 3. The list scheduler may assign
different processors to a parent node and each of its chil-
dren (Fig. 3(i)). In this case a channel will be needed to

enforce the data dependency due to each of the children.
Without sacrificing any parallelism the parent node can
be assigned to one of the processors assigned to its chil-
dren. This will reduce the number of channels required
by one channel (Fig. 3(11)).

Pl

8 “b /“a p3

(9

PI
P p6 “b \ g3

(ii)

Fig. 9. Processor Assignment

Iii

h P2

PI Pl

Pl
fi

Pl PI PI
0 0

P2 P2
fT?l Pl Pt P2 P2
0

Fig. 4. Top-Down Assignment

For a computation containing more parallelism
than the processors in the system can exploit, list
scheduling in attempting to exploit this parallelism, may
generate schedules requiring a larger number of chan-
nels. Consider the processor assignment in Fig. 4(i) found
using list scheduling for a two processor system. This
assignment requires the use of channels. An equally fast
processor assignment shown in Fig. 4(ii) requires no
channels at all. To generate assignments of this type the
following approach is taken. First of all the scheduling is
carried out in a top down fashion instead of the bottom
up fashion used by list scheduling. As a result this stra-
tegy will generate the last instruction to be executed
first and the first instruction to be executed last. An
operation is ready to be scheduled if all its parents have
been scheduled. Preference is given to nodes with max-
imum height, where the height of a node is the length of
the longest path from the node to the bottom of the
DAG. Next, if the number of operations ready to be
scheduled is greater than or equal to the number of pro
cessors, then several nodes from the subgraphs rooted at
these nodes are scheduled on each of the processors.
Thus, for the DAG shown in Fig. 4, this will cause entire
subgraphs to be scheduled on the same processor. When
an entire subgraph is scheduled the operations are
scheduled by traversing the graph in a top down and
breadth first fashion. A node cannot be scheduled if at
the time of scheduling one of its parent nodes has not

121

been scheduled yet then the node is not scheduled. This
situation did not arise in the example presented in Fig. 4
because none of the nodes has more than one parent. By
scheduling the operations in th; above fashion the
number of channels needed is reduced.

One of the advantages of list scheduling is that it
tries to distribute the work equally among the proces-
sors, which results in fast schedules. It is therefore desir-
able to mcorporate this characteristic into the top down
scheduling approach. This can easily be done by ensur-
ing that when entire subgraphs of nodes are being
scheduled on the processors, the number of nodes
scheduled on each processor equals the number of nodes
in the smallest subgraphs. This is illustrated by the
example in Fig. 5. The processor assignment shown in
Fig. 5(i) results in a poor schedule although it uses no
channels. To obtain a faster schedule as shown in Fig.
5(ii), equal number of nodes are scheduled from each
subgraph on the two processors. The remaining nodes in
the bigger subgraph are then distributed among the two
processors. Thus, this scheduling algorithm tries to
minimize the number of channels needed without
sacrificing the degree of parallelism exploited. The algo-
rithm is summarized in Fig. 6.

(3

PI P2

PI P2

m@

P2

Pl P2 Pl Pt P2

(ii)

Fig. 5. Equal Distribution

So far it was assumed that all operations take the
same amount of time. The algorithm can be easily
modified to allow operations requiring variable amount
of time. If the operations take varying amounts of time,
the height of a node should be defined as the maximum
of the number of time units needed to execute each of
the paths from the node to the bottom of the DAG.
Similarly when scheduling equal amounts of work on
each of the processors, the work should be computed in
terms of time units and not number of operations.
Run-time Complezity: Computing the heights of all
nodes takes O(ld) time. U dating the status of the
nodes to ready also takes 0(d) time. Maintaining the P
list of ready nodes sorted according to their heights
takes O(l d/Iogl V/) t’ ime. Before choosing a processor on
which to schedule a node the algorithm must check if
any of the processors on which its parents are scheduled
are free or not. This will take at most O(ld) time. Thus,
the run-time complexity of the top down scheduling

algorithm is O(l147

Top-down-scheduling

C
Compute V nf

height(n,) = 1 +

I

1 n, has no child

max (height(n])) otherwise

n,’
chtld of n

loop {
Construct S = nl, n, , nm

st V n, E S the parents of n, have been
scheduled h height(nl) > height(n,+J

Let p be the number of processors available
for (i=l; i<minimum(p,lSI); i++)
if possible schedule nt on processor p, st p, has
one of the parent nodes of nr scheduled on it

else choose any available processor;

if lSl>p then {
V n,, i=l..p schedule a set of operations S, on p,

st V ncS) ne subtree rooted at n, and
Is,l=ls~=.....=ls,l

1
} until all operations have been scheduled

1

pig. 6. Top-down Scheduling

4.2. Conditions for Reuse of Channels

The conditions under which the same channel may
or may not be used for communicating values at
different points in the schedule are described next. The
use of a channel can be denoted as a pair of operations
consisting of a write followed by a read (W,,R,), where
the write and read operations are performed by different
processors. The goal of the channel allocation algorithms
is to assign a channel for each such pair of operations
and minimize the number of channels used in the pro-
cess. To minimize the number of channels used, several
pairs of write-read’s are mapped to the same channel.
The following result specifies the condition under which
the same channel cannot be used for different operations.

pi pj pk Pi pj Pk Pi Pj pk PI

Fig, 7, Situations for Unsafe Sharing

Claim-l: Let (W,,R J and (W,RJ be pairs of operations
to which channels have to be assigned. The same chan-
nel cannot be assigned to the two operations if the order
in which the writes (W, and WJ are performed is not
known and/or the’order in which the reads (R, and RJ

122

are performed is not known at compile-time. the second case
Prooh The result is obvious from the cases considered in
Fig. 7. In the first case the order of writes is known but
the order of reads is not known. If the same channel is
used it is possible that after p, performs W, processor p,
may perform R, before pk performs read R,. Thus, the
value meant for processor pt will be consumed by p,.
Similarly by examining the other two cases one can see
that the same channel cannot be used for both (W,,R,)
and (W,R.j. 0
Claim-Z: If the order in which the reads (R, and RJ are
performed and the order in which the writes
(W, and We) are performed is known precisely, then
either the same channel can be assigned for both
(W,,R,) and (W,RJ or one of the operations does not

4.3. Eliminating Redundant Synchronizations

require synchronization and hence the use of channel.
Proof: There are two possible orderings for the opera-
tions: (i) IV, precedes W, and R, precedes Rd or (ii) W,
precedes W, and R, precedes R,. In the first case the
same channel can be used for both (W,,R,) and (W,RJ,
since this will guarantee that the order in which the
operations will occur 1s W,R,W&2 In the second case
channels need not be assigned for both (W,,R,) and
(W,RJ. The order in which the operations should occur
is W, WJ?.#l. Thus, if a channel is assigned to guaran-
tee the order WaRR, the ordering IV,R, is automatically
guaranteed. q

As mentioned earlier in the proof for Claim-d,
every time a processor generates a value for another pro-
cessor a channel may not be needed. If the processor
usmg the value is guaranteed to read the value after it
has been generated by the other processor then the value
can be transmitted through shared memory without
explicitly synchronizing the two processors. This is illus-
trated by the examples presented in Fig. 10. In both
cases R, is guaranteed to occur after IV, if the orderings
for the other write and read operations are enforced.
Before channels are actually assigned, the instruction
schedules can be examined to eliminate those cross-
processor dependencies that are automatically ensured if
the remaining dependencies are enforced using channels.

Pi Pj

w1 Wl I - --

w2 ‘k
wz

1 r-id

R2
R2

R3
w3

Rl RI

(i) (ii)

Fig. 10. Redundant Synchronizations

(i) Iii)

Fig. 8. Conditions for Safe Reuse

pi P* J pi P*

WI Cl w1 Cl
W2

2 N

J

%

w2 Cl
C2

Rl

R2

R2
6) (ii)

Fig. 9. Eficient Ezecution Time

Although the same channel can be reused if the
order in which reads and writes are performed is known
precisely, it may not always be advisable to do so. This
is illustrated by the examples in Fig. 9. Although the
semantics of the channel will guarantee that R, is per-
formed before W, it is desirable for processor p, to have
performed R, when processor p, performs W,so that the
executton of instructions by p, is not blocked. If the
example in Fig. 9(i) is compared with the example in Fig.
9(ii) it can see that it is highly likely for processor p, to
block in the second case if the same channel is reused.
Thus, for fast execution two channels should be used in

Pi Pf Pk

The elimination of the redundant synchronizations
can be carried out in any order. This is due to the fol-
lowing result. Let (W,,R,)-+(Wj,R,) denote that
guaranteeing the write before read order for (W,,Ri)
automatically guarantees the write before read order for
(kV,,R,). The relation 4 is transitive i.e.,

((W,,Rd-(W,4JN W&-(W,Rs))
-x W,,R,H W,RJ).

Thus, the order in which (W,R,j and (W,RJ are elim-
inated has no bearing on the final outcome.

(i) CroS-PmWor (ii) Implied ~iii)Non-redundant
Dependencies Synchronkaations Syncronizations

Fig. 11. Removal of Redundant Synchronizations

The algorithm for the removal of redundant syn-
chronizations consists of three steps. In the first step a
graph is constructed, the nodes of which are the nodes
from the DAG. The edges in the graph represent the
order in which the operations must be performed to
ensure cross-processor dependencies. In addition the
nodes scheduled on the same processor are also con-
nected by edges to indicate the order in which they will
be executed. In the second step the graph constructed is
traversed to determine for each operation node n

123

scheduled on a processor, the earliest Instructions in the
schedules for the other processors that must wait for the
completion of n. This information essentially represents
*.dditional synchronizations referred to as implied syn-
chronlzations, that are guaranteed if the cross-processor
dependencies are enforced. Finally the above informa-
tion is used to elimmate the redundant synchronizations.
This IS achieved by inspecting a cross-processor depen-
dency and determining if it is automatically enforced by
another dependency in which case It can be eliminated.
The result of its application to an example is illustrated
in Fig. 11. The run-time complexity of this algorithm is
O(l E,I+I VI), where lEcl is the number of cross-processor
dependencies and 1 fl is the number of nodes in the
graph.

4.4. Channel Assignment Strategy-l

In this section and the next, two algorithms for
channel allocation are presented. These algorithms try
to minimize the number of channels used by reusing the
channels and assume that additlonal channels are
always available if required. After presenting these algo-
rithms it is shown how the algorithms can be adapted to
function for a fixed number of channels.

ChanneL4ssignment
I
Assign(n,channel-num)
t
if 3 n, st edge n-n, is yet to be assigned a channel (

assign channeLnum to edge n-tn,; let n, be the next
operation executed by the processor that executes n,

1

Assign(nl,channel-num);

else { let nI be the next operation node to be executed
by the processor that executes node n

>

Assign(nJ,channel-num);

1

channel-num = 0;
V operation nodes n
if 3 an edge that from node n that should be assigned a

channel and has not been assigned yet {
channel-num = channel-num + 1;
Assign(n,channel-num);

Fig. 12. Channel Assignment Algorithm

The algorithm presented here allocates channels
in such a way that a channel is reused only if it can be
guaranteed that at the point of reuse the channel will be
free. Thus, it is guaranteed that at run-time a processor
writing to a channel never blocks due to the channel
being full. To ensure this, the same channel is allocated
for (W,,R,) and (W],R,) if and only if, the precise order-
ings for the reads and writes are known and the writes
are not performed by the same processor. The algorithm
takes one channel at a time and tries to resolve as many
non-redundant cross-processor dependencies as possible.

This process is repeatedly employed using additional
channels till all dependencies have been enforced. The
algorithm is summarized in Fig. II! The procedure
Assign asslgns a given channel to enforce as many
dependencies as possible.
Run-time Complezity of Strategy-l: Assume that the Iti
operations In the DAG are evenly distributed among p
processors. Let I@ denote the number of cross-
processor dependencies, after removal of redundant syn-
chromzations, for which channels have to be assigned. In
each step of the algorithm a channel is assigned to
enforce as many cross-
and in the process I VP

rocessor dependencies as possible
/p instructions are examined. In

the worst case only single dependency will be resolved in
each step and thus the overall run-time complexity of
the algorithm wiII be o(IE~I d/p).

pi pj pk

Cl

Assign C2 k/=4 - c2 (-1

Fig. 19. Channel Assignment - An Example

4.5. Channel Assignment Strategy-2

H H H

(ii) (iii)

Fig. 14. Implied Synchronizations

As channels are assigned additional synchroniza-
tions due to resource usages are introduced. These addi-
tional synchronizations may make some of the other syn-
chronizations for cross-processor dependencies redun-
dant. In Fig. 14(i) there are three dependencies that
must be enforced through channels. If channel C1 is
assigned to enforce the two dependencies from p, to p,,
as shown in Fig. 14(ii), an additional synchronization
shown by a dotted edge is implied. This causes the syn-
chronization due to dependency from p, to p, to become
redundant.

The algorithm presented in this section takes
advantage of the above observation. The allocation of
channels to enforce dependencies for each ordered pair of
processors is carried out one at a time. After channels
have been assigned to an ordered processor pair (p,,p,),

124

synchronizations implied by resource usage are com-
puted. Next the synchronizations that have not been
assigned channels yet and are now redundant are
removed. The algorithm is summarized in Fig. 15. It
should be noted that the order in which channel alloca-
tion is carried out influences the number of channels
used. This is because the synchronizations made redun-
dant due to reuse of channels cannot be known till some
amount of allocation has already been done. It is also
the case that as channels are allocated to enforce depen-
dencies, some of the dependencies for which channels
had already been assigned may become redundant. How-
ever, it may not be possible to deallocate channels at
this stage.
Run-time Complezity of Strategy-R: In this algorithm, as
the allocation of channels is carried out additional edges
are added to the graph constructed for removing redun-
dant synchronizations. Let IEs be the number of cross-
processor edges. Since an edge is added every time two
cross edges are assigned to the same channel, at most
I@-I additional edges may be added. Updating the
graph constructed for the elimination of redundant syn-
chronizations takes O(plEg) time, O(p) time for each
ed e. Removing redundant synchronizations in all takes
0(Eg+I V!) time. Finally, the assi k nment of channels to
cross-processor edges takes O(l E,) time. Thus, the 9
overall run-time
O(l vi+pLqg).

complexity of the algorithm is

Strategy-2

{
for each ordered pair of processors (p,,p,) st instructions
executed by p, are dependent upon instructions executed
by pi and enforcing these dependencies requires channels
{
Remove all redundant dependencies of p, on p,.
V dependence edges from p, to p, assign
channels chosen as follows:
{
Let n,+n, be the edge under consideration
If one of the instructions preceding instruction n,
in the schedule for p, reads from a channel and
since then it has not been allocated to be written by
either processor pi or p, then it can be
used to enforce the dependency n,+ nl.

If none of the already used channels can be assigned
allocate a new channel.

Introduce additional synchronizations guaranteed by the
assignment of channels just carried out.

Fig. 15. Strategy-d

4.6. Allocating a Fixed Number of Channels

The algorithms presented in the preceding sections
assumed that there is an unlimited number of channels
available. However, in practice the number of channels
will be fixed by a specific hardware implementation.
Next it is shown how the above algorithms can be
applied even if the number of channels is fixed. In deriv-

ing the lower bound for the number of channels that a
system must support, it was shown that as long as there
is a single channel dedicated from each processor to
every other processor, any schedule can be correctly exe-
cuted. The same idea is used to ensure that all depen-
dencies can be enforced using a fixed number of chan-
nels.

The total number of channels is divided into two
groups Unconstrained and Constrained. The number of
channels in the Constrained set is the number of ordered
pairs of processors that require the use of a channel due
to cross-processor dependencies. This is the minimum
number of channels needed to enforce all dependencies.
The remaining channels are put in the Unconstrained
set. The channel assignment algorithm allocates chan-
nels from the Unconstrained set and attempts to resolve
as many dependencies as possible. During this process,
if all dependencies for an ordered processor pair get
resolved then the channel reserved for this pair in the
Constrained set can be moved to the Unconstrained set.
The channels are allocated until either all dependencies
have been resolved or the Unconstrained set is empty. In
the latter case it is guaranteed that the Constrained set
will have enough channels to resolve the remaining
dependencies. The algorithm is summarized in Fig. 16.

AllocateJxed
{
Constrained = Set of channels st one channel is reserved for
every ordered pair (p,,p,) of processors st there are
cross-processor dependencies from pi to p,. This can
be at most p(p-11, where p is the number of processors.

Unconstrained = rest of the channels

Applying the Channel Assignment algorithm continue to
allocate channels from the Unconstrained set. If
all channel requirements for an ordered processor pair
have been fulfilled then remove a channel from the
Unconstrained set and include it in the
Constrained set.

If Unconstrained set is empty and all edges have
not been allocated channels then assign the channels
from the Constrained set as follows:
Choose a channel from Constrained set and assign
it to all the edges of an ordered processor pair.
The number of channels should be exactly the number of
ordered processor pairs that still have an edge requiring
a channel.

>
Fig. 16. Allocating Limited Number of Channels

Assignment of the same channel to enforce all
remaining dependencies from one processor to another in
the final step of the above algorithm will result in
schedules that may execute slower as a processor may
have to wait between performing successive writes to the
channel. Another approach for the allocation of a fixed
number of channels is to modify the schedule so that it
requires no more than the available number of channels.

125

The latter approach is unlikely to perform better than
the suggested approach because to generate a schedule
that requires fewer channels some parallelism will be left
unexploited. Scheduling of operations on the same pro-
cessor instead of different processors not only reduces
the number of channels required but also the degree of
parallelism exploited.

5. Experimental Results

Instruction schedules and channel allocations were
carried out for a sample of data dependency graphs
obtained from real programs. These graphs had been
constructed by Rodeheffer[I2] for the inner loops of a set
of scientilic programs. Use of scientific programs is more
appropriate for obtaining data dependency graphs
because in general they tend to have longer basic blocks
and hence are likely to require greater number of chan-
nels. Furthermore, these dependence graphs were con-
structed by coverting control dependencies into data
dependencies to construct longer sequences of uncondi-
tional code. Techniques to do so were developed by Kuck
et al.!lI] The test programs include the following:

ALGl - The Generalized Eigenvalue Problem.
ALGO, - Solving Linear Equations Using Residue Arithmetic.
ALG3 - Solution of Ordinary Differential Equations.
ALG4 - Discrete Chebychev Curve Fit.
ALG5 - Evaluation of Normalized Taylor Coefficients.
ALG6 - Calculation of Fourier Integrals.
ALG7 - Exact Cumulative Distribution of the Kolmogorov-
Smirnov Statistic for Small Samples.

The results of the experiments conducted demon-
strate the effectiveness of the instruction scheduling and
channel allocation strategies presented in this paper.
The results in Table 1 provide a comparison between the
naive approach and the efficient approach. In the naive
approach the number of cross-processor dependencies is
large and equal to the number of channels used. On the
other hand the use of top-down scheduling results in a
significantly smaller number of cross-processor depen-
dencies (#DEPS). The use of efficient channel assign-
ment strategy (strategy-l) further reduces the number of
channels (#GHAN) needed by reusing them whenever
possible. The naive approach used up to I9 channels
while the efficient approach employed a maximum of 7
channels. The number of channels used is fairly small
which makes it feasible to implement channels that are
addressed and accessed as registers.

Next the performance of the top-down scheduling
is compared with that of list scheduling. First let us
compare the quality of schedules generated by the two
scheduling techniques in terms of the parallelism
exploited. In Table 2 the total number of nodes (N,) and
the number of nodes along the longest path (NL) in each
DAG are given. Assuming that each operation takes unit
time, the fastest possible schedule for a DAG on a p pro-
cessor system is equal to max([iVs/p 1 , N,). By exa-
mining the execution times for the schedules generated
by both the scheduling strategies it can be seen that not

Table 1: Number of Channels

I sxivr i EFFICIEST

; #CHAN ! #DEPS j +CHAY I

.UG lBB1 , / ,; I ;
I

ILGlBB2 1 / 2 I .,

.iLGZBBl 2 I 1 I I i

.iLC 2BB2 ‘1 / 5 (4

.u.#G2BB3 i 3 / 3

.iLG3BBl .3 i .: I 2

:UCXBBl

! .ILG6BB5

0 I 0 j 9]

6 ; 5 I 3 ’

,\LGBBl
I

4 1 3 I 2

only do both strategies perform equally weil, but they
also generated the fastest possible schedules for a four
processor system. Next the channel assignment algo-
rithm was applied to the schedules generated by both
the scheduling strategies. A maximum of ten channels
were used for the schedules generated by list scheduling
which is higher than the maximum number of seven
channels required for the schedules generated using top
top-down scheduling. Thus, top-down scheduling gen-
erates schedules that are not only as fast as the
schedules generated using list scheduling but also require
fewer channels.

Table 2: Expected Ezecution Times (p-4)

An alternative approach for implementing chan-
nels is to provide dedicated channels from each processor
to every other processor. This is easier to implement in
hardware because a channel is no longer globally accessi-
ble to all processors. By introducing a queue of fixed
length, effectively multiple channels can be provided
between a pair of processors. The allocation of such
channels is a trivial task. The schedules for the test
cases were analyzed and it was found that a queue

126

length of four channels would have been sufficient.
Further reduction in the number of channels of this kind
may be possible because the top-down scheduling algo-
rithm tries to reduce the overall number of channels and
not the number of channels between a pair of processors.

6. Conclusion

This paper explored the possibility of employing
channels implemented as registers with synchronization
bits, to exploit fine-grained parallelism in sequential pro-
grams. Compile-time techniques for allocation of such a
resource were developed. The results of experiments per-
formed show that a small number of channels are
sufficient to exploit parallelism in code segments of
significant size. The use of channels will provide
improvement in performance over VLIW machines as the
multiple processors are no longer constrained to execute
in lockstep.

References

1.

2.

3.

4.

5.

6.

R.P. Colwell, R.P. Nix, J.J. O’DonnelI, D.B. Pap-
worth, and P.K. Rodman, “A VLIW Architecture
for a Trace Scheduling Compiler,” Proc. Second
International Conf. on Architectural Support for
Programming languages and Operating Systems, pp.
180-192, 1987.

J.R. Ellis, Bulldog: A Compiler for VLIW Architec-
tures, MIT Press, 1986.

J.A. Fisher, “Trace Scheduling: A Technique for
Global Microcode Compaction,” IEEE Trans. on
Computers, vol. 7, no. C-30, pp. 478-490, July,
1981.

R. Gupta, M. Epstein, and M. Whelan, “The
Design of a RISC based Multiprocessor Chip,”
Technical Note TN-89-151, Philips Laboratories,
Briarcliff Manor, NY, 1989.

R. Gupta, “The Fuzzy Barrier: A Mechanism for
High Speed Synchronization of Processors,”
Proceedings of the Third International Conf. on
Architectural Support for Programming Languages
and Operating Systems, pp. 54-64, April, 1989.

R. Gupta and M. Epstein, “Collective Branching
in a MIMD System,” Technical Note TN-89-013,
Philips Laboratories, Briarcliff Manor, NY, 1989.

R. Gupta and M.L. Soffa, “A Reconfigurable LIW
Architecture,” Proc. of the International Conf. on
Parallel Processing, pp. 893-900, August, 1987.

R. Gupta and M.L. Soffa, “Region Scheduling: An
Approach for Detecting and Redistributing Paral-
lelism,” to appear IEEE Transactions on Software

Engineering.

R. Gupta and M.L. Soffa, “Compilation Tech-
niques for a Reconfigurable LIW Architecture,”
The Journal of Supercomputing, vol. 3, pp. 271-304,
1989.

10.

11.

12.

13.

14.

J.S. Kowalik, Editor, Parallel MIMD Computation:
HEP Supercomputer and Its Applications, MIT
Press, 1985.

D.A. Padua, D.J. Kuck, and D. Lawrie, “High-
Speed Multiprocessors and Compilation Tech-
niques,” IEEE Trans. on Computers, vol. 29, no. 9,
pp. 763-776, 1980.

T.L. Rodeheffer, “Compiling Ordinary Programs
for Execution on an Asynchronous Multiproces-
sor,” Ph.D. Dissertation, Carnegie-Mellon Univer-
sity, 1985.

B.J. Smith, “Architecture and Applications of the
HEP Multiprocessor Computer System,” Real-
Time Signal Processing, vol. 298, pp. 241-248,
August, 1981.

J.A. Solworth, “The Microflow Architecture,”
Proc. of the International Conference on Parallel
Processing, vol. I, pp. 113-117, August, 1988.

127

