
Compile-time Techniques for Efficient Utilization
of Parallel Memories*

Rajiv Gupta
Philips Laboratories
North American Philips Corporation
Briarcliff Manor, NY 105 10

Abstract - The partitioning of shared memory into
a number of memory modules is an approach to
achieve high memory bandwidth for parallel pro-
cessors. Memory access conflicts can occur when
several processors simultaneously request data from
the same memory module. Although work has been
done to improve access performance for vectors, no
work has been reported to improve the access per-
formance of scalars. For systems in which the pro-
cessors operate in a lock-step mode, a large percen-
tage of memory access conflicts can be predicted at
compile-time. These conflicts can be avoided by
appropriate distribution of data among the memory
modules at compile-time. A long instruction word
machine is an example of a system in which the
functional units operate in a lock-step mode per-
forming operations on data fetched in paraIle1 from
multiple memory modules. In this paper, compile-
time techniques for distribution of scalars to avoid
memory access conflicts are presented. Further-
more, algorithms to schedule data transfers among
memory modules to avoid conflicts that cannot be
avoided by the distribution of values alone are
developed. The techniques have been implemented
as ‘part of a compiler for a reconfigurable long
instruction word architecture. Results of experi-
ments are presented demonstrating that a very high
percentage of memory access conflicts can be
avoided by scheduling a very low number of data
transfers.

Keywords - memory bandwidth, parallel memories,
memory access conflicts, long instruction word
architectures.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear.
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

@ 1988 ACM O-8979 l-276-4/0007/0235 $ I .50

Mary Lou Soffa
Dept. of Computer Science
University of Pittsburgh
Pittsburgh, Pa. 15260

1. Introduction
High memory bandwidth is essential for

effective utilization of systems with large numbers
of processors. An approach for achieving high
memory bandwidth is through partitioning of global
data memory into a number of memory modules
that can operate in parallel31 15, 14. l14. The memory
modules are shared by the processors which access
them through an interconnection network. In stich a
system, degradation in performance can result due
to memory access conflicts that occur when a
number of processors simultane0usly request data
from the same memory module. In the presence of
these conflicts, the operation of the processors is
slowed down as the operands cannot be accessed in
parallel. Work has been done to improve access
performance of vectors by storing them in a skewed
fashion in parallel memories12*3. In previous work
by Mace and Wagner, techniques to determine how
to store data for performing vector operations were
developed17v 16.

In practice there are always parts of a pro-
gram that operate on scalar data rather than vectors.
In or&r to achieve high overall speed-up, it is
essential to execute these parts of the program in
parallel. Avoiding memory access conflicts in this
situation requires that the scalars used in parallel
operations be assigned to different memory
modules. The techniques developed for storing
vectors in parallel meniories are inadequate for allo-
cating storage for scalar data, because scalar data
accesses do not have a regular pattern, unlike vector
accesses. If the processors in a system operate in a
lock-step mode, it is possible to predict at compile
time a high percentage of operands required simul-
taneously-by the processors and hence perform their
allocation to different memory modules to avoid
access conflicts. Long instructiori word (LIW)

* ‘Ihis work was done at the Unit. of Pittsburgh and
was partially suppotted by NSF under Grant DCR 811934.

235

architectures7*9, a family of fine-grained architec-
tures, are examples of systems that fall in the above
category. LIW machines have multiple functional
units that operate in lock-step and perform opera-
tions on data fetched in parallel from memory
organized in the form of multiple memory modules.
The TRACE4, a LIW machine developed by
Multiflow, allows for up to eight memory controll-
ers each of which carries up to eight independent
memory modules.

In order to avoid memory access conflicts, the
operands required by the operations to be executed
in parallel must first be determined. Following this,
the values must be assigned to memory modules to
allow conflict free access. Such an assignment may
not always exist. However, access conflicts can
always be avoided by creating multiple copies of
data values and distributing them among the
memory modules. Multiple copies can be created
by data transfers among memory modules that are
scheduled at compile-time. The transfers can result
in increased execution time. Thus, an attempt
should be made to minimize duplication of values.
Creating multiple copies involves determining
which values should be replicated and to which
memory module they should be assigned, as both
have an impact on the degree of duplication carried
out.

This paper presents compile-time techniques
for storage allocation of scalars into memory
modules with the goal of limiting run-time memory
access conflicts. The approach presented for alloca-
tion is applicable to those operands in instructions
that can be predicted at compile-time. An instruc-
tion is composed of the operations that execute in
parallel and the corresponding operands. However,
the operands required by an instruction cannot
always be determined at compile time. In the pres-
ence of arrays, the specific array element required
for an operation may only be known at run-time. In
this work algorithms for avoiding those memory
access conflicts that can be predicted at compile
time are described. Complexity analyses has been
donelo and the results are briefly stated. The tech-
niques have been implemented as part of a compiler
for a recontigurable long instruction word (RLIW)
architectureloall. Results of experiments demon-
strate that a very high percentage of memory
conflicts are avoided without replication of scalar
values. Furthermore, the access conflicts caused by
the operands that could not be predicted at
compile-time do not cause significant deterioration
in performance. Finally, other applications of the
technique are discussed.

2. Memory Module Assignment

The approach for allocation of storage used in
this work involves generating all of the instructions
without assigning physical memory modules for the
operand values. Symbolic addresses are assigned to
data values during scheduling of operations in
instructions, and then all of the instructions are
examined to determine which memory module
should be used to store the value of a data item.
The advantage of using symbolic addresses is that
during memory module assignment, the accesses
performed by the same instruction are known.
Thus, when binding the addresses to memory
modules, an attempt can be made to avoid multiple
accesses to a memory module during the execution
of an instruction. Since a program can have a large
number of data values (variables/temporaries), exa-
mining all of the requirements for the data items at
the same time and assigning modules to avoid the
memory access conflicts predictable at compile time
can be a unmanageable task. One solution to this
problem is to perform the memory module assign-
ment for one program region6 at a time. Another
approach is to carry out the module assignment in
two phases: global module assignment and local
module assignment.. During global module assign-
ment, the binding of data values that are used in
more than one region6 of the program can be car-
ried out. After this has been done, the regions can
be examined one at a time and module assignment
for the data values that are created and used only
within that region can be performed. The algorithms
used for global and local module assignment would
be similar, as in either case, instructions are exam-
ined to determine which data values are accessed in
the same instruction and hence should be stored in
different memory modules.

The problem of memory module assignment
can be stated as follows:
Problem: Given memory M=<M,,MP....Mk> where
memory modules M,,M2.....M, can be accessed in
parallel and a sequence of instructions each of
which requires up to k operands from among data
values V,,V+..V,.
Goal: Allocate storage for V1,V2.....V, among
memory modules so that the instructions can be
executed without encountering any memory access
conflicts.

236

M=<M1,M2,M3>

Instructions
______---___-_-_

Vl vz v4
v2 v3 vs

v2 v3 v4

Fig. I. Avoiding Access Conjlicts

The example given in Fig. 1 shows how the
storage can be allocated avoiding memory access
conflicts for a particular use of the data values. The
instructions are denoted by the operands they use,
as the operations are of no importance here. In this
example all memory access conflicts are avoided by
assigning the modules properly. However this is not
always possible. If an instruction with the following
operands is added to the list of instructions

v2v4 v5

then it is not possible to assign modules and avoid
all memory access conflicts. If multiple copies of
data items are made and stored in different memory
modules in a certain way, memory conflicts can be
avoided. In the above example, if a copy of value
V5 is stored in Mr in addition to M3 then all
memory conflicts are avoided. It is possible that k
copies of a variable may be required with one copy
in each memory module to avoid all memory
conflicts. In the above example, if the following
operand usage is also included

Vl v4 vs

then all memory conflicts can be avoided by adding
a copy of V5 to module M2 In this situation all
three modules contain a copy of value Vs. Thus
depending upon the instructions, varying number of
copies of values may have to be created and stored
in different memory modules. The module assign-
ment algorithms developed are aimed at finding an
allocation that requires the least amount of copying,
for copying of values can increase execution time.
Thus the modilied memory module assignment can
be stated as follows:
Problem: Given memory M=<M1,M2.....Mk> where

the memory modules MI,M2....Mk can be accessed
in parallel and a sequence of instructions each of
which requires up to k operands from among data
values V1,V~....V,.
Goal: Allocate storage for V,,VP....Vn among
memory modules so that the instructions can be
executed without encountering any memory access
conflicts and a minimum number of multiple copies
of data values are created in the process.

When creating multiple copies of values, the
problem of consistency of the multiple copies never
arises, for these values do not correspond to vari-
ables in the program. Corresponding to each
definition of a variable, a distinct data value is
created and when memory modules are assigned,
the different data values of a variable are treated
independently. Thus no data value is ever updated.

The approach taken for memory allocation is
to consider any two operands of an instruction.
These operands will not cause a memory access
conflict in the instruction if their values are stored in
two different memory modules. A given set of
instructions will be free of memory access conflicts
if each pair of data values that is used in the same
instruction are stored in separate memory modules.
To allocate storage for a sequence of instructions,
pairwise conflicts among the data values are con-
sidered. A graph in which the nodes represent the
data values and the edges represent the conflicts
among them is constructed. Finding whether an
allocation exists that avoids all the conflicts or not is
the same as determining whether the graph con-
structed in the above fashion can be colored using k
colors, where k is interpreted as the number of
memory modules in the system. It is unlikely that
the problem can be solved in polynomial time
because determining whether an arbitrary graph is
k-colorable for a fixed k is an NP-complete prob-
lems. Therefore a heuristic is used for coloring that
removes nodes from the graph when coloring using
k colors is not possible. The memory access
conllicts among the data values, represented by the
nodes not removed from the graph (V.Mip~), can
be avoided by placing single copies of these values
in the memory modules assigned through coloring.
The remaining conflicts, involving the data values
represented by the nodes removed from the graph
w UMSSigd), are avoided by duplicating these values
and placing them in different memory modules.

Memory Module Assignment

I
Construct Access Conflict Graph G = (V,E)

Using graph coloring assign values to memory modules

M1jvl~.Mk such that accesses to the values

“usipd c V, assigned to memory modules, do not conflict.

Let V-w = V - V,i~ be the values that could not

be assigned to memory modules in a conflict free manner.

Avoid remaining access conflicts by

Dupfication: creating multiple copies of values in V-,,-

Placement: distributing these copies among memory modules.

I

Fig. 2. Overall Strategy for Memory Module Assignment

After the set of nodes is removed from the
graph, the number and placement of the copies for
each data value in this set is determined. The values
of the nodes in this set will have at least two copies
stored in different memory modules. The overall
strategy for avoiding access conflicts is summarized
in Fig. 2.

If the number of operands in the instructions
is three, determining the smallest subset of values,
from among the ones with two copies, that should
have three copies to avoid all memory access
conflicts is Np-complete. This will be shown later.
Even if algorithms for removing a minimum
number of nodes from the graph while coloring and
determining the smallest subset of values that need
to have three copies are used, a sub-optimal solu-
tion may be obtained. This is demonstrated by the
example in Fig. 3. In this example two storage allo-
cations for a given set of instructions are presented.
In either case two nodes are removed from the
graph to make it colorable. In the first case nodes
V, and Vs are removed from the graph and in the
second case nodes Vz and V5 are removed from the
graph. In the first solution after placing two copies
of values V, and Vs, a memory conflict still exists.
This conflict is avoided by making an additional
copy of Vs. In the second case all memory conflicts
are avoided after hvo copies of V, and Vs have
been placed. Thus although the same number of
nodes were removed in both cases the second solu-
tion resulted in less copying of data values. This

shows that even if a coloring algorithm that
removes a minimum number of nodes from the
graph is used, the resulting solution may be sub-
optimal.

M=<M,.M,.W=

InstNuiolM
-_-_-__--__-

“l”2 “3

“a “3 “4

“l”3 “4

“l”3 “5

“2”3 “s

“I “4 “s

Mt M2 M3 Ml Mz M3

“, -x--- -__--_------ v1 -x -----------------

“, _--_-_---x _-_------
“3

-----_----------x-

v3
----_-_-_-----x-

“4
------x-----

“4
-x -----__ x ___------

“2
-x---_-_-x --------

“S
-x _______ x ___---- XT

“5
--_-----x-------x-

Fig. 3. Choosing Nodes to be Rerkoved

2.1. Heuristic for Removing Nodes

A heuristic is presented for determining the
subset of nodes which, if removed, make the graph
k-colorable. First of all, the graph is decomposed
into atoms which are subgraphs that do not have
clique separators 18. A clique separator is a com-
plete graph whose removal disconnects the graph.
If each of the atoms in a graph is colored using k
colors then the entire graph can be colored using k
colors’*. Thus the coloring algorithm need only
concern itself with coloring the atoms rather than
the entire graph at the same time. When coloring
an atom, a heuristic removes nodes whenever it
becomes impossible to continue coloring.

238

Color(G=(V,E))

P d(nJ is the degree of node ni */

P conf(mi,nj) is the number of instructions in which both

ni and nj are used as qtands */

1
P Compute Weights *I

V (Q+) E Ev

if d(q)& then wt(npni) = 0 else wt(nj+nJ = coRf(“i+)

V q compute S, = x wt(q+nj). where (ni,n$ E E
9

P Initialize sets *I

n~=nisuchthatS,=ySqi

ASSIGN(n& = M,; V,,,- = (nsrn)

V,=V- (nti); Vmi+=+

whileV,#@

I
Choose Gt = ni st Uq = maxU,,

“r

ZwNnk--j)
Urgency UT = a

%
, where

nk & vtid,

nj E V,,

(nkaj) E J%

K,,, is the number of modules still assignable to q.

ifK,=OthenV-t~=V-~U[~)

else (

ASSIGN+,,& = one of the available modules

vmsai&=vaa@ud u (%x11

I

v,=vnm-%*

I

1

Fig. 4. Heuristic for Graph Coloring

The heuristic developed for coloring an atom
G=(V,E) is described in Fig. 4. The edges in the
graph are assigned weights to guide the coloring
algorithm. If a node has a degree less than the
number of memory modules, the edges leaving that
node are assigned a weight of zero as any algorithm
will be successful in coloring such a node. Each
edge from one of the remaining nodes is assigned a
weight equal to the number of conflicts in which the
vertices connected by the edge are involved. The
node involved in the maximum number of conflicts
is first colored.

The graph is viewed as consisting of two sub-
graphs: G1 containing the nodes that have been
colored (VU4 and Gz containing the nodes yet
to be colored (V&. In order to choose the node to

be colored next, the urgency for each uncolored
node is computed and the node with the highest
urgency is chosen. The urgency of a node is propor-
tional to the number of conflicts between the node
and ail other colored nodes. A high number of
conflicts implies that a. failure to color the node to
avoid the conflicts is likely to leave a high number
of conflicts unresolved. This may result in a high
degree of duplication of data values. The urgency
of a node is also inversely proportional to the
number of colors that can still be used to color it,
for a small number of colors available implies that a
delay in coloring the node might result in an inabil-
ity to color the node at all. The above process is
continued till each node has either been colored or
cannot be colored.

The example in Fig. 5 demonstrates how the
above algorithm is used. In the figure, each edge
(nj.4) in the graph (representing conflicts) is labeled
with weights wt(nj-+ni) ,and wt(n+nj). In this
example, four data values are allocated space in the
memory modules (k=3) and the node corresponding
to V5 is removed from the graph. Multiple copies of
V, are created to avoid all memory access conflicts.
Run-time Complexity: The above algorithm has
been implemented with the running time of
O((n+e)log(n+e)), or O(n210gn) in the worst case,
where n = WI and e = IEi.
Worst C&e Pe’rformance: It can be shown that in
the worst case the heuristic may leave (n-k) nodes
uncolored while the optimal only leaves two nodes
uncolored, where n is the number of nodes in the
graph. Therefore the ratio of heuristic to optimal is
heuristic _ (n-k)
optimal 2 *

2.2. Duplication aud Placement Strategies

After determining what values have to be
replicated (V unptipcd) by running the coloring
heuristic, the number of copies and placement for
these copies have to be determined. Two different
approaches are considered for this problem. The
lirst approach is simple and involves examining one
instruction at a time and creating copies of values
and placing them so that the instruction is conflict
free. This is achieved by backtracking across the
available memory modules. The drawback of exa-
mining one instruction at a time is that copies
created for a particular instruction are less likely to
be used in subsequent instructions. The second
approach is more complex and involves examining
all instructions before deciding what subset of
values should be replicated to avoid all conflicts.
As a result, a copy of a value created can help in

239

avoiding conflicts in several instructions, leading to
a lesser dep of duplication.

Instructions

Vl v2 v3

v2 v3 v4

v5 Vl v2

v3 v4 v5

“I
212 “1

“2

@

V3 mu Si - S2 - 6

11
’ l/

v2 is c&red wull Ml

l/2
l/l

V5 v4
l/l

Vl 00 W2.m) V, v3
VS

Gl
2

w-2/2-1

U3-2/2-l

Ul-l/2-.3

c5-l/2-.5
(i)

W2”Ul) V3
v4 00 (v1..w) VS

02
1

c3-m-3

Cd-L/2-3

u-2/l-2

(ii)

Fig. 5. Applying the Coloring Heuristic

2.2.1. Straightforward Approach Based on
Requirements of Individual Instructions

In this approach the instructions are examined
one at a time and copies of values are created as
needed. First the instructions are ordered according
to the number of operands targeted for multiple
copies, i.e., members of set VW,,+,,. Although
access conflicts can be avoided by duplicating data
values that were not removed from the graph during
coloring, only values that were removed are con-
sidered because their small number makes the algo-
rithm for duplication efficient to use. The instruc-
tions that have only one operand in VU,,,, are
examined first and the instructions in which all k
operands are in V-aipd are examined last. After
examining an instruction, the minimum number of
additional copies that have to be created and the

placement for these copies are found. The pro-
cedure employed for this purpose generates all pos-
sible placements for the operands of an instruction
by backtracking across different memory modules
that can be used to store a data value. The back-
tracking procedure first tries to use as many existing
copies of data values as possible and then creates
and places new copies in other modules if the
conflicts cannot be avoided. The placement that
requires the least number of additional copies to be
created is used. If there is more than one solution, a
random choice is made. The reason for ordering
the instructions is as follows. A conflict in an
instruction that has only one operand that can be
duplicated can be avoided only by making a copy of
that operand and placing it in a specific memory
module. However if the instruction has multiple
operands that can be duplicated then there is likely
to be more than one solution. The above approach
is summarized in Fig. 6.

Backtrack

(
Divide the inst~ctions into sets St&.....S, such that

Si = (I: ~~S~NC~~OII I has i operands in V-riM)

fori=l..klq

(
Q IE&

Let Ol.02.0i denote the operands in I from VW,;,,

Using backtracking determine all module assignments

Pj = ((O,~M,),(O2~~.-(O,,M~) 1 such that

Pj avoids all memory access conflicts in I

Q Pi ccxnputc. CPb the number of copies in Pi that need

to be created, and choose the placement Ph such that

cpti=? cq
and create the additional copies of the operands.

1

1

Fig. 6. Approach Based on Backtracking

Run-time Complexity: The run-time complexity of
the algorithm is O(k! i) or O(nk), where i is the
number of instructions with access conflicts after
graph coloring, and n is the number of values in
V unassigned-
Worst Case Performance: The drawback of exa-
mining the instructions one at a time is that the
copies created for an instruction are less likely to be
used by other instructions than if the requirements
for all instructions were determined before placing
copies. It can be shown that (k-l) times more
copies than the optimal number of copies may be

240

created by the above algorithm.

Hitting Set Approach

I*IztI:Ji ..* IA be the k-operand instructions */

I* Procedure Place(V), places a copy of each value vt E V *I

/* Procedure Duplicatc(V,op), determines V&P c V that

should be duplicated to avoid conllicts in instructions with

op operands. Duplication requires the use of a heuristic

for finding hitting sets. */

1

Let si” = (OPt,OP, * - - OP,) denote a combination of

nopetandsstq j Srs;Ijk

p place the first copies of operands yet to be assigned modules */

~~cV~i,uI,
Place(V-4 st V i Sf is conflict free

fornum=3 . . kloop

1
Duplicaiion Phase:

Using the hitting set heuristic determine V,, c VW-

st if an additional copy of each value in V+ is made

V i Fum is conflict free I
Placement Phase: Place(V+)

1

I
Fig. 7. The Hitting Set Approach

2.2.2. The Hitting Set Approach

As mentioned earlier, in the second approach
all instructions are examined before the decision on
what values to replicate is taken. The motivation for
this approach is as follows. In general it may be
possible to avoid a conflict present in an instruction
by replicating one of many data values. If, instead
of making a choice at random, other instructions are
examined before choosing the value to be dupli-
cated, less copies are likely to be made for the
requirements of other instructions are determined
before making a choice.

In this approach, after assigning the single
copies of nodes in Vpssipd and two copies of each
node in V,,,,,,,, to memory modules, conflicts
between pairs of operands that occur together in
any instruction are eliminated. Next, additional
copies of a subset of operands that are in V,,,,
are created and placed to avoid all conflicts in com-
binations of 3 or more operands. In order to deter-
mine the number of copies of data values that are
needed to avoid memory access conflicts, the fol-
lowing procedure is used. First, all combinations
of (k-l),(k-Z),(k-3)....3 operands that occur together
in any of the instructions are determined. In order

to avoid all memory access conflicts the memory
access conflicts in combinations of 3....k operands
generated from the instructions have to be avoided.
The choice of placement of values to avoid conflicts
among pairs of operands is important as this will
determine what combinations of three operands still
conflict and thus require additional copies of values
to be made. Now if the combinations of three
operands are examined, some of the memory access
conflicts may still be unresolved. These conflicts are
resolved by making an additional copy of a subset
of values that already have more than one copy.
After determining an appropriate placement of
these values, combinations of four operands are
examined. This process of duplication and place-
ment is repeated until all the conflicts present in the
k operand instructions are resolved.

The procedure discussed, summarized in Fig.
7, involves repeatedly finding a set of values to
duplicate and placing them in memory modules. As
will be shown later, the problem of finding the
smallest subset of values that should be duplicated
to avoid a set of conflicts is NP-complete. The prob-
lem of finding the best placement is also W-
complete. The example in Fig. 8 demonstrates the
importance of proper placement of values. In this
example access conflicts are avoided by creating
multiple copies of V4 and placing them in different
memory modules. In solution 1 the first two copies
are placed in memory modules M2 and lv&, and in
solution 2 they are placed in modules M, and M,.+
Next additional copies of V, are made to avoid
conflicts in all combinations of three and four
operands. The choice of modules made in solution
1 results in four copies of V4 while solution 2
requires only three copies of V,. This demonstrates
tbat the choices made in the placement of values
influences the number of copies created.

In the subsequent sections, the problems of
determining the subset of values to be duplicated
and the placement of the copies made is considered
separately. First heuristics for the duplication of
values and the placement of these values are
presented. Next the combined run-time complexity
of the duplication and placement algorithms is
presented. Lastly the overall performance of the
hitting set approach, assuming that a fixed strategy
of placement is being used, is analyzed.

241

Instnlctions

-------_-_---_-

vt v2 v3 vs

v4 v2 v3 v5

vlv2v3v4

v4 v2 Vl v3

During coloring V4 is removed

Solution 1 Solution 2

Ml M2 M3 M4 W&M,M4

v, -x _-_--__ - _-_--- v, -x --------------

v2 ______ x--- __---_ v, ---x _--_ - ----

v, -_-_-_-_-__ x -_-_- v, ________-- x -----

v5 _________.__.__ x- v5 ___________--_- x-

v4 -_-___ x _------- x- v4 -x -_----_--__-- x-

WWM,% MI MzM31M4

v, -x -_____- - _----- v, -x ______________

v, _----_ x-- _-_--- v, ----x ---- - ----

v, _----------x -_--- v, -- ___---_- x -----

v5 _______________ x- v5 --_-_-_-_-----x-

v, -x _--- x ---_-_-- x- v4 -x--------x--x-

MI M2 M3 M4

v, -x _-_---_-_-_-_ -

v, ______ x _--_-___ -

v, _-_---____- x---

v, _------_------XT

v4 -x--x--x--x-

Fig. 8. Piacement of Values

2.2.2.1. Duplication

In this section the problem of determining the
subset of values to be duplicated so that all combi-
nations of (i+l) operands are free of conflicts,
given that all i combinations of operands that occur
together in any of the instructions are conflict free,
is considered. It is shown how the algorithm for the
above problem can be applied repeatedly to elim-
inate all conflicts in the k operand instructions.

After running the coloring heuristic and plac-
ing the single copies of colored nodes and two
copies of each node removed during coloring,
conflicts between pairs of operands that occur

together in any instruction are eliminated. Next
combinations of three operands that occur together
in any of the instructions are considered. If a com-
bination of values V1, V2 and V3 has a memory
conflict then existing copies of the values must be
stored in one of the following three configurations:

Mi Mj Mi Mj Mi Mj

Vl x Vl x v,x x

v2 X v,x x v,x x
v3x x v, x x v3x x

6) (3 (iii)

The conflict can be avoided by making an addi-
tional copy of a value and placing it in a memory
module other than modules w and Mj.
The conflict in (i) can be avoided by making one
more copy of (V, 1.
The conflict in (ii) can be avoided by making ,one
more copy of one of (V2,V3).
The conflict in (iii) can be avoided by making one
more copy of one of (V1 ,V2,V3).

In each of the above cases there is at least one
data value that has two copies. This is because for a
combination of three values, each of which has one
copy, it must be true that the values are stored in
different memory modules and thus the combina-
tion must be free of memory access conflicts.

Hitting Set: HS for sl,sz. - . sN such that 1s I sj I G

{
HS=ysj,lsjl=l

forsize=2..kloop

I
Lets,= %ofsetsssuchthatviEs~lsi=p

V Sj = (Vl*V2 ..*v&) suchthatsjnHS=$

HS=HSuv,, wherev,&sjand Vvl&sjstvl+v,

2 m 5 k St (!&,,&G,,pr) A (Sy,i = &,ir i = size....m-1)

I

I
Fig. 9. Heuristic for&ding the Hitting Set

The cardinality of the set of values from
among which a value should be chosen for replica-
tion varies from one to i as the number of operands
with multiple copies in the i operand combination
varies from one to i. After constructing these sets
of values, at least one value is chosen from each of
the sets to have an additional copy to avoid memory

242

access conflicts in all combinations of three
operands. Ideally the smallest subset of values
should be duplicated to avoid the conflicts. How-
ever, this subset is the minimum cardinality hitting
set of the group of sets, and the problem of finding
the minimum cardinality hitting set is NP-
complete*. Therefore in order to find the hitting set,
the heuristic given in Fig. 9 is used.

In the above procedure after creating new
copies, a placement for these copies has to be
found, The placement of the copies made to avoid i
operand conflicts has an effect on the number of
additional copies made to avoid the conflicts in
(i+ 1) operand combinations. This implies that
proper placement of copies is important.

2.2.2.2. Placement

After having determined the set of values to
be duplicated, the values are assigned to particular
memory modules. A placement that avoids the max-
imum number of memory access conflicts is desir-
able for this leads to fewer values being duplicated
to avoid the remaining conflicts.

Consider the situation where the instructions
have three operands each and after running the
coloring heuristic the set of values that should have
at least two copies has been determined. The place-
ment algorithm has to be used to place the lirst copy
of each of the values in the set. Placing the first
copies so that maximum number of conflicts are
avoided is NP-complete, for solving the placement
problem in this case is same as finding the largest
bipartite subgraph* GI=(V&) of a graph G=(V,E)
where E,&.

Place: a copy each of value vi E HS

I
Divide I the set of instructions into groups I, u I, u Ik = I

st each instruction in & contains i operands in V--

V veHS

(

Compute C&&(v) = number of instmctions in $ that

hecome cc&ict free if a copy of v is placed in M,

Let~bethememorymodulestV wlsilkand i+p

3 z 5 k St (CM,I,(V) > CM,&,> A

cc&&, = C&&(v) , a =l 1. z-l)

PlaceacopyofvinMp

I

1
Fig. 10. Placement Algorithm

In order to decide where to place the values,
all of the instructions that have conflicts are exam-
ined and an attempt is made to find a placement that
avoids as many conflicts as possible. First of all,
the instructions are divided into groups according to
the number of operands with single copies present.
Consider a k-operand instruction with an access
conflict which has (k-l) operands with one copy
each. This instruction has only one operand that can
be duplicated. There is only one memory module
where the copy of the operand can be placed to
avoid the conflict. Similarly consider an instruction
with (k-2) operands with one copy each and a
memory access conflict. In this case, there are two
choices for the placement of the values of the two
operands allowed to have more than one copy. It is
possible that same variable may be involved in
conflicts in instructions of both types described
above and the choice of memory module in the first
case may also avoid the conflict in the second
instruction. Thus an attempt is made to avoid
conflicts in instructions with (k-l) operands with
single copies first. The instructions with (k-2)
operands with single copies are considered next
and, last of all, the instructions with only one
operand with a single copy are examined.

After grouping the instructions in the manner
described, one variable at a time is taken and the
memory module where its value should be placed is
determined. For. each instruction in the lirst group
the set of memory modules where the value may be
placed to avoid the conflict is determined. The
value is placed in the memory module which helps
avoid the maximum number of conflicts. If there is
more than one choice the next group of instructions
are examined and the best choice for this group of
instructions is determined. This process continues
until either the conflict is avoided or there are no
more groups of instructions, in which case a ran-
dom choice is made. The order in which the vari-
ables are processed when placing their values deter-
mines the placement. The order is determined by
counting the number of instructions in the first
group that involve each of the variables whose
values are to be placed. The variable that occurs in
the maximum number of instructions with memory
access conflicts is processed first. If the variables
cannot be ordered on the basis of the lirst group of
instructions, the subsequent groups are used. The
algorithm is summarized in Fig. 10.
Run-time Complexity: The run-time complexity of
the duplication and placement algorithms is O(lci2)
or O&r?), where i is the number of instructions
with access conflicts after graph coloring, n is the

243

number of data values in VW,,,,. The total time
spent in placing the values is O(knk+‘). The total
time spent on duplication is O&n%). Thus the total
time taken by the algorithm is sum of the time spent
on duplication and placement which is O(k#).
Worst Case Performance: The worst case perfor-
mance of the hitting set heuristic is expressed in
terms of m, the number of different sets in which an
element can occur. is as follows:

heuristic ’ 1 1
optimal

= Q = (l+z+y+*.... +i)

The overall worst case performance was
analyzed using a fixed strategy for the placement of
values. Assume that the first IWO copies of the
values in VWdm, are placed in memory modules
M, arid Mz. A fixed strategy of placement P, is
defined as a one to one mapping P:I+M where
M= (M3,1$ Iv&) is the set of memory modules
and 1=(3,4....k) is the number of operands in com-
binations being considered in the current iteration
of the algorithm. For a fixed placement strategy it
can be shown that the replicating procedure can
create l& times the copies that need to be createdlO.

3. Experimental Results and Conclusions

The techniques presented were implemented
as part of a compiler for a recon@urable long
instruction word architecture*O+g. Experiments
were conducted to determine the degree of duplica-
tion for a set of programs. The results obtained for
the backtracking approach and the hitting set
approach, given in sections 2.2.1 and 2.2.2, were
quite similar and thus, only the results obtained
using the second approach are presented. The test
cases include programs to compute Taylor
coefficients for complex (TAYLORl) and real
(TAYLOR2) analytic functions, solve a set of linear
equations using residue arithmetic (EXACT), fast
Fourier transform (FFT), sorting using quicksort
(SORT) and the graph coloring algorithm (COLOR)
presented in this paper.

The coloring algorithm used to assign
memory modules to data values required the con-
struction of a graph representing conflicts. An
implementation of this algorithm is likely to impose
a restriction on the size of this graph. Different
memory module assignment strategies were used to
study the effect of restricting the size of the graph.
In the first strategy, STORl, conflicts among all the
variables and temporaries in the program were con-
sidered simultaneously, i.e., no restriction on the
size of the graph was imposed. In practice however,
for large programs, the size of the graph may be too
large to be practical. The next two strategies limit

244

the size of the graphs. In the second strategy,
STOR2, the memory module assignment for the
data values was carried out in two stages. In the first
stage the variables live across regions were
assigned memory modules. In the second stage,
variables and temporaries local to a region were
assigned memory modules. Thus at a given time
only a subset of variables, and hence conflicts, are
considered in this strategy which limits the size of
the graph constructed. In the third strategy,
STOR3, the size of the graph was restricted by lim-
iting the number of instructions processed at a time.
In the experiment conducted, the instructions were
split into two groups.

I-

Table 1. Duplication of Data

The results of the experiments are presented
in Table 1. In Table 1 the fust column (=l) indi-
cates the number of scalars that had single copies
and the second column (>I) gives the number of
scalars that had multiple copies. In these experi-
ments the system had eight memory modules.
Almost no duplication had to be done to avoid
memory access conflicts when strategy STORl was
used. An increase in the amount of duplication
was caused when STOR2 and STOR3 were used.
However, the duplication caused by STOR3 was
significantly lower than the duplication caused by
STOR2. This indicates that the allocation is better
if the size of the graph is restricted by limiting the
number of instructions processed at a time. The
performance of STOR2 was poor compared to
STOR3 because during the allocation of storage for
global variables, very few conflicts are considered,
for the majority of operands for an instruction are
data values local to a region and very few operands
represent global data values. >From the results
obtained for strategies STORl and STOR3, it can
concluded that most memory access conflicts can be
avoided with very little duplication of data.

The memory access conflicts due to array
references cannot be detected at compile time. In
order to measure the deterioration in performance
due to these conflicts, an experiment to measure the
increase in time spent on memory transfers due to
memory access conflicts caused by array references
was conducted. The results of the experiment are
presented in Table 2. In these results time fnin is the
time spent on performing the memory transfers if
no memory conflicts occur due to array references.
Time fnpX is the time spent on performing memory
transfers assuming every array access causes a
memory access conflict. This can only occur if the
storage required for all of the arrays used by a pro-
gram is allocated from the same memory module.
In practice the elements of the same array will be
distributed uniformly among the memory modules.
A more realistic estimate of the time spent on per-
forming memory transfers is &,,. In computing
time tayc it was assumed that the probability of the
required array element being in any of the memory
modules is the same. The average time spent on
performing memory transfers for an instruction, tpW,
was computed as follows:

t,=Ap(l)+2Ap(2)+ *.. +“mAp(nJ

= xi A p(i)
i=l

where the time required to supply the operands
required for an instruction in absence of memory
access conflicts is A and p(i) is the probability of the
instruction requiring i operands from the same
memory module. Thus in the above computation, it
is assumed that for every data transfer that a
memory module performs, time A is needed.

Table 2. Memory Conflicts due to Array Accesses

TAYLOR1

TAYLOR2

EXACT

FET

SORT

COLOR

The results in Table 2 show that in the worst
case up to 38% increase in the time spent on
memory transfers is observed. However, this is
highly unlikely to occur in practice as the array ele-
ments will be distributed among the memory
modules and not stored in the same memory
module. The results in Table 2 also show that on
an average 2-20% increase in the time spent on
memory transfers was observed due to memory
access conflicts caused by array references. Since
the overall execution time of a program includes the
time spent on performing the operations also, the
percentage increase in the overall execution time is
even less. Thus the expected reduction in the speed
of execution due to memory access conflicts caused
by array references is less than 20%. The results
obtained for the overall speed-up in execution on
the reconfigurable long instruction word (RLIW)
system varied from 64-300%. Compared to the
overall speed-up, the reduction in speed due to the
memory access conflicts caused by array references
is small. Thus it can be concluded that the memory
access conflicts, predictable or unpredictable at
compile time, do not cause any appreciable
deterioration in the performance of the system.

It should be noted that the results would
likely be improved by first applying renaming13m5
techniques to the code to remove storage related
dependences. This is because instead of assigning a
variable to the same memory module for the entire
program, each renamed definition can be assigned
to a different memory module. These techniques
can also be used in shared cache multiprocessor
systems. In systems where the caches am associ-
ated with the shared memory2, the shared data can
reside in the shared caches and can be accessed in
parallel by the processors at high speed. However,
the performance of the system can deteriorate if
multiple hits occur on the same cache. Information
on access frequency of shared data items can be
used to determine a distribution of data items in the
memory modules which is likely to avoid multiple
hits on the same cache. If the data is read-only, then
the techniques described in this paper can be used
to create multiple copies of data items which are
stored in different main memory modules. The Alli-
ant FX/S is an example of a machine that supports
shared caches.

References

1. K.E. Batcher, “The Multidimensional Access
Memory in STARAN,” IEEE Trans. on
Computers, pp. 174-177, Feb., 1977.

245

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

F.A. Briggs and K. Hwang , Computer Archi-
tecture and Parallel Processing. McGraw-
Hill, Inc. , 1984.

P.P. Budnik and D.J. Kuck, “The Orgauiza-
tion and Use of Parallel Memories,” IEEE
Trans. on Computers, vol. C-20, pp. 1566-
1569, Dee, 1971.

R.P. Colwell, R.P. Nix, J.J. O’Donnell, D.B.
Papworth, and P.K. Rodman, “A VLIW
Architecture for a Trace Scheduling Com-
piler,” Proc. Second International Conf. on
Architectural Support for Programming
languages and Operating Systems, pp. 180-
192,1987.

R. Cytron and J. Ferrante, “What’s In a
Name? -or- The Value of Renaming for
Parallelism Detection and Storage Alloca-
tion,” Proc. International Conf. on Parallel
Processing, pp. 19-27, August, 1987.

J. Ferrante, K, Ottenstein, and J. Warren,
“The Program Dependence Graph and its
Use in Optimization,” Transactions on Pro-
gramming Languages and Systems, vol. 9, no.
3, pp. 319-349, July, 1987.

J.A. Fisher, “The VLIW Machine: A Mul-
tiprocessor for Compiling Scientific Code,”
Computer, pp. 45-53, 1984.

M.R. Garey atid D.S. Johnson, Computers
and Intractability: A Guide to the Theory of
NP-Completeness, W.H. Freeman and Com-
pany, 1979.

R. Gupta and M.L. Soffa, “A Reconfigurable
LIW Architecture,” Proc. of the Interna-
tional Conf. on Parallel Processing, pp. 893-
900, August, 1987.

R. Gupta, “A Reconligurable LIW Architec-
ture and its Compiler,” Dept. of Computer
Science; Ph.D. dissertation, Tech. Report 87-
3, University of Pittsburgh , August, 1987.

R. Gupta and M.L. Soffa, “A Matching
Approach to Utilizing Fine-Grained Parallel-
ism,” 21st Annual Hawaii International
Conference on System Sciences, vol. I, pp.
148-156, Jan., 1988,

D.T. Harper III and J.R. Jump, “Vector
Access Performance in Parallel Memories
Using a Skewed Storage Scheme,” IEEE
Trans. on Computers, vol. C-36, no. 12, pp.
1440-1449, Dec., 1987.

D.J Kuck, R.H. Kuhn, D.A. Padua, B. Leas-
ure, and M. Wolfe, “Dependence Graphs and

14.

15.

16.

17.

18.

Compiler Optimizations,” 8th Annual ACM

%v. on Principles of Programming
Languages, pp. 207-218,198l.

D.J. Kuck, “ILLIAC IV Software and Appli-
cation Programming,” IEEE Trans. on Com-
puters, vol. C-17, no. 8, pp. 758-770, August,
1968.

D.J. Kuck and R.A. Stokes, “The Burroughs
Scientific Processor (BSP),” IEEE Trans. on
Computers, vol. C-31, no. 5, pp. 363-376,
May, 1982.

M.E. Mace and R.E. Wagner, “Globally
Optimum Selection of Storage Patterns,”
IBM, Research Report RC 10676, T.J. Wat-
son Research Center, Yorktown Heights,
August, 1984.

M.E. Mace, Memory Storage Patterns in
Parallel Processing, Kluwer Academic Pub-
lishers, 1987.

R.E. Tarjan, “Decomposition by Qique
Separators,” Discrete Math., vol. 55, pp.
221-231, 1985.

246

