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Abstract - The partitioning of shared memory into 
a number of memory modules is an approach to 
achieve high memory bandwidth for parallel pro- 
cessors. Memory access conflicts can occur when 
several processors simultaneously request data from 
the same memory module. Although work has been 
done to improve access performance for vectors, no 
work has been reported to improve the access per- 
formance of scalars. For systems in which the pro- 
cessors operate in a lock-step mode, a large percen- 
tage of memory access conflicts can be predicted at 
compile-time. These conflicts can be avoided by 
appropriate distribution of data among the memory 
modules at compile-time. A long instruction word 
machine is an example of a system in which the 
functional units operate in a lock-step mode per- 
forming operations on data fetched in paraIle1 from 
multiple memory modules. In this paper, compile- 
time techniques for distribution of scalars to avoid 
memory access conflicts are presented. Further- 
more, algorithms to schedule data transfers among 
memory modules to avoid conflicts that cannot be 
avoided by the distribution of values alone are 
developed. The techniques have been implemented 
as ‘part of a compiler for a reconfigurable long 
instruction word architecture. Results of experi- 
ments are presented demonstrating that a very high 
percentage of memory access conflicts can be 
avoided by scheduling a very low number of data 
transfers. 
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1. Introduction 
High memory bandwidth is essential for 

effective utilization of systems with large numbers 
of processors. An approach for achieving high 
memory bandwidth is through partitioning of global 
data memory into a number of memory modules 
that can operate in parallel31 15, 14. l14. The memory 
modules are shared by the processors which access 
them through an interconnection network. In stich a 
system, degradation in performance can result due 
to memory access conflicts that occur when a 
number of processors simultane0usly request data 
from the same memory module. In the presence of 
these conflicts, the operation of the processors is 
slowed down as the operands cannot be accessed in 
parallel. Work has been done to improve access 
performance of vectors by storing them in a skewed 
fashion in parallel memories12*3. In previous work 
by Mace and Wagner, techniques to determine how 
to store data for performing vector operations were 
developed17v 16. 

In practice there are always parts of a pro- 
gram that operate on scalar data rather than vectors. 
In or&r to achieve high overall speed-up, it is 
essential to execute these parts of the program in 
parallel. Avoiding memory access conflicts in this 
situation requires that the scalars used in parallel 
operations be assigned to different memory 
modules. The techniques developed for storing 
vectors in parallel meniories are inadequate for allo- 
cating storage for scalar data, because scalar data 
accesses do not have a regular pattern, unlike vector 
accesses. If the processors in a system operate in a 
lock-step mode, it is possible to predict at compile 
time a high percentage of operands required simul- 
taneously-by the processors and hence perform their 
allocation to different memory modules to avoid 
access conflicts. Long instructiori word (LIW) 

* ‘Ihis work was done at the Unit. of Pittsburgh and 
was partially suppotted by NSF under Grant DCR 811934. 
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architectures7*9, a family of fine-grained architec- 
tures, are examples of systems that fall in the above 
category. LIW machines have multiple functional 
units that operate in lock-step and perform opera- 
tions on data fetched in parallel from memory 
organized in the form of multiple memory modules. 
The TRACE4, a LIW machine developed by 
Multiflow, allows for up to eight memory controll- 
ers each of which carries up to eight independent 
memory modules. 

In order to avoid memory access conflicts, the 
operands required by the operations to be executed 
in parallel must first be determined. Following this, 
the values must be assigned to memory modules to 
allow conflict free access. Such an assignment may 
not always exist. However, access conflicts can 
always be avoided by creating multiple copies of 
data values and distributing them among the 
memory modules. Multiple copies can be created 
by data transfers among memory modules that are 
scheduled at compile-time. The transfers can result 
in increased execution time. Thus, an attempt 
should be made to minimize duplication of values. 
Creating multiple copies involves determining 
which values should be replicated and to which 
memory module they should be assigned, as both 
have an impact on the degree of duplication carried 
out. 

This paper presents compile-time techniques 
for storage allocation of scalars into memory 
modules with the goal of limiting run-time memory 
access conflicts. The approach presented for alloca- 
tion is applicable to those operands in instructions 
that can be predicted at compile-time. An instruc- 
tion is composed of the operations that execute in 
parallel and the corresponding operands. However, 
the operands required by an instruction cannot 
always be determined at compile time. In the pres- 
ence of arrays, the specific array element required 
for an operation may only be known at run-time. In 
this work algorithms for avoiding those memory 
access conflicts that can be predicted at compile 
time are described. Complexity analyses has been 
donelo and the results are briefly stated. The tech- 
niques have been implemented as part of a compiler 
for a recontigurable long instruction word (RLIW) 
architectureloall. Results of experiments demon- 
strate that a very high percentage of memory 
conflicts are avoided without replication of scalar 
values. Furthermore, the access conflicts caused by 
the operands that could not be predicted at 
compile-time do not cause significant deterioration 
in performance. Finally, other applications of the 
technique are discussed. 

2. Memory Module Assignment 

The approach for allocation of storage used in 
this work involves generating all of the instructions 
without assigning physical memory modules for the 
operand values. Symbolic addresses are assigned to 
data values during scheduling of operations in 
instructions, and then all of the instructions are 
examined to determine which memory module 
should be used to store the value of a data item. 
The advantage of using symbolic addresses is that 
during memory module assignment, the accesses 
performed by the same instruction are known. 
Thus, when binding the addresses to memory 
modules, an attempt can be made to avoid multiple 
accesses to a memory module during the execution 
of an instruction. Since a program can have a large 
number of data values (variables/temporaries), exa- 
mining all of the requirements for the data items at 
the same time and assigning modules to avoid the 
memory access conflicts predictable at compile time 
can be a unmanageable task. One solution to this 
problem is to perform the memory module assign- 
ment for one program region6 at a time. Another 
approach is to carry out the module assignment in 
two phases: global module assignment and local 
module assignment.. During global module assign- 
ment, the binding of data values that are used in 
more than one region6 of the program can be car- 
ried out. After this has been done, the regions can 
be examined one at a time and module assignment 
for the data values that are created and used only 
within that region can be performed. The algorithms 
used for global and local module assignment would 
be similar, as in either case, instructions are exam- 
ined to determine which data values are accessed in 
the same instruction and hence should be stored in 
different memory modules. 

The problem of memory module assignment 
can be stated as follows: 
Problem: Given memory M=<M,,MP....Mk> where 
memory modules M,,M2.....M, can be accessed in 
parallel and a sequence of instructions each of 
which requires up to k operands from among data 
values V,,V+..V,. 
Goal: Allocate storage for V1,V2.....V, among 
memory modules so that the instructions can be 
executed without encountering any memory access 
conflicts. 
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M=<M1,M2,M3> 

Instructions 
______---___-_-_ 

Vl vz v4 
v2 v3 vs 

v2 v3 v4 

Fig. I. Avoiding Access Conjlicts 

The example given in Fig. 1 shows how the 
storage can be allocated avoiding memory access 
conflicts for a particular use of the data values. The 
instructions are denoted by the operands they use, 
as the operations are of no importance here. In this 
example all memory access conflicts are avoided by 
assigning the modules properly. However this is not 
always possible. If an instruction with the following 
operands is added to the list of instructions 

v2v4 v5 

then it is not possible to assign modules and avoid 
all memory access conflicts. If multiple copies of 
data items are made and stored in different memory 
modules in a certain way, memory conflicts can be 
avoided. In the above example, if a copy of value 
V5 is stored in Mr in addition to M3 then all 
memory conflicts are avoided. It is possible that k 
copies of a variable may be required with one copy 
in each memory module to avoid all memory 
conflicts. In the above example, if the following 
operand usage is also included 

Vl v4 vs 

then all memory conflicts can be avoided by adding 
a copy of V5 to module M2 In this situation all 
three modules contain a copy of value Vs. Thus 
depending upon the instructions, varying number of 
copies of values may have to be created and stored 
in different memory modules. The module assign- 
ment algorithms developed are aimed at finding an 
allocation that requires the least amount of copying, 
for copying of values can increase execution time. 
Thus the modilied memory module assignment can 
be stated as follows: 
Problem: Given memory M=<M1,M2.....Mk> where 

the memory modules MI,M2....Mk can be accessed 
in parallel and a sequence of instructions each of 
which requires up to k operands from among data 
values V1,V~....V,. 
Goal: Allocate storage for V,,VP....Vn among 
memory modules so that the instructions can be 
executed without encountering any memory access 
conflicts and a minimum number of multiple copies 
of data values are created in the process. 

When creating multiple copies of values, the 
problem of consistency of the multiple copies never 
arises, for these values do not correspond to vari- 
ables in the program. Corresponding to each 
definition of a variable, a distinct data value is 
created and when memory modules are assigned, 
the different data values of a variable are treated 
independently. Thus no data value is ever updated. 

The approach taken for memory allocation is 
to consider any two operands of an instruction. 
These operands will not cause a memory access 
conflict in the instruction if their values are stored in 
two different memory modules. A given set of 
instructions will be free of memory access conflicts 
if each pair of data values that is used in the same 
instruction are stored in separate memory modules. 
To allocate storage for a sequence of instructions, 
pairwise conflicts among the data values are con- 
sidered. A graph in which the nodes represent the 
data values and the edges represent the conflicts 
among them is constructed. Finding whether an 
allocation exists that avoids all the conflicts or not is 
the same as determining whether the graph con- 
structed in the above fashion can be colored using k 
colors, where k is interpreted as the number of 
memory modules in the system. It is unlikely that 
the problem can be solved in polynomial time 
because determining whether an arbitrary graph is 
k-colorable for a fixed k is an NP-complete prob- 
lems. Therefore a heuristic is used for coloring that 
removes nodes from the graph when coloring using 
k colors is not possible. The memory access 
conllicts among the data values, represented by the 
nodes not removed from the graph (V.Mip~), can 
be avoided by placing single copies of these values 
in the memory modules assigned through coloring. 
The remaining conflicts, involving the data values 
represented by the nodes removed from the graph 
w UMSSigd ), are avoided by duplicating these values 
and placing them in different memory modules. 



Memory Module Assignment 

I 
Construct Access Conflict Graph G = (V,E) 

Using graph coloring assign values to memory modules 

M1jvl~.Mk such that accesses to the values 

“usipd c V, assigned to memory modules, do not conflict. 

Let V-w = V - V,i~ be the values that could not 

be assigned to memory modules in a conflict free manner. 

Avoid remaining access conflicts by 

Dupfication: creating multiple copies of values in V-,,- 

Placement: distributing these copies among memory modules. 

I 

Fig. 2. Overall Strategy for Memory Module Assignment 

After the set of nodes is removed from the 
graph, the number and placement of the copies for 
each data value in this set is determined. The values 
of the nodes in this set will have at least two copies 
stored in different memory modules. The overall 
strategy for avoiding access conflicts is summarized 
in Fig. 2. 

If the number of operands in the instructions 
is three, determining the smallest subset of values, 
from among the ones with two copies, that should 
have three copies to avoid all memory access 
conflicts is Np-complete. This will be shown later. 
Even if algorithms for removing a minimum 
number of nodes from the graph while coloring and 
determining the smallest subset of values that need 
to have three copies are used, a sub-optimal solu- 
tion may be obtained. This is demonstrated by the 
example in Fig. 3. In this example two storage allo- 
cations for a given set of instructions are presented. 
In either case two nodes are removed from the 
graph to make it colorable. In the first case nodes 
V, and Vs are removed from the graph and in the 
second case nodes Vz and V5 are removed from the 
graph. In the first solution after placing two copies 
of values V, and Vs, a memory conflict still exists. 
This conflict is avoided by making an additional 
copy of Vs. In the second case all memory conflicts 
are avoided after hvo copies of V, and Vs have 
been placed. Thus although the same number of 
nodes were removed in both cases the second solu- 
tion resulted in less copying of data values. This 

shows that even if a coloring algorithm that 
removes a minimum number of nodes from the 
graph is used, the resulting solution may be sub- 
optimal. 

M=<M,.M,.W= 

InstNuiolM 
-_-_-__--__- 

“l”2 “3 

“a “3 “4 

“l”3 “4 

“l”3 “5 

“2”3 “s 

“I “4 “s 

Mt M2 M3 Ml Mz M3 

“, -x--- -__--_------ v1 -x ----------------- 

“, _--_-_---x _-_------ 
“3 

-----_----------x- 

v3 
_---_-_-_-_-----x- 

“4 
------x----- 

“4 
-x -----__ x ___------ 

“2 
-x---_-_-x -------- 

“S 
-x _______ x ___---- XT 

“5 
--_-----x-------x- 

Fig. 3. Choosing Nodes to be Rerkoved 

2.1. Heuristic for Removing Nodes 

A heuristic is presented for determining the 
subset of nodes which, if removed, make the graph 
k-colorable. First of all, the graph is decomposed 
into atoms which are subgraphs that do not have 
clique separators 18. A clique separator is a com- 
plete graph whose removal disconnects the graph. 
If each of the atoms in a graph is colored using k 
colors then the entire graph can be colored using k 
colors’*. Thus the coloring algorithm need only 
concern itself with coloring the atoms rather than 
the entire graph at the same time. When coloring 
an atom, a heuristic removes nodes whenever it 
becomes impossible to continue coloring. 
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Color(G=(V,E)) 

P d(nJ is the degree of node ni */ 

P conf(mi,nj) is the number of instructions in which both 

ni and nj are used as qtands */ 

1 
P Compute Weights *I 

V (Q+) E Ev 

if d(q)& then wt(npni) = 0 else wt(nj+nJ = coRf(“i+) 

V q compute S, = x wt(q+nj). where (ni,n$ E E 
9 

P Initialize sets *I 

n~=nisuchthatS,=ySqi 

ASSIGN(n& = M,; V,,,- = ( nsrn) 

V,=V- (nti); Vmi+=+ 

whileV,#@ 

I 
Choose Gt = ni st Uq = maxU,, 

“r 

ZwNnk--j) 
Urgency UT = a 

% 
, where 

nk & vtid, 

nj E V,, 

(nkaj) E J% 

K,,, is the number of modules still assignable to q. 

ifK,=OthenV-t~=V-~U[~) 

else ( 

ASSIGN+,,& = one of the available modules 

vmsai&=vaa@ud u (%x11 

I 

v,=vnm-%* 

I 

1 

Fig. 4. Heuristic for Graph Coloring 

The heuristic developed for coloring an atom 
G=(V,E) is described in Fig. 4. The edges in the 
graph are assigned weights to guide the coloring 
algorithm. If a node has a degree less than the 
number of memory modules, the edges leaving that 
node are assigned a weight of zero as any algorithm 
will be successful in coloring such a node. Each 
edge from one of the remaining nodes is assigned a 
weight equal to the number of conflicts in which the 
vertices connected by the edge are involved. The 
node involved in the maximum number of conflicts 
is first colored. 

The graph is viewed as consisting of two sub- 
graphs: G1 containing the nodes that have been 
colored (VU4 and Gz containing the nodes yet 
to be colored (V&. In order to choose the node to 

be colored next, the urgency for each uncolored 
node is computed and the node with the highest 
urgency is chosen. The urgency of a node is propor- 
tional to the number of conflicts between the node 
and ail other colored nodes. A high number of 
conflicts implies that a. failure to color the node to 
avoid the conflicts is likely to leave a high number 
of conflicts unresolved. This may result in a high 
degree of duplication of data values. The urgency 
of a node is also inversely proportional to the 
number of colors that can still be used to color it, 
for a small number of colors available implies that a 
delay in coloring the node might result in an inabil- 
ity to color the node at all. The above process is 
continued till each node has either been colored or 
cannot be colored. 

The example in Fig. 5 demonstrates how the 
above algorithm is used. In the figure, each edge 
(nj.4) in the graph (representing conflicts) is labeled 
with weights wt(nj-+ni) ,and wt(n+nj). In this 
example, four data values are allocated space in the 
memory modules (k=3) and the node corresponding 
to V5 is removed from the graph. Multiple copies of 
V, are created to avoid all memory access conflicts. 
Run-time Complexity: The above algorithm has 
been implemented with the running time of 
O((n+e)log(n+e)), or O(n210gn) in the worst case, 
where n = WI and e = IEi. 
Worst C&e Pe’rformance: It can be shown that in 
the worst case the heuristic may leave (n-k) nodes 
uncolored while the optimal only leaves two nodes 
uncolored, where n is the number of nodes in the 
graph. Therefore the ratio of heuristic to optimal is 
heuristic _ (n-k) 
optimal 2 * 

2.2. Duplication aud Placement Strategies 

After determining what values have to be 
replicated (V unptipcd) by running the coloring 
heuristic, the number of copies and placement for 
these copies have to be determined. Two different 
approaches are considered for this problem. The 
lirst approach is simple and involves examining one 
instruction at a time and creating copies of values 
and placing them so that the instruction is conflict 
free. This is achieved by backtracking across the 
available memory modules. The drawback of exa- 
mining one instruction at a time is that copies 
created for a particular instruction are less likely to 
be used in subsequent instructions. The second 
approach is more complex and involves examining 
all instructions before deciding what subset of 
values should be replicated to avoid all conflicts. 
As a result, a copy of a value created can help in 
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avoiding conflicts in several instructions, leading to 
a lesser dep of duplication. 

Instructions 

Vl v2 v3 

v2 v3 v4 

v5 Vl v2 

v3 v4 v5 

“I 
212 “1 

“2 

@ 

V3 mu Si - S2 - 6 

11 
’ l/ 

v2 is c&red wull Ml 

l/2 
l/l 

V5 v4 
l/l 

Vl 00 W2.m) V, v3 
VS 

Gl 
2 

w-2/2-1 

U3-2/2-l 

Ul-l/2-.3 

c5-l/2-.5 
(i) 

W2”Ul) V3 
v4 00 (v1..w) VS 

02 
1 

c3-m-3 

Cd-L/2-3 

u-2/l-2 

(ii) 

Fig. 5. Applying the Coloring Heuristic 

2.2.1. Straightforward Approach Based on 
Requirements of Individual Instructions 

In this approach the instructions are examined 
one at a time and copies of values are created as 
needed. First the instructions are ordered according 
to the number of operands targeted for multiple 
copies, i.e., members of set VW,,+,,. Although 
access conflicts can be avoided by duplicating data 
values that were not removed from the graph during 
coloring, only values that were removed are con- 
sidered because their small number makes the algo- 
rithm for duplication efficient to use. The instruc- 
tions that have only one operand in VU,,,, are 
examined first and the instructions in which all k 
operands are in V-aipd are examined last. After 
examining an instruction, the minimum number of 
additional copies that have to be created and the 

placement for these copies are found. The pro- 
cedure employed for this purpose generates all pos- 
sible placements for the operands of an instruction 
by backtracking across different memory modules 
that can be used to store a data value. The back- 
tracking procedure first tries to use as many existing 
copies of data values as possible and then creates 
and places new copies in other modules if the 
conflicts cannot be avoided. The placement that 
requires the least number of additional copies to be 
created is used. If there is more than one solution, a 
random choice is made. The reason for ordering 
the instructions is as follows. A conflict in an 
instruction that has only one operand that can be 
duplicated can be avoided only by making a copy of 
that operand and placing it in a specific memory 
module. However if the instruction has multiple 
operands that can be duplicated then there is likely 
to be more than one solution. The above approach 
is summarized in Fig. 6. 

Backtrack 

( 
Divide the inst~ctions into sets St&.....S, such that 

Si = (I: ~~S~NC~~OII I has i operands in V-riM) 

fori=l..klq 

( 
Q IE& 

Let Ol.02.0i denote the operands in I from VW,;,, 

Using backtracking determine all module assignments 

Pj = ( (O,~M,),(O2~~.-(O,,M~) 1 such that 

Pj avoids all memory access conflicts in I 

Q Pi ccxnputc. CPb the number of copies in Pi that need 

to be created, and choose the placement Ph such that 

cpti=? cq 
and create the additional copies of the operands. 

1 

1 

Fig. 6. Approach Based on Backtracking 

Run-time Complexity: The run-time complexity of 
the algorithm is O(k! i) or O(nk), where i is the 
number of instructions with access conflicts after 
graph coloring, and n is the number of values in 
V unassigned- 
Worst Case Performance: The drawback of exa- 
mining the instructions one at a time is that the 
copies created for an instruction are less likely to be 
used by other instructions than if the requirements 
for all instructions were determined before placing 
copies. It can be shown that (k-l) times more 
copies than the optimal number of copies may be 
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created by the above algorithm. 

Hitting Set Approach 

I*IztI:Ji ..* IA be the k-operand instructions */ 

I* Procedure Place(V), places a copy of each value vt E V *I 

/* Procedure Duplicatc(V,op), determines V&P c V that 

should be duplicated to avoid conllicts in instructions with 

op operands. Duplication requires the use of a heuristic 

for finding hitting sets. */ 

1 

Let si” = (OPt,OP, * - - OP,) denote a combination of 

nopetandsstq j Srs;Ijk 

p place the first copies of operands yet to be assigned modules */ 

~~cV~i,uI, 
Place(V-4 st V i Sf is conflict free 

fornum=3 . . kloop 

1 
Duplicaiion Phase: 

Using the hitting set heuristic determine V,, c VW- 

st if an additional copy of each value in V+ is made 

V i Fum is conflict free I 
Placement Phase: Place(V+) 

1 

I 
Fig. 7. The Hitting Set Approach 

2.2.2. The Hitting Set Approach 

As mentioned earlier, in the second approach 
all instructions are examined before the decision on 
what values to replicate is taken. The motivation for 
this approach is as follows. In general it may be 
possible to avoid a conflict present in an instruction 
by replicating one of many data values. If, instead 
of making a choice at random, other instructions are 
examined before choosing the value to be dupli- 
cated, less copies are likely to be made for the 
requirements of other instructions are determined 
before making a choice. 

In this approach, after assigning the single 
copies of nodes in Vpssipd and two copies of each 
node in V,,,,,,,, to memory modules, conflicts 
between pairs of operands that occur together in 
any instruction are eliminated. Next, additional 
copies of a subset of operands that are in V,,,, 
are created and placed to avoid all conflicts in com- 
binations of 3 or more operands. In order to deter- 
mine the number of copies of data values that are 
needed to avoid memory access conflicts, the fol- 
lowing procedure is used. First, all combinations 
of (k-l),(k-Z),(k-3)....3 operands that occur together 
in any of the instructions are determined. In order 

to avoid all memory access conflicts the memory 
access conflicts in combinations of 3....k operands 
generated from the instructions have to be avoided. 
The choice of placement of values to avoid conflicts 
among pairs of operands is important as this will 
determine what combinations of three operands still 
conflict and thus require additional copies of values 
to be made. Now if the combinations of three 
operands are examined, some of the memory access 
conflicts may still be unresolved. These conflicts are 
resolved by making an additional copy of a subset 
of values that already have more than one copy. 
After determining an appropriate placement of 
these values, combinations of four operands are 
examined. This process of duplication and place- 
ment is repeated until all the conflicts present in the 
k operand instructions are resolved. 

The procedure discussed, summarized in Fig. 
7, involves repeatedly finding a set of values to 
duplicate and placing them in memory modules. As 
will be shown later, the problem of finding the 
smallest subset of values that should be duplicated 
to avoid a set of conflicts is NP-complete. The prob- 
lem of finding the best placement is also W- 
complete. The example in Fig. 8 demonstrates the 
importance of proper placement of values. In this 
example access conflicts are avoided by creating 
multiple copies of V4 and placing them in different 
memory modules. In solution 1 the first two copies 
are placed in memory modules M2 and lv&, and in 
solution 2 they are placed in modules M, and M,.+ 
Next additional copies of V, are made to avoid 
conflicts in all combinations of three and four 
operands. The choice of modules made in solution 
1 results in four copies of V4 while solution 2 
requires only three copies of V,. This demonstrates 
tbat the choices made in the placement of values 
influences the number of copies created. 

In the subsequent sections, the problems of 
determining the subset of values to be duplicated 
and the placement of the copies made is considered 
separately. First heuristics for the duplication of 
values and the placement of these values are 
presented. Next the combined run-time complexity 
of the duplication and placement algorithms is 
presented. Lastly the overall performance of the 
hitting set approach, assuming that a fixed strategy 
of placement is being used, is analyzed. 

241 



Instnlctions 

-------_-_---_- 

vt v2 v3 vs 

v4 v2 v3 v5 

vlv2v3v4 

v4 v2 Vl v3 

During coloring V4 is removed 

Solution 1 Solution 2 

Ml M2 M3 M4 W&M,M4 

v, -x _-_--__ - _-_--- v, -x -------------- 

v2 ______ x--- __---_ v, ---x _--_ - ---- 

v, -_-_-_-_-__ x -_-_- v, ________-- x ----- 

v5 _________.__.__ x- v5 ___________--_- x- 

v4 -_-___ x _------- x- v4 -x -_----_--__-- x- 

WWM,% MI MzM31M4 

v, -x -_____- - _----- v, -x ______________ 

v, _----_ x-- _-_--- v, ----x ---- - ---- 

v, _----------x -_--- v, -- ___---_- x ----- 

v5 _______________ x- v5 --_-_-_-_-----x- 

v, -x _--- x ---_-_-- x- v4 -x--------x--x- 

MI M2 M3 M4 

v, -x _-_---_-_-_-_ - 

v, ______ x _--_-___ - 

v, _-_---____- x--- 

v, _------_------XT 

v4 -x--x--x--x- 

Fig. 8. Piacement of Values 

2.2.2.1. Duplication 

In this section the problem of determining the 
subset of values to be duplicated so that all combi- 
nations of (i+l) operands are free of conflicts, 
given that all i combinations of operands that occur 
together in any of the instructions are conflict free, 
is considered. It is shown how the algorithm for the 
above problem can be applied repeatedly to elim- 
inate all conflicts in the k operand instructions. 

After running the coloring heuristic and plac- 
ing the single copies of colored nodes and two 
copies of each node removed during coloring, 
conflicts between pairs of operands that occur 

together in any instruction are eliminated. Next 
combinations of three operands that occur together 
in any of the instructions are considered. If a com- 
bination of values V1, V2 and V3 has a memory 
conflict then existing copies of the values must be 
stored in one of the following three configurations: 

Mi Mj Mi Mj Mi Mj 

Vl x Vl x v,x x 

v2 X v,x x v,x x 
v3x x v, x x v3x x 

6) (3 (iii) 

The conflict can be avoided by making an addi- 
tional copy of a value and placing it in a memory 
module other than modules w and Mj. 
The conflict in (i) can be avoided by making one 
more copy of (V, 1. 
The conflict in (ii) can be avoided by making ,one 
more copy of one of ( V2,V3). 
The conflict in (iii) can be avoided by making one 
more copy of one of ( V1 ,V2,V3). 

In each of the above cases there is at least one 
data value that has two copies. This is because for a 
combination of three values, each of which has one 
copy, it must be true that the values are stored in 
different memory modules and thus the combina- 
tion must be free of memory access conflicts. 

Hitting Set: HS for sl,sz. - . sN such that 1s I sj I G 

{ 
HS=ysj,lsjl=l 

forsize=2..kloop 

I 
Lets,= %ofsetsssuchthatviEs~lsi=p 

V Sj = (Vl*V2 ..*v&) suchthatsjnHS=$ 

HS=HSuv,, wherev,&sjand Vvl&sjstvl+v, 

2 m 5 k St (!&,,&G,,pr) A (Sy,i = &,ir i = size....m-1) 

I 

I 
Fig. 9. Heuristic for&ding the Hitting Set 

The cardinality of the set of values from 
among which a value should be chosen for replica- 
tion varies from one to i as the number of operands 
with multiple copies in the i operand combination 
varies from one to i. After constructing these sets 
of values, at least one value is chosen from each of 
the sets to have an additional copy to avoid memory 

242 



access conflicts in all combinations of three 
operands. Ideally the smallest subset of values 
should be duplicated to avoid the conflicts. How- 
ever, this subset is the minimum cardinality hitting 
set of the group of sets, and the problem of finding 
the minimum cardinality hitting set is NP- 
complete*. Therefore in order to find the hitting set, 
the heuristic given in Fig. 9 is used. 

In the above procedure after creating new 
copies, a placement for these copies has to be 
found, The placement of the copies made to avoid i 
operand conflicts has an effect on the number of 
additional copies made to avoid the conflicts in 
(i+ 1) operand combinations. This implies that 
proper placement of copies is important. 

2.2.2.2. Placement 

After having determined the set of values to 
be duplicated, the values are assigned to particular 
memory modules. A placement that avoids the max- 
imum number of memory access conflicts is desir- 
able for this leads to fewer values being duplicated 
to avoid the remaining conflicts. 

Consider the situation where the instructions 
have three operands each and after running the 
coloring heuristic the set of values that should have 
at least two copies has been determined. The place- 
ment algorithm has to be used to place the lirst copy 
of each of the values in the set. Placing the first 
copies so that maximum number of conflicts are 
avoided is NP-complete, for solving the placement 
problem in this case is same as finding the largest 
bipartite subgraph* GI=(V&) of a graph G=(V,E) 
where E,&. 

Place: a copy each of value vi E HS 

I 
Divide I the set of instructions into groups I, u I, u . . . . Ik = I 

st each instruction in & contains i operands in V-- 

V veHS 

( 

Compute C&&(v) = number of instmctions in $ that 

hecome cc&ict free if a copy of v is placed in M, 

Let~bethememorymodulestV wlsilkand i+p 

3 z 5 k St (CM,I,(V) > CM,&,> A 

cc&&, = C&&(v) , a =l 1. z-l) 

PlaceacopyofvinMp 

I 

1 
Fig. 10. Placement Algorithm 

In order to decide where to place the values, 
all of the instructions that have conflicts are exam- 
ined and an attempt is made to find a placement that 
avoids as many conflicts as possible. First of all, 
the instructions are divided into groups according to 
the number of operands with single copies present. 
Consider a k-operand instruction with an access 
conflict which has (k-l) operands with one copy 
each. This instruction has only one operand that can 
be duplicated. There is only one memory module 
where the copy of the operand can be placed to 
avoid the conflict. Similarly consider an instruction 
with (k-2) operands with one copy each and a 
memory access conflict. In this case, there are two 
choices for the placement of the values of the two 
operands allowed to have more than one copy. It is 
possible that same variable may be involved in 
conflicts in instructions of both types described 
above and the choice of memory module in the first 
case may also avoid the conflict in the second 
instruction. Thus an attempt is made to avoid 
conflicts in instructions with (k-l) operands with 
single copies first. The instructions with (k-2) 
operands with single copies are considered next 
and, last of all, the instructions with only one 
operand with a single copy are examined. 

After grouping the instructions in the manner 
described, one variable at a time is taken and the 
memory module where its value should be placed is 
determined. For. each instruction in the lirst group 
the set of memory modules where the value may be 
placed to avoid the conflict is determined. The 
value is placed in the memory module which helps 
avoid the maximum number of conflicts. If there is 
more than one choice the next group of instructions 
are examined and the best choice for this group of 
instructions is determined. This process continues 
until either the conflict is avoided or there are no 
more groups of instructions, in which case a ran- 
dom choice is made. The order in which the vari- 
ables are processed when placing their values deter- 
mines the placement. The order is determined by 
counting the number of instructions in the first 
group that involve each of the variables whose 
values are to be placed. The variable that occurs in 
the maximum number of instructions with memory 
access conflicts is processed first. If the variables 
cannot be ordered on the basis of the lirst group of 
instructions, the subsequent groups are used. The 
algorithm is summarized in Fig. 10. 
Run-time Complexity: The run-time complexity of 
the duplication and placement algorithms is O(lci2) 
or O&r?), where i is the number of instructions 
with access conflicts after graph coloring, n is the 
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number of data values in VW,,,,. The total time 
spent in placing the values is O(knk+‘). The total 
time spent on duplication is O&n%). Thus the total 
time taken by the algorithm is sum of the time spent 
on duplication and placement which is O(k#). 
Worst Case Performance: The worst case perfor- 
mance of the hitting set heuristic is expressed in 
terms of m, the number of different sets in which an 
element can occur. is as follows: 

heuristic ’ 1 1 
optimal 

= Q = (l+z+y+ . . ...*.... +i) 

The overall worst case performance was 
analyzed using a fixed strategy for the placement of 
values. Assume that the first IWO copies of the 
values in VWdm, are placed in memory modules 
M, arid Mz. A fixed strategy of placement P, is 
defined as a one to one mapping P:I+M where 
M= ( M3,1$ . . . . . . . Iv&) is the set of memory modules 
and 1=(3,4....k) is the number of operands in com- 
binations being considered in the current iteration 
of the algorithm. For a fixed placement strategy it 
can be shown that the replicating procedure can 
create l& times the copies that need to be createdlO. 

3. Experimental Results and Conclusions 

The techniques presented were implemented 
as part of a compiler for a recon@urable long 
instruction word architecture*O+g. Experiments 
were conducted to determine the degree of duplica- 
tion for a set of programs. The results obtained for 
the backtracking approach and the hitting set 
approach, given in sections 2.2.1 and 2.2.2, were 
quite similar and thus, only the results obtained 
using the second approach are presented. The test 
cases include programs to compute Taylor 
coefficients for complex (TAYLORl) and real 
(TAYLOR2) analytic functions, solve a set of linear 
equations using residue arithmetic (EXACT), fast 
Fourier transform (FFT), sorting using quicksort 
(SORT) and the graph coloring algorithm (COLOR) 
presented in this paper. 

The coloring algorithm used to assign 
memory modules to data values required the con- 
struction of a graph representing conflicts. An 
implementation of this algorithm is likely to impose 
a restriction on the size of this graph. Different 
memory module assignment strategies were used to 
study the effect of restricting the size of the graph. 
In the first strategy, STORl, conflicts among all the 
variables and temporaries in the program were con- 
sidered simultaneously, i.e., no restriction on the 
size of the graph was imposed. In practice however, 
for large programs, the size of the graph may be too 
large to be practical. The next two strategies limit 
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the size of the graphs. In the second strategy, 
STOR2, the memory module assignment for the 
data values was carried out in two stages. In the first 
stage the variables live across regions were 
assigned memory modules. In the second stage, 
variables and temporaries local to a region were 
assigned memory modules. Thus at a given time 
only a subset of variables, and hence conflicts, are 
considered in this strategy which limits the size of 
the graph constructed. In the third strategy, 
STOR3, the size of the graph was restricted by lim- 
iting the number of instructions processed at a time. 
In the experiment conducted, the instructions were 
split into two groups. 

I- 

Table 1. Duplication of Data 

The results of the experiments are presented 
in Table 1. In Table 1 the fust column (=l) indi- 
cates the number of scalars that had single copies 
and the second column (>I) gives the number of 
scalars that had multiple copies. In these experi- 
ments the system had eight memory modules. 
Almost no duplication had to be done to avoid 
memory access conflicts when strategy STORl was 
used. An increase in the amount of duplication 
was caused when STOR2 and STOR3 were used. 
However, the duplication caused by STOR3 was 
significantly lower than the duplication caused by 
STOR2. This indicates that the allocation is better 
if the size of the graph is restricted by limiting the 
number of instructions processed at a time. The 
performance of STOR2 was poor compared to 
STOR3 because during the allocation of storage for 
global variables, very few conflicts are considered, 
for the majority of operands for an instruction are 
data values local to a region and very few operands 
represent global data values. >From the results 
obtained for strategies STORl and STOR3, it can 
concluded that most memory access conflicts can be 
avoided with very little duplication of data. 



The memory access conflicts due to array 
references cannot be detected at compile time. In 
order to measure the deterioration in performance 
due to these conflicts, an experiment to measure the 
increase in time spent on memory transfers due to 
memory access conflicts caused by array references 
was conducted. The results of the experiment are 
presented in Table 2. In these results time fnin is the 
time spent on performing the memory transfers if 
no memory conflicts occur due to array references. 
Time fnpX is the time spent on performing memory 
transfers assuming every array access causes a 
memory access conflict. This can only occur if the 
storage required for all of the arrays used by a pro- 
gram is allocated from the same memory module. 
In practice the elements of the same array will be 
distributed uniformly among the memory modules. 
A more realistic estimate of the time spent on per- 
forming memory transfers is &,,. In computing 
time tayc it was assumed that the probability of the 
required array element being in any of the memory 
modules is the same. The average time spent on 
performing memory transfers for an instruction, tpW, 
was computed as follows: 

t,=Ap(l)+2Ap(2)+ *.. +“mAp(nJ 

= xi A p(i) 
i=l 

where the time required to supply the operands 
required for an instruction in absence of memory 
access conflicts is A and p(i) is the probability of the 
instruction requiring i operands from the same 
memory module. Thus in the above computation, it 
is assumed that for every data transfer that a 
memory module performs, time A is needed. 

Table 2. Memory Conflicts due to Array Accesses 

TAYLOR1 

TAYLOR2 

EXACT 

FET 

SORT 

COLOR 

The results in Table 2 show that in the worst 
case up to 38% increase in the time spent on 
memory transfers is observed. However, this is 
highly unlikely to occur in practice as the array ele- 
ments will be distributed among the memory 
modules and not stored in the same memory 
module. The results in Table 2 also show that on 
an average 2-20% increase in the time spent on 
memory transfers was observed due to memory 
access conflicts caused by array references. Since 
the overall execution time of a program includes the 
time spent on performing the operations also, the 
percentage increase in the overall execution time is 
even less. Thus the expected reduction in the speed 
of execution due to memory access conflicts caused 
by array references is less than 20%. The results 
obtained for the overall speed-up in execution on 
the reconfigurable long instruction word (RLIW) 
system varied from 64-300%. Compared to the 
overall speed-up, the reduction in speed due to the 
memory access conflicts caused by array references 
is small. Thus it can be concluded that the memory 
access conflicts, predictable or unpredictable at 
compile time, do not cause any appreciable 
deterioration in the performance of the system. 

It should be noted that the results would 
likely be improved by first applying renaming13m5 
techniques to the code to remove storage related 
dependences. This is because instead of assigning a 
variable to the same memory module for the entire 
program, each renamed definition can be assigned 
to a different memory module. These techniques 
can also be used in shared cache multiprocessor 
systems. In systems where the caches am associ- 
ated with the shared memory2, the shared data can 
reside in the shared caches and can be accessed in 
parallel by the processors at high speed. However, 
the performance of the system can deteriorate if 
multiple hits occur on the same cache. Information 
on access frequency of shared data items can be 
used to determine a distribution of data items in the 
memory modules which is likely to avoid multiple 
hits on the same cache. If the data is read-only, then 
the techniques described in this paper can be used 
to create multiple copies of data items which are 
stored in different main memory modules. The Alli- 
ant FX/S is an example of a machine that supports 
shared caches. 
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