
Bitwidth Aware Global Register Allocation

Sriraman Tallam Rajiv Gupta
Department of Computer Science

The University of Arizona
Tucson, Arizona 85721�

tmsriram,gupta � @cs.arizona.edu

ABSTRACT
Multimedia and network processing applications make extensive
use of subword data. Since registers are capable of holding a full
data word, when a subword variable is assigned a register, only part
of the register is used. New embedded processors have started sup-
porting instruction sets that allow direct referencing of bit sections
within registers and therefore multiple subword variables can be
made to simultaneously reside in the same register without hinder-
ing accesses to these variables. However, a new register allocation
algorithm is needed that is aware of the bitwidths of program vari-
ables and is capable of packing multiple subword variables into a
single register. This paper presents one such algorithm.

The algorithm we propose has two key steps. First, a combina-
tion of forward and backward data flow analyses are developed to
determine the bitwidths of program variables throughout the pro-
gram. This analysis is required because the declared bitwidths of
variables are often larger than their true bitwidths and moreover
the minimal bitwidths of a program variable can vary from one pro-
gram point to another. Second, a novel interference graph represen-
tation is designed to enable support for a fast and highly accurate
algorithm for packing of subword variables into a single register.
Packing is carried out by a node coalescing phase that precedes the
conventional graph coloring phase of register allocation. In contrast
to traditional node coalescing, packing coalesces a set of interfering
nodes. Our experiments show that our bitwidth aware register allo-
cation algorithm reduces the register requirements by 10% to 50%
over a traditional register allocation algorithm that assigns separate
registers to simultaneously live subword variables.

Categories and Subject Descriptors
C.1 [Computer Systems Organization]: Processor Architectures;
D.3.4 [Programming Languages]: Processors—compilers

General Terms
Algorithms, Measurement, Performance

Keywords
subword data, minimal bitwidth, packing interfering nodes, embed-
ded applications

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
POPL’03, January 15–17, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-628-5/03/0001 ...$5.00.

1. INTRODUCTION
Programs that manipulate data at subword level, i.e. bit sections

within a word, are common place in the embedded domain. Ex-
amples of such applications include media processing as well as
network processing codes [12, 19]. A key characteristic of such
applications is that at some point the data exists in packed form,
that is, multiple data items are packed together into a single word
of memory. In fact in most cases the input or the output of an ap-
plication consists of packed data. If the input consists of packed
data, the application typically unpacks it for further processing. If
the output is required to be in packed form, the application com-
putes the results and explicitly packs it before generating the out-
put. Since C is the language of choice for embedded applications,
the packing and unpacking operations are visible in form of bitwise
logical operations and shift operations in the code. In addition to
the generation of extra instructions for packing and unpacking data,
additional registers are required to hold values in both packed and
unpacked form therefore causing an increase in register pressure.

New instruction set architectures for embedded and network pro-
cessors allow bit sections within a register to be directly referenced
[6, 15, 18]. For example, the following instruction adds a 4 bit
value from ��� with a 6 bit value from ��� and stores a 8 bit result
in ��� . The operands are extended by adding leading zero bits to
match the size of the result before the addition is carried out.

���
	�� �
�������	�� � ��������	�� � �
In our recent work we incorporated bit section referencing into the
popular ARM processor. We have shown that the proper use of such
instructions eliminates the need for explicit packing and unpacking
operations and thus reduces the number of executed instructions
significantly [13]. Another important consequence of having this
instruction set support is that multiple subword sized variables can
be made to simultaneously reside in the same register without hin-
dering access to the variables. Thus this approach reduces register
requirements of the program. Since embedded processors support a
small number of registers (e.g., ARM [16] supports 16 registers and
even fewer are directly accessible by most instructions in Thumb
mode) efficient use of register resources is extremely important.

To illustrate the potential for reduction in register requirements,
let us consider the examples shown in Fig. 1 that are typical of em-
bedded codes. These code fragments, taken from the adpcm (au-
dio) and gsm (speech) applications respectively, perform unpack-
ing and packing. Each code fragment references three variables
which have the declared size of 8 bits each. The live ranges of the
variables, including their widths, are shown. By examining these
live ranges we find that a traditional register allocator must use two
registers to hold their values. However, bitwidth aware register al-
location can dramatically reduce the register requirements. We can

Unpacking

���������	��

���������
���
��
������������ �������	�	
���!#"%$��
���
����'&(����&

*)+� �
(�������
�
������-,.��/ � �0�1���	�	
��32�254%6

!#"%$	�
���
����'&(����&

*)+� �
(�����-,

Packing

�%� 798	���:�������
�
�
��%� 798	�-,��������
�
�
�)����������	��

���

/��-� 798��',�!#"%$9;+6:<
/=/>�%� 798	���:!#"%$���6@?�?BA+6=6

�
�
�

Unpacking PackingC 8	�-�D���������	��

�
; C 8	�-�E)����������	��

�

;C 8	�-� �
��������
,
�
(�����-,

; C 8	�-�E�%� 798	���
,
�-� 798��',

;

inbuffer

delta1

delta2

4 4
4 4

4 4

alpha1

alpha2

1 7

5 34 4

outbuffer

Figure 1: Subword variables in multimedia codes.

hold the values of these variables in 8 bits and 7 bits of a single reg-
ister respectively for the two code fragments. The remaining bits of
this register can be used to hold additional subword sized variables.

In this paper we describe an approach for achieving register al-
locations that use a part of a single register, as opposed to multiple
registers, for the above code fragments. There are two key compo-
nents of our approach. First, we employ algorithms for constructing
live ranges of variables such that the minimal bitwidths, or widths
for short, of the live ranges at various program points are also com-
puted. Second, we employ a fast and effective method for packing
together multiple live ranges. The packing phase essentially per-
forms coalescing of interfering nodes on an enhanced interference
graph representation for the program. Following packing, register
allocation is carried out using a conventional graph coloring algo-
rithm that assigns a single register to each node in the graph [1, 3,
8]. There are a number of challenges of developing fast and yet
effective algorithms for each of the above components that are de-
scribed below:

Live range construction
The first challenge is to identify the minimal width of each live
range at each relevant program point. Analysis must be developed
for this purpose due to two reasons that are illustrated by our exam-
ples: variables are declared to be of larger than needed bitwidths
(e.g., delta1 is declared as an 8 bit entity while it only uses
4 bits); and the bitwidth of a variable can change from one pro-
gram point to another as a variable may contain multiple data items
which are consumed one by one (e.g., inbuffer initially is 8 bits
of data, after delta1 is assigned it contains only 4 bits of use-
ful data). We present a combination of forward and backward data
flow analysis to find the minimal widths.

The second challenge is to efficiently identify the minimal widths.
An obvious way is to develop an analysis which, for a given vari-
able that is declared to be F bits wide, determines the ”need” for
keeping each of the F bits in a register at each program point. The
cost of such bitwise analysis will be high as it is directly dependent
upon the bitwidths of the variables. To achieve efficiency, we de-
velop an analysis which views each variable, regardless of its size,
as made up of three bit sections called the leading, middle, and
trailing sections. The goal of the analysis is to determine the min-
imal sized middle section that must be kept in the register while
the leading and trailing sections can be discarded. This approach
is effective in practice because the unneeded bits of a variable at a
program point typically form leading and/or trailing bit sections.

Packing multiple variables into a register
When variables are packed together through coalescing of two nodes
in the interference graph, the shapes of the live ranges must be taken
into account to determine whether or not the live ranges can be co-
alesced, and if coalescing is possible, the characteristics of the coa-
lesced live range must be determined to perform further coalescing.
A simple approach to this problem may not be accurate leading to
missed opportunities for coalescing. For example, in our earlier
example the maximum width of inbuffer and delta1 were 8
and 4 bits respectively. A simple method that ignores their shapes
and assigns a width of 12 bits to the live range resulting from coa-
lescing the two, overestimates the width by 4 bits. Therefore while
this approach is simple, and thus fast, it will miss coalescing op-
portunities.

A completely accurate approach can be developed which com-
pares the shapes of the live ranges at all relevant program points to
determine whether they can be coalesced, and if that is possible, it
computes the compact shape of the resulting live range. While this
approach will not miss coalescing opportunities, it is too expensive.
We present a fast and highly accurate approach for node coalescing
based upon an enhanced labeled interference graph. The shapes of
interfering live range pairs are compared exactly once to generate
the labelling. Node coalescing is driven by the labelling which is
updated in constant time following each coalescing step. While the
labelling is approximate, it is highly accurate in practice and there-
fore missed coalescing opportunities are rare.

Outline
The remainder of the paper is organized as follows. In section 2
we present the live range construction algorithm. The enhanced in-
terference graph representation and the node coalescing algorithm
based upon it to affect variable packing is described in section 3.
Experimental evaluation is presented in section 4. Related work is
discussed in section 5 and conclusions are given in section 6.

2. LIVE RANGE CONSTRUCTION

Definition 1. (Live Range) The live range of a variable G is
the program region over which the value of G is live, that
is, for each point in the live range, a subset of bits in G ’s
current value may be used in a future computation.

Each right hand side reference of variable G in some program
statement does not need to explicitly reference all of the bits in G
during the execution of the statement. As a consequence, at each

point in G ’s live range, not all of the bits representing G are live.
Therefore, different amounts of bits may be needed to hold the
value of G in a register at different program points.

Definition 2. (Dead Bits) Given a variable G , which according
to its declaration is represented by � bits, a subset of these
� bits, say

�
, are dead at program point � if all computa-

tions following point � that use the current value of G can
be performed without explicitly referring to the bits in

�
.

Definition 3. (Live Range Width) Given a program point �
in variable G ’s live range, the width of G ’s live range at
point � , denoted by �������
	 , is defined such that the bits
representing variable G according to its declaration can
be divided into three contiguous sections as follows: a
leading section of � � ���
	 dead bits; a middle section of
�������
	 live bits; and a trailing section of �������
	 dead bits.

l (p)v

v

vw (p) t (p)
v

Let � � denote a statement that refers to the value of variable G .
We define ������������������G�	 as an ordered pair ��������	 such that the
leading � bits and trailing � bits of G need not be explicitly referred
to during execution of � � . The conditions under which only a sub-
set of, and not all, bits of a variable G are sufficient for evaluating
an expression are given in Fig. 2. The first three situations exploit
the use of compile time constants in left shift, right shift, and bit-
wise and operations. The results computed by these expressions are
only dependent upon subset of bits of G and thus the remaining bits
are considered as not having been used. The next two situations ex-
ploit presence of zero bits in G . Leading zero bits present in G need
not be explicitly held in a register to perform arithmetic and rela-
tional operations as the results of these operations can be correctly
computed without explicitly referring to these bits. Similarly, the
results of the bitwise or operation can be computed without explic-
itly referring to the leading and trailing zero bits of G . Therefore,
we consider these zero bits as not having been used. Finally, in all
other cases a right hand side reference to G is considered to use all
bits of G , i.e. ���������!��� � �(G�	 is ��"��#"$.

To identify dead bits and hence the width of the live range at each
program point in the live range, we perform the following analy-
sis. First we carry out forward analysis to compute a safe estimate
of leading and trailing zero bit sections in each program variable
at each program point. This information is needed in the com-
putation of �������������%����G�	 in two of the cases described above
(arithmetic/relational operations and bitwise or operation). Hav-
ing computed ���������!��� ���(G�	 information fully, second we carry
out backward analysis to identify the dead bit sections in each pro-
gram variable at each program point. We describe these analyses
next. Without loss of generailty, we assume in our discussion that
all variables have the same declared bitwidth.

Leading and trailing zero bit sections
As described above, leading and trailing zeros need to be found
because results of some operations can be computed without ex-
plicitly referring to them and thus these sections can be treated as
dead bit sections. Forward analysis is employed to determine the
leading and trailing zero bit sections for each variable, at each pro-
gram point. When a variable G is being assigned, in some cases,
by examining the expression on the right hand side we can deter-
mine the leading and trailing zero bit sections of G following the

assignment. In case of a constant assignment G!&(' , by looking at
the value of constant ' , we can determine the zero bit sections of
G . In case of signed numbers the leading zero bit section is formed
by sign extension bits (i.e., from zeros or ones). A right (left) shift
by a constant amount, i.e. G)&+*-,.,/' (G)&+*-0.0/'), results in
the creation of leading (trailing) bit sections. A bitwise logical or
(and) operation, i.e. G1&2*4365 (G7&8*:925), results in propagation
of zero bit sections. For a copy assignment G;&<* , the zero bit
sections of * are simply propagated to G . If nothing can be asserted
about the value being assigned to G , the analysis conservatively as-
sumes that there are no leading or trailing zero bit sections.

Note that since zero bit sections of one variable may depend
upon zero bit sections of another variable, all variables must be an-
alyzed simultaneously. The meet operator for this forward analysis
safely computes the smallest leading and trailing zero bit sections
that are present in each variable across all incoming edges. The
data flow equations for computing the zero bit sections are given in
Fig. 3, where =?>@�BADC$E�FHGJIHK L��
G$M represents the zero bit sections of
variable G at entry/exit of node L . Recall that for simplicity we only
list the situations involving variables of the same bitwidth. When
variables of different size are considered, additional opportunities
arise. For example, when an unsigned short integer is assigned to
an unsigned long integer, a leading zero bit section is created in the
latter. More situations can be found to enhance the analysis.

Leading and trailing dead bit sections
Fig. 3 also gives the data flow equations for computing the dead
bit sections. N�>@� ADC$E�FOGPI K L��
G$M represents the leading and trailing
dead bit sections of variable G at entry/exit of node L . As expected,
determination of dead bit sections is based upon backward analy-
sis which examines each statement � � to identify the subset of bits
of variable G whose values are not used by the statement. This in-
formation is represented by ������������� � �(G�	 as described earlier,
which can be computed for each statement given the results of the
zero bit sections analysis. If the bit sections in ������������� � ��G�	
are dead at the point after statement �%� , then they are also dead im-
mediately before statement � � . If a statement defines G and does
not use it, then all bits of the variable are dead which is indicated
by ��Q7��QR	 , i.e. leading and trailing dead bit sections of size equal
to the width of the variable. The join operator conservatively com-
putes those bit sections as dead at the exit of a node that are also
dead at entry points of all successor nodes.

An example
The results of applying the above analyses are illustrated using an
example shown in Fig. 4. For simplicity we use a straightline code
example although our technique applies to programs with complex
control flow structures. For the given code fragment, first we show
the zero bit sections of each variable at the point it is assigned some
value. Next we show the results of the dead bit sections analysis
where the set of dead variables immediately following each state-
ment are given. For example, immediately following statement 3
the higher order 4 bits of variable N are zero. In case the entire vari-
able is dead we simply list the name of the variable (e.g., all of the
involved variables are fully dead immediately preceding the code
fragment). The results of the dead bit sections analysis are equiva-
lent to the live ranges shown where the area enclosed in solid lines
corresponds to the bit section that is not dead. If we examine the
above ranges, it is easy to see that the maximum combined width
of these live ranges at any program point is 32 bits. Therefore a
single 32 bit register is sufficient to handle all these variables. Note
that a traditional register allocator which ignores the widths of the
variables will need four registers for this code fragment.

� � Characteristics of � � ������������� � ��G�	
G�,., � � is a compile time constant ��"����#	 - � trailing bits of G are not used.
G�0.0 � � is a compile time constant �����#"$	 - � leading bits of G are not used.
G+9 ' ' is a compile time constant with �������#	 - � leading bits and � trailing

� leading and � trailing zero bits bits of G are not used.
G � ������� � � is an arithmetic or relational operator; �����#"6	 - � leading bits of G are not used.

G has at least � leading zero bits
G 3������ G has at least � leading zero bits and �������#	 - � leading bits and � trailing bits

� trailing zero bits of G are not used.� � G�	 other forms of statements that use G ��"��#"6	 - all bits of G are used.

Figure 2: Partial use of a variable’s bits.

Input: control flow graph �
	���
����������������������! #" , where each node contains a single intermediate code statement.

definitions:�%$%&'�(��&�"*)+�,$�-.�/�/-'"0	1�32�4,�0�,$�&��($�-'"5�/264%�0�3��&����/-'"/" .�%$%&'�(��&�"*7+�,$�-.�/�/-'"0	1�328��9!�,$�&��($�-'"5�(2��#9!�3��&��(�/-'"/" .�%$ & �(� & "�:+�,$ - �/� - "0	��3264%�0�,$ & �($ - "���2��#9!�3� & �/� - "(" .�%$ & �(� & "/;��,$ - ��� - "<	��328��9!�,$ & ��$ - "5�(264%�0�3� & �(� - "/" .
boundary conditions: for each variable = , >@?BA A CDC �����������(=�EGF 	IHJ?KA FOGPI C ���! L��='EGF 	��%MN��MB" ,

where M is the bitwidth of variable = .

initialization: set all vectors to �%MN��MB"(O , where A is the number of variables.

meet and join operators: P is the meet and join operator for the forward and backward analysis respectively.

Zero Bit Sections Analysis: Solve iteratively>@?BA ADC0C �<�(='EGF 	 PQ.RLS<TVU�W�X CLY ��>Z?BA FOGPI C [��=�E3"�\

>@?BA FOGJI C �<�(='EGF 	

]^^^^^^^^^^^^^^_ ^^^^^^^^^^^^^^`

�,$����/" 4�aJ��4��b=N	dc�e<cf4��g�Ihi=#�@cVjk�!�������*��el�#�* �%$��/�/"<�'� [�'�������*�/�fc5m,�gn����'j@o�4%�0���kc5��4�jk�!��,$Lhpc��/�Gqrc�"(:+�%MN�/s�" ��$,����4�aN��4��b=N	I9utvtwc�e0>@?BA ADC0C �<�(9LEx	��%$��(�/"<���! cf4��y�dhz=#�@cVjk�!�������*��,${q|c��/�}hic�"�;��,s~�5MB" ��$,����4�aN��4��b=N	I9u�v�wc�e0>@?BA ADC0C �<�(9LEx	��%$��(�/"<���! cf4��y�dhz=#�@cVjk�!�������*�>Z?BA ADC0C �0�/9LE ��$,����4�aN��4��b=N	I9>Z?BA ADC0C �0�/9LE.)6>@?BA ADC0C �<�/�#E���$,����4�aN��4��b=N	I9��k�>Z?BA ADC0C �0�/9LE.76>@?BA ADC0C �<�/�#E���$,����4�aN��4��b=N	I9��d��,s~��s�" ��$,����4�aN�8 ���aL4%�!�k�y=>Z?BA ADC0C �0�/='E j����{�����@4����
Dead Bit Sections Analysis: Solve iteratively

HJ?KA A C<C �0�/='EGF 	
]_ `
8�K��AD���,�<��=~"*)8HJ?BA FOGJI C �<�(='E�4�a��6�}�����b=�%M���MB" ��$,����4�aN�� ���aL4%�!�k�y=HJ?BA FOGJI C �0��='E jk���x�����@4����

HJ?KA FOGPI C �0��='EGF 	 P��R O G���� X CLY �%HJ?KA A C0C ����='E3"5\
Figure 3: Forward and backward bit sections analysis.

�����{�
; – 32 bits&
8) ���x�

, � ; – 16 bitsC 8	�-�<�
, � ; – 8 bits

1. � �������
2.
� � �|� �

3.
� �p� 2�254

4.
�#��/ � ?�? 4%6
< "+$	�
��8��>&G� �'& � ’s

� �'&�� �	&�

.

5.
��&

<�

6.
�#�p� 2�2 ��,

7.
� �������

8. � ��/3��! "+$�;+��6 � �
9.

���'&(� ��&

D)+�Z�
10.

� ��&(� ��&

D)+�g�.!:"%$.� "
11.

� ��&(� ��&

D)+� �
12.

� ��&(� ��&

D)+�g�

Zero
Bit
Sections
1. E: (0,0)
2. D: (0,0)
3. D: (4,0)
4. A: (12,0)
5.
6. A: (24,0)
7. B: (0,0)
8. C: (0,0)
9.
10.
11.
12.

Dead
Bit Sections
0. A:B:C:D:E;

�(

�) �+
 �
1. A:B:C:D
2. A:B:C
3. A:B:C:D(4,0)
4. A(12,0):B:C:D(4,0):E
5. A(12,0):B:C:D(4,0):E
6. A(24,0):B:C:D(4,0):E
7. A(24,0):C:D(4,0):E
8. A(24,0):B(0,7):D(4,0):E
9. A:B(0,7):D(4,0):E
10. A:B:D(4,0):E
11. A:B:C:D(4,0):E
12. A:B:C:D:E

16

4 12

12
1 7

8

E

D

A

B

C

12 8

Figure 4: Illustration of live range construction.

1. � �������
2.
� � �|� �

3.
� �p� 2�2 4

4.
�#��/ � ?�?54%6
< "+$	�
;
��8��>&G� �'& � ’s

� ��&(� ��&

.

5.
��&

D�

6.
�#�p� 2�2#��,

7.
� �������

8. � ��/,��!:"%$�;+��6 � �
9.

���'&(� ��&

D)+�Z�
10.

� ��&(� ��&

D)+�g�.!:"%$.� "
11.

� ��&(� ��&

D)+� �
12.

� ��&(� ��&

D)+�g�

1. ����� � ��� �������
2. ����	
� � ��� � ���
� � ���l� �
3. ����	
� �
�� � ��
��
� � ���
�
��
� � ��� � � ��	
� �
��

4. ���
� � ��� � ����� � ��� ; ���
� � � �#"+$	�
5.

�	&�
 � �
� � ���
6. � ��� � � � � ��
�� � ���
7. ��� � � ��� �������
� ��	 � � ���

8. ��� � � ��� � ��� � � ��� � �
9.

� �'&(����&

D) � � ��� � �
10.

���'&(����&

*)+� � ��	
11.

���'&(����&

*)+� ��� � � ���
12.

���'&(����&

*)+� �
��
� � ���

1. � � ��� � ��� �������
2. � � ��	
� � ��� � � � �
� � ���f� �
3. � � ��	
� �
�� � � �
���� � ���
4. � , �
� � ��� � � � �
� � ��� ; � , ��� � � �#"%$��
5.

��&

 � , �
� � ���
6. � , ��� � � � � , ��

� � ���
7. � , � � � ��� �������
8. � , ��	
� �
�� � � , � � � ��� � �
9.

� �'&�� �	&�
D)+� � , ��� � �
10.

� �'&(� ��&

) � � , ���
11.

� �'&(� ��&

) � � , ��	
� �
��
12.

� �'&(� ��&

) � � � ��	
� �
��

Original code. Code using one register. Code using two registers.

Figure 5: Using registers with packed variables.

3. VARIABLE PACKING = ITERATIVE CO-
ALESCING OF INTERFERING NODES

In this section we present our variable packing algorithm. Let
us first see the impact of variable packing on the generated code.
Fig. 5 shows the code resulting after packing all variables of Fig. 4’s
example into one register � . The subscripts indicate the bit sec-
tions within � being referenced. It is clear that if bit section refer-
encing is supported, a small number of registers can be used very
effectively. Note that the shift operations of statements 3, 4, and 6
are translated into intraregister bit section moves which move a se-
quence of bits from one position to another. Also two additional
intraregister moves, preceding statements 4 and 8, are required.
These moves are required because sometimes when a variable that
is allocated to the register is being defined, a free contiguous reg-
ister bit section of the appropriate size may not be available. This
is because the free bits may be fragmented. In this case the values
of live variables present in the register must be shifted to combine
the smaller free bit section fragments into one large contiguous bit
section.

The algorithm we have developed sacrifices some of the variable
packing opportunities in favor of fast execution time. For the pre-
ceding example, although one register is sufficient, our algorithms
allocates A, B, and C to one register and D and E to another reg-
ister. The resulting code based upon using two registers is shown
in the figure. Since the variables are not packed as tightly, we find
that there is no need to carry out the two intraregister moves for
overcoming the problem of fragmentation of free bits.

Interference graph
Our approach to variable packing is to perform it as a prepass to
global register allocation. The merit of this approach is that exist-
ing register allocation algorithms can be used without any modifi-
cations once variable packing has been performed. In addition, we
design the variable packing algorithm to operate upon the live range
interference graph which must be constructed any way to perform
global register allocation. The nodes of an interference graph corre-
spond to the live ranges. Interference edges are introduced between
node pairs representing overlapping live ranges.

It is easy to see that from the perspective of the interference
graph, variable packing can be performed through iterative coa-
lescing of interfering nodes. In each step a pair of interfering live
ranges can be coalesced into one node if no place in the program is
their collective width greater than the number of bits in the register.
After variable packing, register allocation is performed using the
transformed interference graph.

Definition 4. (Maximum Interference Width) Given a pair of
live ranges ��� & and ��� - , the maximum interference width
of these live ranges, denoted by ����� ����� &H�#���#- 	 , is the
maximum combined width of these live ranges across all
program points where the two live ranges overlap. Let
� � � ��! �����P� �
	 denote the width of live range ��� at program
point � . �"��� �����L& �#���#- 	 is computed as follows:

����� �����L&H�#���#- 	 & �#� � ��! �����L& � �
	 � �#� � ��! �����#-J� �
	
� �G�%$ L�� � ��� &'& L � ��� - � G)(*�P� & � & ��L ,
� � � ��! �����L& ��L 	 � �#� � ��! �����#-P��L 	,+
�#� � ��! ����� & � �
	 � �#� � ��! ����� - ���
	��

It should be clear that ����� & �#���#- 	 are coalesced iff
����� �����L&H�#���#- 	-+ 3 �73 , where 3 �13 is the number of bits
in each register. We always assume that no variable has
width greater than 3 �73 .

The desired goal of coalescing can be set as achieving maxi-
mal coalesing that reduces the number of nodes in the interference
graph to the mimimum possible that is achievable by any legal se-
quence of coalescing operations. However, the theorem we present
next establishes that achieving maximal coalescing is NP-complete.
In fact from our construction it can be seen that this result holds true
even for straightline code.

Theorem (Live Range Coalescing is NP-complete).
Given a set of live ranges . , a constant �.0 3 .?3 . Does
there exist a live range coalesing that reduces the number
of live ranges to � such that the width of no coalesced
variable exceeds 3 �13 at any program point?

Proof. It is trivial to see that live range coalescing problem
is in NP as given a solution it is easy to verify that it is
correct in polynomial time. By performing a reduction
from the bin packing problem (see [7], page 226) we can
show that live range coalescing is NP-complete. The bin
packing problem can be stated as follows.

Given a set of items � , a size �$�0/
	 for each /21 � , and
a positive integer bin capacity > . Is there a partition of
� into disjoint sets �@& , �y- , 34343 , ��5 such that the sum of
sizes of the items in each set � A is > or less?

An instance of bin packing problem can be transformed
into an instance of live range coalescing problem as fol-
lows. Corresponding to each item / 1 � , we construct a
live range of uniform width �$�0/
	 . We further assume that
there is some program point where all live ranges fully
overlap with each other. Now let 3 �73 & > and ��& �

.
If we can find a live range coalescing that reduces the
number of live ranges to � such that none of the coalesced
live ranges has a width greater than 3 �73 , we have essen-
tially solved the corresponding instance of the bin pack-
ing problem.

The overall outcome of coalescing depends upon the selection
and order in which pairs of nodes are examined for coalescing.
Given the above result we use an iterative coalescing heuristic which
picks a node from the graph, coalesces it with as many neighboring
nodes as possible, and then repeats this process for all remaining
nodes. Let us briefly consider the runtime complexity of an itera-
tive coalescing algorithm. The coalescing must have been carried
out in a series of steps where in each step two nodes are coalesced.
To determine whether two nodes, say ��� & and ���#- , can be coalesced,
we must check the condition ����� ����� & �#��� - 	 + 3 �13 by scanning
the two live ranges across the entire length of the program where
the two live ranges overlap. The time complexity of this operation
is �7��. 	 , where . is bounded by the number of statements in the
program. The number of coalescing operations is bounded by the
number of nodes � in the interference graph. Thus the total time
spent in coalescing is bounded by �7����� . 	 .

To avoid the expensive operation of scanning two live ranges to
compute �"��� �����L& �#���#- 	 at the time of attempting coalescing, we
explore the use of fast methods based upon the use of conservative
estimates of ����� ����� & �����#- 	 . A conservative estimate can overes-
timate ����� but it must never underestimate it. Let us consider
a simple and most obvious approximation. By scanning the en-
tire program exactly once, we can precompute the maximum width
of each live range ��� , ����� �����6	 . Using this information, esti-
mated maximum interference width � �"��� ����� & �#���#- 	 can be com-
puted as follows: � ����� ����� & �O��� - 	 &"����� ����� & 	 � ���	� ����� - 	
��
 ����� �����L& �#���#- 	�	 . Note we do not need to scan the program
to compute � ����� ����� & �#��� - 	 . While this method is simple and
allows estimation of � ����� of two live ranges at the time of iter-
ative coalescing in �7� � 	 time, it fails to handle a common situation
well. In Fig. 6 live ranges � and > are shown. It is clear that
they can be allocated to a single 32 bit register. However, since
���	�-����	.& ���	� ��>@	R& � � and therefore � �"��� ����� >1	.&
��

, we cannot coalesce them using this simple approach.

16 16

16 16

B

A

A

B

MAX(B)=32

MAX(A)=32

A

B

(1
6,

16
)

(B
a,

A
b)

=

Edge labelling.Node labelling.

Figure 6: Node vs. edge labels.

To address the above problem with node labels we make use of
edge labels. Each edge ���R��>@	 is labelled with a pair of values
���	� �#>	�$, such that ��� and >	� represent the widths of � and >

respectively at a program point corresponding to maximum inter-
ference width of � and > (i.e., ����� ���R��>@	 &�� � � >	�). For the
above example, the edge label is � �
 � �
 	 . The important observa-
tion is that by looking at the edge label we can now determine that
coalescing of � and > is possible because their combined width at
any program point does not exceed 32 (because �
 � �
 & � �).
The edge labels are more formally defined below.

Definition 5. (Interference Graph Labels) Initially each inter-
ference edge �����#>@	 is labelled with ��� � �#> � 	 where � �
and >	� are the contributions of � and > to ����� ������>1	
(i.e., ����� ����� >@	 &�� � �+> �). Subsequently, each
edge ������N!	 formed after coalescing, is labelled with
��� W �#N � 	 where � W and N � are the contributions of �
and N to � ����� ��� ��N!	 (i.e., � ����� ��� ��N!	 &�� W �
N �).

When nodes are coalesced, labels for the edges emanating from
the newly created node must be computed. It is during this process
that some imprecision is introduced. We have developed a fast and
highly accurate method for computing the edge labels. Next we
present this method in detail.

Updating edge labels following coalescing
If there was an edge between a node � and one or both of nodes
� and > , then there will be an edge between � > and � in the
transformed graph. We must determine the label ��� > � ��� � � 	 for
this edge. Two cases that arise are handled as shown in Fig. 7.

The first case involves the situation in which � was connected
by an edge to either � or > . In this case the label of edge ��� >����.	
will be same as the label on the edge ���R���.	 or ��>!���.	 as the case
may be. Since � interferes only with � (or >), after coalescing of
� and > the maximum interference width between � > and � is
same as maximum interference width between � (or >) and � . It
should be noted that no additional imprecision is introduced during
the generation of the label for edge ��� >����.	 .

The second case considers the situation in which there is an edge
between � and both � and > . In this case additional impreci-
sion may be introduced during the estimation of ��� > � ��� � �O	 for
edge ��� >����.	 as this label is based upon a conservative estimate of
� �"��� ����� >!���.	 . Our goal is to carry out this estimation quickly
by avoiding examining the complete live ranges corresponding to
nodes � , > and � . In addition, we would like to obtain a label that
is as precise as possible based upon the existing labels of the three
nodes and edges between them.

Three candidate estimates for � ����� ������>!���.	 denoted by �	� ,
�	� , and ��� in Fig. 7 are considered. � � is the estimate of the
sum of widths of � , > , and � at a point where maximum inter-
ference width between > and � takes place. At such a point, the
best estimates for the widths of � , > and � are � & * ��� � ��� � 	 , > �
and � � respectively (i.e., �	� &�� & * ��� � ��� � 	 � > � ��� �). Simi-
larly ��� (�	�) represents the point at which maximum interference
width of � and � (� and >) takes place. Therefore values of � �
and ��� can be similarly computed. While it may not be the case
that � ����� ����� >!���.	 is equal to any of the three computed val-
ues (i.e., � � , �	� and �	�) we can derive a conservative estimate
of � ����� ���R��>����.	 from these values. In particular, if we sort
the values of �	� , � � , and � � , the intermediate value � A CPI is a
safe approximation for � �"��� ���R��>����.	 . Therefore as shown in
Fig. 7, we choose this value and depending upon whether � A CPI is
� � , �	� or ��� , we accordingly compute ��� > � ��� � � 	 . The theo-
rem in Fig. 8 formally proves the correctness of this method.

Case I. Node � has an edge to either � or > .

AB

C

BA

C

(Ab,Ba)
BA

C

(Ab,Ba)
AB

C

(A
c,

C
a)

=
(A

c,
C

a)

(A
B

c,
C

ab
)

(B
c,

Cb
)

=
(B

c,
C

b)

(A
B

c,
C

ab
)

Case II. Node � has an edge to both � and > .

AB

C

(A
B

c,
C

ab
)

BA

C

(Ab,Ba)

(A
c,

C
a)

(B
c,C

b)

4�aJ��� A C � � A CPI � � � ��� �l�V�
]^^^^^_ ^^^^^`

��� ADC 	 264%�}4%2��x2+�%� � ��� � �(� � "� � ��� 	 28��9 4%26�x2r�,� � �(� � �(� � "�@�x���'���� � 	 2��#9!��� � ��� � "*h ? � h	� �� � 	 28��9!��? � ��? � "*h
� � h	� �� � 	I28��9!��� � ��� � "}h
� � hp? �
���x���+���@? � ��� � � "fF 	

]_ ` �328��9!��� � ��� � "*h ? � ��� � " 4�aJ� ADC6I 	I� ��328��9!��? �*��? � "*h	� � ��� � " 4�aJ� ADC6I 	I� ���� � h ? �}�/2��#9!��� �*��� � "/" 4�aJ� ADC6I 	I� �
Figure 7: Updating labels after coalescing A and B.

From the intermediate value theorem it follows that a single co-
alescing operation takes �7� �%	 time. Each coalescing operation re-
moves a node from the interference graph. Therefore the number of
coalescing operations is bounded by the number of nodes � in the
interference graph. Hence the run time complexity of the coalesc-
ing operations is bounded by �7����	 . Recall that the slow algorithm
had a complexity of �7��� � . 	 .
Example
Let us apply the coalescing operations using the intermediate value
theorem to the interference graph of the live ranges constructed for
an example in Fig. 4. We assume that the registers are 32 bits wide
for this example. From the live ranges constructed we first build
the five node interference graph shown in Fig. 9.

While the nodes in the interference graph can be coalesced in a
number of ways, one such order is shown in Fig. 9. First we merge
N and � . According to rules for handling Case I, the labels for
all edges emanating from N become labels of the corresponding
edges emanating from N�� . In the next two steps nodes � , > , and
� are coalesced during which Case II arises. Therefore, the labels
on edges are updated using the intermediate value theorem giving
the results shown in the figure.

Note that if the bitwidths of the variables are ignored, the original
interference graph requires 4 registers to color as the graph contains
a clique of four nodes. In contrast a register allocator will need to
use two colors to color the coalesced interference graph. Thus the
proposed coalescing algorithm reduces the register requirements
for the interference graph from 4 registers to 2 registers. The code
based upon usage of two registers was shown in Fig. 5.

Now let us conisder the result of application of simple coalesc-
ing approach which only maintains node labels. Assuming that the
same pairs of nodes are considered for coalescing as were consid-
ered during the application of algorithm based upon edge labels
in Fig. 9, we can perform at most two coalescing operations as
shown in Fig. 10. Thus, in this case 3 registers would be required.
Therefore using edge labels is superior to using node labels in this
example.

(20,12)

(8
,1

2)

(8
,8

)

(1,8)

(8
,12

)

(8
,8)

A D

B C

E

(16,16)

(20,12)

(8
,1

2)

(8
,8

)

(1,8)

(8
,12

)

A

B C

DE
(8,8)

(8
,1

2)

C

DEAB
(28,12)

(16,8)

DEABC
(36,12)

Figure 9: Illustration of node coalescing.

20

8

A

B C

8

32

DE

20

8

A D

B C

E

8

16

16

C

8

32

DE

28

AB

Figure 10: Node coalescing using node labels.

Theorem (Intermediate Value Theorem).

� � � � A C + � ADC6I +;� � ��� � � �
� � � ADC &�� ��L ��� / � ��� � ����� �#�	� 	

� � � � & � & * ��� / � ��� � �O��� �#�	� 	 � � ����� ������>!���.	 &8� A CPI is safe.

Proof. The proof is carried out in two parts. Lemma 1 shows that in general � � ADC is not a safe estimate for ����� ������>!� �.	
because � � A C can be less than ����� ������>!���.	 . Lemma 2 shows that if � � ADC is less than �"��� ������>����.	 , then values
of both � ADC6I and � � ��� are greater than �"��� ����� >!���.	 . From Lemma 1 and Lemma 2 it follows that � A CPI is the best
safe estimate for �"��� ���R��>����.	 from among the three values, � � , �	� and �	� .

(Lemma 1) � � ADC 0 �"��� ����� >!���.	 can be true: Consider the construction of live ranges as shown in the figure be-
low. Note that

� , � in this construction which clearly confirms that indeed � � A C may not be a safe estimate of
�"��� ���R��>����.	 as � � ADC &8�	� 0 �"��� ������>����.	 .

d > 1

B

CA

w

w+d−1 w

w+d

w+d

w

(w,w)B

A

C

(w
,w

+d)
w−1

(w
−1,w

+d)

����� ���K�(?N� �v"<	����php vq��� � 	I2���9!�,�Iq	�'�/�v"}hz�phi�I	
���� � 	 2��#9!�3� hp L����"}hi�phi�ihi 	����ih��' � � 	 2��#9!�3��hJ L����"kh��8q��~hJ�Jh� B	����Jh��' Gq��
 � � ADC 	d� � � ����� ���B��?����v" .

(Lemma 2) � � ADC 0 �"��� ���R��>����.	��<� � ���
;� A CPI
 �"��� ���R��>����.	 : Let ����� ������>!���.	 &"� � � � � � � � ,
where � � , � � , and � � are contributions of � , > and � to ����� ������>!���.	 . By definition of ����� it must be the
case that:� " ��� � >��
 � � � � � ,� � � � ��� �
 � � � � � , and� � > � ��� �
 � � � � � .

Without any loss of generality, let us assume that � � ADC &2�	� . Given that � � ADC 0 �"��� ���R��>����.	 it follows that:
� � &�� & * ��� � ��� � 	 � > � ��� � 0 � � � � � � � � or� � � � � � � � � � , � & * ��� � ��� � 	 � > � � � � .

K � � � � � � � � ,�� & * ���	� ��� � 	 � > � � � ��M � � and K > � � � ��
 � � � � � M � �� � � , � & * ��� � ��� � 	� � � � � , � � and� � � � , � � .
K � � � >	�
 � � � � � M � " and K � � , � � M � � � >	�1, � � � �
 � & * ��>	� �#> � 	 , � �
K � � ��� �
 � � � � � M � � and K � � , � � M � � � � � , � � � � � � & * ��� � ��� � 	 , � �

K � & * ��> � �#> � 	 , � ��M �
 and K � � ��� �
 � � � � � M � �� � & * ��> � ��> � 	 � � � � � � , � � � � � � � �� � � � � , �"��� ���R��>����.	 .

K � & * ��� ����� � 	 , � � M � � and K � � � >	�
 � � � � � M � "� � & * ��� � ��� � 	 ��� � � > � , � � � � � � � �� � � � � , �"��� ����� >!���.	 .

We have shown that if � � 0 ����� ������>!� �.	 , then ���8, ����� ���R��>����.	 and ��� , �"��� ����� >!���.	 . Given that
�	� is � � A C , � A CPI & � ��L ��� � �#� � 	 and � � ���R&�� & * ��� � �#� � 	 . Thus we conclude that:

� � ADC 0 ����� ������>!���.	�� � � � �
 � ADC6I
 ����� ������>!���.	 .

From Lemma 1 and Lemma 2 it follows that � ����� ����� >!���.	.& � ADC6I is the best safe estimate for �"��� ����� >!���.	 from
among the three values, � � , ��� and �	� . Hence the proof of the intermediate value theorem is complete.

Figure 8: The intermediate value theorem.

Priority based coalescing
So far we have focussed on the fundamental issues of bitwidth
aware register allocation (i.e., analysis for live range construction
and variable packing using node coalescing). We have not ad-
dressed the following issues: Is coalescing always good? In what
order should node coalescing be attempted?

While coalescing can reduce the chromatic number of a graph,
this in not always the case. In some situations coalescing may in-
crease the chromatic number of graph – for the graph shown below
the chromatic number is two before coalescing but it increases to
three after coalescing. A solution for preventing harmful coalescing
was proposed by Briggs et al. [1]. They observed that if the node
created by coalescing of two nodes has fewer than � neighbors with
degree of � or more, where � is the number of colors, the result-
ing node will always be colorable. Thus, they propose restricting
coalescing to situations where resulting nodes are guaranteed to be
colorable.

A

B D

C

A

B

CD

Figure 11: Increase in chromatic number due to coalescing.

The order in which node coalescings are attempted impacts the
shape of the final graph and thus the number of colors required to
color the resulting graph. For example, if we reconsider the exam-
ple of Fig. 10 and merge nodes A and B as well as nodes C and D,
the resulting graph contains three nodes which can be colored using
two colors as opposed to three colors that are required by resulting
graph of Fig. 10.

20

8

A D

B C

E

8

16

16

D

C

E

8

16

16

28

AB

E

16

28

AB DC

24

Figure 12: The impact of ordering of coalescing operations.

One approach that we propose to address the above problem is to
assign priorities to all of the nodes. Node with the highest priority,
say L , is picked and neighbors of L are considered for coalesc-
ing in decreasing order of priority. When no more nodes can be
coalesced with L , the next highest priority node is picked and the
above process repeated. The priority of a live range � is computed
as shown below. The greater the savings due to elimination of loads
and stores, the higher is the priority. However, the savings are nor-
malized with respect to the the amount of register resources used.
The register usage is based upon the duration and the number of
bits that are occupied by the live range. Hence, it is simply the area
of the live range which can be obtained by summing together the
number of bits occupied by the live range at all relevant program
points.

� � � � � � ��5
�����6	�� O � � A C�� ��X�� T Y� U �HA � I U�T
	!� � � U�X�� T Y
&
� F � Wk��� O I F TVU�� �
� FOA WkU�W� A � U � � C�� U � TVU �
& � F � Wk��� O I F TVU�� �
� FOA WkU�W������ A W I�� X�� T�� Q Y �

Our algorithm for carrying out node coalescing followed by reg-
ister allocation is summarized in Fig. 13. Following the iterative
node coalescing phase each set of coalesced variables is given a
new name and the code is transformed to use this name. In ad-
dition, intravariable moves are introduced to preserve program se-
mantics. The resulting interference graph is then processed using a
traditional coloring based register allocator.

1. Construct interference graph.
2. Label edges with interference widths.
3. Construct prioritized node list.
4. while node list �&�� do
5. Get a node, say L , from prioritized node list.
6. for each node & in L ’s adjacency list do
7. Attempt coalescing & with L .
8. if successful, update graph and prioritized list.
9. endfor
10. endwhile
11. Replace each coalesced variable set with a new name.
12. Introduce intravariable moves.
13. Perform coloring based register allocation.

Figure 13: Algorithm summary.

4. EXPERIMENTAL RESULTS
We evaluated the proposed technique using benchmarks taken

from the Mediabench [12] (adpcm and g721), NetBench [14]
(crc and dh), and Bitwise project at MIT [17] (SoftFloat,
NewLife, MotionTest, Bubblesort and Histogram) as
they are representative of a class of applications important for the
embedded domain. We also added an image processing applica-
tion (thres). We applied our technique to selected functions from
these benchmarks that are large in size.

We constructed the interference graphs for the selected functions
and measured the register requirements for fully coloring these graphs
using the following algorithms: (a) Bitwidth unaware algorithm
which at any given time allows only a single variable to reside in a
register; (b) Naive coalescing (NC) algorithm that labels each node
with its declared width and uses these labels to perform coalescing;
and (c) Our coalescing (OC) algorithm that builds live ranges using
bit section analysis and labels edges with maximum interference
width information to drive coalescing. In all three cases the regis-
ter requirements were computed by repeatedly applying Chaitin’s
algorithm to find the minimum number of registers for which the
graph could be fully colored.

The results of our experiments are given in Table 1. While the
OC algorithm reduces register requirements by 10% to 50%, NC
algorithm is nearly not as successful. By reducing the register re-
quirements by a few registers, the quality of code can be expected to
improve significantly. This is particularly true for the ARM proces-
sor with bit section referencing extensions [13] in context of which
this research is being carried out as ARM has 16 only registers.

Table 1: Register requirements.

Benchmark Registers Used
Function BU NC OC

adpcm decoder 15 15 13
adpcm coder 18 18 15
g721.update 15 12 10
g721.fmult 4 3 3

g721.quantize 6 5 5
thres.memo 6 6 4

thres.coalesce 10 10 5
thres.homogen 11 11 6
thres.clip 6 6 4

SoftFloat.mul32To64 8 7 7
NewLife.main 7 7 4

MotionTest.main 6 6 5
Bubblesort.main 9 9 7
Histogram.main 7 7 6

crc.main 10 10 9
dh.encodelastquantum 7 7 4

Table 2: Benefits of coalescing.

Benchmark Number of Nodes
Function Before After

adpcm decoder 17 15
adpcm coder 20 17
g721.update 22 15
g721.fmult 8 7

g721.quantize 8 6
thres.memo 6 4

thres.coalesce 10 5
thres.homogen 12 7
thres.clip 7 5

SoftFloat.mul32To64 14 12
NewLife.main 8 5

MotionTest.main 9 7
Bubblesort.main 15 11
Histogram.main 13 11

crc.main 12 11
dh.encodelastquantum 8 5

Table 3: Change in maximum clique size.

Benchmark Number of Nodes
Function Before After

adpcm decoder 15 13
adpcm coder 18 15
g721.fmult 4 3

g721.quantize 6 5
thres.memo 6 4

thres.coalesce 10 5
thres.homogen 11 6
thres.clip 6 4

NewLife.main 7 4
MotionTest.main 6 5

crc.main 10 9
dh.encodelastquantum 7 4

Table 4: Live ranges with bitwidth 0 � � bits.

Number Live Range Widths (bits)
of live Declared Max Size
ranges Size After BSA

adpcm.decoder
1 32 4
2 32 1

adpcm.coder
2 32 1
1 32 8
1 32 3

g721.update
7 16 16
1 32 3
4 16 5
1 16 1
1 8 1

g721.fmult
3 16 16
1 16 12
2 16 4

g721.quantize
3 16 16
1 16 12
2 16 4

thres.memo
2 32 10
1 32 2

thres.coalesce
2 32 10
5 32 8

thres.homogen
2 32 10
5 32 8
1 32 2

thres.clip
2 32 10
1 32 8

SoftFloat.mul32To64
2 32 1
4 16 16

NewLife.main
1 32 12
2 32 6
2 32 4

MotionTest.main
1 32 16
1 32 6
1 32 4

Bubblesort.main
3 32 16
6 32 10

Histogram.main
1 32 16
1 32 12
2 32 10
1 32 8

crc.main
1 64 56
1 32 8
dh.encodelastquantum
4 32 6

To further understand the significance of the two key steps of
our algorithm, namely live range construction based upon bit sec-
tion analysis and node coalescing, we examined the data in greater
detail. The results in Table 2 show the extent to which node coa-
lescing reduces the number of nodes in each interference graph. As
we can see significant amount of coalescing is observed to occur.
The data in Table 4 shows the significance of our live range con-
struction algorithm. The declared widths of live ranges as well as
their reduced maximum widths after bit section analysis (BSA) are
given. As we can see, for many live ranges, the declared widths are
much larger than their reduced maximum widths. The reason why
NC algorithm is nearly not as successful as our OC algorithm is
made clear in part by this data – the declared bitwidths of variables
are often much greater than their true bitwidths.

Finally it should be noted that although coalescing does not nec-
essarily guarantee a reduction in register requirements, in most of
the programs a significant reduction was observed. We looked at
the interference graphs to understand why this was the case. We
found that in most of these programs there were significantly large
cliques present which accounted for most of the register require-
ments. Moreover the maximum sized clique in the interference
graph typically contained multiple subword data items. Thus, node
coalescing resulted in a reduction in the size of the maximum sized
clique and hence the register requirements. Table 3 shows the re-
duction in the size of the largest cliques for the programs where the
above observation holds. The benchmarks which did not exhibit
this behavior are omitted from the table. In the case of Soft-
Float and Bubblesort there were no large cliques while in the
case of g721.update and Histogram although large cliques
were present, they were not reduced in size by node coalescing.

5. RELATED WORK

Bit Section Analysis
Stephenson et al. [17] proposed bitwidth analysis to discover nar-
row width data by performing value range analysis. Once the com-
piler has proven that certain data items do not require a complete
word of memory, they are compressed to smaller size (e.g., word
data may be compressed to half-word or byte data). There are a
number of important differences between bitwidth analysis and our
analysis for live range construction. First our analysis is aimed at
narrowing the width of a variable at each program point as much as
possible since we can allocate varying number of register bits to the
variable at different program points. Second, while our approach
can eliminate a trailing bit section, value range analysis can never
do so. Our approach can eliminate a leading bit section of dead
bits which contains non-zero values while value range analysis can
only eliminate a leading bit section if it contains zero bits through
out the program. Budiu et al. [2] propose a analysis for inferring
the values of individual bits. This analysis is much more expensive
than our analysis as it must analyze each bit in the variable while
our approach maintains summary information in form of three bit
sections for each variable. Finally, the analysis by Zhang et al. [9]
is aimed at automatic discovery of packed variables, while this pa-
per is aimed at carrying out analysis to facilitate variable packing.

Memory coalescing and data compression
Davidson and Jinturkar [4] were first to propose a compiler op-
timization that exploits narrow width data. They proposed mem-
ory coalescing for improving the cache performance of a program.
Zhang and Gupta [20] have proposed techniques for compressing
narrow width and pointer data for improving cache performance.

However, both of these techniques were explored in context of gen-
eral purpose processors. Therefore aggressive packing of scalar
variables into registers was not studied. In contrast, the work we
present in this paper is aimed at new class of embedded processors
where efficient use of small number of registers is made possible by
holding multiple values in a single register. The only work we are
aware of that deals with register allocation for processors that sup-
port bit section referencing is by Wagner and Leupers [18]. How-
ever, their work exploits bit section referencing in context of vari-
ables that already contained packed data. They do not carry out any
additional variable packing as described in this paper. Some multi-
media instruction sets support long registers which can hold multi-
ple words of data for carrying out SIMD operations [5, 11]. Com-
piler techniques allocate array sections to these registers. In con-
trast, our work is aimed at shrinking scalars to subword entities and
packing them into registers which are one word long. The scalar
variables that we handle are ignored by superword techniques. Fi-
nally in context of embedded processors work has been done on
dealing with irregular constraints on register allocation (e.g., [10]).
However, our work is being done in context of ARM instruction
set with bit referencing extensions where bit section packing is an
important issue [13].

6. CONCLUSIONS
Multimedia and network processing applications make extensive

use of subword data. Moreover embedded processors typically sup-
port a small number of word sized registers. Instruction set sup-
port for bit section referencing provides us with an opportunity to
make effective use of small number of registers by packing multi-
ple subword sized variables into a single register, without incurring
any additional penalty for accessing packed variables. However,
no techniques exist for either identifying variable bitwidth data or
packing them into registers. We presented the first algorithms to
solve both of these problems. We presented efficient analyses for
constructing variable bitwidth live ranges and an efficient variable
packing algorithm that operates on an enhanced interference graph.
Our experiments show that the proposed techniques can reduce reg-
ister requirements of embedded applications by 10% to 50%.

7. ACKNOWLEDGEMENTS
This work is supported by DARPA award F29601-00-1-0183 and

National Science Foundation grants CCR-0208756, CCR-0105535,
CCR-0096122, and EIA-9806525 to the University of Arizona.

8. REFERENCES

[1] P. Briggs, K.D. Cooper, and L. Torczon, “Improvements to
graph coloring register allocation,” ACM Transactions on
Programming Languages and Systems (TOPLAS),
16(3):428-455, May 1994.

[2] M. Budiu, M. Sakr, K. Walker, and S.C. Goldstein, “BitValue
Inference: Detecting and Exploiting Narrow Width
Computations,” 6th European Conference on Parallel
Computing (Euro-Par), August 2000.

[3] G. J. Chaitin, “Register allocation and spilling via graph
coloring,” SIGPLAN Symposium on Compiler Construction,
June 1982.

[4] J. Davidson and S. Jinturkar, “Memory access coalescing : a
technique for eliminating redundant memory accesses,” ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 186–195, 1994.

[5] R.J. Fisher and H.G. Dietz, “Compiling for SIMD within
Register,” 11th International Workshop on Languages and
Compilers for Parallel Computing (LCPC), LNCS, Springer
Verlag, Chapel Hill, NC, August 1998.

[6] J. Fridman, “Data Alignment for Sub-Word Parallelism in
DSP,” IEEE Workshop on Signal Processing Systems (SiPS),
pages 251-260, 1999.

[7] M.R. Garey and D.S. Johnson, Computers and intractability:
a guide to the theory of NP-completeness, 1979.

[8] L. George and A.W. Appel, “Iterated register coalescing,”
ACM Transactions on Programming Languages and Systems
(TOPLAS), 18(3):300-324, May 1996.

[9] R. Gupta, E. Mehofer, and Y. Zhang, “A Representation for
Bit Section Based Analysis and Optimization,” International
Conference on Compiler Construction (CC), LNCS 2304,
Springer Verlag, pages 62-77, Grenoble, France, April 2002.

[10] A. Koseki, H. Komatsu, and T. Nakatani,
“Preference-Directed Graph Coloring,” ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), pages 33–44, June 2002.

[11] S. Larsen and S. Amarasinghe, “Exploiting Superword Level
Parallelism with Multimedia Instruction Sets,” ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), pages 145–156, Vancouver B.C.,
Canada, June 2000.

[12] C. Lee, M. Potkonjak, and W.H. Mangione-Smith,
“Mediabench: a tool for evaluating and synthesizing
multimedia and communications systems,” IEEE/ACM
International Symposium on Microarchitecture (MICRO),
Research Triangle Park, North Carolina, December 1997.

[13] B. Li and R. Gupta, “Bit section instruction set extension of
ARM for embedded applications,” International Conference on
Compilers, Architecture, and Synthesis of Embedded Systems
(CASES), Grenoble, Oct. 2002.

[14] G. Memik, B. Mangione-Smith, and W. Hu, “NetBench: A
Benchmarking Suite for Network Processors,” IEEE
International Conference Computer-Aided Design (ICCAD),
Nov. 2001.

[15] X. Nie, L. Gazsi, F. Engel, and G. Fettweis, “A New
Network Processor Architecture for High Speed
Communications,” IEEE Workshop on Signal Processing
Systems (SiPS), pages 548-557, 1999.

[16] D. Seal, Editor, “ARM architecture reference manual,”
Second Addition, Addison-Wesley.

[17] M. Stephenson, J. Babb, and S. Amarasinghe, “Bitwidth
Analysis with Application to Silicon Compilation,” ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 108–120, Vancouver B.C.,
Canada, June 2000.

[18] J. Wagner and R. Leupers, “C Compiler Design for an
Industrial Network Processor,” ACM SIGPLAN Workshop on
Languages, Compilers, and Tools for Embedded Systems
(LCTES), pages 155-164, June 2001.

[19] T. Wolf and M. Franklin, “Commbench - a
telecommunications benchmark for network processors,” IEEE
International Symposium on Performance Analysis of Systems
and Software (ISPASS), April 2000.

[20] Y. Zhang and R. Gupta, “Data Compression Transformations
for Dynamically Allocated Data Structures,” International
Conference on Compiler Construction (CC), LNCS 2304,
Springer Verlag, pages 14-28, Grenoble, France, April 2002.

