Load-Reuse Analysis: Design and Evaluation

Rastislav Bodik

Rajiv Gupta

Mary Lou Soffa

Dept. of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260
{bodi k, gupt a, sof fa}@s. pitt.edu

Abstract

Load-reuse analysis finds instructions that repeatedlgsacthe
same memory location. This location can be promoted to ateryi
eliminating redundant loads by reusing the results of priemory
accesses. This paper develops a load-reuse analysis dgddas
method for evaluating its precision.

In designing the analysis, we aspire fmmpletenessthe goal of
exposing all reuse that can be harvested by a subsequenaprog
transformation. For register promotion, a suitable trarmshtion is
partial redundancy elimination (PRE). To approach theligeal
of PRE-completeness, the load-reuse analysis is phrasedata-
flow problem on a program representation thgiash-sensitiveas
it detects reuse even when it originates in a different urcion
along each control flow path. Furthermore, the analysisimpre-
hensiveas it treats scalar, array and pointer-based loads uriform

In evaluating the analysis, we compare it with an ideal asialy
By observing the run-time stream of memory references, vike co
lect all PRE-exploitable reuse and treat it as the idealyaisaper-
formance. To compare the (static) load-reuse analysis thith
(dynamic) ideal reuse, we use astimatoralgorithm that com-
putes, given a data-flow solution and a program profile, the dy
namic amount of reuse detected by the analysis. We devemped
family of estimators that differ in how well they bound theofik

ing error inherent in thedgeprofile. By bounding the error, the
estimators offer a precise and practical method for deténgithe
run-time optimization benefit.

Our experiments show that about 55% of loads executed in%Spec
exhibit reuse. Of those, our analysis exposes about 80%.

Keywords: profile-guided optimizations, register promotion, pro-
gram representations, data-flow analysis.

1 Introduction

Without comparison, caches are the bestdwaredefense against
the von Neumann memory bottleneck. Capitalizing on dataldoc
ity, caches win byeusingrecent memory accesses. How can com-
pilers benefit from these reuse opportunities? In the idese cthe

This is a slightly edited version of the paper that appeaneithé Pro-
ceedings of the ACM SIGPLAN '99: Conference on Programmiag-L
guage Design and Implementation (PLDI'99), Atlanta, Genriylay 1—
4,1999.

compiler promotes repeatedly accessed memory locatioregto
isters. Register promotion is the bestimpilersolution for reduc-
ing the memory traffic. By removing redundant loads, it dases
the dynamic operation count and shortens instruction sdbed
This paper focuses on compile-time detection of load rehae t
is amenable to register promotion. We measure the amouoadf |
reuse in programs, and design and evaluate an analysisuee re
detection.

Register promotion entails three subproblems. Fimsdd-reuse
analysisfinds loads and stores that access the same address, to-
gether with the execution paths along which the reuse edisthe
example below, if;; always equals, along pathp, , then load a4

can benefit from reuse along. Similarly for pathp.. Second,
alias analysisverifies that the detected reuse is not disrupted by
intervening stores. Below, iy is never equal ta, then register
promotion ofay is safe. Finally, a prograrmansformationstores

the prior memory access in a register and replaces the redtund
load with a register reference. In the example, registemptmn

is notimmediately applicable becauked a4 is not redundant on

all paths. Suchpartial reuse can be compensated by hoisting a copy
of the load along paths. Commonly, the hoisting is formulated as
partial redundancy elimination (PRE27, 29, 35].

path pl
v v v
| load a1| | store a2 ” |

(D)Load-reuse analysis: path p2 path p3

is al = a4 along path p1?
is a2 = a4 along path p2?

(2) Alias analysis:
is a0!= a4 ?

(3)Program transformation:
hoist load a4 along path p3 v

Detecting reuse is profitable even when register promosiqie-
vented (due to aliasing or lack of registers). In such a ¢heePRE
transformation step can employ alternative, albeit legsctfe,
reuse mechanisms. When promotion is unsafe due to integferi
stores, the redundant load can be replaced withta-speculative
load, which works as a register reference when the kill did not oc-
cur, but as a load when it did [7,21, 24, 38]. When registeesat
available, load reuse can be exploited ussndtware cache con-
trol [21, 24, 34]. By directing which loaded values remain in the
cache and which bypass it, the compiler can improve the gitbop
mal hardware cache replacement strategy.

This paper focuses on the first component of register prampti
load-reuse analysis. Because an optimization is only aggoiv
as its analysis, improving the precision of the analysisfikigh

significance. The second component, alias analysis, hdfesedt
aim: while load-reuse analysis detects memory referehegsist
go to the same location, alias analysis finds thosertiat thus
identifying killing stores. Recent research indicated,tfiar reg-
ister promotion, a simple alias analysis may be sufficie@28].
The third component, PRE transformation, was explored 1, [1
where we describe how to effect a complete removal afetiécted
reuse. In this paper we concentrate on increasingatheuntof
detected reuse.

Design. The design of the load-reuse analysis emphasizab
ability andcompletenessScalability is achieved by developing a
sparse, SSA-based program representation, which growgmod
ately with the program size.

The analysis iPRE-completéf it detects all reuse that the PRE
transformation can exploit. Aiming for PRE-completenessadt

a narrow goal, as PRE covers most scalar transformatioredbas
on data-flow analysis. It generalizes common-subexpnessim-
ination, loop-invariant code motion, and constant proiagaBe-
yond the power of the PRE class are, howelasp optimizations,
such as loop fusion and interchange. These array-orierstesfor-
mations can be used as a preprocessing, locality-imprquiesge,
after which PRE can harvest the scalar reuse opportunitgs [

To approach PRE-completeness, the load-reuse analypailis
sensitiveandcomprehensivéPath-sensitivity has two flavors. First,

Section 2 simulator Io;dé;lr;élize Section 3
! !
edge profile data-flow solution
estimator Section 4
!
reuse level weighted solution
Section 5 compare transformation

{ {
opimized
Figure 1: The experimental framework, as presented in thempa

amount of reuse from a profile is impaired by the profile’s inhe
ent inability to precisely reconstruct frequencies of extmmn paths

we can expose reuse even when it exists only on a subset & path on which reuse was detected by the analysis. This holds both f

coming to the load (in the example, pathhas no reuse). Second,
we find the equivalence of address expressions even whepsiths
specific (it is sufficient that; equalsz4 along the pathy; and not
along all paths). The analysiséiemprehensivia that memory ref-
erences to scalars, arrays or pointer-based data strecreedan-
dled uniformly, without any high-level program informatiosuch
as type information.

Technically, our load-reuse analysis is formulated as a-flatv
problem in order to directly guide the PRE transformatioh, P5].
In our analysis, data-flow problems are solved on\takie Name

the commonly useeédgeprofiles and for the more powerfplath
profiles, which record frequencies of not just CFG edges lmat a
(some) finite paths [4]. While existing profile-directed iopza-
tions disregard the profiling error [11, 33], our family egtimator
algorithms computes its bounds. The estimators form a ttieya
the more complex, the tighter the error bounds.

Summary. This paper culminates our efforts in developing a path-
sensitive framework for value-flow optimizations [5-11}id, we
develop a few missing pieces of the framework (sparse VNG, es
mators) and also evaluate its effectiveness (on the loaskrepti-

Graph (VNG)[6], a program representation that enhances data-flow mization, using the limit study).

analysis by exposing equivalence among address expras3ibis
paper extends the VNG representation in two directionst,Rive
improve its power by modeling indirect memory referencesc-S
ond, because the original VNG [6] did not scale well, we depel
sparseVNG, based on the SSA form [18].

Evaluation. Typically, optimizations are evaluated by reporting
the amount of computations removed. Unfortunately, susblaie
measure says little about how much potential remains uoégl
Instead, our evaluation measures the level of PRE-comaste
how far is the analysis from an ideal one? Because detecta |
reuse is in general undecidable, we can only hope to find atwapp
imation of the ideal reuse amount. For that purpose, we paréo
simulation-based limit study: by observing the dynamieain of
memory references, we find all reuse available under a giveut i
and use it as an upper bound of the PRE-exploitable reusein th
program.

While the (static) load-reuse analysis identifies redulldaas and
their reusepaths the (dynamic) limit study yields theun-time

numberof redundantly executed loads. To compare these disparate

quantities, we weight the static reuse using the prografil@gen-
erated by the simulator. The result is the run-time amoustai-
cally detected redundant loads. This amount can, besidasune
ing the precision of the analysis, guide the code-dupticetiade-
offs in code-restructuring optimizations [1,8,9,30, 3j,described
in [11]. Unfortunately, any method for computing the rum

In summary, the contributions of the paper are threefold:

1. Load-reuse analysiswe generalize the Value Name Graph
representation [6] by supporting analysis of indirect mgmo
accesses. We also develop a scalable, sparse version of the
representation.

2. Load-reuse limit study: we develop a simulation-based
method for detecting the amount and sources of load reuse
in a program and use it to evaluate a static load-reuse analy-
sis. The reuse available in significant benchmarks (Speg95)
reported.

3. Profile-based estimatorswe develop algorithms that use
edge profiles to assign a dynamic weight to an analysis-
detected reuse. The estimators can be ordered by precision;
even modest complexity is enough to use edge profiles and
get sufficient precision.

Our entire experimental framework is summarized in Figur@dr
experiments show that about 55% of loads executed in Spec95
could be removed through reuse. Of those, 80% are detected by
our load-reuse analysis.

The rest of the paper is organized as shown in Figure 1. $e2tio
describes the simulation-based reuse detection. Sectisrd8-
voted to the static load-reuse analysis. Section 4 preseaitss-

timators and Section 5 evaluates the analysis. Finallyti@e6é
concludes by discussing related work.

2 Dynamic Amount of Load Reuse

This section focuses on load reuse visible at run time. Wseure
a simulation-based limit study that has multiple usgsmeasur-
ing the amount of reuse in programs (how large is the optitiniza
potential of register promotion?)) evaluating the load-reuse anal-
ysis by providing a reference point (how close is the analigsits
ideal performance?), arg) tuning the analysis (which are the re-
dundantly executed load instructions?). In this sectiandescribe
the design of our simulation and show that a large fractic@®4p
of loads executed in Spec95 exhibits reuse opportunities.

The primary use of the limit study is to evaluate the precisid
the load-reuse analysis. The precision is measured as\wbleole
completeness. An analysisiscompletef it detects all reuse that
can be removed from the program with a program transformatio
T'. In this paper]' is thepartial redundancy elimination (PRE}1,
25,29]. PRE is a code-motion transformation that can ek@oise
even when it exists only on a subset of execution paths inogmi

utive loads from the hash table may access the same locé#i®n,
reuse is not guaranteed to occur each time the program th&es t
path across the loop backedge. Therefore, PRE cannot ettpoi
reuse.

while (c=read()) { .. = hashtab[hash(c)]; }

To verify the PRE requirement that a path carries its reuske e

it is followed, the simulator would have to do extensive bloedp-
ing of followed paths. Consequently, we favor a noisierqéght)
upper bound on reuse over an expensive simulation. To rettiece
noise, we limit the number of memory cells remembered in the a
cess history of each static load and store. A small nurhléto 4)

of recent accesses is sufficient to capture most loop cawigsks,
like the first example above [16].

As pointed out in Section 1, PRE is not capable of exploitoapt

level reuse, like the one between loadandb below. Hoisting

b does not work. Instead, the loops must be merged using loop
fusion [14], after which PRE can harvest the reuse.

= Al
= Al 3

for
for

(i=0;
(i =0;

i <N
i <N

i++) { a
i++) { b

to the redundant load. Therefore, PRE has become the basis of

modern register promotion techniques [7, 15,27, 35].

Unfortunately, detecting load reuse is in general undéxt&l82]
and so no compile-time PRE-complete load-reuse analy&ssex
Therefore, we use an empirical, run-time analysis that oreas
the reuse in the program as the program executes. In ordeoto p
vide a close approximation of PRE-completeness, this sitioul-
based limit study should collect all reuse that PRE can reqiowt
no reuse that is beyond PRE’s power. The simulation shouis! th
mimic the character of the PRE transformation.

PRE removes redundancy by (conceptually) hoisting thegtlsrt
redundantload against all control flow paths until it reachenem-
ory operation that generates the reuse. At this point, timtects
of the promoted memory location is stored in a register thaies
it to the original load. The reused valued can be carried 8mall

number of loop iterations, using multiple registers [6,3F, In

summary, the PRE operational restriction is that the redaonidad
can reuse a result of some other static instruction (orfjtsghere
the result must be a small number of dynamic instances old.

The simulation algorithm reflects this PRE property. Thetinre
reuse is detected by remembering for each static memonymst
tion its access historythe dynamic stream of its recent addresses.
A dynamic instance of a load is then redundant if a prior load o
store accessed the same location without an intervening. df@n
intervening store did occur, the load is still redundars;ititerven-

ing store becomes the reuse source.

As mentioned above in passing, the design of the simulag¢ioh-t
nique has two contradictory goals. On the one hand, the $itady
should yield arupper boundeach reuse that can be removed with

The simulation algorithm will (correctly) not identify tHeadb to

be redundant (unleds < k) because the access history remem-
bers only last: accesses made by loadHence, the simulation is
consistent with the power of PRE.

Reuse Level. Figure 2 plots the amount of simulation-observed
load reuse. For each benchmark, the experiment was carried o
three points in the compilation: for the original prograritenopti-
mizations, and after register allocation. The compiledusas the
latest public release of Impact [17]; the optimizationduded the
local, global, and loop invariant redundantload elimioatias well
as superblock optimizations [23]. Note that while in the filog:
point benchmarks (the four on the right) the removal of maayls
was accompanied by the decrease of observable reuse, imebei
benchmarks the optimizer left many redundant loads undgeity
which suggests that programs with complex control flow resgqui
more powerful, path-sensitive optimizations and/or bettias in-
formation. Also note the increase in observed reuse aftgster
allocation, which is due to spill-code loads (the targetcpssor
was PA-7100).

We show the amount of reuse for the history depth 1 and 4. In-
creasing the history depth raises the observable reusemoehin
integer programs than in the scientific ones, where morerneau
accesses would be expected. A manual examination of simmulat
results strongly suggests that the additional reuse detleat the
deeper access history is mainly noise, similar to the intesm
reuse in the hash-table example above. Also shown in théngrap
is the fraction of reuse in which both the generator and tdeme
dant load belong to the same procedure. These reuse paterns
not strictly intraprocedural, as the procedure might hatarned

PRE must be detected. On the other hand, the bound should beand been called during the reuse. However, these “intrapioc

tight: if a reuse for a given static load is intermittent (e.g., hsea
it is sporadic or input dependent), it should be filtered aut@se
In the example below, the reuse between recurrent arrayssese
(i.e., between the store of[i + 2] and the load of4[7]) is PRE-
exploitable by allocating two registers that will carry tedue for
two iterations [7,13, 15]:

for (i=0; i<N2;

i) { AlT+2] = Ali];)

ral” reuse levels serve as a reference point for our intregutaral
load-reuse analysis (Section 5).

Input Variance. Profile-directedoptimizationand simulation-
directedoptimization desigrare valuable only if the program in-
put exercises input-independent, pervasive program cteistics.
How much does reuse vary across different inputs? We modi-
fied the inputs on several benchmarks and compared the @lolserv
reuse. The results are shown in Table 1. The input-baseatieari

On the other hand, the reuse below is noise. While some consec of the reuse level is within 18%, which may suggest that résise

Load/store dynamic
count (normalized)
o o
o (62}
L]
[
[
[|
[

T itk

_lu UUU UUU uuu L] [stores

source program; after optimization; after register allocation.

Hgﬂ Hgg Hﬂﬂ Hmm 7 loads
=L = e =

:

(I

100 -

] e %
3 e HI R A %
5 g [[_ i :(] M +
22 :(] + 4
S ® + o] X
o 2 H | +H— + %
S o 60 [NHx X =
S E X K X
= g X| . K K
= . Xl
gs @ x
20 X
a2 8
s 20 Oall reuse (history=4)
- Dall reuse (history=1)

+ intraproc reuse (history=4)
X intraproc reuse (history=1)
0 T T T T T 1T T
Y N & & D) & & & & o
%8*'&) S &Q‘ § 406 o@o N %\g, \\&o
& & & AN

Figure 2:Simulation-observed load reuse(Inlining:

benchmark input reuse% reusefrom% I+s
before opti train / test h=4 loads stores 10°
nB88ksi m | dcrand.big 87.9 68.2 486 | 34
dhry.big 74.5 904 13.6| 135

conpress | 10* q2131 79.2 56.1 714 13
ref— | 5.10° e 2231| 71.3 57.2 64.4| 520

I boyer-test 77.9 704 504 | 55

8 queens 87.4 76.2 43.6 | 324

Table 1: Sensitivity of load reuse level to program input. The

columnl+s gives the number of executed loads and stores.

largely input independent. The greatest difference is88ksi m
in which each input directs the execution into differentqadures.
For the same reason, this benchmark has less reuse gengyated
stores in the est input (fractions add up to more than 100%, as
a reuse instance may be generated by multiple instructiolosd
and a store). We have manually examiedpr ess and discov-
ered that the lower reuse in the larger input is due to fewéyno
loads. Input variance may therefore be useful as a noisetiedu
mechanism; by taking intersection of reuse detected oerdifit
inputs, we may determine regular, statically detectahleee

Simulation Memory Requirements. While the simulation limit
study is considerably more expensive than control flow pnafjl
it is used once (to design and tune the analysis) unlike thamér

profiling which is repeated (to optimize each program).|,Stile

simulation speed was acceptable, at about 9.4 seconds pioh m
loads and stores executed (on PA-8000). The memory requiredwhen the value flows between equivalent addresses that lifave d

varied greatly. The largest data structures were needexhbyn

(103MB + 32MB hashtable) and the smallesdnynpr ess (4MB

+ the same hash table).

up to 50% code growth; Spec95 input stein.)

3 Load-Reuse Analysis

While the previous section described the approxindytaamic
load-reuse analysis, this section presents the consexsititic
analysis.

Detecting load reuse reduces to finding path-sensitive -aliest
information: we want to know which address expressions hre a
ways equivalent and along which control flow path©ur anal-
ysis is formulated as a data-flow analysis, for two reasomst, F
when detected reuse is expressed as a data-flow soluti@am dic
rectly guide the subsequent PRE transformation, whichgaiby

the data-flow problems of availability and anticipability1] 25].
While the former problem exposes the reuse (by finding a prior
load or store), the later verifies whether the PRE transferma
tion is not harmful to the program (by determining whethez th
reuse can be consumed by a future load). The second reason is
that data-flow analysis can leverage existing program semta-
tions [6,7,12,20,37] designed to expose reuse not acdessite
traditional data-flow analysis [25, 29].

The analysis in this paper is based on ¥&Eue Name Graph

a value-centric representation that enhances traditidat-flow
analysis by appropriately naming the value that flows betwee
equivalent computations [6]. A valdwsbetween two (address)
expressions if they compute the same value (address) ditidrzal
data-flow analysis, each value is identified with its lexicame,
e.g., its abstract syntax tree. When two names match, thre s&izbs
(may) compute identical values. But what name should be used

!Recall that the use of may-alias information to disambigirtervening stores is
conceptually independent from detecting load reuse, axitlesl in Section 1. This
section also shows how may-aliasing is accounted for in@ad-reuse analysis.

ferentnames? The VNG overcomesthe naming problem by synthe back-substitution rules for loads and stores. Loads irseréfze in-

sizing names that fully trace the flow of the analyzed valuefan
performing data-flow analysis on this synthesized nameespidte
synthesized names are created using symbolic substiugiong
each control flow path; as a result, the VNG exposes equigaten
among address expressions that become visible only aftdraic
algebraic manipulations.

This paper addresses two deficiencies of the original VNGTBg
first is the lack of expressiveness specific to detecting feade.
Because the VNG only models value flow through arithmetic-com
putations, it cannot trace flow of addresses through the mgmo

direction level: when a namet 1 is propagated backwards across
t := load L, it will change toxL + 1. Stores may reduce the indi-
rection: acrossstore I, ¢, the namexZ + 1 will change tot + 1.

To obtain the performance reported in Section 5, it was seffi¢o
represent addresses with a symbolic ndine c¢o + c1v1 + ... +
envn + #(E'), wheree; are literalsp; are program variables, and
E' = F | e. ThetermPE’ adds addressing indirection. In the
actual implementation, one may want to set a maximum nurnfber o
indirection levels, to limit the number of symbolic namesated
during back-substitution. In our experiments, we usedllév@o

and hence cannot handle indirect addressing. The second defix operator in the address name) and level 1 (emperator in the

ciency is the high memory demands of the original VNG, a con-
sequence of its rigorous reflection of algebraic charasttesi of
the value flow. In this paper, the VNG is made meftectiveby
incorporating indirect addressing into the symbolic iptetation,
and moreefficientby developing aparse/NG representation that

is smaller and scalable.

Constructing the VNG. The VNG combines advantages of three
orthogonal analysis approaches. Each of them overcomfes-dif
ent obstacles in equivalence detectioglobal value numbering
finds equivalent expressions that have different names aas-t
signments to temporaries [Zymbolic interpretatiorinds equiv-
alences requiring algebraic simplification, such as rerrarray
accesses [7, 13{lata-flow analysig€onnects expressions that may
be equivalent only along some control flow paths [25, 29 tFiwe
sketch the construction of the original VNG enhanced to acno-
date indirect addressing. The following subsection dbssrhow
to build the sparse VNG.

The construction has three steps, each corresponding tofdhe
underlying approaches. First, the symbolic interpretaticeates
names necessary to trace the value flow. Second, value ningber

determines which names are synonymous references to the sam

value. The result of the first two steps is the VNG represanmtat
on which the third step computes value-related data-flowlpros,
using any traditional data-flow analyzer.

Step 1: Create the symbolic namesThe goal is to create suf-

address).

Figure 3(b) shows the VNG for the program in Figure 3(a). We
illustrate the back-propagation usipg, the address operand of the
load in node 9. When propagatipg across the assignmemnt : =

ps + 1in node 7, the right-hand side + 1 is substituted into
the current name,. We obtainps + 1, which becomes another
name for the analyzed address of the load (9). After crogsing

load L, in node 6L, is substituted fops and+Z, + 1 becomes
yet another name for the addregs, (is the address of the global
variablep). The name will be further changed at nodes 4, 3, and 1.
(Note that the Figure 3(b) is showing the VNG constructiotyon
along thethenpath.) The address operands of remaining memory
operations will also undergo this back-propagation. Tleeess of
name creation is demand-driven, as only the necessary raxmes
created.

When back-substitution is completed, the graph contsadse
threadsthat connect the different names of the analyzed value.
Along the control flow path associated with a value thread, th
threaded names refer to the same value. Therefore, all nyemor
operations on a thread access the same memory location.

Step 2: Find synonymous names.The value threads are used
by data-flow analysis to compute availability of prior megnac-
cesses. For example, reuse exists between nodes 4 and 8yas th
lie on the same thread. Unfortunately, threads alone cdimubt
reuse between the equivalent nodes 5 and 9, because thegtare n

ficient names so that a value can be identified even when it flows on the same thread. However, their address expresgioandp.)

outside the scope of the lexical name under which it was -origi
nally computed. Where the original name is not valid, we use a
equivalent symbolic name. The symbolic names are createl@é-on
mand by propagating backwards the address operand of eath lo
The propagation effectively creates a “symbolic” slice oé tad-
dress operand, by substituting into the propagated addrgsss-
sion each relevant assignment and performing some algetina
plification. While the original address operand represthedexi-

cal name of the address value, the slice expression is thieadigm
name. Below, we analyze the address of the load; its lexiaden

is y + 4. After this name is propagated through the preceding as-
signment, the name of the address chang@s<a: + 12, which is

a symbolic name. Note that the symbolic substitution wdevied

by algebraic simplification.

— name=2x x+ 12

Z2xz+8 + name=y 44

load (y + 4)

Yy
z

Due to loops, such a back-substitution process may not neieni
Therefore, we perform the substitution only foiiterations of each
loop, wherew is a small constant (1 to 4), analogical to the access
historyk used in the simulation in Section 2.

To accommodate indirect addressing, we enrich the symlaolic
guage of value names with a pointer dereferencing opefaaod

are both symbolically reduced by the back-propagationtsteipe
same name, at the entry of node 2. This proves that both of
these memory references must access the same memory tocatio
the names from the two parallel threads ay@monymoust each
node, as expressed by the dashed edges.

We call the second stegymbolic value numberings it extends the
standard global value numbering [2] with the symbolic matdp

tion. It finds the synonymous names by “collapsing” the teeia

a forward pass. Collapsing is performed by insertétge L, + 1

onto the thread connected with the dashed edge. The new store
writes to the same location as its synonymous counterp@ri(t;)

but is placed on the parallel thread, which enables detpttia
reuse between node 5 and 9. The insertion of the store casplet
the VNG construction.

Step 3: Solve data-flow problemgnce the VNG is constructed,

any conventional data-flow analysis can propagate factgatoe
threads augmented by the second step and answer the two ques-
tions posed by the PRE transformation: which memory aceesse
are equivalent, and along which control flow paths? In ounexa

ple, the reuse between store (5) and load (9) will be revealtte

form of a memory access beiayailableat node 9.

The Sparse VNG. Experiments with the original VNG (shown
in Figure 3(b)) revealed three sources of inefficienciesgméng

—7

joad . ——t
ti=p h=p 2 \ |
p-- 3 \ |
storep s 1
. el
joad 6 | ~ 1
+tp 7 \ |
S I Y
= ‘
w = 5 | |
p: gl obal
if %)
()*p-- " p2-|—1
W = *+4p; p3+1%

(a) the source program. (b) the original VNG.

f//?

—

(1) =) oad 11,1 (o 01,
b

1] = 1] |
!

|2 +1]:= 1] |

!

‘ [«Lp + 1]y := [p2 + 1] store [Ly] ‘
)

‘ store [t1] ‘
7

([<Lp + 1]z 1= @([<Lp + 1o, [<Lp + 111) |

!

[ps + 1] =Ly + 1]> load [L,] |
!
[[pa] = [ps + 1] |
!
‘ store [Ly] ‘
‘ load [p4] ‘
Congruence classes:
Cof {[*Lp + 1]0}
Cr: A{[Lpl}
Cyt ALy, [p]; [t1], [p2 + 1], [*Lp + 111}
Cs: {[xLp + 12,[ps + 1], [pa]}
(c) the SSA form of VNG. (d) the Sparse VNG.

Figure 3:The Value Name Graph.The original form, and the construction of the Sparse VNG.

practical deployment. First, the synonym relationshipes raain-

in Figure 3(d). The rewriting process that led to the sparsi&V

tained at each node, consuming much memory. Second, manyremoved from value threads many switches (some will remain a
symbolic names do not belong to any value thread on many nodes nodes, such as that betwe@sn andC's) and made the name space

wasting slots in data-flow bit-vectors. Such a construatiors out
of 1GB virtual memory on some procedures that grew duririg-nl
ing. Last, threads contain many switches between symbalites,
which reduces bit-vector parallelism, slowing down the lgsia.
We present here sparseVNG representation. It reduces memory
and time requirements, while maintaining the same powehas t
original formulation. The memory savings are more thand@-f
on some large procedures.

To obtain the sparse form, we skip the expensive Step 2 abual/e a
transform the VNG created in Step 1 into an SSA program with
the following (local) transformation: first, for each synibbaname

e we create a scalar variable, denofeld Second, at CFG nodes
where a name; is back-substituted inte., we insert the assign-
ment[e;] := [e=]. Figure 3(c) contains the result of such transfor-
mation. The memory references are correspondingly remriib
refer to these new variables.

In this intermediate form, eagh] variable will receive an SSA sub-
script after which the synonyms can be maintained globalpa
the global value numbering (GVN) [2], rather than on eachejod
which fixes our first deficiency. In our example, ofihZ, + 1]
needs an SSA subscript andbanode. After GVN places thg]
variables into congruent classes, the memory referencesetar

denser (four class names versus eight symbolic names)ixing
the remaining two deficiencies. Additionally, having theA§8op-
erties, the sparse VNG can be implanted into existing SS¥eta
PRE implementations, improving their precision [27].

Killing stores. The VNG analysis detects reuse aggressively.
Because the value threads extend uninterrupted acrosstipdye
killing stores, the VNG detects instructions that alwaysdrérom

the same location but it does not reflect that a stoagchange the
contents of this location between these two reads. Thisisive
focus on must-aliasing is an intentional design decisignsdép-
arating the killing effects, the VNG can detect a weaker fain
reuse, one that may occasionally be interrupted, and eplaith
data-speculative loads, as mentioned in Section 1.

The killing information expressed as may-alias informati@an be
accommodated in a natural way when data-flow analysis is com-
puted on the sparse VNG. Using our running example, assuahe th
ps may equall,. Becauséps] belongs to congruent clagg and

[L;] belongs toC, each store ta@; must kill reuse in clas§’s

and vice versa. Therefore, in Figure 3(d), the store in nodedd

kill the reuse for the load in node 9. Depending on the op&miz
this kill may entirely destruct the reuse, preventing regipromo-
tion, or may mark only the reuse as unsafe, enabling its @sfitmn

to the class names, which serve as names for all the synorsymou using a data-speculative load [21, 24, 34].

names in a class. After converting to class namesjetfie= [e2]
assignments can be removed. The result isfrerse VNGhown

4 Estimators

The output of the load-reuse analysis is a data-flow solutian

holds on paths along which reuse was detected. For any execu-

tion of the program, the total frequency of thesase pathgorre-
sponds to the run-time number of loads that would be remoyed b
completePRE transformation [11,36] and thus also to the dynamic
amount of reuse detected by the analysis.

In this paper, amstimatoris an algorithm that reconstructs the to-
tal frequency of reuse paths from a program profile. The @dtim
returns aprofile-weighted reusevhich estimates the optimization
benefit and thus can guide profile-directed optimizatioris 22].

| PRE | \cﬂnvc

RN

S |
‘

Figure 4:The estimators and their precision ordering.

more precise

In this paper, the weighted reuse serves as a measure of PRE-

completeness: when the profile used by the estimator is gtater
by the limit-study simulator, the weighted reuse shows vitzat-
tion of the simulator-detected reuse was found by the aisalysd
therefore indicates the precision of the analysis.

For pragmatic reasons, oastimatoralgorithms compute the op-
timization benefit fromedgeprofiles, which are widely used and
can be reused for various optimizations. Unfortunatelgeeplro-
files contain an inherent profiling error. Because they docapt
ture branch correlation, they cannot reconstruct pathuiagies
faithfully to the actual execution, which prevents precseputa-
tion of weighted reuse. Existing estimators disregard ttaa¢h-
correlation error. Built on the assumption that branchesataor-
relate, they are not concerned with how much the weightesiereu
differs from the actual reuse [11, 33]. To gain confidencedgee
profile-based estimates, we compute not a single reuse dntoin
instead itslower andupperbounds, by assuming pessimistic and
optimistic control flow scenarios.

This section presents fivestimatoralgorithms that differ in their
complexity and error-bounding precision. The practicabkien for
developing a hierarchy of increasingly better estimatbigure 4)

is that when a simpler (and faster) estimator yields loosents,
the optimizer can run the next better (but slower) estimatait
have a guarantee that the new bounds will not be worse. Toefurt
enhance practicality, the estimators use static analyiismation
that is also needed by the subsequent PRE transformatiaoh wh
amortizes their cost.

While estimators cannot eliminate the inherent edge-grefitor,
by computing error bounds, they indicate the fundamentata-
tions of edge profiles. Our second best estimator was ableutnd
the error down to 5%, a 4-fold improvement over the simplest e
mator. Therefore, with good algorithms, edge profiles seepnd-
vide sufficient precision, at least for optimizations basedoad
reuse analysis. Other optimizations may still require elated
profiles, such apath profiles [3, 4, 39]. Unfortunately, even path
profiles remedy the correlation problem only partially,lEstmea-
sure the frequency of paths that may not fully overlap thected
reuse paths, thus capturing only part of the correlatiorded¢o
reconstruct the reuse weight. In fact, we are not aware opamy
filing technique, short of a complete execution trace, tmatbées
computing the weighted reuse with no profiling error. As @ $te
wards this goal, the algorithmic abstraction behind ouinesgbrs
formulates what profiling information enables error-frestiraates.

The problem Statement: computing the weighted reuse. Fig-
ure 5(a) illustrates the problem of computing weighted eeuss-
sume that the load-reuse analysis detected that the trads tefer
always to the same memory locationAlso assume that the node
D contains a (killing) store that may write te, according to the
alias analysis. Given the edge profile annotated on the CI@t w

onz permitted by that profile?

The Estimators. The weighted reuse can be computed as the
sum of frequencies over akuse pathsi.e., all paths between the
three loads in Figure 5(a), excluding the paths crossingithieg
nodeD. Each time any of these paths is taken, exactly one load
of z can be removed. Namely, the paths pfe f, O], [C, 4, E],

[A, f,h,1, 3, E], and[A, f, h, 1, [k,]+, F], where 4’ denotes the
usual non-zero repetition. Even if we could determine tlee fr
guency of each reuse path, summing their frequencies by @aum
ating them would not be feasible, as the loop generatestiglfmi
many paths.

Rather than dealing with individual paths, our estimatard firo-
gram points that efficiently summarize groups of paths vd#mti-

cal reuse properties. For the upper bound, we find a set ofgmog
points calledgeneratorson which the reuse is available along all
incoming paths. To compute the actual value of the upper thoun
we determine how much reuse can flow between generatorsand th
set ofconsumelpoints, on which a load consuming the reuse ex-
ists along each outgoing path. For the lower bound, we find¢te
of stealerpoints on which the reuse is available along no incoming
paths. To arrive at the lower bound, we determine how nneake-
free flow can reach the consumestealing[4] the reuse flowing
from the generators.

The estimators differ in how they compute these three sethaw
precisely they account for the possible flow of reuse amoamth
Next, we present a brief overview of the individual estimgto

PRE is the simplest estimator. Mirroring closely the PRE trans-
formation, generators are taken to be those instructiocats th
generate the reuse; stealers are the points where a load is in
serted by PRE to compensate partial redundancy; and con-
sumers are the partially redundant loads. To determinetwhic
generators (or stealers) may provide (or steal) reuse fdr ea
consumer load, PRE uses control flow reachability.

The PRE estimator is imprecise because it includes in itstwor
case assumptions also those reuse paths whose weight cambe ¢
puted precisely even from the edge profile. Such paths car-be e
cluded from the worst case by placing generator, stealercan-
sumer points closer together, effectively reducing the Ipemof
paths among them. To find such a placement, the remaining esti
mators use the observation that all branch-correlatiar éarmful

to reuse calculation can be contained into a special regalled a
CMP region(short for code-motion-preventing region), originally
developed to identify obstacles to code motion in a comphRE
transformation [11].

2Thepermittedminimum/maximum is a tight bound. Our estimators are ndttig

is the minimum and the maximum number of reuse Opportun|t|es Still, the more precise the estimator, the tighter the beuncbmputes.

actual flow capacity (the weak link is exposed)
infinite flow capacity

100,
J g
65 10
35 CMP(x)
h
Cloadx) |75 |40
i
35| 40 x 855
30 k
CMP region
entries: oM @ Must-Avail
N O No-Avail
exits: XM W Must-Antic
xN O No-Antic

1150

(a) The source program annotated

(b) The CMP region for the
with an edge profile.

reuse on memory location x.

(d) CF\/IP estimator, based on
frequency reachability.

(c) cMP estimator, based on
control-flow reachability.

Figure 5:An example of computing the weight of load reuse from the edgprofile.

The CMP is the smallest multi-entry, multi-exit region iniafnthe
entries can be divided between generators and stealertheexits
between consumers and (strict) non-consumers. Being thkesin
such region, it finds the desired closest placement, cornisglim
concert all reuse paths, not only those leading to a singke. [dhe
CMP contains all the error because, on each node in the CMP, th
reuse is generated only aloagmeincoming pathsndcan be con-
sumed by a load only alonspmeoutgoing paths. Consequently,
without the knowledge of branch correlation in the CMP, ihat
possible to determine how much incoming reuse actually fitwe
consumers in the profiled program execution. On the othed han
outside the CMP region, the reuse can be computed withoutan e
ror. The CMP estimators thus focus on reducing the erroraioed

in the CMP region, as follows:

The Algorithms. Next, we present the estimators in more detail.
Each estimato# returns upper and lower bounds on the total reuse
in the programP, which are denotetd“(P) andL*(P), respec-
tively. Also, f(d) denotes the execution frequency &érwhered

is a CFG node or edge. Finallj(P) denotes the set of loads in
programpP.

PRE. The reuse bounds are calculated separately for each con-
sumer point, i.e., for each static load. The sum of bounds al\ve
loads then bounds the total program reuse. For each Jogelfind
thegeneratorset(G({) of loads and stores that generate the reuse for
l. The setG(1) contains those loads and stores that are backwards
reachable fromi along some (kill-free) reuse path. Also through
reachability, we find thetealerset of CFG edgeS({) onto which

PRE would insert a load to makdully redundant. The reachabil-

ity is computed on the sparse VNG, shown in Figure 3(d), where

CMP' estimator conservatively assumes that there is a single store (- is backwards reachable fromad Cs, across the-node.

CMP (hence thd in the name), in which all entries and ex-
its are mutually reachable. This false reachability may-con
nect consumersto spurious generators and stealers, jimgduc
loose bounds.

CMP* attacks false reachability by partitioning the CMP region
into connected CMP subregions, using control-flow reacha-
bility between CMP entries and exits. The individual con-
nected CMPs are treated with the CM#timator.

CMP" exploits entry-exitreachability further. Compared to
CMP, it removes false reachability even within each con-
nected CMP, by computing reuse as a network flow problem.

CMP’ exposes to the networdow computation all the CFG
edges in the CMP, not just the summary entry-exit reachabil-
ity information, thus exploiting a refined notion of reachab
ity that accounts for how much reuse can flow between CMP
entries and exits, and not just whether they are reachable.

CMP Correlation Profiling estimator is not based on edge pro-
files. Instead, it assumes profile information that coreslat
CMP entries and exits sufficiently to avoid the profiling erro

To compute the upper bound on the reuse detected forl/load
assume the most optimistic control flow scenario that akeayen-
erated inG(1) flows tol. In other words, the frequency of reuse
paths betweef/({) and{ equals the lower of's andG(1)’s fre-
qguencies. The lower bound assumes the worst case: all flow fro
stealers reachds maximizing the frequency of reuse-free paths
that reacHi; the remaining paths must be reuse paths originating at
the generators. Hence we get: (thex operator makes the lower
bound non-negative)

the PRE estimator:

UTRRP) = > min{f(1), Y f(9)}
lEL(P) gEG()

L°REP) = D max{0,f()— D f(s)}
lEL(P) s€S(1)

Let us apply the PRE estimator on the program in Figure 5(a).
The bounds for loadst and C are trivial, asA is not redun-
dant andC' is fully redundant:L"R*5A4) = UPR§A) = 0 and

LPREC) = UPRR(C) = 35. The profiling error affects only
the partially redundant load'. Its generators and stealers are
G(E) = {A,C} andS(E) = {(g,h), (9,k), (D, E)}, yielding
boundsL"R§ E) = 45 andUPRH E) = 135. The total reuse for
the program iLPR§ P) = 80 andURY P) = 170, which is a
170/80 = 112.5% error.

The large PRE’s error is not all due to the inherent deficieci
of the edge profile. The cause of the error is “overbookinga of
generator by multiple consumers. In Figure 5(a), lgas a gen-
erator common to consumer loa@sand E, which together con-
sume more reuse that can generate({ counts 35 andZ counts
100). Technically, the cause of overbooking is that PRE ggsar
the entire frequency contribution of a generator to mudtipguse
paths that originate in the generator. Instead, the georefiat-

The CMP is the smallest region in which reuse is uncertainege
ators cannot be moved closer to consumers, because theg @roul
ter the CMP regions, where reuse is not available along edirim

ing paths and thus they would no longer act as generatoratiide
cal arguments prevent moving stealers and consumer pdihes.
CMP thus maximizes the number of paths that can be excluded
from the worst-case assumptions about branch correlatimunts
side the region, the reuse can be computed without any exren,
from an edge profile. It can be shown that all reuse bypasking t
CMP region can be measured by finding generator points orhwhic
the reuse is available alorall incoming paths and will be con-
sumed alon@ll outgoing paths. Such generators have no branch-
correlation uncertainty—their reusedsfinite In Figure 5(b), the
definitegenerator points are» andrn. Each of them provides 35
units of reuse that will be fully consumeth(s by C' andn’s by

quency should be divided among these paths. This can be gone b E).

moving the A generator into the edgég, C') and(f, k), which
become the new generators, effectively dividing the cbation of

A among load$’ andE. The CMP region is an abstraction that di-
vides the contribution of generators, stealers, and coassinhe
CMP region for the running example is shown in Figure 5(b); it
effectively excludes the reuse pdth, f, C] from the worst-case
considerations.

First, we present the definition of the CMP region. Formathg
CMP is a subgraph of the Sparse VNG. To simplify the presenta-
tion, we establish the restriction that the sparse VNG dostao
¢-nodes. Under this restriction of generality, each memaegtion

has exactly one name. Without having to switch names, weszanr
son about estimators using the CFG, rather than the moreajene
VNG .2While the estimator extensions to handle an arbitrary VNG
are small, their explanation is beyond the scope of this pape

can be found in [5].

Given the restriction, the CMP region is identified by sotyihe
problems of anticipability and availability, which are defd as fol-
lows [11].

Definition 1 Letp be any path from the CF&art node to a node
n. The contents of memory with addresss availableatn along

p iff z is loaded or stored op without a subsequent killing store.
Letr be any path from: to the CFGendnode. The load of address
x is anticipatedat» alongr iff = is loaded on before any killing
store or a store to. The availability ofz at the entry of: w.r.t. the
incoming paths is defined as:

Must all
AVAILn[n,z] = ¢ No if z is available along no paths.
May some

Anticipability (ANTIC) is defined analogously.

Definition 2 The CMP region for address denotedCMP[z], is
a set of nodes whereAVAILx[r, z] = May andANTIGn[n, z] =
May .

Figure 5(b) shows the CMP region for the addressach CMP
region has a set of entry edges and exit edges. Each entithés ei
Must- or No-available; we denote them™ andn®, respectively.
Then™ entries act as generators and & entries act as steal-
ers. Similarly, exits are eith@fust- or No-anticipated, denoted™
andz™, respectively. The™ act as consumer points. The non-
consumetr:™ exits do not participate in the estimator algorithms.

3Note that a sparse VNG (Figure 3(d)) without name switchesdcstill contain
name switches in its intermediate (dense) form (Figure)3(b)

To formalize the above discussion, the CMP divides the rensm
address: into definiteanduncertain The definite reus&4(x) has
no error and equals the sum of frequencies of all definite igeoies
Ga(z). For the example in Figure 5, the definite reusg)
70. In the formulas below) (P) is the set of all address names
mentioned in the program text. The definite generafarge) are
placed as close to the consumers (the loads af possible.

all CMP estimators:
UM (P) = > (Ra(z) + U ()
z€M(P)
LM(P)y = > (Ra(x) + LT (@)
z€M(P)
Ra(x) = > fl9)
gE€G ()
Ga(z) = {(u,v) | AVAILou[u,] = Must A
(AVAILn[v, 2] = May V v = load z) A
ANTICy[v,] = Must}

The CMP estimators differ in how they comput&;™"(=) and

LSMP(a), which are the bounds of the uncertain component of the
weighted reuse. Figure 6 compares the CMP estimators.

CMP! is the simplest CMP-based estimator. It identifies CMP en-
tries and exits and, to minimize its cost, assumes that edifa C
entry-exit pair is mutually reachable. The resulting ojiin sce-
nario is that alln™ entries are generators for a! consumers.
The upper bound is then the smaller of the total generatotteand
total consumer frequencies (Figure 6). The lower bounayes
the same conservative assumption that the CMP regionysdati-
nected. CMP is efficient; it computes only thANTIC andAVAIL
data-flow solutions. Entries and exits are identified by erarg
the two data-flow solutions locally at each node. Both thaetimis
and the entries are also needed by the PRE transformatiprHdrl

the running example in Figure 5(b), CMRieldsL,, ™™ (z) = 10
andUSMP' () = 60. The total program bound s (P) = 80,

UCMP!(2) = 130, which improves PRE’s upper bound by remov-
ing overbooking of loadi, reducing the error t430/80 = 62.5%.

CMP* improves precision by eliminating some false entry-exit
reachability assumed by CMPIt identifies connected CMP sub-
regions, thus partitioning generator, stealer, and coesisats.

The smaller sets result in less overestimation when corisglthe
worst-case scenarios. The bounds are computed sepacatech
connected CMP and then summed. In practice, we observed that

M M NN NM NN NM
ny 1,1
N
ny LSS
M N
x] x] 7)) 11
N N
n n
2 M 2,1 M
n; ng LoN ' ny2
N N M
x x x x
2 . 3 2,1 =M 2,2 i i
2 2,1
XM XM
CMP! CMP*© CMP" CMP/
Uy || min{}>; nM >, =M} >, min{}; n%,zj x%} maxfloy NM X M)

Lu || max{0,3%;«} - 3, nl¥}

> imax{0,>; x% -2 nf\;

max{0,>"; #M — maxflow(NV, X M)}

Figure 6: The CMP-based estimators:algorithms for computing the uncertain component of waigheusen™, n™¥, andz™ are the

frequencies of the corresponding CMP entries and exits. flova, v

) denotes the maximum flow between vertieceandv. CMP'

assumes all CMPs are one, i.e., that all entries and exithaigally reachableCMP ¢ separates connected CMPs, eliminating some false
reachability. CMP" exploits intra-CMP reachability, using a max-flow compigtat CMP/ exposes to the max-flow all intra-CMP edges,

including their actual profile weights.

the partitioning of the CMP region produced the highestdase in
precision among all presented techniques. The CkHimator is
more complex than CMP it must compute 1) reachability of CMP
entry-exit pairs and 2) the transitive closure of reaclighii order
to group the entry-exit pairs into connected subregionsvéler,
these two results are also needed in PRE to guide profiletdite
speculation [11]. In the running example, the CMP is coneect
hence the CMPestimate is identical to that of CMP

CMP" adds more precise handling of intra-CMP reachability.
Each CMP is represented as a bipartite graph in whittny and
exit nodes are connected if they are reachable in the CMP (Fig-
ure 6). The bipartite graphs are connected into a largerar&tw
using three super-nod®™, N, andX™ that connect all gen-
erators, stealers, and consumers, respectively. The flpacits

of edges connecting the super-nodes reflect the frequencijef
entry and exit edges; the capacity of intra-CMP edges issgoen
vatively) infinite. Equipped with this network, we computeet
upper reuse bound as the maximum flow betwdE" and X,
Similarly, the amount of reuse that can be stolen from comsam
is given by the max-flow betweeN”™ andX?*. Compared to
CMP<, the CMP estimator does not compute transitive closure of
reachability, but instead the more costly network-flow. eNtitat
the network construction implicitly partitions CMP intormgected
subregions. The network for our running example is showrida F
ure 5(c). Because CMP exit, j) is not reachable from CMP en-
try (g, k), less reuse can be stolen than in CM®hich improves

its lower bound:L$M™" () = max{0, (40 + 20) — 30} = 30,
LEMP(P) = 100, USMP"(P) = 130, which is a130/100 = 30%
error.

CMP/. While an entry-exit pair may beontrol flowreachable, it
may not be sufficientlfrequencyreachable. In Figure 5(b), such

a pair is the CMP entryf, h) and the CMP exitl, E). The only
path connecting them contains a weak link—the e@dgg) with

a low weight of 5. Even though there is enough reuse on the en-
try, the weak link prevents this reuse from saturating thig erly

5 units of reuse can be exploited. To account for weak links, i
suffices to expose to the max-flow computation the insidecstru
ture of the CMP at the edge level, including edge frequeneiss

10

shown in Figure 5(d). After the weak link is accounted foe tip-
per bound of the previous estimator is improvu‘f.MPf(x) = 45,

LEMP'(P) = 100, UM (P) = 115, which is al15/100 = 15%
error.

CMP Correlation Profiling. Using the CMP region, we can spec-
ify what information from a profiler would enable computiriget
reuse with no branch-correlation error. Coming back to fadifb),
we can observe that the precise amount of uncertain reusdsequ
the number of times a generator entry/ is followed by a con-
sumer exitz™. Therefore, measuring the pair-wise correlation be-
tween CMP entries and exits captures all branch correldtian
affects the amount of reuse. After the data-flow analysistities
the CMP regions, the profiler can instrument the program te co
lect this pair-wise information. Whether such a pair-wisefiting
can be (efficiently) performed prior to knowing the shapeSiiP
regions in the profiled program is an open question.

Experiments: estimator precision. Figure 7 compares the
precision of the estimators. For each benchmark, we plot the
weighted reuse obtained by four estimators (we have noteimpl
mented CMP). The reuse is broken up into four parts; the left
two bars together represent the definite reuse compaRgnon
which all benchmarks are normalized. The third and fourtfs ba
are the lower and the upper bounds on the uncertain reuse. The
floating-point benchmarks (the lower four) have nearly noam
tain reuse, due to simple control flow. On the other hand,¢bse

in integer benchmarks has a significant uncertain compongat
can observe that with good algorithms, the profiling errar ba
greatly reduced. Note that while, in theory, CKMB not strictly
more precise than PRE (as the precision ordering showsgrit p
forms much better in practice. In fact, CMB appreciably better
than CMF only ongcc. Hence, due to its simplicity, CMPmay

be the estimator of choice. Overall, the average error wés fbb
PRE and 5% for CMP.

An important observation we made was that the estimatoriprec
sion is strongly dependent on the pointer aliasing infoiomatBy
interrupting some reuse paths, the killing stores induceer@viP
regions, with more entries and exits, increasing the amofian-

statically detected reuse, profile-weighted
normalized to the amount of definite reuse

0 0.5 1 15 2
go ‘ ﬁ
m88ksim E
=
compress T
ijpeg -
—§
-
e —
vortex E L upper bound
lower bound
tomcatv }
|
|
swim } CmP!
A
} \\\ |
su2cor] ‘\\ CMF°
H \‘ ,/,,/
hydro2d 1 CMP
|
|

D definite reuse: full redudancy
M definite reuse: strictly partial redundancy
DOuncertain reuse: lower bound
W uncertain reuse: upper bound

Figure 7:The experimental comparison of estimator precisions.

certain reuse. For the comparison in Figure 7, we selecteddh-
figuration of load-reuse analysis that caused the largéistater
errors (kill set = each array and pointer store, and eachepiure
call; see Section 5).

Experiments: the effectiveness of profile-guided PREThe es-
timator experiment also shows the power of the program foans
mation stage [11] of our path-sensitive optimizer [5—11Jjst:the
leftmost bar in Figure 7 shows the reuse that exists on aligat
coming to a load. Thidull redundancy represents the dynamic
amount of loads that can be removed with global common subex-
pression elimination (CSE). The second bar shows the réuage t
exists on some incoming paths but is still definite. This tolidal
reuse can be exploited with the standard code-motion PREF25
nally, third bar (the lower bound) of the CMRstimator gives the
additional loads that can be removed with profile-guidedtafze
tive PRE (Section 3.2 in [11]). On average, the standard PRE e
ploits less than half of all partial redundancies; the peedilided
PRE exploits nearly all (the total amount of partial redumzes
lies somewhere between the lower and the upper reuse bounds)

11

5 Experiments

This section experimentally evaluates the load-storeyaigirom
Section 3 in relation to the limit study from Section 2. Besau
our implementation of the analysis is intraproceduralyétierence
point for comparison is the intraprocedurally observedsesuTo
minimize noise in the baseline, we use the reuse collectie atc-
cess historys = 1. We analyzed the unoptimized source programs.
In summary, for each benchmark, the baseline for compaitson
the “X” mark in the leftmost column in Figure 2. Figure 8 plots the
amount of reuse discovered by the analysis. The plotted atnou

was computed as the mean average of the lower and upper bounds

returned by the CMPestimator.

The load-reuse analysis was carried out under varying gsoms.
The two highest bars in Figure 8 show the reuse detectedesel -|
and O-level address indirection, respectively. Our imm@atation
considered only indirect loads, not stores, which may exytze
lack of indirect reuse in some benchmarks. To determinecthge-
detection power of the analysis, these two bars assumedagperf
aliasing under which no stores along a reuse paths wouldhlell
detected reuse. While not all of this aggressively deteretesle can
be promoted to registers, it can be exploited with alteveatuse
mechanisms, such as data-speculative loads, as notedtiarSkc
Overall, the comparison with the limit study shows that malgisis
is about 80% PRE-complete.

Aliasing. We also studied the killing effects of intervening stores
and procedure calls. Because our compiler does not perftas a
analysis, we considered three hypothetical levels of poaltasing
precision, specified as follows: first, we assumed that ordge-
dure calls killed the detected reuse; second, we added talltket

all stores except for stores to global variables; thirdstdtes and
procedure calls killed the reuse. Due to aggressive irginonly

a small amount of reuse was lost at procedure calls (the JWwhite
segments). However, array and pointer stores remove abnest
third of reuse (the dark, middle segments). While this peissic
hypothetical aliasing gives disappointing results, otlesearchers
showed that even a simple alias analysis may produce mernsry d
ambiguation that is near-optimal for purposes of registeno-
tion [19, 28].

Register Pressure. Besides aliasing, a lack of registers is another
reason why detected reuse may not lead to register promdtien
register pressurat a CFG node is the number memory locations
whose reuse path crosses that node; each location needsgne r
ister. We averaged the register pressure over all nodeghtirag
each node by its profile frequency. For the O-level perfaasalg
analysis configuration, the highest average register presgs 34
registers forsu2cor . Such an amount of registers will be soon
available in general-purpose processors.

6 Related Work

Simulation-Based Analysis Evaluation. While in microarchi-
tecture the use of upper-bound limit studies has become @omm
place, in compiler optimization this trend is recent. Intfét9] is

the only simulation-based evaluation of an analysis knawos.
Diwan et al use a simulator to derive an ideal performance of an
algorithm for removing heap-based loads. The ideal perdoce

is used to determine what alias analysis is near-optimahflad
removal, but still not too expensive. Our work differs in tthnee
focus on load-reuse analysis, rather than on the may-atialy-a
sis. Larus and Chandra developedampiler auditortool, which

statically detected reuse, profile-weighted
% of simulator-detected reuse

go

m88ksim

gcc

compress

ipeg

vortex

tomcatv

swim

su2cor

hydro2d

@ 0-level indirection, kill: all stores and procedure calls

O 0-level indirection, kill: array-ptr stores and procedure calls
W O-level indirection, kill: procedure calls

O 0-level indirection, no kill

1-level indirection, no kill

Figure 8:The reuse exposed by the static load-reuse analysis.

analyzes the program trace to discover limitations and bugse
compiler [26]. Reinmaret al developed a load-reuse profiler tech-
nique similar to our simulator limit-study, with the prinyagoal to
give load-reuse hints to the processor [34].

Estimators. Frequency analysigs the only existing systematic
method for profile-weighting a data-flow solution [33]. Liker
estimators, it is based on edge profiles. Unlike the estirnafie-
guency analysis does not bound the profiling error. Howear;
sidering that the inherent edge-profile error is small, agyested
by our experiments, the maximum amount of error in the resfult
frequency analysis will be correspondingly small (the heslways
falls between our lower and upper bounds). Our estimatées af
alternative to frequency data-flow analysis. While frequyeanal-
ysis requires an elimination-style data-flow solver, oumestors
use reachability or network flow algorithms, which may beieas
to implement. Due to the small size of the CMP region, estmsat
are expected to run faster than a frequency data-flow solver.

Load-Reuse Analysis. Traditionally, load removal is navigated
by alexicalload-reuse analysis, in which only loads with identical
names (scalars) or identical syntax-tree structure (tefeelds) can
be detected as equivalent [19, 27,27]. Techniques basedloa v
numbering can match expressions that have different naloes,
their symbolic interpretation power is limited to handliogpy as-
signments [2,37]. Therefore, they cannot capture equicaiethat
require symbolic interpretation, such as the recurreayaccesses
shown in Section 2 for which specialized techniques have dee
veloped [7,13,15]. Our load-reuse analysis encapsulatbsialue
numbering and symbolic capabilities. While it is less pduighat
array dependence techniques [14], the experiments shavetna
analysis uncovers about 80% of opportunities exploitalylg@dr-
tial redundancy elimination, including array and pointads.

12

Acknowledgments

We are grateful to Brian Deitrich and John Gyllenhaal forlakp

ing the intricacies of the IMPACT compiler. The commentaiiro
the anonymous reviewers significantly improved the presimt

of the paper. This work was supported by NSF grants CCR—
9808590 and EIA-9806525. Glenn Ammons spotted a bibliogra-
phy error in the version of the paper published in the comieze
proceedings.

References

[1] Ole Agesenand Urs Holzle. Type feedbackvs. type infees
A comparison of optimization techniques for object-orazht
languages. IMOPSLA'95 Conference Proceedingsges
91-107, 1995.

[2] Bowen Alpern, Mark N. Wegman, and F. Kenneth Zadeck.
Detecting equalities of variables in programs1Bth Annual
ACM Symposium on Principles of Programming Languages
pages 1-11, San Diego, California, January 1988.

[3] Thomas Ball and James R. Larus. Efficient path profiling.
In 29th Annual IEEE/ACM International Symposium on Mi-
croarchitecturepages 46-57, 1996.

[4] Thomas Ball, Peter Mataga, and Mooly Sagiv. Edge prafilin
versus path profiling: The showdown. @onference Record
of the 25th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languagekanuary 1998.

[5] Rastislav Bodik. Path-Sensitive Value-Flow Optimizations
PhD thesis, University of Pittsburgh, in preparation.

[6] Rastislav Bodik and Sadun Anik. Path-sensitive valoefl
analysis. InConference Record of the 25th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guagesJanuary 1998.

[7] Rastislav Bodik and Rajiv Gupta. Array data flow analyers
load-store optimizations in fine-grain architecturégerna-
tional Journal of Parallel Programming24(6):481-512, De-
cember 1996.

[8] Rastislav Bodik and Rajiv Gupta. Partial dead code elani
tion using slicing transformations. Proceedings of the ACM
SIGPLAN '97 Conf. on Prog. Language Design and Impl.
pages 159-170, June 1997.

[9] Rastislav Bodik, Rajiv Gupta, and Mary Lou Soffa. Inter-
procedural conditional branch elimination. Pmoceedings of
the ACM SIGPLAN '97 Conf. on Prog. Language Design and
Impl., pages 146-158, June 1997.

[10] Rastislav Bodik, Rajiv Gupta, and Mary Lou Soffa. Refin-
ing data flow information using infeasible paths.Rroceed-
ings of the Sixth European Software Engineering Conference
(ESEC/FSE’97pages 361-377. LNCS Nr. 1301, Springer—
Verlag, September 1997.

[11] Rastislav Bodik, Rajiv Gupta, and Mary Lou Soffa. Coetgl
removal of redundantexpressionsHroceedings of the ACM
SIGPLAN '98 Conference on Programming Language Design
and Implementatiorpages 1-14, June 1998.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

Preston Briggs and Keith D. Cooper. Effective partedun-
dancy elimination. IfProceedings of the Conference on Pro-
gramming Language Design and Implementatjpages 159—
170, June 1994.

David Callahan, Steve Carr, and Ken Kennedy. Improving
register allocation for subscripted variables. Aroceedings

of the ACM SIGPLAN '90 Conference on Programming Lan-
guage Design and Implementatigrages 53—-65, June 1990.

S. Carr, K. McKinley, and C.-W. Tseng. Compiler optimiz
tions for improving data locality. I#®roceedings of the Sixth
International Conference on Architectural Support forPro
gramming Languages and Operating Systems (ASPL%28)
Jose, CA, October 1994.

Steve Carr and Ken Kennedy. Scalar replacementin tae pr
ence of conditional control flowSoftware Practice and Ex-
perience24(1):51-77, January 1994.

Steven Carr and Ken Kennedy. Improving the ratio of

memory operations to floating-point operations in loops.

ACM Transactions on Programming Languages and Systems
November 1994.

P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter,
and W. W. Hwu. IMPACT: An architectural framework
for multiple-instruction-issue processors. Pnoceedings of
the 18th International Symposium on Computer Architecture
(ISCA) volume 19, pages 266—-275, New York, NY, June
1991. ACM Press.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N.\Weg
man, and F. Kenneth Zadeck. Efficiently computing static
single assignment form and the control dependence graph.
ACM Transactions on Programming Languages and Systems
13(4):451-490, October 1991.

Amer Diwan, Kathryn S. McKinley, and J. Eliot B. Moss.
Type-based alias analysis. Broceedings of the ACM SIG-
PLAN’98 Conference on Programming Language Design and
Implementation (PLDI)pages 106-117, Montreal, Canada,
17-19 June 199&IGPLAN Notice83(5), May 1998.

E. Duesterwald, R. Gupta, and M. L. Soffa. A practicateda
flow framework for array reference analysis and its use in op-
timizations. InProceedings of the ACM SIGPLAN '93 Con-
ference on Programming Language Design and Implementa-
tion, pages 68-77, June 1993.

Benjamin Goldberg, Hansoo Kim, Vinod Kathail, and John
Gyllenhaal. The trimaran compiler infrastructure for in-
struction level parallelism research. Technical Report
http://ww. trinmaran. org, Hewlett-Packard Labora-
tories, University of lllinois, NYU, 1998.

R. Gupta, D. Berson, and J.Z. Fang. Resource-sensitive
profile-directed data flow analysis for code optimization. |
30th Annual IEEE/ACM International Symposium on Mi-
croarchitecturepages 358-368, December 1997.

W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J.

Warter, R. A. Bringmann, R. G. Ouellette, R. E. Hank, T. Kiy-

ohara, G. E. Haab, J. G. Holm, and D. M. Lavery. The su-
perblock: an effective technique for VLIW and superscalar
compilation. InThe Journal of Supercomputint992.

13

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Vinod Kathail, Michael S. Schlansker, and B. Ramakmih
Rau. Hpl playdoh architecture specification: Version 1.0.
Technical Report HPL-93-80, Hewlett-Packard Laborato-
ries, 1994.

Jens Knoop, Oliver Rithing, and Bernhard Steffen. iQak
code motion: Theory and practiceACM Trans. on Progr.
Languages and Systeni$(4):1117-1155, 1994.

James Larus and Satish Chandra. Using tracing and dgnam
slicing to tune compilers. Technical Report TR-1174, Uni-
versity of Wisconsin, 1993.

Raymond Lo, Fred Chow, Robert Kennedy, Shin-Ming Liu,
and Peng Tu. Register promotion by sparse partial redun-
dancy elimination of loads and stores. Rnoceedings of the
ACM SIGPLAN’98 Conference on Programming Language
Design and Implementation (PLDIpages 26—-37, Montreal,
Canada, 17—-19 June 1998.

John Lu and Keith Cooper. Register promotion in C pro-
grams. InProceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI-
97), volume 32, 5 0ACM SIGPLAN Noticepages 308-319,
New York, Junel5-18 1997. ACM Press.

E. Morel and C. Renviose. Global optimization by supies
of partial redundancie€CACM 22(2):96-103, 1979.

Frank Mueller and David B. Whalley. Avoiding conditiah
branches by code replication. ACM SIGPLAN Conference
on Programming Language Design and Implementatioh
ume 30 ofACM SIGPLAN Noticepages 56—66. ACM SIG-
PLAN, ACM Press, June 1995.

John Plevyak and Andrew A. Chien. Type directed cloning
for object-oriented programs. EBighth Annual Workshop on
Languages and Compilers for Parallel Computing, Lecture
Notes in Computer Scienceolume 1033, pages 566—-580,
Columbus, Ohio, August 1995.

G. Ramalingam. The undecidability of aliasingACM
Transactions on Programming Languages and Systems
16(5):1467-1471, September 1994.

G. Ramalingam. Data flow frequency analysis.Pitmceed-
ings of the ACM SIGPLAN 96 Conf. on Progr. Language De-
sign and Implementatiqipages 267—-277, June 1996.

Glenn Reinman, Brad Calder, Dean Tullsen, Gary Tysod, a
Todd Austin. Profile guided load marking for memory re-
naming. Technical Report UCSD-CS98-593, University of
California, San Diego, 1998.

A. V. S. Sastry and Roy D. C. Ju. A new algorithm for scalar
register promotion based on SSA fortdACM SIGPLAN No-
tices 33(5):15-25, May 1998.

Bernhard Steffen. Property oriented expansionPioc. Int.
Static Analysis Symposium (SAS’96)lume 1145 oLNCS
pages 22-41, Germany, September 1996. Springer.

Bernhard Steffen, Jens Knoop, and O. Rithing. Theevalu
flow graph: A program representation for optimal program
transformations. IfProceedings of the 3rd European Sympo-
sium on Programming (ESOP’90yolume 432, pages 389—
405, Denmark, May 1990.

(38]

[39]

Youfeng Wu. Conflict Ratio Profiling for Memory Refer-
ences. Technical Report MRL Compiler Technical Report
96012, Intel Corp., 1996.

Cliff Young and Michael D. Smith. Improving the accuyaaf
static branch prediction using branch correlationPtaceed-
ings of the Sixth International Conference on Architectura
Supportfor Programming Languages and Operating Systems
pages 232-241, San Jose, California, October 4—7, 1994.

14

