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Abstract - Although graph coloring is widely recognized 
as an effective technique for global register allocation, 
the overhead can be quite high, not only in execution 
time but also in memory, as the size of the interference 
graph needed in coloring can become quite large. In this 
paper, we present an algorithm based upon a result by 
R. Tarjan regarding the colorability of graphs which are 
decomposable using clique separators, that improves on 
the overhead of coloring. The algorithm first partitions 
program code into code segments using the notion of 
clique separators. The interference graphs for the code 
partitions are next constructed one at a time and 
colored independently. The colorings for the partitions 
are combined to obtain a register allocation for the pro- 
gram code. The technique presented is both efficient in 
space and time because the graph for only a single code 
segment needs to be constructed and colored at any 
given point in time. The partitioning of a graph using 
clique separators increases the likelihood of obtaining a 
coloring without spilling and hence an efficient alloca- 
tion of registers for the program. For straight line code 
an optimal allocation for the entire program code can be 
obtained from optimal allocations for individual code 
segments. In the presence of branches, optimal alloca- 
tion along one execution path and a near optimal alloca- 
tion along alternative paths can be potentially obtained. 
Since the algorithm is highly efficient, it eliminates the 
need for a local register allocation phase. 
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1. Introduction 

The problem of global register allocation is com- 
monly formulated as a graph coloring problem in which 
an assignment of a color to each node in a graph is made 
such that no two nodes directly connected by an edge 
have the same color [2,1,4]. For register allocation, an 
interference graph is constructed in which the nodes 
correspond to candidates for registers and edges connect 
nodes that must be assigned different registers. A color- 
ing of this graph is equivalent to an assignment of regis- 
ters. Since graph coloring is an NP-complete problem[7], 
polynomial time heuristics are used to obtain suboptimal 
colorings. The interference graph for an entire pro- 
cedure is constructed before register allocation is carried 
out. Since the coloring algorithms can be expensive both 
in time and memory demands, global register allocation 
is sometimes preceded by a local allocation phase[4]. 
However, this approach may not be successful as it has 
been found that many of the basic blocks in a program 
are small and so most of the allocation is done during 
the global allocation phase[8]. 

In this paper we present a strategy which can be 
used to improve both the space and time efficiency of 
global register allocation based upon graph coloring. As 
a result, local register allocation is no longer needed. 
The strategy is based upon a result due to Tarjan 
regarding the colorability of a graph containing clique 
separators[9]. A clique separator is a completely con- 
nected subgraph whose removal disconnects the graph 
into at least two subgraphs. These subgraphs may be 
further decomposable into smaller subgraphs using 
clique separators. If each subgraph is colored using at 
most k colors, then the entire graph can be colored using 
) colors by combining the colorings of the subgraphs. 
The subgraphs resulting from the decomposition of an 
interference graph correspond to code segments in a pro 
gram. Thus, clique separators partition a program into 
code segments for which the register allocation can be 
performed independently. We show that the partition- 
ing of the program can be carried out by examining the 
code; hence the technique does not require construction 
of the entire interference graph and running an algo- 
rithm to find the clique separators. The interference 
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graph for the partitions can be constructed one at a 
time, and some coloring heuristic (e.g., priority based 
coloring) can be used to color a partition. The colorings 
for the partitions are combined, resulting in a coloring of 
the entire program code. 

The allocation using clique separators can be car- 
ried out efficiently because at a given point in time, only 
an interference graph for a single partition needs to be 
constructed. This reduces the space requirements. Furth- 
ermore, if the run-time complexity of the coloring heuris- 
tic is a polynomial of a degree greater than one in the 
number of nodes in the graph, the time spent in coloring 
reduces with the number of partitions. The efficiency of 
the algorithm not only makes it possible to eliminate the 
local allocation phase but may also enable the use of 
more expensive coloring heuristics. Furthermore, the 
strategy is suitable for parallel implementations, as the 
subgraphs can be colored in parallel. The above stra- 
tegy is not only efficient but may generate superior allo- 
cations, for it provides the additional flexibility of 
changing previously made register assignments. When a 
code segment is partitioned into two parts by a clique 
separator, the nodes that form the clique separator are 
included in the interference graphs for both of the parts. 
Coloring of each of the subgraphs independently may 
result in the assignment of different colors to the nodes 
from the clique. A coloring for the combined subgraphs 
is obtained by renaming the colors. The flexibility pro- 
vided by the renaming of colors may enable us to color 
graphs which may not have been colored if the heuristic 
was run on the entire graph. 

Consider a situation where a piece of straight line 
code has been partitioned using clique separators. An 
optimal solution for the entire segment can be con- 
structed from optimal solutions for each of the com- 
ponents If the code contains branches, optimal alloca- 
tion can potentially be achieved for one of the paths. As 
done in techniques such as trace scheduling[6], this path 
can be chosen to be the one that is most likely to be exe- 
cuted. Near optimal allocations may be obtained for the 
other paths. The allocation of the alternative paths can 
be done independently until they merge with a path for 
which allocation has already been carried out. At this 
point code for moving values among the registers may 
have to be generated. 

The register allocation algorithm developed by 
Chi and Dietz[3] uses the notion of register cut points to 
divide a program into parts for which allocation can be 
carried out independently. A register cut point in a pro 
gram is a point at which the optimal allocation of live 
variables to registers can be determined without actu- 
ally applying a register allocation algorithm. For exam- 
ple, if there is a single variable live at a point in the pro 
gram, then one of the registers will hold its value and 
the remaining must be empty. The notion of clique 
separators is much more general than register cut points. 
A code segment can be divided into subparts using 
clique separators even if optimal allocation at any point 
during the code segment is not known. Furthermore, the 

register allocation scheme proposed by Chi and Dietz 
applies to straight line code, for which register allocation 
is not NP-complete, and is expensive as it has a running 
time of O(m’n) where m is the number live variables at 
a point in the program, k is the number of registers 
available and n is the number of references to variable 
values. 

In subsequent sections we first summarize Tarjan’s 
result and define the representation of live ranges that is 
used in constructing an interference graph. An algo- 
rithm for partitioning straight line code by clique 
separators is presented. Next we show how partitioning 
is done in the presence of branches. When spilling is 
required, we describe how the colorings of partitions are 
combined to obtain the overall register allocation. An 
algorithm that uses separators and priority based color- 
ing is given. The performance of this global register 
allocation algorithm is analyzed in terms of space and 
time complexity and the quality of register allocation. 
The issue of using heuristics for artificially creating par- 
titions is discussed. These heuristics can be used if the 
clique separators found do not result in sufficiently small 
partitions. The implementation of the technique is 
briefly described. The results based on experimental stu- 
dies are summarized. 

2. Background 

In this section we summarize Tarjan’s result on 
partitioning a graph using clique separators and obtain- 
ing a coloring for the entire graph from the colorings of 
the subgraphs. 

A clique separator is a completely connected sub- 
graph whose removal disconnects the graph. For the 
graph shown in Fig. l(i) the clique CS = {u,, vz VJ is a 
separator as its removal results in disconnected sub- 
graphs S, - {v4 ~6) and S, = {ue ur, us, us}. The sub- 
graphs which must be colored using ) colors, if a k- 
coloring for the entire graph is to be found, are shown in 
Fig. l(iii). These subgraphs are formed by including the 
members of the clique separator in each of the discon- 
nected subgraphs (S, and Sz) shown in Fig. l(ii). In Fig. 
l(iii) colorings of the subgraphs using three colors are 
shown. These colorings are combined to obtain a 3- 
coloring for the entire graph shown in Fig. l(iv). The 
combining process involves renaming of colors in one of 
the subgraphs so that both subgraphs use the same 
colors for the members of the clique. In this example the 
coloring was achieved by interchanging the use of colors 
ci and cz in the subgraph that includes S, and CS. The 
subgraphs resulting from a decomposition may be 
further decomposable using clique separators. A graph 
which cannot be decomposed any further is called an 
atom. In the above example S, is an atom and S, is not 
an atom, as it can be further decomposed by clique {ue, 
+I. 

The algorithm developed by Tarjan requires con- 
struction of the entire graph, following which the separa- 
tors are identified and the graph decomposed. This 
approach is not useful for register allocation because it 
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does not reduce the space complexity of the algorithm. 
In order to avoid this problem, clique separators in this 
paper are identified by examining the code instead of the 
interference graph of the entire code sequence. 

(iii) 

Fig. 1. Clique Separators 

3. Live Ranges (Spans) and Interference Graphs 

In earlier global register allocation algorithms, 
global register allocation is sometimes preceded by local 
register allocation. Thus, during the global phase, a live 
range of a variable is defined as an isolated group of 
contiguous basic blocks in the control flow graph in 
which the variable is defined and referenced. In this 
work, since there is no local allocation phase, the live 
ranges are defined as an isolated group of contiguous 
code statements (instead of basic blocks) in which the 
variable is defined and referenced. Thus, a variable may 
have multiple live ranges in a single basic block. 

The nodes in an interference graph for a code seg- 
ment correspond to spans or live ranges of variables. In 
straight line code, a span or a live range is a code 
sequence at the beginning of which a variable is defined 
and at the end of which this definition is last referenced. 
Thus, each definition of a variable gives rise to a span in 
the interference graph. Fig. 2(i) shows the spans result- 
ing from definitions of variables. The spans that overlap 
(represent values that are simultaneously live at some 
program point) cannot be assigned the same register and 
thus are connected by an edge in the interference graph. 
For the example in Fig. 2(i), spans L, and L, are con- 
nected by an edge as they overlap. The interference 
graph is colored using register names as colors. Two 
spans are considered to overlap if the values they 
represent can be simultaneously live at some point in 
the program. If a span ends at an instruction and 
another starts at the same instruction, the two spans are 
not considered to overlap as the same register can be 

allocated to both 

Fig. 2. Spans and Interference Graph 

In code with branches, a span is the part of the 
code in the control flow graph in which a variable is 
defined and referenced and no other definition of the 
variable reaches a reference inside the span. The exam- 
ple in Fig. 2(ii) shows a live range of variable X that 
starts in basic block B, and ends in basic block B,. 

4. Partitioning Straight Line Code 

We consider the problem of partitioning straight 
line code into code segments for which register allocation 
can be carried out independently. The interference 
graphs for the code segments are the same as the sub- 
graphs that would result upon decomposition of the 
interference graph for the entire code segment using cer- 
tain clique separators. After the register allocation for 
each code segment has been carried out, the register 
allocation for the entire code segment can be found by 
renaming the registers assigned to the spans that appear 
in more than one interference graph. Tarjan’s result 
guarantees that if each code segment has been allocated 
at most k registers then the overall allocation will 
require at most k registers. 

In Fig. 3 we show a set of overtapping spans for a 
sample piece of code. At any point in time, there are 
several overlapping spans, represented by nodes of a 
clique in the interference graph. Each of these cliques is 
a separator because its removal from the interference 
graph results in subgraphs consisting of spans that end 
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before the clique and spans that start after the clique. 
Furthermore, these subgraphs are not connected by an 
edge as the live ranges from these subgraphs do not 
overlap. The nodes forming a clique separator are 
included in both the subgraphs into which it divides the 
interference graph. If we divide the code at each of the 
possible separators, each resulting partition will contain 
a single statement. The interference graph corresponding 
to a partition will contain all values live at that point. 
Since a span can appear in any number of these sub- 
graphs, this partitioning of the subgraph into subparts 
does not result in proportionally smaller subgraphs. As a 
result, partitioning using all clique separators will make 
register allocation more expensive. 

The above problem can be avoided by chasing the 
cliques carefully. The maximum number of cliques, 
chosen as separators, in which a span can occur can be 
fixed to a small constant (say c). Thus, the maximum 
number of subgraphs in which a span can occur is c+l. 
If the entire graph containing s vertices is divided into 
m subgraphs, then each subgraph on an average will 
contain (c+I)n/m nodes. Assuming m is large, the sub- 
graphs will be significantly smaller than the interference 
graph for the entire program. 

h d 

In this section we present an algorithm that 
chases separators such that no span is present in more 
than two of the chosen clique separators (i.e., c - 2). 
The example presented in Fig. 3 contains two such 
separators, consisting of spans {b,i,f} and (g,c,d}. These 
separators divide the code segment into three parts; 
hence the interference graph is divided into the three 
subgraphs shown in Fig. 3. The interference graph for a 
single code segment represents only the information 
regarding the spans that are live during that period. 
Thus, the spans that end before the code segment and 
the spans that begin after the code segment are excluded 
from the graph. The members of the separator are 
included in both of the subgraphs that result from it. In 
the example shown {b,i,f} is included in the first and 
second subgraph while {g,c,d} is included in the second 
and third subgraph. The subgraphs are colored 
separately and their colorings combined to obtain the 
coloring for the entire graph. 

Partition 

1 
PRE - POST - CLIQUE - $ 

while there are more instructions to scan 

{ 
Let *rt.rt denote the span that starts at the 

current instruction 
CLIQUE - CLIQUE u {urlor(} 

POST - POST - { bslert} 

V spans ui, st ui has not yet started 

and *mrt overlaps 6, 
POST = POST u (8;) 

V spans be,,, that end at the current instruction 

1 
PRE = PRE u {u,,~} 

CLIQUE - CLIQUE - {U,,,} 

1 

V spans .ei that no longer overlap 
a member of CLIQUE 

PRE- PRE- (8,) 

Check ( CLIQUE) 

1 
1 

Check ( CLIQUE) 

1 
If CLIQUE can be partitioned into disjoint sets 

CLIQUE,,, and CLIQUE,,, 

such that 
PRE # 4; POST z 9; 
no span from PRE overlaps a span from CLIQUE,,os, 

no span from POST overlaps a span from CLIQUEpRE 

then set CLIQUE is chosen aa a separator 

1 

Fig. 8. Clique Separator8 
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In order to identify the separators, we scan the 
code from beginning to end, constructing and updating 
three sets, namely PRE, POST, and CLIQUE. By exa- 
mining the sets we can determine whether the clique at 
that point in the program should be chosen as a separa- 
tor or not. The set CLIQUE contains the members of 
the current clique, the set PRE contains the spans that 
have already ended but overlap one of the members of 
CLIQUE, and the set POST contains the spans that 
have not yet begun but overlap members of the set 
CLIQUE. Thus, in the example above, at the point at 
which the separator {b,i,f} occurs, the three sets contain 
the following: PRE-{a,e}, POST={g,c} and 
CLIQUE={b,i,f). The clique separator formed by 
members of CLIQUE is chosen if and only if it can be 
divided into disjoint sets CLIQUEpRE and CLIQUE,,,, 
such that spans from PRE do not overlap spans from 
CLIQUE,,,,, spans from POST do not overlap spans 
from CLIQUE,,, and the sets PRE and POST are non- 
empty. For the clique {b,i,f}, the set CLIQUE,,, is {i,f} 
and the set CLIQUE,,, is (b}. The above condition 
ensures that no span appears in more than two consecu- 
tive separators. Furthermore, in chasing a separator, 
sets PRE or POST are non-empty to ensure that the 
interference graph for a code segment contains at least 
one node that is not present in the subgraphs preceding 
and succeeding it. The algorithm that constructs the 
sets and checks for separators is summarized in Fig. 4. 
The partitioning of code shown in Fig. 3 was generated 
using this algorithm. 

1 
f 

Fig. 5. choosing Additional Separatora 

If a live range, 1, extends along a long sequence of 
code, no clique separators will be selected by the algo- 
rithm in Fig. 4. Live range 1 will belong to every 
CLIQUE set making it impossible to construct sets 
CLIQUE,,, and CLIQUE,,, that satisfy the condi- 
tions necessary for selecting a clique. In this situation, if 
the live range 1 does not already belong to (c+l) parti- 
tions, a clique separator that divides the sequence of 
code and satisfies the criteria that no live range belongs 
to more than (c+l) partitions may exist. This is demon- 
strated by the example in Fig. 5. After the algorithm in 
Fig. 4 has been applied, any remaining long sequences of 
code can be further partitioned in the above manner. 
The condition for choosing such separators is as follows: 

Check ( CLIQUE) 

1 
If CLIQUE can be partitioned into sets 

CLIQUE,,,, CLIQUE,,,, and REM 
such that 

no span from PRE overlaps a span from CLIQUE,,, 
no span from POST overlaps a span from CLIQUE,,, 
no span from REM belongs to 2 chosen separators 

then set CLIQUEis chosen as a separator 

5. Code with Branching 

Next we show how separators can be located and 
register allocation carried out in the presence of 
branches. Consider the control flow graph shown in Fig. 
6(i) which has both convergence and divergence of flow. 
We start by locating separator S, in basic block B,. If 
no more separators are found in B,, we identify the 
separators along the paths from basic block B, to E, 
and B, independently. As shown in Fig. 6(i), these basic 
blocks may not contain separators and the next separa- 
tor may be in basic block B, after the two paths have 
merged. Separators S, and S, partition the program 
into three parts P,, P, and P5 and register allocation 
for these is performed one at a time. 

For the same flow graph, Fig. 6(ii) shows the 
situation in which the basic blocks B, and Be contain 
separators S, and S, These are found by examining the 
two paths independently for separators. Upon conver- 
gence of flow, a clique in the block immediately following 
the merge may be a separator for one of the paths and 
not for the other. The path more likely to be executed 
can be chosen and the separator along that path can be 
found. In this example the graph has been partitioned 
into five parts. The partition P, contains code from 
basic blocks B,, B, and B, The reason for constructing 
a combined graph is to ensure that both 8, and Be use 
the same registers for the values being passed from B,. 
Interference graphs for all five of the regions are con- 
structed and allocation is performed independently. 
Thus, spans common among adjacent partitions may 
have been assigned different registers. Renaming of 
colors assigned to members of the clique separator S, 
during the coloring of partition P, is carried out so that 
they are the same as the colors that were used during 
coloring of partition P,. Similarly, renaming is applied 
to partition P, to match the colors it used for members 
of S, with the colors that were used by P, At this point 
the colors used in partition P, have to be renamed to 
match the colors used in P, and P,. Such a renaming 
may not exist. Thus, copy code that moves the values 
into appropriate registers is inserted along the path 
from I?, to B,. The allocation can be done in such a 
manner that the copy code is inserted along a path that 
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is less likely to be executed. Optimal colorings for indivi- 
dual regions will result in optimal allocation along one 
path. The allocation along the other path is near 
optimal as the usage of registers is optimal except for 
the copying code that has been inserted. 

(i) (ii) 

Fig. 6. Separators in Presence of Branching 

When performing renaming of colors for partition 
P, in the example in Fig. 6(ii), an attempt is made to 
assign registers to the span in a manner that does not 
require introduction of copying code. For example, if 
priority based coloring is used, copy code is only intro- 
duced if the register required to eliminate the copy code 
has been allocated to a span with higher priority. If this 
is not the case, the register is freed and assigned to the 
span with higher priority. The free registers are assigned 
to spans with lower priority, and values corresponding 
to spans with lower priority are spilled if needed. 

6. Combining Colorings in Presence of 

Spilling/Splitting 

In the previous sections we discussed combining of 
colorings obtained for individual partitions, so as to 
obtain an overall coloring. The spans that form a clique 
separator are present in the interference graphs of the 
code partition preceding and succeeding the clique. 
Thus, they may be assigned different registers. For 
straight line code, Tarjan’s result allows renaming of 
registers in one of the segments so that the same regis- 
ters are used in both code segments. In the presence of 
branches, the partitions preceding and succeeding a code 
segment may already have been assigned registers that 
cannot be renamed. in this situation, code to transfer 
values from one register to another may have to be 
introduced. 

In the discussion above, the issue of spilling the 
values into memory and the splitting of spans was not 
considered. If the number of registers available is less 
than the number of live values, then the register alloca- 
tion algorithm must choose the values to be held in 
registers and spill the remaining values into memory. A 
live range must be split into subranges which are 
assigned different registers, and code to transfer the 
value from one register to another must be introduced. 

Next we show that the combining of colorings for 
partitions can be carried out even in presence of spilling 
and splitting of spans that are members of clique separa- 
tors. We assume a priority based heuristic to determine 
the spans that should be spilled. Let us consider a situa- 
tion in which during coloring of one subgraph, a span 
from the clique is split, while it is not split when the 
other subgraph is colored. A span split during coloring 
of any one of the subgraphs is treated as being split for 
both the subgraphs. Splitting a span in one subgraph 
does not disrupt the coloring in the other subgraph. 
This can be explained by considering the following cases: 

b 

in Presence oJ Spilling 

Case (i): Consider the situation in which a span from the 
clique is split because the size of the clique is greater 
than the number of registers available. In this case, the 
part of the span spilled will be the same irrespective of 
the subgraph chosen for coloring first. This is because 
the priorities of the spans are used to decide upon the 
span that should be spilled. As a result the spilling of a 
member of the clique does not effect the colorings of the 
individual partitions. In the example shown below, if we 
assume that there are three registers available and span 
S, has the lowest priority, then coloring of code parti- 
tions preceding and succeeding the separator require 
that span S, be split in the manner shown. 

Fig. 7((i). Combining Colorings in Presence of Spilling 

Case (ii): Now let us consider the case in which there are 
enough registers available to assign to all spans in the 
clique. If a span from the clique is split while coloring 
the first subgraph, then it must be the case that a span 
from set PRE with higher priority was assigned that 
register. We know that spans from POST cannot overlap 
spans from PRE. Thus, the span overlapping a member 
of PRE created by splitting a member of the clique, can 
be ignored during the coloring of the subgraph formed 
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by the POST set. Using a similar argument, it can be 
shown that if a span from the clique is split white the 
second subgraph is being colored, it will not require 
recoloring of the first subgraph. 

The example in Fig. 7(ii) demonstrates this case. 
Let us assume that there are four registers available and 
that span S, has the lowest priority. When the partition 
preceding the separator is colored, part of span S, is 
spilled. The part of the span spilled does not overlap any 
other spans in the code partition following the separator. 
As a result no changes are required for the coloring that 
may have been performed for the second partition. In 
this example span S,l created by splitting S, was spilled. 
However, there are cases in which after splitting S,l may 
be assigned a register. In either case this does not effect 
the coloring of partition following the separator. 

7. Computing Node Priorities 

The priority of a node or Iive range is measured in 
terms of the savings in execution time that are incurred 
by assigning a register to it. These priorities are main- 
tained to guide the coloring of the interference graph. 
Since, during coloring spans can be split, the priorities of 
spans are updated and that of newly created spans com- 
puted. Let LODSAV be the savings in execution time 
for each reference to a variable in a register instead of 
memory, STRSAV be the savings for each definition of a 
variable assigned to a register as compared to storing 
the value in memory, and MOVCOST be the cost of 
moving a value between a register and memory. The net 
savings in execution time, NETSAV, if a live range is 
assigned to a register, is given by: 

NETSAV - LODSAV*u + STRSAV*d - MOVCOST*n 

where u is the number of uses, d is the number of 
definitions, and s is the number of loads and stores that 
must be performed to ensure that the value is in the 
register during the period a register is allocated to it and 
in memory otherwise. 

In order to compute the value of n we must deter- 
mine whether the value of the variable is to be loaded 
into the register, or whether it is already in the register 
at the start of the live range. Similarly if the value is 
live at the end of the live range assigned to a register, 
the value must be saved in memory. In addition, the 
separators also must be examined to determine whether 
there is a possibility of copy code being generated. For 
example, consider a variable that has definitions in basic 
block Be and B, of Fig. 6 and these definitions are live 
in basic block B,. If the choice of separators as shown 
in Fig. 6(i) is made, no copy code may be needed. On the 
other hand if the separators in Fig. 6(ii) are chosen, copy 
code may be needed. Thus, additional operations are 
needed to move the values among the registers. It 
should be noted that the copy code can only be intro- 
duced if the paths merge. 

The live range of a variable can extend over 
several basic blocks. A variable referenced inside a loop 

body is likely to be referenced more often, and hence 
assigning a register to such a variable is likely to result 
in greater savings. Thus, the total savings resulting from 
assigning a register to a live range is normalized with 
respect to the loop-nesting depth of the basic blocks in 
which they are referenced as follows: 

TOTALSAV - ~(NETSAV, x Wi) 

i C lr 

where Wi is the loop-nesting depth of basic block i in the 
flow graph and NETSAV, is the savings accrued by 
assigning the value to a register in basic block i. 

8. Algorithm for Allocating Registers 

An overall algorithm for global register allocation 
using clique separators and based upon priorities, is 
summarized in Fig. 8. In this algorithm, the program is 
partitioned into code segments and an interference 
graph for a single partition is constructed and colored. 
The node priorities are maintained globally and recom- 
puted as spans are split in a manner similar to priority 
based colosing[4]. During coloring of a partition, only 
priorities of those nodes that belong to the current pasti- 
tion are needed. Thus, while choosing a node to be 
colored, only the priorities of nodes in the current graph 
need to be examined. This seduces the running time of 
the algorithm. One by one the subgraphs are con- 
structed and colored. After a subgraph has been colored, 
its colors are renamed to match the colors of the adja- 
cent partitions that have already been colored. Copy 
code is introduced if needed. The nodes in the graph 
which have fewer neighbors than the number of registers 
are colored last as they can be colored no matter what 
colors are assigned to their neighbors. These nodes are 
referred to as the unconstrained set of nodes and the 
remaining nodes are called the constrained set of nodes 
in the algorithm. Over-allocation of registers is 
prevented by assigning registers to only those spans for 
which TOTALSAV is positive. 

270 



Allocate 

{ 
Partition the program by identifying the separators 

Determine the order for processing the partitions 

loop 

{ 
Construct the interference graph for the partition to 

be processed next. 

Put the live ranges whose number of neighbors is less 

than the number of registers in the unconstrained set. 
The rest of the nodes are put in the conetrained set 

of nodes. 

Repeat the following steps till all consfrained nodes 
have been processed. 

{ 
For each live range Ir 

{ 
If Ir has Iess colored neighbors than the total number 

of colors then assuming that it can he assigned 

a register compute TOTALSAV. 

If Ir has more colored neighbors than the total 

number of colors then split the live range Ir. 
Construct Ir, such that it is the largest part of Ir 

that can be colored. Update the graph and sets 
unconetrained and constrained. Recompute 

TOTALSAV for the nodes added to constrained pool. 
1 

Choose the live range from the constrained pool with 

highest TOTALSAV and assign a color to it. If several 
live ranges have same priority choose the one which is 

the shortest. 

Assign colors to unconstrained nodes. The nodes are 

assigned colors if doing so results in savings. 

Combine the results with already processed partitions. 
This involves renaming of colors for the current partition 
and possibly generation of copy code. 

1 
until all partitions have been processed 

1 
Fig. 8. Priority Based Register Allocation 

In the algorithm presented the priority of a node, 
which is the value TOTALSAV, is not normalized by 
the length of the live range. In the algorithm developed 
by Chow and Hennessy, the priority is normalized by the 
length of the live range, because the global allocation 
phase is preceded by the local register allocation phase. 
During global allocation the unallocated variables have 
occurrence frequencies that do not differ greatly, as the 

local allocation is based upon the occurrence frequencies 
of variables. The adjustment of the priority by the live 
range length is needed as a longer range occupies the 

register for a longer period of time. However, in the 
above algorithm there is no local allocation phase and 
hence the priorities are not normalized. If several live 
spans have the same priority the shortest span is colored 
first. 

9. Performance 

The strategy presented makes the coloring process 
efficient which justifies the elimination of the local regis- 
ter allocation phase. This also opens up possibilities for 
using more expensive heuristics that may result in 
improved performance. In the analysis below it is 
assumed that the number of live ranges (n) remains con- 
stant although splitting of live ranges increases the 
number of spans. This assumption greatly simplifies the 
analysis. 

Space Complezity: The space complexity of the modified 
priority based coloring algorithm is O(n’/my, where n 
is the number of live ranges and m is the number of par- 
titions into which the program is divided. 

Proo/ The space complexity of the coloring heuristic 
when applied to an z node interference graph is O(zz), as 
there can be at most ~(2-1) edges in the graph. Since 
only the interference graph for a single code partition, 
consisting of O(n/m) nodes, is constructed at any given 
point in time, the space required by the algorithm is 
O(n2/m2). 0 

Run-time Complezity: The run-time complexity of the 
modified priority based coioring algorithm is O(n2/m), 
where n is the number of spans and m is the number of 
partitions into which the program is divided. 

Proof The run-time complexity of the coloring heuristic 
when applied to an interference graph with x nodes is 
ObS f or in each iteration of the loop, one live range is 
chosen, and we may have to perform z iterations. The 
time complexity of processing a single code partition is 
O(n2/ma) as its interference graph contains O(n/m) live 
ranges, Since there are m partitions to process, the run- 
time complexity of the modified priority based coloring 
algorithm is O(n’/m). •I 

The computation of live ranges entails additional 
overhead that has not been considered in the above 
analysis. In the modified priority based register alloca- 
tion algorithm presented in this paper, the live ranges 
must be computed to locate the separators. However, in 
Chow and Hennessy’s algorithm some of the overhead in 
computing the live ranges is avoided by assuming that 
all uses and definitions of a variable are part of a single 
span. A span is split into smaller live ranges only if it 
cannot be colored. 

The partitioning of a graph into smaller sub- 
graphs increases the likelihood of finding a coloring. This 
can be demonstrated using the simple example given 
below. Let us assume that three registers are to be 
assigned to A, B, C and D for which the interference 
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graph is shown in Fig. 9. It is possible that the heuristic 
may color A with R, and B with R, in which case the 
graph cannot be colored. On the other hand if the graph 
is split into two subgraphs using the clique separator 
{C,D} the resulting subgraphs can be colored using three 
colors. The colorings of the subgraphs can be combined 
to obtain a coloring for the entire graph as shown in Fig. 
9fiil. . I 

(R2 C Rl)C 

db (RllA (Rl)B 

(R3)D (R2)D (RJ)D(R3)D 

Fig. 9. Reassigning Regiatera to Subgraphs 

From the above example it is clear that the cause 
for improved performance is the flexibility provided by 
the ability to change register assignments when the 
assignments for individual subgraphs are combined to 
obtain the assignment for the entire graph. The follow- 
ing result shows that optimality is preserved when the 
results are combined. 

Claim: An optimal solution can be constructed from 
optimal solutions for individual partitions in straight 
line code. 

Proof: This results follows quite easily from Tarjan’s 
result which states that if colorings for each of the sub- 
graphs can be carried out using k-colors, the entire 
graph can be colored in k colors. The coloring for the 
combination of two subgraphs is obtained by changing 
the coloring of one of the subgraphs. This is to make 
sure that the members of the clique are assigned the 
same color in both the subgraphs. Changing the names 
of the colors does not change the number of colors used 
to color a subgraph; therefore the optimality of the solu- 
tions is preserved when they are combined. 0 

The above results show the advantages of using 
the strategy based upon clique separators. The following 
result shows that the strategy described is not likely to 
result in solutions worse than the solutions generated by 
the Chow and Hennessy’s algorithm. In other words, 
applying the coloring heuristic to the subgraphs is not 
likely to result in worse solutions than an algorithm that 
constructs the entire interference graph before coloring 
it. 

Claim: The strategy based upon clique separators will 
never split or spill a live range with higher priority in 
order to avoid splitting or spilling of another node with 
lower priority. 

Proof: In order to prove the above result we consider the 
following cases: 

Straight Line Code: When a partition from a straight line 
code is being processed the nodes are colored in decreas- 
ing order of priority. The inability to color a node is not 
due to nodes with lower priority from the same parti- 
tion, because these nodes have not yet been colored. 
However, nodes with lower priority from other partitions 
may have already been colored. A low priority node from 
another partition cannot be the cause for the inability to 
color a node with higher priority because the coloring of 
nodes in different partitions is done independently of 
each other. Thus, if a live range is spilled or split, it 
could not have been avoided by splitting or spilling 
nodes with priority lower than this live range. 

Code with Branches: In code containing branches, the 
colorings of partitions found independently cannot 
always be combined so that they use the same colors for 
the spans that are shared by more than one partition. 
Copying code is introduced to ensure that values are in 
appropriate registers. Introduction of copy code is 
equivalent to splitting of live ranges. In order to prove 
our claim we must show that a span with higher priority 
is not split in preference to a span with lower range. 
However, as explained in section 5, when combining 
colorings an attempt is made to use the same colors for 
spans with higher priority. 0 

10. Creating Additional Partitions 

The shorter the spans the more likely it is that 
the code will contain separators. If the spans in the set 
CLIQUE are long, they are likely to overlap spans from 
both PRE and POST. Thus, it may not be possible to 
partition CLIQUE into sets CLIQUE,,, and 
CLIQUE,,,, If enough partitions do not exist, clique 
separators can be created using the following 
approaches. 

Renaming 

Long spans are created by global variables that 
are used throughout the computation. In order to create 
shorter spans the definition of the spans can be modified 
as follows. A span starts when a variable is given a new 
definition and ends at the point where that definition is 
last used. This definition for a span differs from the 
definition used by Chow and Hennessy. In their work a 
span could contain multiple definitions of the same vari- 
able. The modified definition will result in shorter spans 
which increases the likelihood of finding separators in 
the interference graph. If the renaming optimization has 
already been performed, the code will automatically 
yield shorter spans with single definitions[5]. 

Heuristics 

Live ranges that extend through long sequences of 
code can also result due to variables that are defined 
once but used throughout the program. Such live ranges 
cannot be split by renaming. In order to increase the 
likelihood of finding separators, such live ranges should 
be identified and handled in the following manner: 
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6) 

(ii) 

(iii) 

The live range can be assigned a register and 
removed from consideration during the rest of the 
allocation process. Live ranges due to variables 
that are frequently referenced throughout the pr& 
gram should be treated in this manner. (See Fig- 
ure 1Oi.) 

The live range can be removed from consideration 
during the register allocation process. After regis- 
ter allocation any unassigned registers can be allo- 
cated to this live range. The live ranges that are 
referenced infrequently should be processed in this 
manner. (See Figure lOi.) 

The live range can be made shorter by removing 
sequences of basic blocks in which the variable is 
not referenced. This will result in shorter multiple 
live ranges. The live ranges that do not fall in the 
first two categories can be processed in this 
manner. (See Figure 1Oii.) 

(i) 

Fig. 10. Creating Additional Separator8 

The solutions described above require examining 
the live ranges and splitting them if enough separators 
are not chosen by the algorithms discussed. The next 
two solutions are simpler and may be used as the 
separators are being examined. After the current parti- 
tion becomes larger than some specified size, and no 
separator has yet been found, the following approaches 
can be used to create a separator. 

Giving up Eficiency 

As mentioned in section 4, code along an execu- 
tion path has a separator at the end of each statement. 
However, for efficiency reasons separators are chosen in 
a manner that ensures that no span belongs to more 
than two chosen clique separators along an execution 
path (i.e., c-2). This limits the number of subgraphs in 

which a span can appear and hence the size of the 
interference graph for each partition. The partitions 
which are large can be further subdivided by relaxing 

the constraint on the value of c. The spans can be 
allowed to appear in a larger number of chosen clique 
separators until the subgraphs obtained are sufficiently 
small. Since not all the live ranges appear in two clique 
separators, it is acceptable for a few of them appear in 
more than two clique separators. 

Splitting the Spana 

If a long segment of code does not have separa- 
tors, they can be created by splitting the spans. Splie 
ting of a span into multiple spans allows assignment of 
different registers to the newly created spans as well as 
spilling some of the spans. 

Fig. If. Splitting Spans to Create Separator8 

The example in Fig. 11 shows how a clique can be 
turned into a separator by splitting the spans. If we 
consider the sets CLIQUE-{S,S,S,S,}, PRE-{S,SJ 
and POST-{S,S&, we observe the clique is not a 
separator. However, if spans S,, S, and S, are split 
resulting in sets CLIQUE={Sl,S,S,S,J, 
PRE-{S,S,Si} and POST-{S,‘,S,S,S,‘}, then the 
clique does form a separator. Heuristics can be used to 
decide which span to split and where to split it. For 
example, the spans with lower priority can be chosen for 
splitting and, if possible, a span can be split into two 
parts such that one of them uses the value scarcely and 
another uses the value heavily. At the points where a 
span is split, instructions to load the value into a regis- 
ter or store it into memory may have to be inserted. 

11. Implementation 

The algorithms described in this paper have been 
implemented as part of a compiler for a subset of Ada. 
There are two main differences between the implementa- 
tion and the manner in which the algorithms were 
described in this paper. Firstly, the interference graphs 
for the code partitions are constructed and colored as 
the separators are detected instead of finding all the 
separators before starting the allocation. Secondly, the 
register assignments performed in one partition are pro- 
pagated to other partitions that contain the same live 
ranges but have not been colored yet. This eliminates 
the need for an explicit phase that combines the color- 
ings for individual partitions by renaming colors. 

Studies are currently being conducted to experi- 
mentally compare the performance of the clique separa- 
tor approach to register allocation with the approach of 
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coloring the entire graph. Results of experiments to 
investigate the space efficiency of the approach for a 
sample of small programs are given in the following 
table. The programs considered included a money 
changer, integer matrix multiplication, sieve, bubble sort 
and towers of hanoi program. The programs, with the 
exception of the towers program, contained one pro- 
cedure. The towers program had two procedures, the 
results of which are presented separately. In the study, 
no registers were spilled, with sixteen being the max- 
imum number of registers used by either scheme. In the 
table, the first column gives the size of the graph (the 
number of nodes) using the coloring scheme developed 
by Chow and Hennessy. The number of separators 
found is given in the second column. The next three 
columns give the maximum, minimum and average 
graph sizes used in the clique separator approach. From 
these results, it is clear that the clique separator 
approach considerably reduces the size of the graphs 
that need to be colored and thus the space requirements 
of coloring. 

Importantly, in all cases, the number of registers 
used by the clique separator scheme was either equal to 
or less than the number of registers used by the Chow 
and Hennessy coloring technique. For example, in the 
Sieve program, 13 registers were needed when coloring 
the entire graph but only 10 registers were used by util- 
izing separators. Future investigations will include 
experiments to determine the time efficiency of the clique 
separator approach and the effects of spilling on the per- 
formance of the scheme. As the separator approach is a 
more complicated approach than coloring the entire 
graph, we will also investigate the overhead of running 
the clique separator algorithm. 
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