
Register Allocation Via Clique Separators

Rajiv Gupta Mary Lou Soffa*
Philips Laboratories Dept. of Computer Science
345 Scarborough Road University of Pittsburgh
Briarcliff Manor, NY 10510 Pittsburgh, PA 15260

Tim Steele
AT&T Bell Laboratories
75 Foundation Avenue
Ward Hill, MA 01830

Abstract - Although graph coloring is widely recognized
as an effective technique for global register allocation,
the overhead can be quite high, not only in execution
time but also in memory, as the size of the interference
graph needed in coloring can become quite large. In this
paper, we present an algorithm based upon a result by
R. Tarjan regarding the colorability of graphs which are
decomposable using clique separators, that improves on
the overhead of coloring. The algorithm first partitions
program code into code segments using the notion of
clique separators. The interference graphs for the code
partitions are next constructed one at a time and
colored independently. The colorings for the partitions
are combined to obtain a register allocation for the pro-
gram code. The technique presented is both efficient in
space and time because the graph for only a single code
segment needs to be constructed and colored at any
given point in time. The partitioning of a graph using
clique separators increases the likelihood of obtaining a
coloring without spilling and hence an efficient alloca-
tion of registers for the program. For straight line code
an optimal allocation for the entire program code can be
obtained from optimal allocations for individual code
segments. In the presence of branches, optimal alloca-
tion along one execution path and a near optimal alloca-
tion along alternative paths can be potentially obtained.
Since the algorithm is highly efficient, it eliminates the
need for a local register allocation phase.

Keywords - spans, interference graph, clique separators,
graph coloring, spill code, node priorities.

Permission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date appear, and notice is
given that copying is by permission of the Association for Computing Machinery.
To copy otherwise, or to republish. requires a fee and/or specific permission.
0 1989 ACM O-8979 1-306-X/89/0006/0264 $1.50

1. Introduction

The problem of global register allocation is com-
monly formulated as a graph coloring problem in which
an assignment of a color to each node in a graph is made
such that no two nodes directly connected by an edge
have the same color [2,1,4]. For register allocation, an
interference graph is constructed in which the nodes
correspond to candidates for registers and edges connect
nodes that must be assigned different registers. A color-
ing of this graph is equivalent to an assignment of regis-
ters. Since graph coloring is an NP-complete problem[7],
polynomial time heuristics are used to obtain suboptimal
colorings. The interference graph for an entire pro-
cedure is constructed before register allocation is carried
out. Since the coloring algorithms can be expensive both
in time and memory demands, global register allocation
is sometimes preceded by a local allocation phase[4].
However, this approach may not be successful as it has
been found that many of the basic blocks in a program
are small and so most of the allocation is done during
the global allocation phase[8].

In this paper we present a strategy which can be
used to improve both the space and time efficiency of
global register allocation based upon graph coloring. As
a result, local register allocation is no longer needed.
The strategy is based upon a result due to Tarjan
regarding the colorability of a graph containing clique
separators[9]. A clique separator is a completely con-
nected subgraph whose removal disconnects the graph
into at least two subgraphs. These subgraphs may be
further decomposable into smaller subgraphs using
clique separators. If each subgraph is colored using at
most k colors, then the entire graph can be colored using
) colors by combining the colorings of the subgraphs.
The subgraphs resulting from the decomposition of an
interference graph correspond to code segments in a pro
gram. Thus, clique separators partition a program into
code segments for which the register allocation can be
performed independently. We show that the partition-
ing of the program can be carried out by examining the
code; hence the technique does not require construction
of the entire interference graph and running an algo-
rithm to find the clique separators. The interference

l This work was partially supported by National Science
Foundation under Grant CCR-8801104 to the University of
Pittsburgh.

264

graph for the partitions can be constructed one at a
time, and some coloring heuristic (e.g., priority based
coloring) can be used to color a partition. The colorings
for the partitions are combined, resulting in a coloring of
the entire program code.

The allocation using clique separators can be car-
ried out efficiently because at a given point in time, only
an interference graph for a single partition needs to be
constructed. This reduces the space requirements. Furth-
ermore, if the run-time complexity of the coloring heuris-
tic is a polynomial of a degree greater than one in the
number of nodes in the graph, the time spent in coloring
reduces with the number of partitions. The efficiency of
the algorithm not only makes it possible to eliminate the
local allocation phase but may also enable the use of
more expensive coloring heuristics. Furthermore, the
strategy is suitable for parallel implementations, as the
subgraphs can be colored in parallel. The above stra-
tegy is not only efficient but may generate superior allo-
cations, for it provides the additional flexibility of
changing previously made register assignments. When a
code segment is partitioned into two parts by a clique
separator, the nodes that form the clique separator are
included in the interference graphs for both of the parts.
Coloring of each of the subgraphs independently may
result in the assignment of different colors to the nodes
from the clique. A coloring for the combined subgraphs
is obtained by renaming the colors. The flexibility pro-
vided by the renaming of colors may enable us to color
graphs which may not have been colored if the heuristic
was run on the entire graph.

Consider a situation where a piece of straight line
code has been partitioned using clique separators. An
optimal solution for the entire segment can be con-
structed from optimal solutions for each of the com-
ponents If the code contains branches, optimal alloca-
tion can potentially be achieved for one of the paths. As
done in techniques such as trace scheduling[6], this path
can be chosen to be the one that is most likely to be exe-
cuted. Near optimal allocations may be obtained for the
other paths. The allocation of the alternative paths can
be done independently until they merge with a path for
which allocation has already been carried out. At this
point code for moving values among the registers may
have to be generated.

The register allocation algorithm developed by
Chi and Dietz[3] uses the notion of register cut points to
divide a program into parts for which allocation can be
carried out independently. A register cut point in a pro
gram is a point at which the optimal allocation of live
variables to registers can be determined without actu-
ally applying a register allocation algorithm. For exam-
ple, if there is a single variable live at a point in the pro
gram, then one of the registers will hold its value and
the remaining must be empty. The notion of clique
separators is much more general than register cut points.
A code segment can be divided into subparts using
clique separators even if optimal allocation at any point
during the code segment is not known. Furthermore, the

register allocation scheme proposed by Chi and Dietz
applies to straight line code, for which register allocation
is not NP-complete, and is expensive as it has a running
time of O(m’n) where m is the number live variables at
a point in the program, k is the number of registers
available and n is the number of references to variable
values.

In subsequent sections we first summarize Tarjan’s
result and define the representation of live ranges that is
used in constructing an interference graph. An algo-
rithm for partitioning straight line code by clique
separators is presented. Next we show how partitioning
is done in the presence of branches. When spilling is
required, we describe how the colorings of partitions are
combined to obtain the overall register allocation. An
algorithm that uses separators and priority based color-
ing is given. The performance of this global register
allocation algorithm is analyzed in terms of space and
time complexity and the quality of register allocation.
The issue of using heuristics for artificially creating par-
titions is discussed. These heuristics can be used if the
clique separators found do not result in sufficiently small
partitions. The implementation of the technique is
briefly described. The results based on experimental stu-
dies are summarized.

2. Background

In this section we summarize Tarjan’s result on
partitioning a graph using clique separators and obtain-
ing a coloring for the entire graph from the colorings of
the subgraphs.

A clique separator is a completely connected sub-
graph whose removal disconnects the graph. For the
graph shown in Fig. l(i) the clique CS = {u,, vz VJ is a
separator as its removal results in disconnected sub-
graphs S, - {v4 ~6) and S, = {ue ur, us, us}. The sub-
graphs which must be colored using) colors, if a k-
coloring for the entire graph is to be found, are shown in
Fig. l(iii). These subgraphs are formed by including the
members of the clique separator in each of the discon-
nected subgraphs (S, and Sz) shown in Fig. l(ii). In Fig.
l(iii) colorings of the subgraphs using three colors are
shown. These colorings are combined to obtain a 3-
coloring for the entire graph shown in Fig. l(iv). The
combining process involves renaming of colors in one of
the subgraphs so that both subgraphs use the same
colors for the members of the clique. In this example the
coloring was achieved by interchanging the use of colors
ci and cz in the subgraph that includes S, and CS. The
subgraphs resulting from a decomposition may be
further decomposable using clique separators. A graph
which cannot be decomposed any further is called an
atom. In the above example S, is an atom and S, is not
an atom, as it can be further decomposed by clique {ue,
+I.

The algorithm developed by Tarjan requires con-
struction of the entire graph, following which the separa-
tors are identified and the graph decomposed. This
approach is not useful for register allocation because it

265

does not reduce the space complexity of the algorithm.
In order to avoid this problem, clique separators in this
paper are identified by examining the code instead of the
interference graph of the entire code sequence.

(iii)

Fig. 1. Clique Separators

3. Live Ranges (Spans) and Interference Graphs

In earlier global register allocation algorithms,
global register allocation is sometimes preceded by local
register allocation. Thus, during the global phase, a live
range of a variable is defined as an isolated group of
contiguous basic blocks in the control flow graph in
which the variable is defined and referenced. In this
work, since there is no local allocation phase, the live
ranges are defined as an isolated group of contiguous
code statements (instead of basic blocks) in which the
variable is defined and referenced. Thus, a variable may
have multiple live ranges in a single basic block.

The nodes in an interference graph for a code seg-
ment correspond to spans or live ranges of variables. In
straight line code, a span or a live range is a code
sequence at the beginning of which a variable is defined
and at the end of which this definition is last referenced.
Thus, each definition of a variable gives rise to a span in
the interference graph. Fig. 2(i) shows the spans result-
ing from definitions of variables. The spans that overlap
(represent values that are simultaneously live at some
program point) cannot be assigned the same register and
thus are connected by an edge in the interference graph.
For the example in Fig. 2(i), spans L, and L, are con-
nected by an edge as they overlap. The interference
graph is colored using register names as colors. Two
spans are considered to overlap if the values they
represent can be simultaneously live at some point in
the program. If a span ends at an instruction and
another starts at the same instruction, the two spans are
not considered to overlap as the same register can be

allocated to both

Fig. 2. Spans and Interference Graph

In code with branches, a span is the part of the
code in the control flow graph in which a variable is
defined and referenced and no other definition of the
variable reaches a reference inside the span. The exam-
ple in Fig. 2(ii) shows a live range of variable X that
starts in basic block B, and ends in basic block B,.

4. Partitioning Straight Line Code

We consider the problem of partitioning straight
line code into code segments for which register allocation
can be carried out independently. The interference
graphs for the code segments are the same as the sub-
graphs that would result upon decomposition of the
interference graph for the entire code segment using cer-
tain clique separators. After the register allocation for
each code segment has been carried out, the register
allocation for the entire code segment can be found by
renaming the registers assigned to the spans that appear
in more than one interference graph. Tarjan’s result
guarantees that if each code segment has been allocated
at most k registers then the overall allocation will
require at most k registers.

In Fig. 3 we show a set of overtapping spans for a
sample piece of code. At any point in time, there are
several overlapping spans, represented by nodes of a
clique in the interference graph. Each of these cliques is
a separator because its removal from the interference
graph results in subgraphs consisting of spans that end

266

before the clique and spans that start after the clique.
Furthermore, these subgraphs are not connected by an
edge as the live ranges from these subgraphs do not
overlap. The nodes forming a clique separator are
included in both the subgraphs into which it divides the
interference graph. If we divide the code at each of the
possible separators, each resulting partition will contain
a single statement. The interference graph corresponding
to a partition will contain all values live at that point.
Since a span can appear in any number of these sub-
graphs, this partitioning of the subgraph into subparts
does not result in proportionally smaller subgraphs. As a
result, partitioning using all clique separators will make
register allocation more expensive.

The above problem can be avoided by chasing the
cliques carefully. The maximum number of cliques,
chosen as separators, in which a span can occur can be
fixed to a small constant (say c). Thus, the maximum
number of subgraphs in which a span can occur is c+l.
If the entire graph containing s vertices is divided into
m subgraphs, then each subgraph on an average will
contain (c+I)n/m nodes. Assuming m is large, the sub-
graphs will be significantly smaller than the interference
graph for the entire program.

h d

In this section we present an algorithm that
chases separators such that no span is present in more
than two of the chosen clique separators (i.e., c - 2).
The example presented in Fig. 3 contains two such
separators, consisting of spans {b,i,f} and (g,c,d}. These
separators divide the code segment into three parts;
hence the interference graph is divided into the three
subgraphs shown in Fig. 3. The interference graph for a
single code segment represents only the information
regarding the spans that are live during that period.
Thus, the spans that end before the code segment and
the spans that begin after the code segment are excluded
from the graph. The members of the separator are
included in both of the subgraphs that result from it. In
the example shown {b,i,f} is included in the first and
second subgraph while {g,c,d} is included in the second
and third subgraph. The subgraphs are colored
separately and their colorings combined to obtain the
coloring for the entire graph.

Partition

1
PRE - POST - CLIQUE - $

while there are more instructions to scan

{
Let *rt.rt denote the span that starts at the

current instruction
CLIQUE - CLIQUE u {urlor(}

POST - POST - { bslert}

V spans ui, st ui has not yet started

and *mrt overlaps 6,
POST = POST u (8;)

V spans be,,, that end at the current instruction

1
PRE = PRE u {u,,~}

CLIQUE - CLIQUE - {U,,,}

1

V spans .ei that no longer overlap
a member of CLIQUE

PRE- PRE- (8,)

Check (CLIQUE)

1
1

Check (CLIQUE)

1
If CLIQUE can be partitioned into disjoint sets

CLIQUE,,, and CLIQUE,,,

such that
PRE # 4; POST z 9;
no span from PRE overlaps a span from CLIQUE,,os,

no span from POST overlaps a span from CLIQUEpRE

then set CLIQUE is chosen aa a separator

1

Fig. 8. Clique Separator8

267

Fig. 4. Finding Separators

In order to identify the separators, we scan the
code from beginning to end, constructing and updating
three sets, namely PRE, POST, and CLIQUE. By exa-
mining the sets we can determine whether the clique at
that point in the program should be chosen as a separa-
tor or not. The set CLIQUE contains the members of
the current clique, the set PRE contains the spans that
have already ended but overlap one of the members of
CLIQUE, and the set POST contains the spans that
have not yet begun but overlap members of the set
CLIQUE. Thus, in the example above, at the point at
which the separator {b,i,f} occurs, the three sets contain
the following: PRE-{a,e}, POST={g,c} and
CLIQUE={b,i,f). The clique separator formed by
members of CLIQUE is chosen if and only if it can be
divided into disjoint sets CLIQUEpRE and CLIQUE,,,,
such that spans from PRE do not overlap spans from
CLIQUE,,,,, spans from POST do not overlap spans
from CLIQUE,,, and the sets PRE and POST are non-
empty. For the clique {b,i,f}, the set CLIQUE,,, is {i,f}
and the set CLIQUE,,, is (b}. The above condition
ensures that no span appears in more than two consecu-
tive separators. Furthermore, in chasing a separator,
sets PRE or POST are non-empty to ensure that the
interference graph for a code segment contains at least
one node that is not present in the subgraphs preceding
and succeeding it. The algorithm that constructs the
sets and checks for separators is summarized in Fig. 4.
The partitioning of code shown in Fig. 3 was generated
using this algorithm.

1
f

Fig. 5. choosing Additional Separatora

If a live range, 1, extends along a long sequence of
code, no clique separators will be selected by the algo-
rithm in Fig. 4. Live range 1 will belong to every
CLIQUE set making it impossible to construct sets
CLIQUE,,, and CLIQUE,,, that satisfy the condi-
tions necessary for selecting a clique. In this situation, if
the live range 1 does not already belong to (c+l) parti-
tions, a clique separator that divides the sequence of
code and satisfies the criteria that no live range belongs
to more than (c+l) partitions may exist. This is demon-
strated by the example in Fig. 5. After the algorithm in
Fig. 4 has been applied, any remaining long sequences of
code can be further partitioned in the above manner.
The condition for choosing such separators is as follows:

Check (CLIQUE)

1
If CLIQUE can be partitioned into sets

CLIQUE,,,, CLIQUE,,,, and REM
such that

no span from PRE overlaps a span from CLIQUE,,,
no span from POST overlaps a span from CLIQUE,,,
no span from REM belongs to 2 chosen separators

then set CLIQUEis chosen as a separator

5. Code with Branching

Next we show how separators can be located and
register allocation carried out in the presence of
branches. Consider the control flow graph shown in Fig.
6(i) which has both convergence and divergence of flow.
We start by locating separator S, in basic block B,. If
no more separators are found in B,, we identify the
separators along the paths from basic block B, to E,
and B, independently. As shown in Fig. 6(i), these basic
blocks may not contain separators and the next separa-
tor may be in basic block B, after the two paths have
merged. Separators S, and S, partition the program
into three parts P,, P, and P5 and register allocation
for these is performed one at a time.

For the same flow graph, Fig. 6(ii) shows the
situation in which the basic blocks B, and Be contain
separators S, and S, These are found by examining the
two paths independently for separators. Upon conver-
gence of flow, a clique in the block immediately following
the merge may be a separator for one of the paths and
not for the other. The path more likely to be executed
can be chosen and the separator along that path can be
found. In this example the graph has been partitioned
into five parts. The partition P, contains code from
basic blocks B,, B, and B, The reason for constructing
a combined graph is to ensure that both 8, and Be use
the same registers for the values being passed from B,.
Interference graphs for all five of the regions are con-
structed and allocation is performed independently.
Thus, spans common among adjacent partitions may
have been assigned different registers. Renaming of
colors assigned to members of the clique separator S,
during the coloring of partition P, is carried out so that
they are the same as the colors that were used during
coloring of partition P,. Similarly, renaming is applied
to partition P, to match the colors it used for members
of S, with the colors that were used by P, At this point
the colors used in partition P, have to be renamed to
match the colors used in P, and P,. Such a renaming
may not exist. Thus, copy code that moves the values
into appropriate registers is inserted along the path
from I?, to B,. The allocation can be done in such a
manner that the copy code is inserted along a path that

268

is less likely to be executed. Optimal colorings for indivi-
dual regions will result in optimal allocation along one
path. The allocation along the other path is near
optimal as the usage of registers is optimal except for
the copying code that has been inserted.

(i) (ii)

Fig. 6. Separators in Presence of Branching

When performing renaming of colors for partition
P, in the example in Fig. 6(ii), an attempt is made to
assign registers to the span in a manner that does not
require introduction of copying code. For example, if
priority based coloring is used, copy code is only intro-
duced if the register required to eliminate the copy code
has been allocated to a span with higher priority. If this
is not the case, the register is freed and assigned to the
span with higher priority. The free registers are assigned
to spans with lower priority, and values corresponding
to spans with lower priority are spilled if needed.

6. Combining Colorings in Presence of

Spilling/Splitting

In the previous sections we discussed combining of
colorings obtained for individual partitions, so as to
obtain an overall coloring. The spans that form a clique
separator are present in the interference graphs of the
code partition preceding and succeeding the clique.
Thus, they may be assigned different registers. For
straight line code, Tarjan’s result allows renaming of
registers in one of the segments so that the same regis-
ters are used in both code segments. In the presence of
branches, the partitions preceding and succeeding a code
segment may already have been assigned registers that
cannot be renamed. in this situation, code to transfer
values from one register to another may have to be
introduced.

In the discussion above, the issue of spilling the
values into memory and the splitting of spans was not
considered. If the number of registers available is less
than the number of live values, then the register alloca-
tion algorithm must choose the values to be held in
registers and spill the remaining values into memory. A
live range must be split into subranges which are
assigned different registers, and code to transfer the
value from one register to another must be introduced.

Next we show that the combining of colorings for
partitions can be carried out even in presence of spilling
and splitting of spans that are members of clique separa-
tors. We assume a priority based heuristic to determine
the spans that should be spilled. Let us consider a situa-
tion in which during coloring of one subgraph, a span
from the clique is split, while it is not split when the
other subgraph is colored. A span split during coloring
of any one of the subgraphs is treated as being split for
both the subgraphs. Splitting a span in one subgraph
does not disrupt the coloring in the other subgraph.
This can be explained by considering the following cases:

b

in Presence oJ Spilling

Case (i): Consider the situation in which a span from the
clique is split because the size of the clique is greater
than the number of registers available. In this case, the
part of the span spilled will be the same irrespective of
the subgraph chosen for coloring first. This is because
the priorities of the spans are used to decide upon the
span that should be spilled. As a result the spilling of a
member of the clique does not effect the colorings of the
individual partitions. In the example shown below, if we
assume that there are three registers available and span
S, has the lowest priority, then coloring of code parti-
tions preceding and succeeding the separator require
that span S, be split in the manner shown.

Fig. 7((i). Combining Colorings in Presence of Spilling

Case (ii): Now let us consider the case in which there are
enough registers available to assign to all spans in the
clique. If a span from the clique is split while coloring
the first subgraph, then it must be the case that a span
from set PRE with higher priority was assigned that
register. We know that spans from POST cannot overlap
spans from PRE. Thus, the span overlapping a member
of PRE created by splitting a member of the clique, can
be ignored during the coloring of the subgraph formed

269

by the POST set. Using a similar argument, it can be
shown that if a span from the clique is split white the
second subgraph is being colored, it will not require
recoloring of the first subgraph.

The example in Fig. 7(ii) demonstrates this case.
Let us assume that there are four registers available and
that span S, has the lowest priority. When the partition
preceding the separator is colored, part of span S, is
spilled. The part of the span spilled does not overlap any
other spans in the code partition following the separator.
As a result no changes are required for the coloring that
may have been performed for the second partition. In
this example span S,l created by splitting S, was spilled.
However, there are cases in which after splitting S,l may
be assigned a register. In either case this does not effect
the coloring of partition following the separator.

7. Computing Node Priorities

The priority of a node or Iive range is measured in
terms of the savings in execution time that are incurred
by assigning a register to it. These priorities are main-
tained to guide the coloring of the interference graph.
Since, during coloring spans can be split, the priorities of
spans are updated and that of newly created spans com-
puted. Let LODSAV be the savings in execution time
for each reference to a variable in a register instead of
memory, STRSAV be the savings for each definition of a
variable assigned to a register as compared to storing
the value in memory, and MOVCOST be the cost of
moving a value between a register and memory. The net
savings in execution time, NETSAV, if a live range is
assigned to a register, is given by:

NETSAV - LODSAV*u + STRSAV*d - MOVCOST*n

where u is the number of uses, d is the number of
definitions, and s is the number of loads and stores that
must be performed to ensure that the value is in the
register during the period a register is allocated to it and
in memory otherwise.

In order to compute the value of n we must deter-
mine whether the value of the variable is to be loaded
into the register, or whether it is already in the register
at the start of the live range. Similarly if the value is
live at the end of the live range assigned to a register,
the value must be saved in memory. In addition, the
separators also must be examined to determine whether
there is a possibility of copy code being generated. For
example, consider a variable that has definitions in basic
block Be and B, of Fig. 6 and these definitions are live
in basic block B,. If the choice of separators as shown
in Fig. 6(i) is made, no copy code may be needed. On the
other hand if the separators in Fig. 6(ii) are chosen, copy
code may be needed. Thus, additional operations are
needed to move the values among the registers. It
should be noted that the copy code can only be intro-
duced if the paths merge.

The live range of a variable can extend over
several basic blocks. A variable referenced inside a loop

body is likely to be referenced more often, and hence
assigning a register to such a variable is likely to result
in greater savings. Thus, the total savings resulting from
assigning a register to a live range is normalized with
respect to the loop-nesting depth of the basic blocks in
which they are referenced as follows:

TOTALSAV - ~(NETSAV, x Wi)

i C lr

where Wi is the loop-nesting depth of basic block i in the
flow graph and NETSAV, is the savings accrued by
assigning the value to a register in basic block i.

8. Algorithm for Allocating Registers

An overall algorithm for global register allocation
using clique separators and based upon priorities, is
summarized in Fig. 8. In this algorithm, the program is
partitioned into code segments and an interference
graph for a single partition is constructed and colored.
The node priorities are maintained globally and recom-
puted as spans are split in a manner similar to priority
based colosing[4]. During coloring of a partition, only
priorities of those nodes that belong to the current pasti-
tion are needed. Thus, while choosing a node to be
colored, only the priorities of nodes in the current graph
need to be examined. This seduces the running time of
the algorithm. One by one the subgraphs are con-
structed and colored. After a subgraph has been colored,
its colors are renamed to match the colors of the adja-
cent partitions that have already been colored. Copy
code is introduced if needed. The nodes in the graph
which have fewer neighbors than the number of registers
are colored last as they can be colored no matter what
colors are assigned to their neighbors. These nodes are
referred to as the unconstrained set of nodes and the
remaining nodes are called the constrained set of nodes
in the algorithm. Over-allocation of registers is
prevented by assigning registers to only those spans for
which TOTALSAV is positive.

270

Allocate

{
Partition the program by identifying the separators

Determine the order for processing the partitions

loop

{
Construct the interference graph for the partition to

be processed next.

Put the live ranges whose number of neighbors is less

than the number of registers in the unconstrained set.
The rest of the nodes are put in the conetrained set

of nodes.

Repeat the following steps till all consfrained nodes
have been processed.

{
For each live range Ir

{
If Ir has Iess colored neighbors than the total number

of colors then assuming that it can he assigned

a register compute TOTALSAV.

If Ir has more colored neighbors than the total

number of colors then split the live range Ir.
Construct Ir, such that it is the largest part of Ir

that can be colored. Update the graph and sets
unconetrained and constrained. Recompute

TOTALSAV for the nodes added to constrained pool.
1

Choose the live range from the constrained pool with

highest TOTALSAV and assign a color to it. If several
live ranges have same priority choose the one which is

the shortest.

Assign colors to unconstrained nodes. The nodes are

assigned colors if doing so results in savings.

Combine the results with already processed partitions.
This involves renaming of colors for the current partition
and possibly generation of copy code.

1
until all partitions have been processed

1
Fig. 8. Priority Based Register Allocation

In the algorithm presented the priority of a node,
which is the value TOTALSAV, is not normalized by
the length of the live range. In the algorithm developed
by Chow and Hennessy, the priority is normalized by the
length of the live range, because the global allocation
phase is preceded by the local register allocation phase.
During global allocation the unallocated variables have
occurrence frequencies that do not differ greatly, as the

local allocation is based upon the occurrence frequencies
of variables. The adjustment of the priority by the live
range length is needed as a longer range occupies the

register for a longer period of time. However, in the
above algorithm there is no local allocation phase and
hence the priorities are not normalized. If several live
spans have the same priority the shortest span is colored
first.

9. Performance

The strategy presented makes the coloring process
efficient which justifies the elimination of the local regis-
ter allocation phase. This also opens up possibilities for
using more expensive heuristics that may result in
improved performance. In the analysis below it is
assumed that the number of live ranges (n) remains con-
stant although splitting of live ranges increases the
number of spans. This assumption greatly simplifies the
analysis.

Space Complezity: The space complexity of the modified
priority based coloring algorithm is O(n’/my, where n
is the number of live ranges and m is the number of par-
titions into which the program is divided.

Proo/ The space complexity of the coloring heuristic
when applied to an z node interference graph is O(zz), as
there can be at most ~(2-1) edges in the graph. Since
only the interference graph for a single code partition,
consisting of O(n/m) nodes, is constructed at any given
point in time, the space required by the algorithm is
O(n2/m2). 0

Run-time Complezity: The run-time complexity of the
modified priority based coioring algorithm is O(n2/m),
where n is the number of spans and m is the number of
partitions into which the program is divided.

Proof The run-time complexity of the coloring heuristic
when applied to an interference graph with x nodes is
ObS f or in each iteration of the loop, one live range is
chosen, and we may have to perform z iterations. The
time complexity of processing a single code partition is
O(n2/ma) as its interference graph contains O(n/m) live
ranges, Since there are m partitions to process, the run-
time complexity of the modified priority based coloring
algorithm is O(n’/m). •I

The computation of live ranges entails additional
overhead that has not been considered in the above
analysis. In the modified priority based register alloca-
tion algorithm presented in this paper, the live ranges
must be computed to locate the separators. However, in
Chow and Hennessy’s algorithm some of the overhead in
computing the live ranges is avoided by assuming that
all uses and definitions of a variable are part of a single
span. A span is split into smaller live ranges only if it
cannot be colored.

The partitioning of a graph into smaller sub-
graphs increases the likelihood of finding a coloring. This
can be demonstrated using the simple example given
below. Let us assume that three registers are to be
assigned to A, B, C and D for which the interference

271

graph is shown in Fig. 9. It is possible that the heuristic
may color A with R, and B with R, in which case the
graph cannot be colored. On the other hand if the graph
is split into two subgraphs using the clique separator
{C,D} the resulting subgraphs can be colored using three
colors. The colorings of the subgraphs can be combined
to obtain a coloring for the entire graph as shown in Fig.
9fiil. . I

(R2 C Rl)C

db (RllA (Rl)B

(R3)D (R2)D (RJ)D(R3)D

Fig. 9. Reassigning Regiatera to Subgraphs

From the above example it is clear that the cause
for improved performance is the flexibility provided by
the ability to change register assignments when the
assignments for individual subgraphs are combined to
obtain the assignment for the entire graph. The follow-
ing result shows that optimality is preserved when the
results are combined.

Claim: An optimal solution can be constructed from
optimal solutions for individual partitions in straight
line code.

Proof: This results follows quite easily from Tarjan’s
result which states that if colorings for each of the sub-
graphs can be carried out using k-colors, the entire
graph can be colored in k colors. The coloring for the
combination of two subgraphs is obtained by changing
the coloring of one of the subgraphs. This is to make
sure that the members of the clique are assigned the
same color in both the subgraphs. Changing the names
of the colors does not change the number of colors used
to color a subgraph; therefore the optimality of the solu-
tions is preserved when they are combined. 0

The above results show the advantages of using
the strategy based upon clique separators. The following
result shows that the strategy described is not likely to
result in solutions worse than the solutions generated by
the Chow and Hennessy’s algorithm. In other words,
applying the coloring heuristic to the subgraphs is not
likely to result in worse solutions than an algorithm that
constructs the entire interference graph before coloring
it.

Claim: The strategy based upon clique separators will
never split or spill a live range with higher priority in
order to avoid splitting or spilling of another node with
lower priority.

Proof: In order to prove the above result we consider the
following cases:

Straight Line Code: When a partition from a straight line
code is being processed the nodes are colored in decreas-
ing order of priority. The inability to color a node is not
due to nodes with lower priority from the same parti-
tion, because these nodes have not yet been colored.
However, nodes with lower priority from other partitions
may have already been colored. A low priority node from
another partition cannot be the cause for the inability to
color a node with higher priority because the coloring of
nodes in different partitions is done independently of
each other. Thus, if a live range is spilled or split, it
could not have been avoided by splitting or spilling
nodes with priority lower than this live range.

Code with Branches: In code containing branches, the
colorings of partitions found independently cannot
always be combined so that they use the same colors for
the spans that are shared by more than one partition.
Copying code is introduced to ensure that values are in
appropriate registers. Introduction of copy code is
equivalent to splitting of live ranges. In order to prove
our claim we must show that a span with higher priority
is not split in preference to a span with lower range.
However, as explained in section 5, when combining
colorings an attempt is made to use the same colors for
spans with higher priority. 0

10. Creating Additional Partitions

The shorter the spans the more likely it is that
the code will contain separators. If the spans in the set
CLIQUE are long, they are likely to overlap spans from
both PRE and POST. Thus, it may not be possible to
partition CLIQUE into sets CLIQUE,,, and
CLIQUE,,,, If enough partitions do not exist, clique
separators can be created using the following
approaches.

Renaming

Long spans are created by global variables that
are used throughout the computation. In order to create
shorter spans the definition of the spans can be modified
as follows. A span starts when a variable is given a new
definition and ends at the point where that definition is
last used. This definition for a span differs from the
definition used by Chow and Hennessy. In their work a
span could contain multiple definitions of the same vari-
able. The modified definition will result in shorter spans
which increases the likelihood of finding separators in
the interference graph. If the renaming optimization has
already been performed, the code will automatically
yield shorter spans with single definitions[5].

Heuristics

Live ranges that extend through long sequences of
code can also result due to variables that are defined
once but used throughout the program. Such live ranges
cannot be split by renaming. In order to increase the
likelihood of finding separators, such live ranges should
be identified and handled in the following manner:

272

6)

(ii)

(iii)

The live range can be assigned a register and
removed from consideration during the rest of the
allocation process. Live ranges due to variables
that are frequently referenced throughout the pr&
gram should be treated in this manner. (See Fig-
ure 1Oi.)

The live range can be removed from consideration
during the register allocation process. After regis-
ter allocation any unassigned registers can be allo-
cated to this live range. The live ranges that are
referenced infrequently should be processed in this
manner. (See Figure lOi.)

The live range can be made shorter by removing
sequences of basic blocks in which the variable is
not referenced. This will result in shorter multiple
live ranges. The live ranges that do not fall in the
first two categories can be processed in this
manner. (See Figure 1Oii.)

(i)

Fig. 10. Creating Additional Separator8

The solutions described above require examining
the live ranges and splitting them if enough separators
are not chosen by the algorithms discussed. The next
two solutions are simpler and may be used as the
separators are being examined. After the current parti-
tion becomes larger than some specified size, and no
separator has yet been found, the following approaches
can be used to create a separator.

Giving up Eficiency

As mentioned in section 4, code along an execu-
tion path has a separator at the end of each statement.
However, for efficiency reasons separators are chosen in
a manner that ensures that no span belongs to more
than two chosen clique separators along an execution
path (i.e., c-2). This limits the number of subgraphs in

which a span can appear and hence the size of the
interference graph for each partition. The partitions
which are large can be further subdivided by relaxing

the constraint on the value of c. The spans can be
allowed to appear in a larger number of chosen clique
separators until the subgraphs obtained are sufficiently
small. Since not all the live ranges appear in two clique
separators, it is acceptable for a few of them appear in
more than two clique separators.

Splitting the Spana

If a long segment of code does not have separa-
tors, they can be created by splitting the spans. Splie
ting of a span into multiple spans allows assignment of
different registers to the newly created spans as well as
spilling some of the spans.

Fig. If. Splitting Spans to Create Separator8

The example in Fig. 11 shows how a clique can be
turned into a separator by splitting the spans. If we
consider the sets CLIQUE-{S,S,S,S,}, PRE-{S,SJ
and POST-{S,S&, we observe the clique is not a
separator. However, if spans S,, S, and S, are split
resulting in sets CLIQUE={Sl,S,S,S,J,
PRE-{S,S,Si} and POST-{S,‘,S,S,S,‘}, then the
clique does form a separator. Heuristics can be used to
decide which span to split and where to split it. For
example, the spans with lower priority can be chosen for
splitting and, if possible, a span can be split into two
parts such that one of them uses the value scarcely and
another uses the value heavily. At the points where a
span is split, instructions to load the value into a regis-
ter or store it into memory may have to be inserted.

11. Implementation

The algorithms described in this paper have been
implemented as part of a compiler for a subset of Ada.
There are two main differences between the implementa-
tion and the manner in which the algorithms were
described in this paper. Firstly, the interference graphs
for the code partitions are constructed and colored as
the separators are detected instead of finding all the
separators before starting the allocation. Secondly, the
register assignments performed in one partition are pro-
pagated to other partitions that contain the same live
ranges but have not been colored yet. This eliminates
the need for an explicit phase that combines the color-
ings for individual partitions by renaming colors.

Studies are currently being conducted to experi-
mentally compare the performance of the clique separa-
tor approach to register allocation with the approach of

273

coloring the entire graph. Results of experiments to
investigate the space efficiency of the approach for a
sample of small programs are given in the following
table. The programs considered included a money
changer, integer matrix multiplication, sieve, bubble sort
and towers of hanoi program. The programs, with the
exception of the towers program, contained one pro-
cedure. The towers program had two procedures, the
results of which are presented separately. In the study,
no registers were spilled, with sixteen being the max-
imum number of registers used by either scheme. In the
table, the first column gives the size of the graph (the
number of nodes) using the coloring scheme developed
by Chow and Hennessy. The number of separators
found is given in the second column. The next three
columns give the maximum, minimum and average
graph sizes used in the clique separator approach. From
these results, it is clear that the clique separator
approach considerably reduces the size of the graphs
that need to be colored and thus the space requirements
of coloring.

Importantly, in all cases, the number of registers
used by the clique separator scheme was either equal to
or less than the number of registers used by the Chow
and Hennessy coloring technique. For example, in the
Sieve program, 13 registers were needed when coloring
the entire graph but only 10 registers were used by util-
izing separators. Future investigations will include
experiments to determine the time efficiency of the clique
separator approach and the effects of spilling on the per-
formance of the scheme. As the separator approach is a
more complicated approach than coloring the entire
graph, we will also investigate the overhead of running
the clique separator algorithm.

References

G.J. Chaitin, “Register Allocation and Spilling via
Graph Coloring,” Proceedings of the SIGPLAN’82
Symposium on Compiler Construction, SIGPLAN
Notices, vol. 17, no. 6, pp. 98-105, June, 1982.

G.J. Chaitin, M.A. Auslander, A.K. Chandra, J.
Cocke, M.E. Hopkins, and P.W. Markstein,
“Register Allocation via Coloring,” Computer
Languages, vol. 6, no. 1, pp. 47-57, 1981.

3.

4.

5.

6.

7.

8.

9.

C.H. Chi and H.G. Dietz, “Register Allocation for
GaAs Computer Systems,” 21st Annual Hawaii
International Conference on System Sciences, vol. I,
pp. 266274, Jan., 1988.

F. Chow and J. Hennessy, “Register Allocation by
Priority-based Coloring,” Proceedings of the SIG-
PLAN’84 Symposium on Compiler Construction,
SIGPLAN Notices, vol. 19, no. 6, pp. 222-232,
June, 1984.

R. Cytron and J. Ferrante, “What’s In a Name?
-or- The Value of Renaming for Parallelism Detec-
tion and Storage Allocation,” Proc. International
Conf on Parallel Processing, pp. 19-27, August,
1987.

J.A. Fisher, “Trace Scheduling: A Technique for
Global Microcode Compaction,” IEEE Trans. on
Computers, vol. 7, no. C-30, pp. 478-490, July,
1981.

M.R. Garey and D.S. Johnson, Computers and
Intractability: A Guide to the Theory of NP-
Completeness, W.H. Freeman and Company, 1979.

J.R. Larus and P.N. Hilfinger, “Register Alloca-
tion in the SPUR Lisp Compiler,” Proceedings of
the SIGPLAN’SB Symposium on Compiler Con-
struction, pp. 255-263, 1986.

R.E. Tarjan, “Decomposition by Clique Separa-
tors,” Discrete Math., vol. 55, pp. 221-231, 1985.

274

