Towards Locating Execution Omission Errors

Xiangyu Zhangi:

tPurdue University, Department of Computer Science,
West Lafayette, Indiana 47907

xyzhang@cs.purdue.edu

Abstract

Execution omission errors are known to be difficult to loasig
dynamic analysis. These errors lead to a failure at runtievabse
of the omission of execution of some statements that wowe ha
been executed if the program had no errors. Since dynamie ana
ysis is typically designed to focus on dynamic informatioisiag
from executed statements, and statements whose execitoritk
ted do not produce dynamic information, detection of execout
omission errors becomes a challenging task. For examplige wh
dynamic slices are very effective in capturing faulty codedther
types of errors, they fail to capture faulty code in preseicex-
ecution omission errors. To address this issue relevazgsshave
been defined to consider certain static dependences (qaited-
tial dependences) in addition to dynamic dependences. YHowe
due to the conservative nature of static analysis, overjelalices
are produced. In this paper, we proposéully dynamicsolution

to locating execution omission errors using dynamic slivés in-
troduce the notion ofmplicit dependencewhich are dependences
that are normally invisible to dynamic slicing due to the ssidn

of execution of some statements. We design a dynamic metiadd t
forces the execution of the omitted code by switching ouEsm
of relevant predicates such that those implicit dependeace ex-
posed and become available for dynamic slicing. Dynamiesli
can be computed and effectively pruned to produce faultieand
date sets containing the execution omission errors. Wee 9o
main problems: verifying the existence of a single implagpen-
dence through predicate switching, and recovering theiaitple-

Sriraman Tallam Neelam Gupta
Rajiv Gupta

iThe University of Arizona, Department of Computer
Science, Tucson, Arizona 85721

{tmsriram,ngupta,gupta}@cs.arizona.edu

1. Introduction

Once a software error manifests itself at runtime as a faildy-
namic program analysis, by observing the runtime symptofns o
the failure, serves as a very natural means for identifyivegdr-
ror. In recent years, a wide variety of dynamic analysis Hasen
proposed for the purpose of debugging runtime errors [11397,
5, 10, 4, 6, 17]. Many employ machine learning or statistieah-
nigues to observe runtime deviations from certain invasiand
raise alarms for any anomalies. Others try to understand byg
searching the program state space. These techniqueslity pica
duce a fault candidate set, which is basically a prioritizetl of
statements that includes the faulty code. Proposed as ggielgu
aid, dynamic slicing [8] has the advantage of capturing tngse-
effect relations between the faulty code and the failureugh dy-
namic dependences. Recently, it has been shown that dysémic
ing based techniques are quite effective in locating progearors
[19, 20].

Common situations in which a dynamic slice captures a faulty
statement are those where execution of a faulty statemenipts
part of the program state, the effects of this corruptionpaiopa-
gated along dynamic dependences, and eventually a fadute-i
tected due to the output of an incorrect value or the crasbfng
the program. However, an error may cause the execution tficer
critical statements to be omitted, resulting in a failurkisTtype of
error is calledexecution omission error Dynamic slicing fails to
capture execution omission errors.

pendences in a demand driven manner such that a small number

of verifications are required before the root cause is cagtudur
experiments show that the proposed technique is highlgtaféein
capturing execution omission errors.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—Debugging aids, Testing toola¢Tr
ing; D.3.4 [Programming Languagé&sProcessors—Debuggers

General Terms Algorithms, Measurement, Reliability

Keywords debugging, execution omission, relevant slicing, im-
plicit dependence, potential dependence, and predicatehéng.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI'07 June 11-13, 2007, San Diego, California, USA.
Copyright(© 2007 ACM 978-1-59593-633-2/07/0006. . . $5.00.

S,: if (!save_orig_name) save orig_name=no_name;

: uch flags = 0;

‘ Correct: save_orig name=! no_name

: outbuffoutcnt++] = (uch) DEFLATED;
: if (save_orig_name)

flags FORIG_NAME;
o outbuffoutent++] = (uch)flags;

wnn n nnunn
(TS

: if (save_orig_name) {

outbufloutent++]= (*p) & 0x7F;

} ‘ Observed: DEFLATED ‘\/

S,: printf (“*%c”, outbuf[i]);

S, printf (“%c”, outbuffi+17]);~
- Observed: [flags==0] X

Figure 1. An example of execution emission error (gzip).

Figure 1 gives such an example. The code is taken from ver-
sionv3 runr 1 of gzi p available at the website [1]. The shaded
statements are the ones that get executed. As shown by the, figu
the error resides in the assignmentstave_ori g_nane. Since
save_or i g_name contains the wrong valueal se, branchS, is
not taken and thukl ags has the wrong valué while it should
have been defined &Rl GNAVE atSs. This wrongf | ags value
is eventually observed &;,. Let us assume we try to locate the
error by computing the dynamic slice of the wrong value, fired
the set of executed statements that affect the wrong vatoedh
data and/or control dependence. The resulting dynamie sbo-
tains{S,, Ss3, S, S10}, from which the root caus&,, is missing.
This happens because dynamic slicing is able to captureatite f
that the definition aS; reachesSg but fails to discover that the
branch outcome a8, also affects the value dfl ags atSs. The
difficulty of analyzing an execution omission error is ingetr lim-
itation of dynamic analysis as the analysis is based onrimdtion
collected from executed statements, not the ones whosetéxec
was incorrectly omitted.

To the best of our knowledgeglevant slicing3] is the first and
also the only automatic technique which tries to tackle tioblem
of debugging execution omission errors. The basic idealevaat
slicing is to introduce gotential dependencbetween predicate
S, and assignmen8s. Now the root cause becomes reachable
from the wrong output through dependence edges such that it i
included in the dynamic slice. Potential dependence isntisdly
a static concept in the sense that an edge is conservatively added
if potentially there is a dependence. For examf@g, potentially
depends o1%7 as well because the definition®s could reactBio,
even though in facs; does not affect the value &t . Furthermore,
potential dependence edges are uniformly introduced fothal
nodes in a dynamic dependence graph before any relevaes slic
can be computed. Therefore, the conservative effects adaten
resulting in much larger slices being computed.

In this paper, we propose a purely dynamic solution for hagdl
execution omission errors. The essence of this solutics ilie
adding a dependence edge betweerptiedicateand theuseonly
if the dependencean be made observabtather than just being
potential A dependence is observable only if changing the value
at the predicate affects the use. Therefore, the basic iflearo
approach is as follows. Given a predicatend a useu such that
p precedesu, andu does not directly or indirectly data/control
depend orp, we reexecute the program with the same input and
thenswitchthe branch outcome of the predicate. If the point that
corresponds ta is affected, we conclude that there is a dependence
betweenp andu in the original executionWe also refer to such
dependence as amplicit dependencéecause even though this
dependence exists, it is not established via a chain of @xpli
data and/or control dependences. Let us consider the ezampl
Figure 1. To verify if there is a dependence betw8emandSs, we
reexecutezi p with the same input, and then switch the execution
to take thet r ue branch atS,. We observe that the value 8 is
altered by switching the predicate. Thus, we conclude trexetis
a dependence betwe& andSg. Likewise, we find that there is
no dependence betwe&a andS;.

In order to realize the above idea, we need to address twa majo
issues. The firstissue istecognize whether there exists an implicit
dependence given a use and a prediclfe introduce the concept
of implicit dependencewhich is defined by observing the switched
execution. The main difference between implicit dependesrd
potential dependence is that the formeoliservablevhile the lat-
ter is onlypotential The key challenge of this issuetis identify
the point in the switched execution that corresponds.t8witch-
ing the predicate may significantly alter the execution, hedce
finding the corresponding instanceuwfin the new execution is no

longer straightforward. For example, switching the praticatS;

may change the control flow of the execution so much $iatis

not even reached or the same useof buf [i +1] may occur at
a different execution point. In such cases it becomes untlea

to observe whether the original value is affected by switghhe
predicate or not. We propose a novel execution alignmentititgn

which is able to align two executions based upon executigions
instead of individual executed statements such that weldecta
find the point in the new execution that corresponds to aqdati
point in the original execution if there is one.

The second issue is &fficiently discover implicit dependences
such that the root cause can be found with a minimal numbes-of r
executionsVerifying one implicit dependence requires reexecuting
the program once. Potentially, we need to verify the depeceie
between any use and each of its preceding predicates, vehaght i
parently not an option due to the prohibitively high runtimeer-
head. We propose @emand driverstrategy which gradually adds
new statements to the dynamic slice through detected imgke
pendences, and in the mean time the new dynamic slice is ghrune
using a technique developed in [19, 20].

The contributions of this paper are as follows:

e We introduce the concept afplicit dependencelt compen-
sates for the inability of traditional dynamic data and coht
dependences to capture the execution of omission errarse Si
implicit dependence is a completetlynamic conceptit is a
more appropriate basis for dynamic analysis than the hybrid
concept ofpotential dependenda [3].

e \We propose a demand driven strategy to reduce the overhead
caused by reexecutions that are required to detect implicit
pendences. This demand driven strategy is integrated with a
pruning technique introduced in [19] to achieve minimal in-
crease in the size of the fault candidate set.

e We experimentally evaluate our technique. The results show
that execution omission errors can be captured by perfarmin
a small number of verification and adding very few implicit
dependence edges.

The remainder of the paper is organized as follows. In sectio
2 we discuss the existing solutionrelevant slicingand describe
its limitations. In section 3 we present the proposed tepmiin
detail. Experimental results are presented in section shedesues
about the technique are discussed in section 5. Related isork
described in section 6 and conclusions are given in section 7

2. Relevant Slicing

Relevant slicing [3] was proposed to handle execution domisar-
rors. Given a failed execution, relevant slicing first consts a dy-
namic dependence graph in the same way as classic dynamic sli
ing does. In addition, it augments the dynamic dependenaghgr
with potential dependencedges. A relevant slice is computed by
taking the transitive closure of the wrong output on the aeigted
dynamic dependence graph.

In relevant slicing, a usa potentiallydepends on a preceding
predicatep if a different definition could potentially reaah if p
were to evaluate differently, i.e. take the opposite bracimore
formal definition of potential dependence is given below:

DEFINITION 1. Given a usau, thepotentially dependsetPD(u)
contains members of the form that specify predicates and the
outcomes (i.epT or pF). Predicatep” (pF) presents ifPD(u)
iff

(i) the execution op precedes that afi;

(i) u is not control dependent qm

(i) the definition reachingu occurs beforep;

(iv) a different definition could potentially reachif p were to
evaluate td~ (T).

Dependence edges are added betweenuaayd each element in
PD(u) . For the example in Figure 1, the potential dependence
edges are as follows.

PD(outbuf[i + 1]@S10) = {save_orig_name@Ss; }
PD(flags@Ss) = {save_orig_name@Sy }

Conditions (i), (ii) and (iv) are straightforward. The tthicon-
dition excludes the case illustrated below, in whizlakes theF
branch. Sinc& @, the reaching definition of use@, occurs after
predicatep @, definitionx @ would get killed even ip@ were
evaluated tdr. Thereforep@.” is not inPD(x @) .

if (p) {

} =

T=...,

Lo

6: ...=x...;

In Figure 1, three potential dependences are ad8ed: Se,

S; — Sy, andS; — Sip. The relevant slice of the wrong value is
computed a$S:, Sz, Ss, S4, Se, S7, S10}, Which contains the root
causes; .

Despite the fact that relevant slicing reveals a very promgis
direction to overcome the problem of debugging executioisem
sion errors, it has its inherent limitations. First of abnelition (iv)
in Definition 1 implies that static points-to analysis hadé&con-
ducted to disclose possible reaching definitions for a uke.cbn-
servative nature of such a static analysis inevitably gives to
false dependences. In our motivation example, sDEELATED
andf | ags are printed ay andS; respectively, the definition at
Ss can only reach some output statement which gets executerd aft
S1o. In other words, the definition &s can never reacky and
S10. Unfortunately, a static points-to analysis fails to caetthis
fact and hence false dependences suc®-as> Sy andS; — Sio
are introduced.

Second, the effects of the conservative nature of statilysisa
accumulate. The initial introduction of false dependenuestes
new opportunities to bring in more and more false dependence
Eventually, the excessively expanded dependence grapt neig
sult in over sized relevant slices. In some earlier studded], it
was reported that relevant slicing only inflates the sizeslagsic
dynamic slices by a very small ratio. However, those study o
ported the number of unique static statements in a relevaet, s
which may barely increase. In contrast, the number of dyoami
statements often increases by orders of magnitude. Fordaalet
us assume an erroneous predicate is executeddfdtimes and the
fault gets exercised at the last execution instance. lgahb slice
should contain only the faulty instance. However, relewditing
often includes all thd 00 instances due to its static nature. There-
fore, even though the number of static statements only aseeby
one, the information that the programmer has to go throughdar
to figure out the failure inducing relations may increase byueh
larger factor.

3. Dynamic Detection of Implicit Dependences

As pointed out earlier, relevant slicing is a hybrid anayshich
has both static and dynamic components. The conservatiueena
of static analysis inevitably results in over sized slioghjch is
contrary to the goal of providing a minimal fault candidag¢ con-
taining the root cause. In this paper, we propose an agygecssiu-
tion. The essence of this solution lies in adding a deperaledge
between a predicate and a use only if the dependenobsierv-

ablerather than just beingotential To test whether a dependence
is observable, we switch the branch outcome of the predinade
second execution and then observe if the use is affected.

As mentioned earlier, we are confronted by two challenbew:
to recognize whether there exists an implicit dependeneenga
use and a predicatandhow to efficiently discover implicit depen-
dences such that the root cause can be found with a minimal num
ber of reexecutiongn this section, we describe how these problems
are solved.

3.1 Implicit Dependence

In classical dynamic slicing, a data dependence repretantlow
of a value from the statement execution that defines it to thites
ment execution that uses it such as the dependence bettEen

and6™ in Figure 2, denoted a&™ 2% 6. A control depen-
dence between two statement executions represents treatebe-
tion of one statement depends on the branch outcome of aptedi
in the other statement. For example, statement executiimcdah-

trol dependent on 13 in execution (1), denoted 3#&) <% 141,
These dependences aplicit, or in other words, they are observ-
able and captured during the program execution.

Execution omission errors happen when certain code should
have been executed while it did not due to the error. The drarri
of locating an execution omission error lies in the dependsithat
are essential to the failure are not explicit from the execoutFor
example in Figure 2, the dependence from 15 to 2 in executipn (
is implicit. We have to capture this type of dependence in order to
handle execution omission errors. Before we proceed, Idirsts
introduce the definition of this type of dependence.

Theoretically, we can define a dependence exists between two
statement executions if and only if disturbing the executid
one statement affects the execution of the other. This defini
subsumes the previous definitions of data dependence atrlcon
dependence. However, tracking such dependence at rurgina i
possible as information required must come from statemtéats
are not executed. Next we define the new type of dependence,
implicit dependenceand show how to detect them.

DEFINITION 2. Given an executiotlz, a predicatep, and a useu
s.t. there is no explicit dependence path betwgemd u, let £’
be the reexecution of the same program with the same inpit as
except the branch outcome @f being switchedp’ and v’ be the
execution points inE’ that matchp and v in E, respectivelyu

implicitly depends om, denoted ap A, iff
(i) »" is not found inE’, or,
(ii) there is an explicit dependence path betwgéandu’,

Explicit dependence is a dependence that can be observed dur-
ing the execution including data dependence and contradérdep
dence. Note thamplicit dependence is defined in termspodndu
in the original execution even though it is verified in the tslved
execution.

The key challenge here is to find the point during the switched
execution that corresponds tg a use in the original execution.
Let us illustrate the problem using an example in Figure 2 Th
source code is presented in the left column and executioagrare
presented in the right column. Let us assume that we areesttst
in verifying the dependence between the use af15 in execution
(1), denoted ad5™, and predicaté® at 2(). According to our
solution, we reexecute the program with the same input (dve n
execution is referred to as execution (2) in Figure 2 and then
switch the branch outcome &fat statemen2(?. In order to find
out whether switchindp affects the use af, we first need to find
the corresponding use in execution (2).

Liz=t=g=P=C,=Cy=0: (1) Original execution trace:

2. if (P) { 1,2,6,13,14, 15, 16, 17, 18.

3: t=1;

4: z=... (2) Execution trace with the branch outcomefdbeing switched:
5: 1,2,3,4,56,7,8,11, 12, 6, 13, 14, 15, 16, 17, 18.

6: while (i < t) {) , . .

7: o (3) Execution trace wittP switched and statement 3tis= C, = 1:
8: if (C1) { 1,2,3,4,5,6,7,8,11, 12,6, 13, 14, 17, 18.

9: e

10: } . .

11: i=i+1 Matching 15 in traces (1) and (2):

12 i}f(v o [m @ o3 paos) oen. 7. nsi]

. e | S e

14: if (Co ==0) { | \\ \\l =< < l
15: N ! \ AN \\\\\:\::\\
15) LN e
17: b | T | | T s |
18: } @ [0 2. 31 41 (51, [6, (7). ... (12, [6]], [13, [14, E,[M]], (171, (1811]

Figure 2. An example of implicit dependence

In general, this problem is undecidable because decidireghvein
the execution terminates after switching is a undecidatdelpm.
Nonetheless, we are more interested in the cases that sedith
ecutions terminate. Therefore, in this paper we assawitched
executions always terminatén practice, we set a timer which if
expires, we aggressively conclude the verification faild s
there is no dependence between the predicate and the use.

Even with the assumption of termination of the switched ex-
ecution, finding the corresponding instanceuofn the switched
executionis not easy. In execution (2) of the example, switchihg
changes , resulting in the statements inside tidei | e loop to be
executed. Let us assume statement 7 makes a recursivelsetfcta
then the resulting trace has the following form:

1,2,38,4,5,6,71,2,...,15,..8,11, 12, 6, 13, 14, 15, 16, 17, 18.
A simple strategy that looks for the first appearance of 1Braft
statement 2 does not work in this case.

In a more complicated example such as execution (3) in Fig-
ure 2,15® does not get executed as the resulPaft2®) getting
flipped. Let us further assume statemgft®) recursively calls the
function and thus the trace produced becomes the following:

1,2,3,4,5,6,7,8,11, 12, 6,13, 14, 17,2, ..., 15, ..18.
Apparently, a well designed matching algorithm should rtjea
recognize that there is no match of the origia&l") in the new
run rather than associating 15 in this run wis(*).

The difficulty stems from the fact that we were trying to align
individual statement executions while statement exenstimay
vary significantly due to the predicate switch. We obsena th
the two executions can actually be aligned in larger units.if-
stance in Figure 2, stateme®t") corresponds to omatchesthe
sequence of executed statemef@is7, 8, 11, 12, 6] in the
switched execution. In other words, rather than matchimgetk
ecutionsinsidethewhi | e statements, we align them as a whole
instead. Similarly, sequend#3, 14, 15, 16, 17, 18]Y) matches
(13, 14, 17, 18]®, and then[14, 15, 16]Y matches14®).
Therefore, we conclude that5™") has no corresponding match
in execution (3).

Next we develop the algorithm for the above matching pracess
We begin by defining the concept of a region which is the basis f
performing matching.

DEFINITION 3. An execution can be decomposed irggions A
statement executianand the statement executions that are control
dependent os form a region. The following grammar captures the
form of a region.
Region::= s CD
CD::= ¢ | Region| CD Region

wheres is a statement execution and given any statement execution
e € CD, eis control dependent on

For instance[13, 14, 15, 16, 17, 18]Y) forms a region, in-
side which[14, 15, 16]") forms another region.

1)

Given the definition of region, the algorithm is describedAby
gorithm 1.EandE’ denote the original execution and the switched
execution, respectively. The algorithm finals in E' that matches
u given the matching predicates pf and p’ . In the body of
Mat ch() , the algorithm first tries to identify the immediate sur-
rounding regiorr that includes botlp andu and its corresponding
instance ’ in E' . Regi on(s/ r) gives the immediate surround-
ing region of a statement executisnor a regionr . For example,
Regi on([15]) =[14, 15, 16] in execution (1). Since the two
executions are identical till they reach the pointgpadndp’ , we
can easily aligrr andr’ , the surrounding regions @f andp’ ,
respectively. Next the algorithm caliat chl nsi deRegi on()
to matchu givenr andr’ . In Mat chl nsi deRegi on(), the
algorithm begins with matching the firstimmediate subregio
Fi r st SubRegi on(r) returns the firstimmediate subregion that
is insider . ForinstanceFi r st SubRegi on ([2, 3, 4, 5]®)

= [3] @. Thewhi | e loop in lines 17-20 traverses through the
siblings to locate the subregionthat containsi.

For instance, the sibling region pB] ® is[4] ®. Given the
matching subregions andr’ , at line 23, the algorithm checks
if the same branches are taken. If not, switchmactually al-
ters the branch outcome of a predicate tha control dependent
upon, which implies that we are not able to fimd. Hence the al-
gorithm returns failed. We will further illustrate this ewith an
example later on. If the same branches are taken, the digoré-
cursively callsivat chl nsi deRegi on() to further match sub-
regions that are one level below until is found. Next let us
show how to find the match df5™) in (2) using the algorithm.
Both (1) and (2) are first parsed into regions as depicted g Fi

Algorithm 1 Matching Algorithm

Description: Match() finds the use in&’ that corresponds ta in
E givenp in E corresponds tp’ in E’ andw is not inRegior(p).
MatchinsideRegion(jnds the use in regioR’ that matches in R.

1: Match(p, u, p)

2. {

3: r=Regiorfp);

4: r’=Regiorfp’);

5: while (!InRegion(u,r)) {

6: r = Regior{r);

7 r’ = Regior{r’);

8:

9: returnMatchinsideRegiam, u, r');
10: }

11:

12: MatchinsideRegioR, u, R')

13: {

14: r=FirstSubRegiofR);

15: r'=FirstSubRegio(R’);

16: if (v == NULL) returnNULL;

17: while (!InRegion(u,r)) {

18: r = SiblingRegiolir);

19: r’ = SiblingRegiolr’);
20: if (v == NULL) returnNULL;
21:
22: if (FirstStm{r) == u) returnr’;
23: if (Branch(r) !'= Branch(r’)) returnNULL;
24: returnMatchinsideRegiofr, u, r');
25 }

ure 2. According to the algorithm, we first look for the region
that covers botl2™ and15™, which is the whole execution re-
gion, and its corresponding instance in (2). Then we mateh th
subregions of the whole execution regions as shown by thtedlot
lines in the figure till we reach the subregion that contdiBs",
which is[13, 14, 15, 16, 17, 18] V). The matching subregion
is[13, 14, 15, 16, 17, 18] @, The same branches are taken at
statement 13 in both the executions, and thus we move forteard
match 15 in the subregions pi.4, 15, 16] /2 and so on. Even-
tually, 15 is located in (2).

The above example demonstrates how the algorithm works
when the corresponding use exists. Now let us take a loolotihan
example that shows how it works for the case that the correspo
ing use does not exist. In this example, we try to matsht in (3).
We are able to match in a similar manner till we reach the vahg
two subregionsf 14, 15, 16] () and[14] ®. By looking at the
branch outcomes at statemédt(*/?), we conclude that we are not
able to find 15 in (3).

The algorithm has to take care of some special cases. In
Mat chl nsi deRegi on() , the sub-regions always match if their
parents are single-entry-single-exit. In the case thatpduents
have a single-entry-multiple-exit structure, differeetjsences of
subregions may be exercised inside the parents which esea
the complexity of execution alignment. For example, in F&g8,
RandR match and we are looking for the match of 7. Since in
the new execution(y takes the true branch such that the control
flow exits the loop by a break. Line 16 and 20 in Algorithm 1
handle such cases. If a different exit point is taken in the nen
before a subregion contaings reached, a sibling region cannot be
found. In the example, we can see that the sibling of refibh is
NULL in the second run, which implies regidt terminates. We
conclude that the match of 7 is not found.

L if(P). ..
20 MatchinsideRegioR, 7, R'):

if while (i < ?) { ... [3, [41, [6,[711, ... 1, [10. ..
: if (Co) L]

5: break; i R _,

6: if (C1) Y

7: =7 |_ R

8: i =1+ 1,

o) L= I3, [4]1, [10. ..

10: ..

Figure 3. An example of the single-entry-multiple-exit case.

Finally, according to Definition 2, and the results of apptyi
the alignment algorithm to execution (1) and (2), we coneltitht
2 4, 1501 pecause® <L 4@ 24 152 |f statement 3
is changed tot=C,=1;", 2! 15 holds since predicate at
14 takes the false branch resulting in 15 does not get ex¢aste
shown in execution (3).

id
—

During the procedure of debugging, it is often the case timat t
programmer knows what the correct valug, when he observes
the wrong value ab. This information can be used ttrongly
suggest the implicit dependence edge that leads to the téxecu
omission error.

DEFINITION 4. Given an executiof and an expected value),
at an execution point 06, let o' be the point in the switched
executionE’ that corresponds te, VALUE(o’) be the right hand
side value ab’, there is astrong implicit dependencebetween a

predic_:atep and a useu, denoted ap 24, iff
(i) p 5 u;
(ii) vewp = VALUE(0').

In other words, if the expected correct value can be produced
ato’, which corresponds toin the original execution, the implicit
dependence is a strong implicit dependence. We will seathigh
priority is given to strong implicit dependences in prodgcithe
fault candidate set.

3.2 Demand Driven Strategy

According to the definition of implicit dependence, vernifgione
implicit dependence requires reexecuting the program.dfiea
error is not captured by the dynamic slice because of theimgiss
implicit dependences, potentially, we need to verify theplinit
dependences between each use in the slice and its preceddig p
cates. Therefore, the technique may become impractichbwita
sophisticated design.

We reduce the number of verifications through a demand driven
strategy consisting of two iterative steps. First,pmenea dynamic
slice as much as possible before we start verifying the edélat
implicit dependences. Second, we pick eneom the pruned slice
that is considered as the most promising one leading to tbe ro
cause and expand the slice by adding the executed statethants
u implicitly depends on. These two steps are repeated uetildbt
cause is found.

Confidence Analysis Based Pruningln [19], a technique is
proposed to compute for each executed statement the kkelih
of it being faulty. The basic idea is derived from the obsgova
that some of the statements used in computing an incorréat va
may also have been involved in computing correct values, (a.g
value produced by a statement in the dynamic slice of theiaco
value may also have been used in computing a correct outjué va
prior to the incorrect value). Hence, it is possible to eatinthe

10. a=1; C = f(rangeg(4)) ?
20. b.:.a % 2: C—1 Y Algorithm 2 Demand-Driven Algorithm
Description: LocateFault() locates the root cause by adding
30. c=a+2: C—0 % implicit dependences on demand, give O/, 0, vezp as the
dynamic dependence graph, the set of correct output, , thegnr
10 pr .i ntf ("o, b) o1 YV output, and the expected correct value a respectivelyVerify ()
41. printf("%",c): C=0 % tests the relation betweegrandu. It returnsSTRONG_ID / 1D
: : : if p /i, otherwiseNOT_ID.
Figure 4. An example of confidence analysis
1: LocateFault(G, O/, 0x, Veap)
likelihood of a statement execution being faulty by lookimgits 2: { o
relations to both the correct output and the wrong outputhSu 3 PS=PruneslicindG, O, ox);
likelihood is represented by@nfidence valueanging from 0 to 1 4: while (the root cause is not found)
— a higher confidence value corresponds to greater likeditibat 5 select a use from PS;
the statement execution produced a correct value. Thisitges is 6: Sl.]={¢,¢,0}
also callecconfidence analysis 7 foreachp in PD (u) {
For example in Figure 4, let us assume that the user observes 8 S[VerifyDep(p,u,0x , veap)] + = p;
that statement 40 outputs a correct value while 41 outputoagv o:)
one so that they are associated with the the confidence valdes 10: if (S[STRONG-1D] # ¢) type = STRONG_1D;
and 0, respectively. The goal of confidence analysis is toraati- 1L elsetype = 1D;
cally infer the confidence values of other statement exegstiThe 12 foreachp in Sftype] {
definition at statement 30 cannot reach the correct outpoighw 13 foreacht s.t.p € PD(t) {
can be interpreted as there is no evidence that indicatesdupes 14 if (VerifyDep(p.t, 0x, veap)==type) {
a correct value. Therefore, it has a confidence of 0. The diefini 15: G=G+p — 1
at 20 reaches both the correct and the wrong outputs. Frofathe 16: }
thatb at 41 is observed to be correct, we can infer that 20 produces 17: }
a correct value and hence its confidence is 1. However, frobe20 18: } B
ing correct, we cannot infer that 10 is correct because thepota- 19: S=PruneSlicing(G, O/, 0x);
tion at 20 represents a many-to-one mapping feoto b. For ex- 20: }
amplea=3, 5, 7, . . . , and so on produces the same correct value 21: }
at 20. Therefore, the confidence of 10 is computed based ingont 22
range ofa, which can be approximated by the value profile. 23: VerifyDep(p, u, 0x, Veap)

Confidence values are used in both the iterative steps nmextio
earlier. In the first step, the executed statements haviogfidence

value of 1 can be pruned from the dynamic slice since theyaire n 26:
fault candidates. In the second step, we rank the execustel st 27:
ments in the pruned slice based on their confidence values and28:
their dependence distances to the failure point, and thenthe 29:
one with the highest rank to perform implicit dependencéficar 30:
tion. After implicit dependences are verified, they are aldiethe 3L
dependence graph and then confidence values are recomputed t32:
incorporate the new dependence edges. A new ordered faitca 33:
date set is produced accordingly. 34:
35:

Demand Driven Procedure.Algorithm 2 presents the demand ~ 36:
driven procedurePr uneSl i ci ng () was animplementation of 37

24: {
25:

E’ = reexecute with p’s branch outcome altered;
p’ =the match op in E’;
o'=Match(p, ox, p');
if (o' ANULL && Value(o') == vesp) returnSTRONGID;
u’= Match (p, u, p’);
if (u'==NULL) returnID;
else{

d’=the definition ofu/;

if (InRegiorfd’,Regiorfp’)))

returniD;

}
: returnNOTL.ID;
)

the confidence analysis [19], which is able to compute a fatamnel
ranked slice. Itis also an interactive procedure, in whitthdystem
presents the statement instances in the slice in an ordehaipaio-
grammer gives feedback to the system if he considers themets
statement instance contains benign program state. Thizguoe
terminates after a few interactions with the programmehghat
the remaining statement instances in the pruned slice hdyeor-
rupted program state. Note that a statement whose insthaves
corrupted program state is not necessarily the error. Theoge of
calling PruneSli ci ng () is to have the smallest slice before
the expansion along implicit dependence edges during éaeph s
In each iterative step of thehi | e loop, a useu is selected
from the pruned slice based on its ranking. The algorithmesak
use of the concept of potential dependence from relevaringli

PS

<— implicit dep; Darker colors repesent

lower confidence.

The set of statement executions on whicpotentially depends on,
denoted a®D(u) , are used as candidates on which verification is
performed. Lines 7-8 group the predicate’D(u) based on the
verification results. The existence of strong implicit degpences

Figure 5. Enable pruning by verifying more related implicit de-
pendences.

overrides the existence of implicit dependences, meaiiaigonly
strong implicit dependence edges will be added if there aye a
Note that for each candidate the algorithm verifies not only the
dependence betwegnandu, but also the dependences between
p and any other uses that potentially depend upohe goal

is to enable more pruning during computation of the new fault
candidate set. For example in Figure 5, the triangle repteshe
the current pruned slic®S. Assume it does not contain the root
cause, according to the algorithm, we need to verify theniate

dependences that leadsdoLet us further assump 2, u and

p' 24, | are verified. If we do not verify the dependernze SN
and add it to the dependence graph, the high confidencecan
not be propagated tg and thusp’ has to be considered as a fault
candidate.

The procedure of expanding and then pruning repeats ustil th
root cause is captured in the slice. At this moment, the digrare
chains in the pruned slice clearly disclose the cause afftations
between the root cause and the failure.

Veri f yDep() presents an algorithm to test whether or not
there is a (strong) implicit dependence between a predjrated
a useu based upon Definition 2 and 4. The algorithm is derived
directly from the definitions except in lines 32-34 it coresisl
the implicit dependence is true only if a data dependesdge
exists betweemn’ andd’ instead of an explicit dependenpath
as described by the definition. Considering paths but noefdg
substantially increases the number of fault candidatesaddring
each iterative step, which is not desirable because thegroger
can be easily overwhelmed. Moreover, only minor degradatio
results from considering edges, meaning that the errorsiiflibe
contained eventually.

For example, let us assume statement 7 in Figurexzis. . .

According to the definition2® % 151 which matches our in-

tuition, because of the explicit dependence @tﬁi 39 6 <4,

7 2% 15 in the switched run. According to the algorithm, there is
no implicit dependence betweeh! and15") because switching
P does not introduce an explicit data dependence. Howeweglth
gorithm is able to identitg® % 61 and6™® 4 151 |n
other words2™ will eventually be included in the fault candidate
set through these two edges.

We would like to point out that considering edges instead of
pathsinVeri f yDep() makes this procedure unsafe under certain
situations, meaning some executed statements may not tie- rea
able fromu even thoughu implicitly depends on them. For in-
stance, let us assume statementdiis1; and statement 9 is=....
The algorithm decides there is no implicit dependence eibee
tween2(® and 15" or between2(* and 6V, therefore,2(V
is not reachable frora5*). However, according to the definition,
2 4, 1501, The observation is that if switching a predicate
changes the branch outcomes of nested predicates, théttaigor
is not safe. A safe algorithm can be derived with the cost afimu
more verifications being performed in each iteration of temend
driven process, which sacrifices the merit of the processaie
gue and later show by experimentation that these situaticnsare
and the unsafe algorithm is efficient and effective enougtttfe
application of debugging.

Next let us revisit our motivation example in Figure 1 to demo
strate this algorithm. Given the correct output and the wromput
observed a8y andS, o, respectively, the computation steps are pre-
sented as follows.

(1). Prune the dynamic slice of the wrong output fro8, Ss, Sg, S10 }
to {S2, S¢, S10}. Ss is removed from the dynamic slice because
it has a one to one mapping to the correct output;

(2). Sio is selected for expansioRD(S;o) = {S~}. SinceVeri f -
yDep(S;,S10) returns NOT_I D, no dependence edges are
added;

This time Ss is selected for expansio®PD(Sg) = {Si}.
SinceVer i f yDep(S,, S¢) returnsSTRONG.I D, dependence

S, sid, Se is added. According to the algorithm, the statement
executions that potentially depends 6a are also tested in
order to facilitate pruning. In our case, there are otheéestant
executions potentially depend &a.

After adding the implicit dependence, a new prunedesig
computed as{Si, Sz, S4, Ss, S10}, Which contains the root
cause and clearly explains how the failure is induced.

@3).

(4).

A plausible alternative to our technique is to directly com-
bine relevant slicing and confidence analysis. Unfortupathis
straightforward solution is problematic. In relevant sl the
edges added to the dynamic dependence graph represertigloten
dependences. Propagating confidence along these posaibéy f
dependence edges may result in a faulty statement appeemmg
faulty. For example in Figure 1, relevant slicing adds a delpace
betweenS; and Sy, which is false. Such a false dependence en-
ables propagation of the confidence value 1 frémto S; and
then toS;, which eventually sanitizes the root cause. This suggests
that confidence analysis can only be performed along vetiifired
plicit dependence edges. It also provides additional motivation f
our technique of detecting implicit dependence througlipete
switching.

4. Experimental Evaluation

The prototype consists of three components. Binéine com-
ponent which was built on top ofval gri nd-2.2.0 [14],
constructs a dynamic dependence graph with control flow and
timestamp annotations for an execution. In #tatic component
di abl o- 0. 3 [2] was adapted to build the control flow graph from
a x86 binary and compute static control dependences. A uigen
pendence graph, which is static, is also construted by thigpo-
nent by unioning all the unique dependences that were eegici
during the execution of a large number of test cases. Sucapgr
is used to compute potential dependences. déleugging com-
ponentimplemented the confidence analysis, the demand driven
debugging process, and the implicit dependence verifitatio

Given a x86 binary, the prototype first executes the binati wi
a large set of test cases to construct the static dependeayate and
collect value profile for the confidence analysis. Next, ttetqiype
executes the specific failing run to construct the dynamjaede
dence graph which contains only explicit dependences. The o
line debugging component takes the dynamic dependencé,grap
the static dependence graph, the set of correct output, e st
wrong output to start the debugging process.

Benchmarks.Table 1 presents the benchmarks used in our exper-
imentation. These programs are medium-sized linux @dithat
belong to the Siemens suite [12]. LOC represents the linsswte
code. Each program has multiple versions and each vers®a ha
number of real or seeded errors. Test cases are also pravide
pose these errors. We did not use the benchmakie in the suite
because we were not able to expose any errors using the pdovid
test cases.

Execution Omission Errors. We first investigated all the errors
in the suite and identified the execution omission errors:evfme-
cisely, we filtered out all the errors that were captured aglitronal
dynamic slicing techniques. The remaining errors are di@tu

Table 1. Characteristics of benchmarks

Benchmark| LOC | # of procedures| Error type Description
flex 10459 162 seeded a fast lexical analyzer generator
grep 10068 146 seeded a unix utility to print lines matching a pattern
gzip 5680 104 seeded a LZ77 based compressor
sed 14427 255 real & seeded| a stream editor for filtering and transforming text
Table 2. Execution Omission Errors
Benchmark Error RS DS PS RS/DS RS/PS
(static/dynamic)| (static/dynamic)| (static/dynamic)| (static/dynamic)| (static/dynamic)
flex Vi— Fy 963/88K 946/83K 13/31 1.02/1.06 74/2838
Vo — Fia 849/157K 714727K 97476 1.18/5.8 94/329
Vs — Fio 600/103K 80/6.8K 8/294 7.5/15.1 75/350
Vi— Fs 894/265K 629/29K 2/4 1.42/9.14 447766250
Vs — Fs 108/915 104/873 9/15 1.04/1.05 12/61
grep Vi—F> 489/32K 416/3K 416/3K 1.18/10.7 1.18/10.7
gzip Vo — F3 48/618 6/9 3/5 8/68.7 16/123
sed Vs — Fy 575/392K 498/118K 18/76 1.15/3.32 31.9/5158
Vs — F3 222/5.0K 202/3.8K 202/3.8k 1.10/1.32 1.10/1.32

omission errors as presented in Table 2. Collennor displays
the set of errors that are under study. Ervgr— F, denotes the
yth error in ther version of the specific prograrRS represents the

chain from the error to the failure. In other words, it is tlogvér
bound for a slice that can be produced by dynamic slicingthas
technigue. We manually identified these chains in order tiopa

relevant sliceSt at i ¢ anddynami ¢ give the number of unique
source code statements and the number of dynamic statement i
stances in the slice. Note that a static statement can beitexiec
many times during an execution, resulting in multiple ins&s of
the statemenDS andPS denote thdraditional dynamic slice and
the pruneddynamic slice, respectively. The last two columns com-
pare their sizes.

From Table 2, we are able to make the following observations:

* RS captures all the execution omission errors, but the sizes

of RS are very large, which simply make manual inspection
infeasible DS misses all the errors, af, which is the pruned
version ofDS, misses all the errors as well.

Thest at i ¢ sizes ofRS andDS are comparable. However, the
dynani c sizes ofRS are substantially larger than thoselS,
which implies much more manual effort be required in the case
that instance information is essential to understand theesa
effect relations.

The sizes ofPS are significantly smaller than those BS,
which makes inspectingS much easier. This strongly suggests
that execution omission errors should be located by startin
with small pruned slices and then gradually exploring iwipli
dependence edges.

Effectiveness.Table 3 shows the evaluation results of effective-
ness. The column labele#t 'of user pruni ngs’presents the
number of times that we had to tell the system that a speciiest
ment instance is benign before the system can acquire thealin
pruned slice, in which all statement instances had cordupte-
gram state. Zero user prunings indicates that the autorpatit-
ing based orD,, andox is able to produce the minimal pruned
slice. The columns labeledt’ of verifications’, '# of
iterations’, and # of expanded edges’ present the
number of verifications performed in order to identify theedag)
implicit dependence edges, the number of iterations baf@er-
ror was located, and the number of (strong) implicit depende
edges added, respectivelyPS denotes the final pruned expanded
slice that contains the errd®S is the failure-inducing dependence

the evaluation.

The observations from Table 3 are as follows.

e The numbers of user interactions that are required to aghiev

minimal pruned slices are small, which implies that prurimg
very effective. In order to reduce the subjective factorhsf t
experiment, we first manually identified ti@&S, which is the
failure inducing chain, and then statement instances n@Sin
were selected from the pruned slice in order as being benign.

e The numbers of verifications are reasonable, showing that pr

ing and the demand driven process successfully control the
number of edges that we need to verify.

The numbers of iterations and the numbers of added (strong)
implicit edges are mostly very small. In most cases, we only
need to expand the pruned slice once. This implies that after
we reduce the slice to its minimal form, the execution orissi
errors can be contained by adding very few implicit edges in
one expansion. Note that adding one implicit edge to therdepe
dence graph can make a number of executed instances become
reachable. Ised- V3 — F», we expanded twice by adding two
strong implicit dependences edges. Our experiment retieatls
most execution omission errors only propagate along vemy fe
implicit dependence edges before they manifest themséhes
results support our proposed method of first reducing tloe sli
to its minimal form and then expanding along implicit depen-
dence edges.

The sizes ofl PS are very close to those @S, meaning that
we were able to acquire nearly optimal slices.

While in Table 2, thedynani ¢ sizes are mostly orders of
magnitude larger than thet ati ¢ sizes. Thest ati ¢ and
dynani c sizes ofCS in Table 3 are comparable. It implies
thatmanually investigating dynamic statement instances is fea
sible. Instances contain much more prolific information such
as values and addresses which can greatly facilitate deiyigg
than static statements do. Previously people were reluttan
inspect instances because they believed that errors mag-pro
gate through too many instances and manually inspecting the
is unrealistic. Our experiment supports the opposite.

Table 3. Effectiveness

Benchmark| Error # of user # of # of # of expanded IPS oS
prunings | verifications | iterations edges (static/dynamic)| (static/dynamic)
flex Vi—Fy 2 5 1 5 17/51 7116
Vo — Fiy 1 4 1 1 7724 724
Vs — Fio 1 1 1 1 472 472
Vi—Fs 0 6 1 5 8/28 6/23
Vs — Fs 1 2 1 2 10/27 10/27
grep Vi—F» 15 313 1 62 103/2177 93/1196
gzip Vo — F3 2 1 1 1 517 517
sed Vs — Fy 9 36 2 2 25/74 23/69
Vs — F3 10 115 1 1 26/74 26774
e G ep- V4 — F, is the most complicated error we have. The er- P1:if A > 10 then S1: X=..
ror was propagated for a long time before it was observed. As Sl: X = S2: A=..
a consequence, a large portion of the program state was pol- “endif PL:if A > 10 then
luted and the resultin@S was quite large. That was actually P2:if A < 5then P2: if A > 100 then
decided by the characteristicsgf ep, which does not display S X = S3: X=..
any intermediate program state before it termindt®x and ‘endif endif
gzi p demonstrate the other extreme: results are emitted grad- S3 . =X endif
ually during the execution, which makes debugging a lotezasi o S4:..=X
(a) Feasibility (b) Soundness
Table 4. Performance
Benchmark| Error Plain | Graph | Verif. | Graph Table 5.
(sec.)| (sec.) | (sec.)| /Plain
flex Vi—Fy | 029 | 227 | 2.7 | 183 interested in finding the dynamic slice Xfat S3. Further assume
Va—Fia | 028 | 223 | 192 | 79.6 that the value oA was 15 and thereforBl is executed an&2 is
Vs—Fio | 028 | 224 | 0.52 80 not executed before arriving 88. In other words, the use ot at
Vi—Fs | 034 | 156 3.6 45.9 S3 receives value oK defined atS1. By switching the outcome
Vs—Fe | 012] 22 | 048 | 18.3 of predicateP2, we determine that a different value Xf(the one
grep Va—F> | 043 | 66.6 | 43.3 | 154.9 defined atS2) reachesS3. As a result in our method it is assumed
gzip Vo—F3 | 041] 135 | 0.68 | 32.9 that an implicit dependence betweled andS3 has been exposed.
sed Va—F, | 026 | 114 | 16.6 | 43.8 However, it seems that P1 evaluates to trueP2 cannot evalu-
Va—IF3 [014] 47 32.2 | 336 ate to true. By forcindgP2 to evaluate to true we may introduce a
spurious implicit dependence.
Performance. The last experiment is about performance. The run- ~ Our argument is that we cannot completely exclude the possi-
time cost of this technique main|y stems from two procedm blllty of P1 or P2 belng the error. In other WOde, even thOUgh the
online dependence graph construction procedwtéch also col- path is infeasible in the faulty program, it may be feasilletie

lects control flow and timestamp information in order to cotep ~ correctversion of the program.
potential and implicit dependences, referred taGagph in Ta-
ble 4; and theverification procedurahat entails reexecuting the
program and producing a partial predicate trace, referoedst
Veri f. in Table 4.Pl ai n presents the execution times on the
val gri nd engine without any instrumentation. The original exe-
cutions took a few miliseconds, which were so small that thay
skew the results because starting upsthé gr i nd engine and dy-
namically instrumenting the program takes much more tinaa th
the original execution. Therefore, a more reasonable casga
should be performed betwe&h ai n andGr aph.

From Table 4, the online graph construction causes a slomdow
in execution by factors ranging from 18.3 to 154.9 due to #waviy-
weight instrumentation. Note that the dynamic instrumiomeen-
gine itself is slow to begin with. In the application of delgirtg,
paying the high runtime cost once may be acceptable compared
to the otherwise tedious manual efforts. The executiondipre-
sented inVeri f . illustrate the cost of generating and aligning
predicate traces. They are mainly decided by the numberref ve

gcatlol:r;_s. . study. Furthermore, to fully overcome this problem, we have

: ISCUssion either resort to a conservative solution such as relevisihglor
Feasibility. One concern arises from the brute force predicate perturb the value oAinstead of the branch outcome, which is much
switching, which is about the feasibility of the switchedpaCon- more expensive becaugehas an integer domain while a predicate
sider the code shown in Table 5(a). Let us assume that we arehas a binary domain.

Soundness.We would like to point out that in general the
proposed method is not sound. In particular, it may miss gutidit
dependence. Now let us consider another example in Tab)eib(b
which our method fails to expose an implicit dependence.uset
assume that the value #fcomputed at statemeSR is 5, and as
a resultP1 evaluates to false and2 is not executed. Therefore
the value ofX at S4 comes from statemer@1. When computing
the dynamic slice oK at S4 we try to expose implicit dependence
by forcing the outcome of predicafel to true. Forcing outcome
of P1 to true causeP2 to execute buP2 evaluates to false. As a
result,S3 is not executed, and thus no implicit dependence is found
betweenPl1 and S4. If the value ofA is incorrect, then we have
actually failed to expose the implicit dependence betweEtmnd
S4. The cause of this problem is that the branch outcomes aédiest
predicates depend on the same definition. Switching onegatted
at a time may not suffice.

While the example illustrates that we may fail to uncover an
implicit dependence. We have not encountered such a casg in o

6. Related Work

Dynamic slicing [8] is a technique that captures the exatatate-
ments that are involved in computation of a wrong value. Some
previous work [20, 19] has shown that dynamic slicing is gjeit-
fective in locating many types of runtime errors. Howeveorking
by collecting data/control dependence information froracexed
statements, dynamic slicing is not capable of handling @@t
omission errors. Relevant slicing [3, 20] is a techniquéveerfrom
dynamic slicing which conservatively adds dependence ®tige
the dynamic dependence graph if dependences quotientially
happen between the omitted part and executed statemerdaseAs
sult, spurious dependences are introduced and eventhalbffec-
tiveness of this technique is diminished. Our solution sdobupon
dynamic slicing as well. What distinguishes it from otherrkves
that it verifies the existence of dependences thatrapticit and
edges are only added if the dependences are verified.

Predicate switching [18] is a dynamic analysis which proac-
tively collects evidence about a software error. The badéa iis
to switch the branch outcome of a predicate instance in titedfa
execution and then observe if the correct output can be peatht
the end of the executiolf that happens, such a predicate is con-
sidered a<ritical to the error. In the proposed technique, we use
predicate switching for a different purpose of disclosintlicit
dependences. The switched execution does not need tolrthetil
end and a small set of predicate are deliberately selectaditoh
in order to control the runtime overhead. In [16], Tao et edbposed
an path selection technique to expose software errors vidhgim-
ilar to predicate switching. They construct a successfog@mm
run which is closest to the failed run based on a distanceienetr
Evidence can be collected by comparing these two runs.

7. Conclusions

Execution omission errors are difficult to locate using itiadal
dynamic analysis because these analysis are typicallgmdito
focus on what ever happened while execution omission ear@s
more related to what never happened. In this paper, we inted
the concept ofmplicit dependencewhich are dependences that
are normally invisible due to the omission of execution afnso

statements. We design a novel dynamic method that enables de

tection of implicit dependences, which consists of reetiaguthe
program while switching a specific predicate instance, digdiag
the original and switched executions. We also propose a agéma
driven process, which utilizes the confidence analysis tpiae
the minimal pruned slice, and then identifies implicit degemces
starting from the minimal slice, avoiding verifying a langember

of potential dependences. Our results show that executigssion
errors can be easily captured with the proposed techniqudg.a
few implicit dependence edges need to be identified.

References
[1] http://www.cse.unl.edutgalileo/sir.
[2] http://iwww.elis.ugent.be/diablo/.

[3] Tibor Gyimothy, Arpad Beszedes, and Istan Forgacs. Aicieft
relevant slicing method for debugging. BEEC/FSE-7: Proceedings
of the 7th European Software Engineering Conference hédlyjo
with the 7th ACM SIGSOFT International Symposium on Fouardsat
of Software Engineeringpages 303-321, Toulouse, France, 1999.

[4

[l

Sudheendra Hangal and Monica S. Lam. Tracking down soéw
bugs using automatic anomaly detection.|@SE '02: Proceedings
of the International Conference on Software Engineeripages
291-301, Orlando, Florida, 2002.

Mary Jean Harrold, Gregg Rothermel, Rui Wu, and Liu Yi.
An empirical investigation of program spectra. PASTE '98:

5

—_

Proceedings of the 1998 ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineeripages 83-90,
Montreal, Quebec, Canada, 1998.

[6] Matthias Hauswirth and Trishul M. Chilimbi. Low-overhé memory
leak detection using adaptive statistical profiling. ABPLOS-XI:
Proceedings of the 11th International Conference on Aechitral
Support for Programming Languages and Operating Systpages
156-164, Boston, MA, USA, 2004.

[7] James A. Jones, Mary Jean Harrold, and John Stasko. [Miatian of
test information to assist fault localization. IGSE '02: Proceedings
of the International Conference on Software Engineeripages
467-477, Orlando, Florida, 2002.

[8] Bogdan Korel and J. Laski. Dynamic program slicingformation
Processing Letters29(3):155-163, 1988.

[9] Ben Liblit, Alex Aiken, Alice X. Zheng, and Michael I. Jdan. Bug
isolation via remote program sampling. BLDI '03: Proceedings
of the ACM SIGPLAN 2003 Conference on Programming Language
Design and Implementatipmpages 141-154, San Diego, California,
USA, 2003.

Chao Liu, Xifeng Yan, Long Fei, Jiawei Han, and SamueVRrikiff.
Sober: statistical model-based bug localization.EBEC/FSE-13:
Proceedings of the 10th European Software Engineering é@ente
held jointly with 13th ACM SIGSOFT International Symposium
on Foundations of Software Engineerjmgages 286—295, Lisbon,
Portugal, 2005.

Manos Renieris and Steven Reiss. Fault localizatioth wearest
neighbor queries. IMASE '03: Proceedings of the IEEE/ACM
International Conference on Automated Software Engimegpages
30-39, Montreal, Canada, 2003.

G. Rothermel and M. Harrold. Empirical studies of a s&fgression
test selection techniquéEEE Transaction on Software Engineerjng
24(6):401-419, 1998.

[13] Joseph R. Ruthruff, Margaret Burnett, and Gregg Raotletr An
empirical study of fault localization for end-user prograers. In
ICSE '05: Proceedings of the International Conference oftvoe
Engineering pages 352—-361, St. Louis, MO, USA, 2005.

[14] J. Seward and N. Nethercote. Valgrind, an open-souremony
debugger for x86-gnu/linux. Ihttp://valgrind.kde.org/

[15] Tao Wang and Abhik Roychoudhury. Using compresseddoyte
traces for slicing java programs. IESE’'04:Proceedings of the
International Conference on Software Engineeripgges 512-521,
Edinburgh, United Kingdom, 2004.

[16] Tao Wang and Abhik Roychoudhury. Automated path gdimra
for software fault localization. IPASE '05: Proceedings of the
20th IEEE/ACM international Conference on Automated saféw
engineering pages 347-351, Long Beach, CA, USA, 2005. ACM
Press.

[17] Andreas Zeller. Isolating cause-effect chains fronmpater
programs. INSIGSOFT '02/FSE-10: Proceedings of the 10th ACM
SIGSOFT Symposium on Foundations of Software Enginegrauges
1-10, Charleston, South Carolina, USA, 2002.

Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. Locafagts
through automated predicate switching.|GSE '06: Proceeding of
the International Conference on Software Engineeripages 272—
281, Shanghai, China, 2006.

Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. Prunipgaghic
slices with confidence. I#LDI '06: Proceedings of the ACM
SIGPLAN 2006 Conference on Programming Language Design and
Implementation pages 169-180, Chicago,IL, USA, 2006. ACM
Press.

[10]

[11]

[12]

(18]

[19]

[20] Xiangyu Zhang, Haifeng He, Neelam Gupta, and Rajiv @upt
Experimental evaluation of using dynamic slices for faattdtion.
In AADEBUG'05: Proceedings of the International Symposium on
Automated Analysis-driven Debuggingages 33-42, Monterey,

California, USA, 2005.

