
Towards Locating Execution Omission Errors

Xiangyu Zhang†‡
†Purdue University, Department of Computer Science,

West Lafayette, Indiana 47907
xyzhang@cs.purdue.edu

Sriraman Tallam Neelam Gupta
Rajiv Gupta

‡The University of Arizona, Department of Computer
Science, Tucson, Arizona 85721

{tmsriram,ngupta,gupta}@cs.arizona.edu

Abstract
Execution omission errors are known to be difficult to locateusing
dynamic analysis. These errors lead to a failure at runtime because
of the omission of execution of some statements that would have
been executed if the program had no errors. Since dynamic anal-
ysis is typically designed to focus on dynamic information arising
from executed statements, and statements whose execution is omit-
ted do not produce dynamic information, detection of execution
omission errors becomes a challenging task. For example, while
dynamic slices are very effective in capturing faulty code for other
types of errors, they fail to capture faulty code in presenceof ex-
ecution omission errors. To address this issue relevant slices have
been defined to consider certain static dependences (calledpoten-
tial dependences) in addition to dynamic dependences. However,
due to the conservative nature of static analysis, overly large slices
are produced. In this paper, we propose afully dynamicsolution
to locating execution omission errors using dynamic slices. We in-
troduce the notion ofimplicit dependenceswhich are dependences
that are normally invisible to dynamic slicing due to the omission
of execution of some statements. We design a dynamic method that
forces the execution of the omitted code by switching outcomes
of relevant predicates such that those implicit dependences are ex-
posed and become available for dynamic slicing. Dynamic slices
can be computed and effectively pruned to produce fault candi-
date sets containing the execution omission errors. We solve two
main problems: verifying the existence of a single implicitdepen-
dence through predicate switching, and recovering the implicit de-
pendences in a demand driven manner such that a small number
of verifications are required before the root cause is captured. Our
experiments show that the proposed technique is highly effective in
capturing execution omission errors.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—Debugging aids, Testing tools, Trac-
ing; D.3.4 [Programming Languages]: Processors—Debuggers

General Terms Algorithms, Measurement, Reliability

Keywords debugging, execution omission, relevant slicing, im-
plicit dependence, potential dependence, and predicate switching.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’07 June 11–13, 2007, San Diego, California, USA.
Copyright c© 2007 ACM 978-1-59593-633-2/07/0006. . . $5.00.

1. Introduction
Once a software error manifests itself at runtime as a failure, dy-
namic program analysis, by observing the runtime symptoms of
the failure, serves as a very natural means for identifying the er-
ror. In recent years, a wide variety of dynamic analysis havebeen
proposed for the purpose of debugging runtime errors [11, 9,13, 7,
5, 10, 4, 6, 17]. Many employ machine learning or statisticaltech-
niques to observe runtime deviations from certain invariants and
raise alarms for any anomalies. Others try to understand bugs by
searching the program state space. These techniques typically pro-
duce a fault candidate set, which is basically a prioritizedset of
statements that includes the faulty code. Proposed as a debugging
aid, dynamic slicing [8] has the advantage of capturing the cause-
effect relations between the faulty code and the failure through dy-
namic dependences. Recently, it has been shown that dynamicslic-
ing based techniques are quite effective in locating program errors
[19, 20].

Common situations in which a dynamic slice captures a faulty
statement are those where execution of a faulty statement corrupts
part of the program state, the effects of this corruption arepropa-
gated along dynamic dependences, and eventually a failure is de-
tected due to the output of an incorrect value or the crashingof
the program. However, an error may cause the execution of certain
critical statements to be omitted, resulting in a failure. This type of
error is calledexecution omission error. Dynamic slicing fails to
capture execution omission errors.

�
�
��������	
��
����
�
����	
��
����
�
�����
�
���

����������������

�
�
���������
�	�����

����������������

�
�
��������� ������!!"���������#$%&'($#�

�
)
�������	
��
����
�
���

�
*�
� ��
�	�+�,-./
0'1$�

�
2
��������� ������!!"����������
�	�

����������������

�
3
�������	
��
����
�
����4

���������

�
5
� ������ ������!!"���67��8��93%�

���������

�������:

����������������

�
;
���7�������<=�>?������� �"��

�
��

��7�������<=�>?������� �!�"��

����������������

��������������#$%&'($#

	
�������	
��
����
�
�������
�
��

����������� ��
�	���"

Figure 1. An example of execution emission error (gzip).

Figure 1 gives such an example. The code is taken from ver-
sionv3 run r1 of gzip available at the website [1]. The shaded
statements are the ones that get executed. As shown by the figure,
the error resides in the assignment tosave orig name. Since
save orig name contains the wrong valuefalse, branchS4 is
not taken and thusflags has the wrong value0 while it should
have been defined asORIG NAME atS5. This wrongflags value
is eventually observed atS10. Let us assume we try to locate the
error by computing the dynamic slice of the wrong value, i.e.find
the set of executed statements that affect the wrong value through
data and/or control dependence. The resulting dynamic slice con-
tains{S2,S3,S6,S10}, from which the root cause,S1, is missing.
This happens because dynamic slicing is able to capture the fact
that the definition atS2 reachesS6 but fails to discover that the
branch outcome ofS4 also affects the value offlags at S6. The
difficulty of analyzing an execution omission error is inherent lim-
itation of dynamic analysis as the analysis is based on information
collected from executed statements, not the ones whose execution
was incorrectly omitted.

To the best of our knowledge,relevant slicing[3] is the first and
also the only automatic technique which tries to tackle the problem
of debugging execution omission errors. The basic idea of relevant
slicing is to introduce apotential dependencebetween predicate
S4 and assignmentS6. Now the root cause becomes reachable
from the wrong output through dependence edges such that it is
included in the dynamic slice. Potential dependence is essentially
a static concept in the sense that an edge is conservatively added
if potentially there is a dependence. For example,S10 potentially
depends onS7 as well because the definition atS8 could reachS10,
even though in factS7 does not affect the value atS10. Furthermore,
potential dependence edges are uniformly introduced for all the
nodes in a dynamic dependence graph before any relevant slices
can be computed. Therefore, the conservative effects accumulate
resulting in much larger slices being computed.

In this paper, we propose a purely dynamic solution for handling
execution omission errors. The essence of this solution lies in
adding a dependence edge between thepredicateand theuseonly
if the dependencecan be made observablerather than just being
potential. A dependence is observable only if changing the value
at the predicate affects the use. Therefore, the basic idea of our
approach is as follows. Given a predicatep and a useu such that
p precedesu, andu does not directly or indirectly data/control
depend onp, we reexecute the program with the same input and
thenswitch the branch outcome of the predicate. If the point that
corresponds tou is affected, we conclude that there is a dependence
betweenp andu in the original execution. We also refer to such
dependence as animplicit dependencebecause even though this
dependence exists, it is not established via a chain of explicit
data and/or control dependences. Let us consider the example in
Figure 1. To verify if there is a dependence betweenS4 andS6, we
reexecutegzipwith the same input, and then switch the execution
to take thetrue branch atS4. We observe that the value atS6 is
altered by switching the predicate. Thus, we conclude that there is
a dependence betweenS4 andS6. Likewise, we find that there is
no dependence betweenS7 andS10.

In order to realize the above idea, we need to address two major
issues. The first issue is torecognize whether there exists an implicit
dependence given a use and a predicate. We introduce the concept
of implicit dependence, which is defined by observing the switched
execution. The main difference between implicit dependence and
potential dependence is that the former isobservablewhile the lat-
ter is onlypotential. The key challenge of this issue isto identify
the point in the switched execution that corresponds tou. Switch-
ing the predicate may significantly alter the execution, andhence
finding the corresponding instance ofu in the new execution is no

longer straightforward. For example, switching the predicate atS7

may change the control flow of the execution so much thatS10 is
not even reached or the same use ofoutbuf[i+1] may occur at
a different execution point. In such cases it becomes unclear how
to observe whether the original value is affected by switching the
predicate or not. We propose a novel execution alignment algorithm
which is able to align two executions based upon execution regions
instead of individual executed statements such that we are able to
find the point in the new execution that corresponds to a particular
point in the original execution if there is one.

The second issue is toefficiently discover implicit dependences
such that the root cause can be found with a minimal number of re-
executions. Verifying one implicit dependence requires reexecuting
the program once. Potentially, we need to verify the dependences
between any use and each of its preceding predicates, which is ap-
parently not an option due to the prohibitively high runtimeover-
head. We propose ademand drivenstrategy which gradually adds
new statements to the dynamic slice through detected implicit de-
pendences, and in the mean time the new dynamic slice is pruned
using a technique developed in [19, 20].

The contributions of this paper are as follows:

• We introduce the concept ofimplicit dependence. It compen-
sates for the inability of traditional dynamic data and control
dependences to capture the execution of omission errors. Since
implicit dependence is a completelydynamic concept, it is a
more appropriate basis for dynamic analysis than the hybrid
concept ofpotential dependencein [3].

• We propose a demand driven strategy to reduce the overhead
caused by reexecutions that are required to detect implicitde-
pendences. This demand driven strategy is integrated with a
pruning technique introduced in [19] to achieve minimal in-
crease in the size of the fault candidate set.

• We experimentally evaluate our technique. The results show
that execution omission errors can be captured by performing
a small number of verification and adding very few implicit
dependence edges.

The remainder of the paper is organized as follows. In section
2 we discuss the existing solution –relevant slicingand describe
its limitations. In section 3 we present the proposed technique in
detail. Experimental results are presented in section 4. Some issues
about the technique are discussed in section 5. Related workis
described in section 6 and conclusions are given in section 7.

2. Relevant Slicing
Relevant slicing [3] was proposed to handle execution omission er-
rors. Given a failed execution, relevant slicing first constructs a dy-
namic dependence graph in the same way as classic dynamic slic-
ing does. In addition, it augments the dynamic dependence graph
with potential dependenceedges. A relevant slice is computed by
taking the transitive closure of the wrong output on the augmented
dynamic dependence graph.

In relevant slicing, a useu potentiallydepends on a preceding
predicatep if a different definition could potentially reachu if p
were to evaluate differently, i.e. take the opposite branch. A more
formal definition of potential dependence is given below:

DEFINITION 1. Given a useu, thepotentially dependssetPD(u)
contains members of the form that specify predicates and their
outcomes (i.e.,pT or pF). PredicatepT (pF) presents inPD(u)
iff

(i) the execution ofp precedes that ofu;
(ii) u is not control dependent onp;
(iii) the definition reachingu occurs beforep;

(iv) a different definition could potentially reachu if p were to
evaluate toF (T).

Dependence edges are added between anyu and each element in
PD(u). For the example in Figure 1, the potential dependence
edges are as follows.

PD(outbuf [i + 1]@S10) = {save orig name@ST
7 }

PD(flags@S6) = {save orig name@ST
4 }

Conditions (i), (ii) and (iv) are straightforward. The third con-
dition excludes the case illustrated below, in whichp takes theF
branch. Sincex@4, the reaching definition of usex@6, occurs after
predicatep@1, definitionx@2 would get killed even ifp@1 were
evaluated toT. Therefore,p@1T is not inPD(x@6).

1: if (p) {
2: x=...;
3: }
4: x=...;
5: . . .;
6: ...=x...;

In Figure 1, three potential dependences are added:S4 → S6,
S7 → S9, andS7 → S10. The relevant slice of the wrong value is
computed as{S1,S2,S3,S4,S6,S7,S10}, which contains the root
causeS1.

Despite the fact that relevant slicing reveals a very promising
direction to overcome the problem of debugging execution omis-
sion errors, it has its inherent limitations. First of all, condition (iv)
in Definition 1 implies that static points-to analysis has tobe con-
ducted to disclose possible reaching definitions for a use. The con-
servative nature of such a static analysis inevitably givesrise to
false dependences. In our motivation example, sinceDEFLATED
andflags are printed atS9 andS10 respectively, the definition at
S8 can only reach some output statement which gets executed after
S10. In other words, the definition atS8 can never reachS9 and
S10. Unfortunately, a static points-to analysis fails to capture this
fact and hence false dependences such asS7 → S9 andS7 → S10

are introduced.
Second, the effects of the conservative nature of static analysis

accumulate. The initial introduction of false dependencescreates
new opportunities to bring in more and more false dependences.
Eventually, the excessively expanded dependence graph might re-
sult in over sized relevant slices. In some earlier studies [3, 15], it
was reported that relevant slicing only inflates the sizes ofclassic
dynamic slices by a very small ratio. However, those study only re-
ported the number of unique static statements in a relevant slice,
which may barely increase. In contrast, the number of dynamic
statements often increases by orders of magnitude. For example, let
us assume an erroneous predicate is executed for100 times and the
fault gets exercised at the last execution instance. Ideally, the slice
should contain only the faulty instance. However, relevantslicing
often includes all the100 instances due to its static nature. There-
fore, even though the number of static statements only increases by
one, the information that the programmer has to go through inorder
to figure out the failure inducing relations may increase by amuch
larger factor.

3. Dynamic Detection of Implicit Dependences
As pointed out earlier, relevant slicing is a hybrid analysis which
has both static and dynamic components. The conservative nature
of static analysis inevitably results in over sized slices,which is
contrary to the goal of providing a minimal fault candidate set con-
taining the root cause. In this paper, we propose an aggressive solu-
tion. The essence of this solution lies in adding a dependence edge
between a predicate and a use only if the dependence isobserv-

ablerather than just beingpotential. To test whether a dependence
is observable, we switch the branch outcome of the predicatein a
second execution and then observe if the use is affected.

As mentioned earlier, we are confronted by two challenges:how
to recognize whether there exists an implicit dependence given a
use and a predicateandhow to efficiently discover implicit depen-
dences such that the root cause can be found with a minimal num-
ber of reexecutions. In this section, we describe how these problems
are solved.

3.1 Implicit Dependence

In classical dynamic slicing, a data dependence representsthe flow
of a value from the statement execution that defines it to the state-
ment execution that uses it such as the dependence between1(1)

and6(1) in Figure 2, denoted as1(1) dd−→ 6(1). A control depen-
dence between two statement executions represents that theexecu-
tion of one statement depends on the branch outcome of a predicate
in the other statement. For example, statement execution 14is con-

trol dependent on 13 in execution (1), denoted as13(1) cd−→ 14(1).
These dependences areexplicit, or in other words, they are observ-
able and captured during the program execution.

Execution omission errors happen when certain code should
have been executed while it did not due to the error. The barrier
of locating an execution omission error lies in the dependences that
are essential to the failure are not explicit from the execution. For
example in Figure 2, the dependence from 15 to 2 in execution (1)
is implicit. We have to capture this type of dependence in order to
handle execution omission errors. Before we proceed, let usfirst
introduce the definition of this type of dependence.

Theoretically, we can define a dependence exists between two
statement executions if and only if disturbing the execution of
one statement affects the execution of the other. This definition
subsumes the previous definitions of data dependence and control
dependence. However, tracking such dependence at runtime is not
possible as information required must come from statementsthat
are not executed. Next we define the new type of dependence,
implicit dependence, and show how to detect them.

DEFINITION 2. Given an executionE, a predicatep, and a useu
s.t. there is no explicit dependence path betweenp and u, let E′

be the reexecution of the same program with the same input asE
except the branch outcome ofp′ being switched,p′ and u′ be the
execution points inE′ that matchp and u in E, respectively,u

implicitly depends onp, denoted asp
id−→ u, iff

(i) u′ is not found inE′, or,
(ii) there is an explicit dependence path betweenp′ andu′,

Explicit dependence is a dependence that can be observed dur-
ing the execution including data dependence and control depen-
dence. Note thatimplicit dependence is defined in terms ofp andu
in the original execution even though it is verified in the switched
execution.

The key challenge here is to find the point during the switched
execution that corresponds tou, a use in the original execution.
Let us illustrate the problem using an example in Figure 2. The
source code is presented in the left column and execution traces are
presented in the right column. Let us assume that we are interested
in verifying the dependence between the use ofx at15 in execution
(1), denoted as15(1), and predicateP at 2(1). According to our
solution, we reexecute the program with the same input (the new
execution is referred to as execution (2) in Figure 2 and thenwe
switch the branch outcome ofP at statement2(2). In order to find
out whether switchingP affects the use ofx, we first need to find
the corresponding use in execution (2).

1: i = t = x = P = C1 = C2 = 0;
2: if (P) {
3: t = 1;
4: x=...;
5: }
6: while (i < t) {
7: . . .;
8: if (C1) {
9: . . .;

10: }
11: i = i + 1;
12: }
13: if (...) {
14: if (C2 == 0) {
15: ...=x;
16: }
17: . . .;
18: }

(1) Original execution trace:
1, 2, 6, 13, 14, 15, 16, 17, 18.

(2) Execution trace with the branch outcome ofP being switched:
1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 6, 13, 14, 15, 16, 17, 18.

(3) Execution trace withP switched and statement 3 ist = C2 = 1:
1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 6, 13, 14, 17, 18.

Matching 15 in traces (1) and (2):

���������������������������	��������
�������������������	��������
������������

����������������������
������������������	����
�������������	��������
�����������������	�������
������������

Figure 2. An example of implicit dependence

In general, this problem is undecidable because deciding whether
the execution terminates after switching is a undecidable problem.
Nonetheless, we are more interested in the cases that switched ex-
ecutions terminate. Therefore, in this paper we assumeswitched
executions always terminate. In practice, we set a timer which if
expires, we aggressively conclude the verification fails and thus
there is no dependence between the predicate and the use.

Even with the assumption of termination of the switched ex-
ecution, finding the corresponding instance ofu in the switched
executionis not easy. In execution (2) of the example, switchingP
changest, resulting in the statements inside thewhile loop to be
executed. Let us assume statement 7 makes a recursive self call and
then the resulting trace has the following form:

1, 2, 3, 4, 5, 6, 7,1, 2, ..., 15,...8, 11, 12, 6, 13, 14, 15, 16, 17, 18.
A simple strategy that looks for the first appearance of 15 after
statement 2 does not work in this case.

In a more complicated example such as execution (3) in Fig-
ure 2,15(3) does not get executed as the result ofP at2(3) getting
flipped. Let us further assume statement17(3) recursively calls the
function and thus the trace produced becomes the following:

1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 6, 13, 14, 17,1, 2, ..., 15, ...18.
Apparently, a well designed matching algorithm should clearly
recognize that there is no match of the original15(1) in the new
run rather than associating 15 in this run with15(1).

The difficulty stems from the fact that we were trying to align
individual statement executions while statement executions may
vary significantly due to the predicate switch. We observe that
the two executions can actually be aligned in larger units. For in-
stance in Figure 2, statement6(1) corresponds to ormatchesthe
sequence of executed statements[6,7,8,11,12,6](2) in the
switched execution. In other words, rather than matching the ex-
ecutionsinside thewhile statements, we align them as a whole
instead. Similarly, sequence[13,14,15,16,17,18](1) matches
[13,14,17,18](3), and then[14,15,16](1) matches14(3).
Therefore, we conclude that15(1) has no corresponding match
in execution (3).

Next we develop the algorithm for the above matching process.
We begin by defining the concept of a region which is the basis for
performing matching.

DEFINITION 3. An execution can be decomposed intoregions. A
statement executions and the statement executions that are control
dependent ons form a region. The following grammar captures the
form of a region.

Region::= s CD

CD ::= ε | Region | CD Region
(1)

wheres is a statement execution and given any statement execution
e ∈ CD, e is control dependent ons.

For instance,[13,14,15,16,17,18](1) forms a region, in-
side which[14,15,16](1) forms another region.

Given the definition of region, the algorithm is described byAl-
gorithm 1.E andE’ denote the original execution and the switched
execution, respectively. The algorithm findsu’ in E’ that matches
u given the matching predicates ofp and p’. In the body of
Match(), the algorithm first tries to identify the immediate sur-
rounding regionr that includes bothp andu and its corresponding
instancer’ in E’. Region(s/r) gives the immediate surround-
ing region of a statement executions or a regionr. For example,
Region([15]) = [14,15,16] in execution (1). Since the two
executions are identical till they reach the points ofp andp’, we
can easily alignr andr’, the surrounding regions ofp andp’,
respectively. Next the algorithm callsMatchInsideRegion()
to matchu given r andr’. In MatchInsideRegion(), the
algorithm begins with matching the first immediate subregions.
FirstSubRegion(r) returns the first immediate subregion that
is insider. For instance,FirstSubRegion ([2, 3, 4, 5](2))
= [3](2). Thewhile loop in lines 17-20 traverses through the

siblings to locate the subregionr that containsu.
For instance, the sibling region of[3](2) is [4](2). Given the

matching subregionsr andr’, at line 23, the algorithm checks
if the same branches are taken. If not, switchingp actually al-
ters the branch outcome of a predicate thatu is control dependent
upon, which implies that we are not able to findu’. Hence the al-
gorithm returns failed. We will further illustrate this case with an
example later on. If the same branches are taken, the algorithm re-
cursively callsMatchInsideRegion() to further match sub-
regions that are one level below untilu’ is found. Next let us
show how to find the match of15(1) in (2) using the algorithm.
Both (1) and (2) are first parsed into regions as depicted in Fig-

Algorithm 1 Matching Algorithm

Description: Match() finds the use inE′ that corresponds tou in
E givenp in E corresponds top′ in E′ andu is not inRegion(p).
MatchInsideRegion()finds the use in regionR′ that matchesu in R.

1: Match(p, u, p′)
2: {
3: r=Region(p);
4: r′=Region(p′);
5: while (!InRegion(u,r)) {
6: r = Region(r);
7: r′ = Region(r′);
8: }
9: returnMatchInsideRegion(r, u, r’);

10: }
11:
12: MatchInsideRegion(R, u, R′)
13: {
14: r=FirstSubRegion(R);
15: r′=FirstSubRegion(R′);
16: if (r′ == NULL) returnNULL;
17: while (!InRegion(u,r)) {
18: r = SiblingRegion(r);
19: r′ = SiblingRegion(r′);
20: if (r′ == NULL) returnNULL;
21: }
22: if (FirstStmt(r) == u) returnr′;
23: if (Branch(r) != Branch(r′)) returnNULL;
24: returnMatchInsideRegion(r, u, r′);
25: }

ure 2. According to the algorithm, we first look for the region
that covers both2(1) and15(1), which is the whole execution re-
gion, and its corresponding instance in (2). Then we match the
subregions of the whole execution regions as shown by the dotted
lines in the figure till we reach the subregion that contains15(1),
which is[13,14,15,16,17,18](1). The matching subregion
is [13,14,15,16,17,18](2). The same branches are taken at
statement 13 in both the executions, and thus we move forwardto
match 15 in the subregions of[14,15,16](1/2) and so on. Even-
tually, 15 is located in (2).

The above example demonstrates how the algorithm works
when the corresponding use exists. Now let us take a look at another
example that shows how it works for the case that the correspond-
ing use does not exist. In this example, we try to match15(1) in (3).
We are able to match in a similar manner till we reach the following
two subregions:[14,15,16](1) and[14](2). By looking at the
branch outcomes at statement14(1/2), we conclude that we are not
able to find 15 in (3).

The algorithm has to take care of some special cases. In
MatchInsideRegion(), the sub-regions always match if their
parents are single-entry-single-exit. In the case that theparents
have a single-entry-multiple-exit structure, different sequences of
subregions may be exercised inside the parents which increases
the complexity of execution alignment. For example, in Figure 3,
R andR’ match and we are looking for the match of 7. Since in
the new execution,C0 takes the true branch such that the control
flow exits the loop by a break. Line 16 and 20 in Algorithm 1
handle such cases. If a different exit point is taken in the new run
before a subregion containsu is reached, a sibling region cannot be
found. In the example, we can see that the sibling of region[4] is
NULL in the second run, which implies regionR’ terminates. We
conclude that the match of 7 is not found.

1: if (P) . . .
2: . . .
3: while (i < t) {
4: if (C0)
5: break;
6: if (C1)
7: ...=x;
8: i = i + 1;
9: }

10: . . .;

MatchInsideRegion(R, 7,R′):
����������������������	����
�������������

���������������������������

�

Figure 3. An example of the single-entry-multiple-exit case.

Finally, according to Definition 2, and the results of applying
the alignment algorithm to execution (1) and (2), we conclude that

2(1) id−→ 15(1) because2(2) cd−→ 4(2) dd−→ 15(2). If statement 3
is changed to ”t=C2=1;”, 2(1) id−→ 15(1) holds since predicate at
14 takes the false branch resulting in 15 does not get executed as
shown in execution (3).

During the procedure of debugging, it is often the case that the
programmer knows what the correct valuevexp when he observes
the wrong value ato. This information can be used tostrongly
suggest the implicit dependence edge that leads to the execution
omission error.

DEFINITION 4. Given an executionE and an expected valuevexp

at an execution point ofo, let o′ be the point in the switched
executionE′ that corresponds too, VALUE(o′) be the right hand
side value ato′, there is astrong implicit dependencebetween a

predicatep and a useu, denoted asp
sid−−→ u, iff

(i) p
id−→ u;

(ii) vexp = VALUE(o′).

In other words, if the expected correct value can be produced
ato′, which corresponds too in the original execution, the implicit
dependence is a strong implicit dependence. We will see thata high
priority is given to strong implicit dependences in producing the
fault candidate set.

3.2 Demand Driven Strategy

According to the definition of implicit dependence, verifying one
implicit dependence requires reexecuting the program once. If an
error is not captured by the dynamic slice because of the missing
implicit dependences, potentially, we need to verify the implicit
dependences between each use in the slice and its preceding predi-
cates. Therefore, the technique may become impractical without a
sophisticated design.

We reduce the number of verifications through a demand driven
strategy consisting of two iterative steps. First, weprunea dynamic
slice as much as possible before we start verifying the related
implicit dependences. Second, we pick oneu from the pruned slice
that is considered as the most promising one leading to the root
cause and expand the slice by adding the executed statementsthat
u implicitly depends on. These two steps are repeated until the root
cause is found.

Confidence Analysis Based Pruning.In [19], a technique is
proposed to compute for each executed statement the likelihood
of it being faulty. The basic idea is derived from the observation
that some of the statements used in computing an incorrect value
may also have been involved in computing correct values (e.g., a
value produced by a statement in the dynamic slice of the incorrect
value may also have been used in computing a correct output value
prior to the incorrect value). Hence, it is possible to estimate the

10. a=1; C = f(range(A)) ?
. . .

20. b=a % 2; C = 1
√

. . .
30. c=a+2; C = 0 ×

. . .
40. printf("%d",b); C = 1

√
41. printf("%d",c); C = 0 ×

Figure 4. An example of confidence analysis

likelihood of a statement execution being faulty by lookingat its
relations to both the correct output and the wrong output. Such a
likelihood is represented by aconfidence valueranging from 0 to 1
– a higher confidence value corresponds to greater likelihood that
the statement execution produced a correct value. This technique is
also calledconfidence analysis.

For example in Figure 4, let us assume that the user observes
that statement 40 outputs a correct value while 41 outputs a wrong
one so that they are associated with the the confidence valuesof 1
and 0, respectively. The goal of confidence analysis is to automati-
cally infer the confidence values of other statement executions. The
definition at statement 30 cannot reach the correct output, which
can be interpreted as there is no evidence that indicates it produces
a correct value. Therefore, it has a confidence of 0. The definition
at 20 reaches both the correct and the wrong outputs. From thefact
thatb at 41 is observed to be correct, we can infer that 20 produces
a correct value and hence its confidence is 1. However, from 20be-
ing correct, we cannot infer that 10 is correct because the computa-
tion at 20 represents a many-to-one mapping froma to b. For ex-
ample,a=3,5,7,..., and so on produces the same correct value
at 20. Therefore, the confidence of 10 is computed based upon the
range ofa, which can be approximated by the value profile.

Confidence values are used in both the iterative steps mentioned
earlier. In the first step, the executed statements having a confidence
value of 1 can be pruned from the dynamic slice since they are not
fault candidates. In the second step, we rank the executed state-
ments in the pruned slice based on their confidence values and
their dependence distances to the failure point, and then pick the
one with the highest rank to perform implicit dependence verifica-
tion. After implicit dependences are verified, they are added to the
dependence graph and then confidence values are recomputed to
incorporate the new dependence edges. A new ordered fault candi-
date set is produced accordingly.

Demand Driven Procedure.Algorithm 2 presents the demand
driven procedure.PruneSlicing ()was an implementation of
the confidence analysis [19], which is able to compute a pruned and
ranked slice. It is also an interactive procedure, in which the system
presents the statement instances in the slice in an order andthe pro-
grammer gives feedback to the system if he considers the presented
statement instance contains benign program state. This procedure
terminates after a few interactions with the programmer such that
the remaining statement instances in the pruned slice have only cor-
rupted program state. Note that a statement whose instanceshave
corrupted program state is not necessarily the error. The purpose of
calling PruneSlicing () is to have the smallest slice before
the expansion along implicit dependence edges during each step.

In each iterative step of thewhile loop, a useu is selected
from the pruned slice based on its ranking. The algorithm makes
use of the concept of potential dependence from relevant slicing.
The set of statement executions on whichu potentially depends on,
denoted asPD(u), are used as candidates on which verification is
performed. Lines 7-8 group the predicates inPD(u) based on the
verification results. The existence of strong implicit dependences

Algorithm 2 Demand-Driven Algorithm

Description: LocateFault() locates the root cause by adding
implicit dependences on demand, givenG, O√, o×, vexp as the
dynamic dependence graph, the set of correct output, , the wrong
output, and the expected correct value ato×, respectively.Verify ()
tests the relation betweenp andu. It returnsSTRONG ID / ID

if p
sid/id−−−−→ u, otherwiseNOT ID.

1: LocateFault(G, O√, o×, vexp)
2: {
3: PS=PruneSlicing(G, O√, o×);
4: while (the root cause is not found){
5: select a useu from PS;
6: S[...] = {φ, φ, φ};
7: foreachp in PD (u) {
8: S[VerifyDep(p,u,o×, vexp)] + = p;
9: }

10: if (S[STRONG ID] 6= φ) type = STRONG ID;
11: elsetype = ID;
12: foreachp in S[type] {
13: foreacht s.t.p ∈ PD(t) {
14: if (VerifyDep(p,t, o×, vexp)==type) {
15: G=G+ p → t;
16: }
17: }
18: }
19: S=PruneSlicing(G, O√, o×);
20: }
21: }
22:
23: VerifyDep(p, u, o×, vexp)
24: {
25: E′ = reexecuteE with p’s branch outcome altered;
26: p′ = the match ofp in E′;
27: o′= Match(p, o×, p′);
28: if (o′ 6=NULL && Value(o′) == vexp) returnSTRONGID;
29: u′= Match(p, u, p′);
30: if (u′==NULL) returnID;
31: else{
32: d′=the definition ofu′;
33: if (InRegion(d′,Region(p′)))
34: returnID;
35: }
36: returnNOT ID;
37: }

� � �

��

� � � � � �

� �

� � 	
 � � � �
 � 	 � � � � � � � � �
 � � � � � 	 � � � � �

 � � � � � � � � �
 � � � � �

Figure 5. Enable pruning by verifying more related implicit de-
pendences.

overrides the existence of implicit dependences, meaning that only
strong implicit dependence edges will be added if there are any.
Note that for each candidatep, the algorithm verifies not only the
dependence betweenp andu, but also the dependences between
p and any other uses that potentially depend uponp. The goal
is to enable more pruning during computation of the new fault
candidate set. For example in Figure 5, the triangle represents the
the current pruned slicePS. Assume it does not contain the root
cause, according to the algorithm, we need to verify the potential

dependences that leads tou. Let us further assumep
id−→ u and

p’
id−→ u are verified. If we do not verify the dependencep’

id−→ t
and add it to the dependence graph, the high confidence oft can
not be propagated top′ and thusp′ has to be considered as a fault
candidate.

The procedure of expanding and then pruning repeats until the
root cause is captured in the slice. At this moment, the dependence
chains in the pruned slice clearly disclose the cause effectrelations
between the root cause and the failure.

VerifyDep() presents an algorithm to test whether or not
there is a (strong) implicit dependence between a predicatep and
a useu based upon Definition 2 and 4. The algorithm is derived
directly from the definitions except in lines 32-34 it considers
the implicit dependence is true only if a data dependenceedge
exists betweenu’ andd’ instead of an explicit dependencepath
as described by the definition. Considering paths but not edges
substantially increases the number of fault candidates added during
each iterative step, which is not desirable because the programmer
can be easily overwhelmed. Moreover, only minor degradation
results from considering edges, meaning that the error willstill be
contained eventually.

For example, let us assume statement 7 in Figure 2 isx=....

According to the definition,2(1) id−→ 15(1), which matches our in-

tuition, because of the explicit dependence path2
cd−→ 3

dd−→ 6
cd−→

7
dd−→ 15 in the switched run. According to the algorithm, there is

no implicit dependence between2(1) and15(1) because switching
P does not introduce an explicit data dependence. However, the al-

gorithm is able to identity2(1) id−→ 6(1) and6(1) id−→ 15(1). In
other words,2(1) will eventually be included in the fault candidate
set through these two edges.

We would like to point out that considering edges instead of
paths inVerifyDep()makes this procedure unsafe under certain
situations, meaning some executed statements may not be reach-
able fromu even thoughu implicitly depends on them. For in-
stance, let us assume statement 4 isC1=1; and statement 9 isx=....
The algorithm decides there is no implicit dependence either be-
tween2(1) and 15(1) or between2(1) and 6(1), therefore,2(1)

is not reachable from15(1). However, according to the definition,

2(1) id−→ 15(1). The observation is that if switching a predicate
changes the branch outcomes of nested predicates, the algorithm
is not safe. A safe algorithm can be derived with the cost of much
more verifications being performed in each iteration of the demand
driven process, which sacrifices the merit of the process. Wear-
gue and later show by experimentation that these situationsare rare
and the unsafe algorithm is efficient and effective enough for the
application of debugging.

Next let us revisit our motivation example in Figure 1 to demon-
strate this algorithm. Given the correct output and the wrong output
observed atS9 andS10, respectively, the computation steps are pre-
sented as follows.

(1). Prune the dynamic slice of the wrong output from{S2,S3,S6,S10}
to{S2,S6,S10}.S3 is removed from the dynamic slice because
it has a one to one mapping to the correct output;

(2). S10 is selected for expansion.PD(S10) = {S7}. SinceVerif-
yDep(S7,S10) returns NOT ID, no dependence edges are
added;

(3). This timeS6 is selected for expansion.PD(S6) = {S4}.
SinceVerifyDep(S4,S6) returnsSTRONG ID, dependence

S4
sid−−→ S6 is added. According to the algorithm, the statement

executions that potentially depends onS4 are also tested in
order to facilitate pruning. In our case, there are other statement
executions potentially depend onS4.

(4). After adding the implicit dependence, a new pruned slice is
computed as{S1, S2,S4, S6,S10}, which contains the root
cause and clearly explains how the failure is induced.

A plausible alternative to our technique is to directly com-
bine relevant slicing and confidence analysis. Unfortunately, this
straightforward solution is problematic. In relevant slicing, the
edges added to the dynamic dependence graph represent potential
dependences. Propagating confidence along these possibly false
dependence edges may result in a faulty statement appearingnon-
faulty. For example in Figure 1, relevant slicing adds a dependence
betweenS7 andS9, which is false. Such a false dependence en-
ables propagation of the confidence value 1 fromS9 to S7 and
then toS1, which eventually sanitizes the root cause. This suggests
that confidence analysis can only be performed along verifiedim-
plicit dependence edges. It also provides additional motivation for
our technique of detecting implicit dependence through predicate
switching.

4. Experimental Evaluation
The prototype consists of three components. Theonline com-
ponent, which was built on top ofvalgrind-2.2.0 [14],
constructs a dynamic dependence graph with control flow and
timestamp annotations for an execution. In thestatic component,
diablo-0.3 [2] was adapted to build the control flow graph from
a x86 binary and compute static control dependences. A unionde-
pendence graph, which is static, is also construted by this compo-
nent by unioning all the unique dependences that were exercised
during the execution of a large number of test cases. Such a graph
is used to compute potential dependences. Thedebugging com-
ponent implemented the confidence analysis, the demand driven
debugging process, and the implicit dependence verification.

Given a x86 binary, the prototype first executes the binary with
a large set of test cases to construct the static dependence graph and
collect value profile for the confidence analysis. Next, the prototype
executes the specific failing run to construct the dynamic depen-
dence graph which contains only explicit dependences. The off-
line debugging component takes the dynamic dependence graph,
the static dependence graph, the set of correct output, and the first
wrong output to start the debugging process.

Benchmarks.Table 1 presents the benchmarks used in our exper-
imentation. These programs are medium-sized linux utilities that
belong to the Siemens suite [12]. LOC represents the lines ofsource
code. Each program has multiple versions and each version has a
number of real or seeded errors. Test cases are also providedto ex-
pose these errors. We did not use the benchmarkmake in the suite
because we were not able to expose any errors using the provided
test cases.

Execution Omission Errors. We first investigated all the errors
in the suite and identified the execution omission errors. More pre-
cisely, we filtered out all the errors that were captured by traditional
dynamic slicing techniques. The remaining errors are execution

Table 1. Characteristics of benchmarks
Benchmark LOC # of procedures Error type Description

flex 10459 162 seeded a fast lexical analyzer generator
grep 10068 146 seeded a unix utility to print lines matching a pattern
gzip 5680 104 seeded a LZ77 based compressor
sed 14427 255 real & seeded a stream editor for filtering and transforming text

Table 2. Execution Omission Errors
Benchmark Error RS DS PS RS/DS RS/PS

(static/dynamic) (static/dynamic) (static/dynamic) (static/dynamic) (static/dynamic)
flex V1 − F9 963/88K 946/83K 13/31 1.02/1.06 74/2838

V2 − F14 849/157K 714/27K 9/476 1.18/5.8 94/329
V3 − F10 600/103K 80/6.8K 8/294 7.5/15.1 75/350
V4 − F6 894/265K 629/29K 2/4 1.42/9.14 447/66250
V5 − F6 108/915 104/873 9/15 1.04/1.05 12/61

grep V4 − F2 489/32K 416/3K 416/3K 1.18/10.7 1.18/10.7
gzip V2 − F3 48/618 6/9 3/5 8/68.7 16/123
sed V3 − F2 575/392K 498/118K 18/76 1.15/3.32 31.9/5158

V3 − F3 222/5.0K 202/3.8K 202/3.8k 1.10/1.32 1.10/1.32

omission errors as presented in Table 2. Columnerror displays
the set of errors that are under study. ErrorVx − Fy denotes the
yth error in thex version of the specific program.RS represents the
relevant slice.Static anddynamic give the number of unique
source code statements and the number of dynamic statement in-
stances in the slice. Note that a static statement can be executed
many times during an execution, resulting in multiple instances of
the statement.DS andPS denote thetraditional dynamic slice and
thepruneddynamic slice, respectively. The last two columns com-
pare their sizes.

From Table 2, we are able to make the following observations:

• RS captures all the execution omission errors, but the sizes
of RS are very large, which simply make manual inspection
infeasible.DS misses all the errors, andPS, which is the pruned
version ofDS, misses all the errors as well.

• Thestatic sizes ofRS andDS are comparable. However, the
dynamic sizes ofRS are substantially larger than those ofDS,
which implies much more manual effort be required in the case
that instance information is essential to understand the cause-
effect relations.

• The sizes ofPS are significantly smaller than those ofRS,
which makes inspectingPSmuch easier. This strongly suggests
that execution omission errors should be located by starting
with small pruned slices and then gradually exploring implicit
dependence edges.

Effectiveness.Table 3 shows the evaluation results of effective-
ness. The column labeled ’# of user prunings’ presents the
number of times that we had to tell the system that a specific state-
ment instance is benign before the system can acquire the minimal
pruned slice, in which all statement instances had corrupted pro-
gram state. Zero user prunings indicates that the automaticprun-
ing based onO√ ando× is able to produce the minimal pruned
slice. The columns labeled ’# of verifications’, ’ # of
iterations’, and ’# of expanded edges’ present the
number of verifications performed in order to identify the (strong)
implicit dependence edges, the number of iterations beforethe er-
ror was located, and the number of (strong) implicit dependence
edges added, respectively.IPS denotes the final pruned expanded
slice that contains the error.OS is the failure-inducing dependence

chain from the error to the failure. In other words, it is the lower
bound for a slice that can be produced by dynamic slicing-based
technique. We manually identified these chains in order to perform
the evaluation.

The observations from Table 3 are as follows.

• The numbers of user interactions that are required to achieve
minimal pruned slices are small, which implies that pruningis
very effective. In order to reduce the subjective factor of the
experiment, we first manually identified theOS, which is the
failure inducing chain, and then statement instances not inOS
were selected from the pruned slice in order as being benign.

• The numbers of verifications are reasonable, showing that prun-
ing and the demand driven process successfully control the
number of edges that we need to verify.

• The numbers of iterations and the numbers of added (strong)
implicit edges are mostly very small. In most cases, we only
need to expand the pruned slice once. This implies that after
we reduce the slice to its minimal form, the execution omission
errors can be contained by adding very few implicit edges in
one expansion. Note that adding one implicit edge to the depen-
dence graph can make a number of executed instances become
reachable. Insed-V3 −F2, we expanded twice by adding two
strong implicit dependences edges. Our experiment revealsthat
most execution omission errors only propagate along very few
implicit dependence edges before they manifest themselves. The
results support our proposed method of first reducing the slice
to its minimal form and then expanding along implicit depen-
dence edges.

• The sizes ofIPS are very close to those ofOS, meaning that
we were able to acquire nearly optimal slices.

• While in Table 2, thedynamic sizes are mostly orders of
magnitude larger than thestatic sizes. Thestatic and
dynamic sizes ofOS in Table 3 are comparable. It implies
thatmanually investigating dynamic statement instances is fea-
sible. Instances contain much more prolific information such
as values and addresses which can greatly facilitate debugging
than static statements do. Previously people were reluctant to
inspect instances because they believed that errors may propa-
gate through too many instances and manually inspecting them
is unrealistic. Our experiment supports the opposite.

Table 3. Effectiveness
Benchmark Error # of user # of # of # of expanded IPS OS

prunings verifications iterations edges (static/dynamic) (static/dynamic)
flex V1 − F9 2 5 1 5 17/51 7/16

V2 − F14 1 4 1 1 7/24 7/24
V3 − F10 1 1 1 1 4/2 4/2
V4 − F6 0 6 1 5 8/28 6/23
V5 − F6 1 2 1 2 10/27 10/27

grep V4 − F2 15 313 1 62 103/2177 93/1196
gzip V2 − F3 2 1 1 1 5/7 5/7
sed V3 − F2 9 36 2 2 25/74 23/69

V3 − F3 10 115 1 1 26/74 26/74

• Grep-V4 − F2 is the most complicated error we have. The er-
ror was propagated for a long time before it was observed. As
a consequence, a large portion of the program state was pol-
luted and the resultingOS was quite large. That was actually
decided by the characteristics ofgrep, which does not display
any intermediate program state before it terminates.Flex and
gzip demonstrate the other extreme: results are emitted grad-
ually during the execution, which makes debugging a lot easier.

Table 4. Performance
Benchmark Error Plain Graph Verif. Graph

(sec.) (sec.) (sec.) /Plain
flex V1 − F9 0.29 22.7 2.7 78.3

V2 − F14 0.28 22.3 1.92 79.6
V3 − F10 0.28 22.4 0.52 80
V4 − F6 0.34 15.6 3.6 45.9
V5 − F6 0.12 2.2 0.48 18.3

grep V4 − F2 0.43 66.6 43.3 154.9
gzip V2 − F3 0.41 13.5 0.68 32.9
sed V3 − F2 0.26 11.4 16.6 43.8

V3 − F3 0.14 4.7 32.2 33.6

Performance.The last experiment is about performance. The run-
time cost of this technique mainly stems from two procedures: the
online dependence graph construction procedurewhich also col-
lects control flow and timestamp information in order to compute
potential and implicit dependences, referred to asGraph in Ta-
ble 4; and theverification procedurethat entails reexecuting the
program and producing a partial predicate trace, referred to as
Verif. in Table 4.Plain presents the execution times on the
valgrind engine without any instrumentation. The original exe-
cutions took a few miliseconds, which were so small that theymay
skew the results because starting up thevalgrind engine and dy-
namically instrumenting the program takes much more time than
the original execution. Therefore, a more reasonable comparison
should be performed betweenPlain andGraph.

From Table 4, the online graph construction causes a slow down
in execution by factors ranging from 18.3 to 154.9 due to the heavy-
weight instrumentation. Note that the dynamic instrumentation en-
gine itself is slow to begin with. In the application of debugging,
paying the high runtime cost once may be acceptable compared
to the otherwise tedious manual efforts. The execution times pre-
sented inVerif. illustrate the cost of generating and aligning
predicate traces. They are mainly decided by the number of veri-
fications.
5. Discussion
Feasibility. One concern arises from the brute force predicate
switching, which is about the feasibility of the switched path. Con-
sider the code shown in Table 5(a). Let us assume that we are

P1: if A > 10 then
S1: X = ..

endif
P2: if A < 5 then
S2: X = ..

endif
S3: .. = X

S1: X = ..
S2: A = ..
P1: if A > 10 then
P2: if A > 100 then
S3: X = ..

endif
endif

S4: .. = X

(a) Feasibility (b) Soundness

Table 5.

interested in finding the dynamic slice ofX at S3. Further assume
that the value ofA was 15 and thereforeS1 is executed andS2 is
not executed before arriving atS3. In other words, the use ofX at
S3 receives value ofX defined atS1. By switching the outcome
of predicateP2, we determine that a different value ofX (the one
defined atS2) reachesS3. As a result in our method it is assumed
that an implicit dependence betweenP2 andS3 has been exposed.
However, it seems that ifP1 evaluates to true,P2 cannot evalu-
ate to true. By forcingP2 to evaluate to true we may introduce a
spurious implicit dependence.

Our argument is that we cannot completely exclude the possi-
bility of P1 or P2 being the error. In other words, even though the
path is infeasible in the faulty program, it may be feasible in the
correctversion of the program.

Soundness.We would like to point out that in general the
proposed method is not sound. In particular, it may miss an implicit
dependence. Now let us consider another example in Table 5(b), in
which our method fails to expose an implicit dependence. Letus
assume that the value ofA computed at statementS2 is 5, and as
a resultP1 evaluates to false andP2 is not executed. Therefore
the value ofX at S4 comes from statementS1. When computing
the dynamic slice ofX atS4 we try to expose implicit dependence
by forcing the outcome of predicateP1 to true. Forcing outcome
of P1 to true causesP2 to execute butP2 evaluates to false. As a
result,S3 is not executed, and thus no implicit dependence is found
betweenP1 andS4. If the value ofA is incorrect, then we have
actually failed to expose the implicit dependence betweenP1 and
S4. The cause of this problem is that the branch outcomes of nested
predicates depend on the same definition. Switching one predicate
at a time may not suffice.

While the example illustrates that we may fail to uncover an
implicit dependence. We have not encountered such a case in our
study. Furthermore, to fully overcome this problem, we haveto
either resort to a conservative solution such as relevant slicing or
perturb the value ofA instead of the branch outcome, which is much
more expensive becauseA has an integer domain while a predicate
has a binary domain.

6. Related Work
Dynamic slicing [8] is a technique that captures the executed state-
ments that are involved in computation of a wrong value. Some
previous work [20, 19] has shown that dynamic slicing is quite ef-
fective in locating many types of runtime errors. However, working
by collecting data/control dependence information from executed
statements, dynamic slicing is not capable of handling execution
omission errors. Relevant slicing [3, 20] is a technique derived from
dynamic slicing which conservatively adds dependence edges to
the dynamic dependence graph if dependences couldpotentially
happen between the omitted part and executed statements. Asa re-
sult, spurious dependences are introduced and eventually the effec-
tiveness of this technique is diminished. Our solution is based upon
dynamic slicing as well. What distinguishes it from other work is
that it verifies the existence of dependences that areimplicit and
edges are only added if the dependences are verified.

Predicate switching [18] is a dynamic analysis which proac-
tively collects evidence about a software error. The basic idea is
to switch the branch outcome of a predicate instance in the failed
execution and then observe if the correct output can be producedat
the end of the execution. If that happens, such a predicate is con-
sidered ascritical to the error. In the proposed technique, we use
predicate switching for a different purpose of disclosing implicit
dependences. The switched execution does not need to run till the
end and a small set of predicate are deliberately selected toswitch
in order to control the runtime overhead. In [16], Tao et al. proposed
an path selection technique to expose software errors whichis sim-
ilar to predicate switching. They construct a successful program
run which is closest to the failed run based on a distance metric.
Evidence can be collected by comparing these two runs.

7. Conclusions
Execution omission errors are difficult to locate using traditional
dynamic analysis because these analysis are typically designed to
focus on what ever happened while execution omission errorsare
more related to what never happened. In this paper, we introduce
the concept ofimplicit dependenceswhich are dependences that
are normally invisible due to the omission of execution of some
statements. We design a novel dynamic method that enables de-
tection of implicit dependences, which consists of reexecuting the
program while switching a specific predicate instance, and aligning
the original and switched executions. We also propose a demand
driven process, which utilizes the confidence analysis to acquire
the minimal pruned slice, and then identifies implicit dependences
starting from the minimal slice, avoiding verifying a largenumber
of potential dependences. Our results show that execution omission
errors can be easily captured with the proposed techniques.Only a
few implicit dependence edges need to be identified.

References
[1] http://www.cse.unl.edu/∼galileo/sir.

[2] http://www.elis.ugent.be/diablo/.

[3] Tibor Gyimothy, Arpad Beszedes, and Istan Forgacs. An efficient
relevant slicing method for debugging. InESEC/FSE-7: Proceedings
of the 7th European Software Engineering Conference held jointly
with the 7th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pages 303–321, Toulouse, France, 1999.

[4] Sudheendra Hangal and Monica S. Lam. Tracking down software
bugs using automatic anomaly detection. InICSE ’02: Proceedings
of the International Conference on Software Engineering, pages
291–301, Orlando, Florida, 2002.

[5] Mary Jean Harrold, Gregg Rothermel, Rui Wu, and Liu Yi.
An empirical investigation of program spectra. InPASTE ’98:

Proceedings of the 1998 ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering, pages 83–90,
Montreal, Quebec, Canada, 1998.

[6] Matthias Hauswirth and Trishul M. Chilimbi. Low-overhead memory
leak detection using adaptive statistical profiling. InASPLOS-XI:
Proceedings of the 11th International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
156–164, Boston, MA, USA, 2004.

[7] James A. Jones, Mary Jean Harrold, and John Stasko. Visualization of
test information to assist fault localization. InICSE ’02: Proceedings
of the International Conference on Software Engineering, pages
467–477, Orlando, Florida, 2002.

[8] Bogdan Korel and J. Laski. Dynamic program slicing.Information
Processing Letters, 29(3):155–163, 1988.

[9] Ben Liblit, Alex Aiken, Alice X. Zheng, and Michael I. Jordan. Bug
isolation via remote program sampling. InPLDI ’03: Proceedings
of the ACM SIGPLAN 2003 Conference on Programming Language
Design and Implementation, pages 141–154, San Diego, California,
USA, 2003.

[10] Chao Liu, Xifeng Yan, Long Fei, Jiawei Han, and Samuel P.Midkiff.
Sober: statistical model-based bug localization. InESEC/FSE-13:
Proceedings of the 10th European Software Engineering Conference
held jointly with 13th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pages 286–295, Lisbon,
Portugal, 2005.

[11] Manos Renieris and Steven Reiss. Fault localization with nearest
neighbor queries. InASE ’03: Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering, pages
30–39, Montreal, Canada, 2003.

[12] G. Rothermel and M. Harrold. Empirical studies of a saferegression
test selection technique.IEEE Transaction on Software Engineering,
24(6):401–419, 1998.

[13] Joseph R. Ruthruff, Margaret Burnett, and Gregg Rothermel. An
empirical study of fault localization for end-user programmers. In
ICSE ’05: Proceedings of the International Conference on Software
Engineering, pages 352–361, St. Louis, MO, USA, 2005.

[14] J. Seward and N. Nethercote. Valgrind, an open-source memory
debugger for x86-gnu/linux. Inhttp://valgrind.kde.org/.

[15] Tao Wang and Abhik Roychoudhury. Using compressed bytecode
traces for slicing java programs. InICSE’04:Proceedings of the
International Conference on Software Engineering, pages 512–521,
Edinburgh, United Kingdom, 2004.

[16] Tao Wang and Abhik Roychoudhury. Automated path generation
for software fault localization. InASE ’05: Proceedings of the
20th IEEE/ACM international Conference on Automated software
engineering, pages 347–351, Long Beach, CA, USA, 2005. ACM
Press.

[17] Andreas Zeller. Isolating cause-effect chains from computer
programs. InSIGSOFT ’02/FSE-10: Proceedings of the 10th ACM
SIGSOFT Symposium on Foundations of Software Engineering, pages
1–10, Charleston, South Carolina, USA, 2002.

[18] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. Locatingfaults
through automated predicate switching. InICSE ’06: Proceeding of
the International Conference on Software Engineering, pages 272–
281, Shanghai, China, 2006.

[19] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. Pruning dynamic
slices with confidence. InPLDI ’06: Proceedings of the ACM
SIGPLAN 2006 Conference on Programming Language Design and
Implementation, pages 169–180, Chicago,IL, USA, 2006. ACM
Press.

[20] Xiangyu Zhang, Haifeng He, Neelam Gupta, and Rajiv Gupta.
Experimental evaluation of using dynamic slices for fault location.
In AADEBUG’05: Proceedings of the International Symposium on
Automated Analysis-driven Debugging, pages 33–42, Monterey,
California, USA, 2005.

