Learning Universal Probabilistic Models
for Fault Localization

Min Feng

Rajiv Gupta

University of California at Riverside, CSE Department, &side CA, 92521
{mfeng, gupta}@cs.ucr.edu

Abstract

Recently there has been significant interest in employirgppr
abilistic techniques for fault localization. Using dynamdepen-
dence information for multiple passing runs, learning réghes
are used to construct a probabilistic graph model for a gjwen
gram. Then, given a failing run, the probabilistic model $&&d to
rank the executed statements according to the likelihoaitherh
being faulty. In this paper we present a novel probabilagiproach
in which universal probabilistic models are learned to aelterize
the behaviors of various instruction types usedallyprograms.
The universal probabilistic model for an instruction typen form
of a probability distribution that represents how errorgha input
(operand) values are propagated as errors in the outputltjres
a given instruction type. Once these models have been cotest;
they can be used in the analysisawmfy program as follows. Given
a set of runs for any program, including at least one passiy a
one failing run, a Bayesian network called theor Flow Graph
(EFG) is then constructed from the dynamic dependence grafph
the program runs and the universal probabilistic modelan&ird
inference algorithms are employed to compute the protigtuoh
each executed statement being faulty. We also present iaptim
tions to reduce the runtime cost of inference using the EF@. O
experiments demonstrate that our approach is highly éffedh
fault localization even when very few passing runs are atddl. It
also performs well in the presence of multiple faults.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging

General Terms Experimentation, Verification

1. Introduction

Software often contains many faults since developing sofivis a
human-intensive activity. Software debugging is the pssagf lo-
cating and correcting faulty program statements. Unfately, de-
bugging can be a difficult task. The point of program failigéyipi-
cally different from the faulty statement responsible toe failure.
Thus, identifying the possible fault locations occupiestrione of
the debugging phase. Techniques developed to help autdhwate
fault localization process to assist the developer incldeléa de-
bugging [8, 28], dynamic program slicing [10, 16, 30], stalier-

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copiesiar made or distributed
for profit or commercial advantage and that copies bear thtis@ and the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

PASTE’10, June 5-6, 2010, Toronto, Ontario, Canada.
Copyright(© 2010 ACM 978-1-4503-0082-7/10/06. . . $10.00

ing techniques [13, 25, 29], and probabilistic techniqied b, 17—
19, 23].

Probabilistic techniques have proven to be effective iompri
tizing the possible faulty statements with relatively Idame cost.
Most existing probabilistic techniques [5, 7, 17, 18] woskfal-
lows: (1) two statistical profiles (e.g., path or predica) created
— one for the passing runs and the other for the failing rug}; (
the two profiles are compared by using probabilistic methadd
(3) faulty statement is located based on the differencesdsst the
two profiles. Following this procedure, most existing prboitia-
tic techniques require many distinct passing runs andnfgituns
to make the statistical profiles accurate. However, sinsestgites
are not often available, the number of program runs availé&n
debugging is often limited in practice. This paper targétasing
only a few passing runs and failing runs for fault localipati

We present a novel probabilistic method which differs frdma t
previous approaches in one significant way. While the previo
techniques employ the learning process to each indivicagirpm,
our approach uses learniogceand then applies its results in ana-
lyzing all programs. This approach is enabled by the following key
observation: on a given platform, all programs are constaifrom
the same basic instruction types; thus learning technigaasbe
appliedonceto developuniversal probabilistic modelfor the be-
havior of these instruction types and then these models easéxd
in the analysis of program runs afy program In our probabilistic
method, each universal model can be seen as a probabilistic e
transfer function, describing how an instruction type @oates er-
rors. The universal models are learned and fixed before dghgg
Given a few runs of a faulty program, we construct a graph that
describes how errors are propagated in the faulty progranaB
plying probabilistic inference techniques in the graph,cakulate
the fault probability for each statement in the program. Witee
universal probabilistic models are used during fault lazdlon for
a specific program, we simply require at least one passingaad
failing run. To the best of our knowledge, this is the first paihat
applies probabilistic inference models for fault locatiaa.

We have implemented our technique and evaluated it using the
Siemen’s suite [12]. Experimental results indicate thaiamproach
to learning and inference is very effective. Our method gishn
passing and 5 failing runs works better than Sober [18] using
all passing and failing runs. The following observationswtthe
effectiveness and versatility of our approach:

e (Single Fault) While the effectiveness of fault localipatiin-
creases with the number of available passing runs, our tech-
nique is highly effective even when only small number of
passing runsre available. It also effectively exploits availabil-
ity of failing runs. Thus, our approach is both effective i e
ploiting positive evidence from passing runs and negatite e
dence from failing runs.

e (Multiple Faults) When multiple failing runs correspondito
different faults are analyzed simultaneously, as long asign
passing runs are available, our technique assighigla rank
to at least one of the faulty statemerithus, multiple failing
runs can be exploited simultaneously by our technique -eif th
correspond to the same fault, effectiveness of fault laatitbn
is improved while if they correspond to different faults |edst
one of the faults is ranked high.

The remainder of the paper is organized as follows. In sectio
2 we provide background information on Bayesian Networkd an
illustrate their relevance for fault location. Section 2gents the
fault localization framework in detail. Section 4 descelibe im-
plementation details and section 5 presents the resultgpzrie
mentation. Section 6 discusses related work and the cdonkis
are given in section 7.

2. Bayesian Network and Faults

Our probabilistic graph model is based upon a Bayesian Né&two
(BN) derived from the Dynamic Dependence Graphs (DDGSs) of
program runs. In this section we provide a brief introductio
Bayesian Network and illustrate its suitability for fawdthlization.

A Bayesian networkalso called a belief network, is a prob-
abilistic graph model that represents a set of variablesthait
probabilistic independencies. It has been widely used énntia-
chine learning community to represent the probabilistiatien-
ship between cause and consequence.

Definition 1. The core of theBayesian networkepresentation
is a directed acyclic graph, denoted BV (U, N, E, Pr), where
U is a domain of random variables, . .., z,, N is a set of nodes
each of which corresponds to a variablgin U, F is a set of edges
which correspond to direct influence of one node on anothet, a
Pr is a set of local distributions. If there is an edge from node
x; to another noder;, x; is called a parent of;, andzx; is a
child of z;. The set of parent nodes of a node is denoted by
Pa(z;). Each local distribution inPr represents the probabilistic
relationship between a node and its parents and can be mwritte
as P(z;|Pa(z;)). The joint distribution of all the variables is the
product of the local distributions:

P(ar,...,en) = [[P@ilPa(a:).
=1

If the value of a variable is observed, then the variable ig sa

to be an evidence. A Bayesian network can be used to answer

probabilistic queries about any variable based on a setidéeues.
According to the Bayesian rule, the probability of variableon the
condition of evidence:; can be written as follows:

P(x;,xj) _ ZU—zi—zj P(z1,...,2n)
P(x;) Zinj P(z1,...,zn)

This process of computing the posterior distribution ofahles
from givenevidencas calledprobabilistic inferenceMany proven
Bayesian network inference algorithms have been publighéte
machine learning community. In this paper, we use two papula
inference algorithms: the clustering algorithm [11] ané BPIS
sampling algorithm [27].

Now let us consider a simple example that illustrates therpot
tial of using Bayesian probabilistic model to estimate thabpbil-
ity of a statement being faulty. Fig. 1(a) shows a piece okdhet
contains only one branch statement and one assignmennstate
Fig. 1(b) shows the Bayesian network of two program runs ef th
sample code. Both program runs go through the statementfelIn
Bayesian network, the nodes “S1” and “S2” denote the canesst

P(ailz;) =

1 if (flag)
2 x=1;

(a) Code (b) Bayesian network

Figure 1. Example.

of statement 1 and 2 and the nodej" denotes the correctness of
the execution instance of statemgrih the i-th program run. Ac-
cording to the figure, the correctness of instance 1.1 ana2iyl
depends on statement 1 while the correctness of instancantl.2
2.2 depends on not only statement 2 but also the previowmnicss.
For simplicity, we ignore the data dependence on varifihte Our
goal is to find the faulty statement based on the correctrfeswio
ablex in these two program runs, assuming tké an output. We
can calculate the probability of statement 1 being faultyubing
the following equation:

P(S1|VE, V)
P(S1, Vi, Vs)

Z P(S1, 82, Vi, Vi, V2, V2)
Sa, Vi1, V]

D {P(S1)P(S2)P(VS)P(V]S1)
So, ViV

P(VE|V, S2)P(VE|Vy, S2)}

where S; stands for the correctness of statemeiit 'V, stands
for the correctness of instance ", P(S:1|Vi, Vi) stands for the
probability of statement “1” being correct/faulty by givéime cor-
rectness of instance 1.2 and 2.2, and all the probabilissirilou-
tions above are learned in advance. We can also use the same wa
to calculate the fault probability of statement 2. To furtbgplain
the rationale behind our fault localization method, let ssuame:
P(S1=f)=P(S2=f)=0.1,
P(V! =w|S1 = f) =05, and
P(V2 =w|V}! =w)=P(V?=w|S2 = f) =1.0.

wherew andf meanwrongandfaulty, andi is 1 or 2. If we observe

the outputs of both execution instance 1.2 and 2.2 are witbeg,

we get the following probabilities:
P(S1 = f|VP = w, V3 = w)
P(S2 = f|V} w,Vy =w)

o< 0.0325
x 0.1

Thus, the results show the statement 2 is more likely to big/fau
in this case. If only execution instance 1.2 is wrong in the tw
program runs, then the probabilities will be:

P(S1 = fI[VZ=w,V}=c) 0.0225
P(S2 = fIVf =w, V5 =¢) 0.0

In this case, it is impossible for statement 2 to be faultyalbse
if statement 2 is faulty then both instances have to be wrdhgs,
statement 1 will be the only possible faulty statement. Ttareple
shows that what our method does is essentially to find theratit
whose fault maximizes the probability of the observatiomeT
example illustrates how Bayesian model can help us locatéyfa

statements. It is a good way to model the error propagatiom in
program. Let us now consider our framework for fault locatian.

3. Fault Localization Framework

The main purpose of our approach is to prioritize the statesac-
cording to their probabilities of being faulty. A probalsiic graph
model, called theerror Flow Graph (EFG), which is based on a
Bayesian network that formalizes the propagation of emagprio-
gram runs, is used to estimate the fault probability of edekes
ment. This framework consists of three main stepgafning in
this step the parameters of probability distribution offeatstruc-
tion type are learned;HFG Constructioh given a set of runs for
a program, we build the Dynamic Dependence Graphs (DDGs) for
the runs and convert them into an EFG; afdy(t Localizatior)
from the EFG this step estimates the fault probability ohestate-
ment. The rest of this section describes these steps inl deizhi
illustrates them using a sample program.

3.1 Universal Probabilistic Models

Our probabilistic model consists of a set of probabilitytdizi-
tions, one distribution for each instruction type, such iheepre-
sents the probability with which errors in an instructiomput val-
ues propagates to its output. The output of an instructigedés
upon its operands (i.e., dependences) as well as the statéme
self. Our model takes as input the correctness of theserfaatal
predicts the correctness of the output.

Often probabilistic models use a conditional probabiléple
to represent the local probability distribution for an imstion in a
given program. However, these tables are not suitable fommalel
because we need to represent the probabilistic distributare-
sponding to an instruction type used by all programs. Thebarm
of (input) dependences of an instruction type varies froogmm
to program and thus building a single conditional probapiiable
to represent the distribution is not possible. Therefostdad of
using a conditional probability table, we design a speaiaktfion
to represent the probabilistic distribution for each instion type.
First, we define the following function to stand for the prbiva
ity of the output being wrong given the correctness of inmitan
instruction type:

Flne,mw) = A(1— e *Tetra)

wheren. is the number of correct parents,, is the number of
wrong or faulty parents, andl anda are parameters to Hearned
for each instruction typeSince the function can be used in any
situation regardless of the number of (input) dependentas m-
struction, the learned probabilistic distribution is dpable in all
programs. The function is based upon the idea that the pildigab
of the output being wrong increases with the percentageaafrin
rect values in the inputs. When all the parents (includiageshent
nodes) are correct, its value is 0, i.e., the instance musblrect.
When all the parents are faulty or wrong, the function readte
peak value. Then the probabilistic distribution of eachringion
type is defined as follows:

{ f(ne, naw)

1- f(nm nw)

The learning of the probabilistic model for a given instiant
type consists of two steps: generating tfe@ning datafor the in-
struction type; and using the training data to derive an @gpra-
tion of theparameterg\, o). Let us discuss these steps in greater
detail.

Collecting Training Data. Given an instruction type, the train-
ing data is generated by repeatedly applying the followirggess.

x; =wrong

P(xi|Pa(xs)) x; =correct

Inputs are generated randomly for an instruction type ardctr-
responding correct output is calculated. Next, rules aeelus per-
form changes to the inputs and/or the instruction, the usion
is reevaluated, and the correctness information of theaoyks; in-
struction, and the output is recorded. This process is egpi-
peatedly and information is recorded. The collected datargglly
characterizes the behavior of an instruction type unddemift
types of errors.

[Type [Example Instructions| Replacement Ruleg
logical AND, OR operator & operand
compare CMP, SCASB operand
branch JA, JB, INE operator & operand
arithmetic ADD, SUB operator & operand
move MOV, STOSB operand
shift SAL, SHL, ROL operator & operand
other CLC, CLI, PUSH operand

Table 1. Seven instruction types and their rules.

Next we discuss the various instruction types and the rilas t
are used in performing changes during the generation afitrgi
data. Our work is performed in context of the Intel x86 instru
tion set and we divide the instructions into seven instarctypes
shown in Table 1. These types are formed based upon the type of
operations the instructions do which include: logical epiens,
comparison operations, branches that test conditiorthpaetic op-
erations, move operations, shift operations, and othefsleTl also
shows theeplacement rulethat are applicable to each instruction
type. Before we discuss which rules can be applied to whieh in
struction type, we discuss the two types of rules used:

e Operand replacementVe generate random values to substitute
all or a subset of inputs. The new values should be in the same
domain as the original inputs. This rule simulates the sitna
that the input values are wrong. The generated data froma&uch
replacement allows us to infer how probable it is for the atitp
to be wrong if the inputs are partially or fully wrong.

Operator replacementVe use another instruction of the same
type to substitute the current instruction. The new ingtamc
has the same number of inputs as the original one. This rule
simulates operator mutation. The generated data allows us t
infer how probable it is for the output to be wrong if the in-
struction (and the statement it corresponds to) itselfuttya

Both types of rules are not applicable to all instructionetyms
shown in Table 1. In particular, theperator replacementule is
not applicable to three instruction typesove compare andother.
There are a number of reasons for this. In cas@o¥einstructions
no operator is involved — the compiler generates them to lsimp
alter the location of a value or make a copy of a value. In cése o
most instructions in typether, there is no adequate replacement
for an instruction as the other instructions have diffeneatber
and/or type of inputs. In other cases, operations are gateby the
compiler to clear flags etc. Finally, in the casecomparedue to its
semantics for x86 there is no possible replacement. The ammp
operation performs all possible relational operations puats the
results in bits of thdlag register. Conditional branch instructions
test the bit for the appropriate relation operator; thuserafor
replacement is applied to conditional branch instructions

Finding Parameters. After generating the training data, we
can learn the model by adjusting the parameter of the fum¢tio
approximate the training data. Alg. 1 learns the parameittke
function f(n., n.,) from a set of training data. Each training data is
atriple (v, nl,, d*), whered' is the correctness of an instance node
givenn?, correct parents and’, wrong parents. Alg. 1 enumerates

Algorithm 1: Learn parameters.

Input: a set of training datar(;,, n,, d*)

Output: A anda

begin

for each possible:. do

for each possible:,, do
nume[ne, Ny) < 0;
NUM . [N, Nw] — 0;

end

end
for each m nt ,d")do
if d* = correctthen
| numcne, nyl — numene, ny) + 1;
else
| numy[ne, nw| — numy [ne, ny) + 1;
end
end
for each possible pait\, o) do

—

Dy, (e m0) =
if § < lowest then
‘ record(\, «);
lowest «— §;
end

numay [ne,naw]
numclne,nwltnumyne,nw]

)%

end
end

all possible parameters for which we keep 4 digits after #rdal
point and chooses the one which minimizes the deviation detw
training data and learned function.

3.2 Error Flow Graph

In this section, we describe the Dynamic Dependence Graph
(DDG) and its use in constructing the Error Flow Graph (EFG).
The DDG is a directed acyclic graph representing dependence
between different execution instances of statements irogram
run.

Definition 2. The DDG of a program runp DG(N, E), con-
sists of a set of node¥ and a set of directed edgéswhere: each
noden; € N represents th&" execution instance of statement
in the program; and each edge; — n; € E corresponds to a
dynamic data or control dependence of iHe execution instance
of statement: on the;j** execution instance of statement

Fig. 2(b) shows an execution of the sample code (shown in
Fig. 2(a)) that follows the path corresponding to the falgalie
ation of the predicate at node The value shown to the right of
each statement is the value computed by the statement dheng
runtime. The DDG of this run is shown in Fig. 2(c) — the solid
(dotted) edges are data (control) dependence edges.

Next, we present the definition of an EFG and the algorithm for
constructing it from the DDG. The nodes in a DDG only repre-
sent the instances of the statements and thus mining a DD§& doe
not naturally result in the probability of a statement befagity.
Therefore, to infer the fault probability of a statement, in&ro-
duce the EFG which not only represents the statement irssanc
but also the statements themselves.

Definition 3. An Error Flow Graph (EFG) for a program run is
a 4-tuple(S, I, E, Pr) whereS is a set of statement nodes which
represent the statements in a progrdnis a set of instance nodes
which correspond to the statement instances in a progranfiis
a set of edges which correspond to direct dependence of ate no
on another, andr is a set of probability distributions which stand
for the probability of one node given the value of its pareBtzsch
statement has a unique node in the EFG.

An EFG is a Bayesian network, representing the conditional
independencies between statements and instances. In {Be EF
each statement node takes two values, correct and faulighwh

1 read(x)
2 if (x<0)
3 yi=f(x);
else
4 yi=g(x);
5 write(y);
6 z:=y+z,
7 write(z);

(@) Sample program

1 read(x);
2 if (x<0)
4 y:=g(x);
5 write(y);
6 z:=y+X;
7 write(z);

// 10
// false
/] 22
/] 22
/] 32
/] 32

(c) DDG

(b) A program run

Figure 2. Example program.

indicate whether the statement is faulty. Each instance radsb
takes two values, correct or wrong, which indicates whether
value produced by the statement instance is correct or pimuu
The edges between instance nodes means that the correcfness
one instance affects its children, while the edges fromestant
nodes to instance nodes means that the correctness of andest
also depends on its corresponding statement nodes.

Execution 1 Execution 2

Figure 3. EFG of two program runs.

Fig. 3 shows the EFG of two runs of the sample program
shown in Fig. 2. One run takes the path corresponding to thes tr
evaluation of the predicate at node 2 (as shown in Fig. 2(bjlew
the other run follows the path corresponding to the falséuesin.

The EFG contains all the nodes from the DDGs of both runs and
has a distinct statement node for each statement. The statem
nodes are marked by the bold circles. Each instance node has
incoming edges from its parents in the DDG and the correspgnd
statement node, which forms a probabilistic distributiodi¢ating

that the correctness of the value produced by the statemstatice
depends on the input values and the statement itself. Fongea

in execution 1, node 2 has incoming edges from node 1 and node
S2, which forms a distributionP(V2|V1, S2) that indicates the
correctness of the value produced by node 2 is probabaisfic
determined by the correctness of the value produced by node 1
and the correctness of the statement 2. The EFG describethkow
errors propagates in the program run. Inference in the EHikés
tracing back from the leaf nodes (where we observe the dmess

of the outputs) along the error flows to find the statement sode

that have the highest probability of causing the errorsiitively,
by using multiple runs, we can get better estimation sinceemo
evidence is observed.

Optimizations. Usually, there are thousands of instances in
a program run. Correspondingly, the constructed EFG costai
thousands of nodes and edges. Inference in such a largerketwo

converted into an EFG. The evidences in the EFG are ini&dliz
by comparing the actual outputs with the standard outpunslll,
our implementation callSMILE (Structural Modeling, Inference,
and Learning Engine) library [3] to estimate the fault proitity of
each statement and outputs the sorted statement list.

The Siemens programs [12] are used for our experiments. It is

can be time consuming. To speed up the inference process, wea set of programs commonly used to measure the effectivariess

propose two optimization techniques.

First, in practice, we do not need to estimate the probabilit
for all the statements, since many statements are unrefatto:
evidence. A dynamic slice of a statement instangedenoted by
DS(x;), is the subgraph of the EFG which includes nodeas
well as all other nodes and edges from whighs reachable. This
is because the faulty statements are always in the dynaiméssl
of the evidences. In other words, all the statements outdide
dynamic slices are removed from the EFG.

Second, most nodes in an EFG are built for library code. We
assume that the library code is correct and the fault is inuger
code. Therefore, we do not perform inference on the cormedipg
nodes. However, we cannot simply remove the library nodes fr
the EFG because it will break the dependences in the original

EFG. Instead, we compress the consecutive library nodes on a

dependence path into one node. This greatly reduces theatumb
of nodes in an EFG while keeping all the dependences between
non-library nodes in the original EFG.

3.3 Fault Localization

An EFG is a Bayesian network which models the error propagati

in a set of program runs. Therefore, we can apply an inference
technique on the EFG to find the root cause of the error. This
process is made up of the following steps. First, we inzi@lihe
evidences associated with the EFG. An evidence is the ¢coase

of a particular instance node. Most evidences can be oltdige
inspecting the output of a program run. If a statement ircgan
outputs a wrong value, its corresponding node is set to begvro
as an evidence in the EFG, and vice versa. If a programmer has
additional knowledge about the program, he/she can alsatecre
additional evidences. Next we can estimate the probaldfigach
statement being faulty, i.e., we compute the results ofdheviing
equation:

P(S; = faulty|evidencg.

After estimating the probabilities of all statements asvahin
the final step we rank the statements in descending ordereof th
probabilities.

In our implementation we considered two popular inference
algorithms to estimate these probabilities: clusteriggathm [11]
and EPIS algorithm [27]. The clustering algorithm is wideled
for exact inference in Bayesian networks. Although thisegse
algorithm works well in practice, it may incur high time ovead
for very complicated networks. Therefore, we also use thesbf-
art EPIS algorithm which is a sampling based algorithm used f
approximate inference.

4. Experimental Evaluation
4.1 Experimental Setup

We implemented a fault localization framework which takes €
source code of the programs and uges generated Intel x86 bi-
naries. Then we used tiidablo [1] binary rewriting framework to
construct the static control flow graph from the Intel x86aries.
After that, it uses a/algrind[2]-based dynamic tracing tool devel-
oped by Zhang and Gupta [31] to execute the binaries and tigld
dynamic data and control dependence graphs. The DDGs are the

fault-localization techniques. Table 2 shows the charesties of
the seven Siemens programs. All Siemens faulty versiontagon
seeded faults. Most faults are related to computationudinb
operator and operand mutations, missing and extraneous aad
constant value mutation. Most faulty versions have only fanéy
statement, but some are seeded with several faults in eliffer
statements. We excluded a few faulty versions due to theviirig
two reasons: (1) they did not produce any failing runs froma th
provided test cases; (2) one of faulty versions from prkets
loops indefinitely far past the end of a string.

Program LOC | # Ver. | #test caseq
tcas 138 41 1608
replace 516 31 5542
printtokens | 402 7 4130
printtokens2 | 483 9 4115
schedule 299 9 2650
schedule2 | 297 9 2710
totinfo 346 23 1052

Table 2. The Siemens benchmark programs. From left to right:
program name, # lines of code, # faulty versions and # tesiscas

In our experiments, we also compare the fault localizatibn e
fectiveness of our method with Tarantula [15] and Sober.[I8]s
is because they have proved to be quite effective on the Sieme
suite programs [15]. We also compare the results of exact8ag
network inference (the clustering algorithm [11]) and apqimate
Bayesian network inference (EPIS algorithm [27]).

In our experiments, we rank only those program statemeats th
are in the backward slice of the wrong inputs. To evaluate the
techniques, we assign a score to each ranked set of statethant
is the percentage of program statements executed by failimgin
the test suite thateed to be examindtistatements are examined
in rank order. Suppose that for a ranked list of stateméhtthe
actual faulty statement occurs at rankand there are a total of
|S| statements exercised by failing runs. Then the score ofeink
statement lisS is defined as follows:

= % 100%.

S|
A lower score is preferable because it means that more of the
statements executed by failing runs are ignored before ahkyf
statement is found.

In the experiments, our goal is to determine the effectisene
of our method when only a few runs are available. Thereforene
time we ranked the executed statements for a faulty vergienjyst
used a small portion of the test cases. We ranked the statemen
each faulty version one hundred times. Each time, we rangoml
selected a few test cases for statement ranking. Thus, ealttly f
version has a hundred ranked sets of statements. The pegesnt
shown in the experimental results are the percentages esttect
to all ranked sets of statements, rather than the numberuttf/fa
versions.

There are a few special considerations that we make in our
experiments for certain faults. First, macro definitiond &ariable
declarations will not appear in DDG traces. Therefore, autfin
those places will not be exposed by doing inference in the EFG
However, we can find that the faulty probability of the statens
related to those declarations is very high. We considerethexls

score(S)

of faults to be examined if we examine the statement where the achieve better results as more passing runs are availdbleever,

faulty macro or variable is used. Second, faults that ine@mitted
statements will mean that we cannot actually examine theings
code. However, we can examine statements that are adjaciet t
location where the code is missing.

4.2 Learning Parameters

We learned the parameters for each type of instruction iel k86
instruction set from randomly generated data sets usingdtbod
presented in Section 3.1. For each type of instruction, wegeed
the training data. Table 3 shows the learned parameter valne
learning time for each type of instruction. As we can seepdkt
only a few hours to learn the probabilistic models.

A « Time (min)
logical 0.5978 16.4777| 31
compare | 0.5617 17.5729 30
branch 1.0451 3.1431 22
arithmetic | 1.0000 16.9250 37
move 1.0000 30.0000 30
shift 1.0000 19.6437 28
other 1.0000 30.0000 19

Table 3. Parameters for probability functions and learning time.

These parameters show that the “logical” and “compare” type
of instructions will probably produce correct outputs etkaugh
their inputs are partially wrong while “move” and “other’pg of
instructions will definitely produce wrong outputs if anypirt is
wrong. In other words, an error will probably be propagatéal v
“move” and “other” type of instructions while it may be caied
out via “logical” and “compare” type of instructions.

4.3 Single Fault

Usually, a software can contain multiple faults. Differdailing
runs may be caused by different faults. Therefore, a coatieev
way for fault localization is to use only one failing run atimé
and analyze it with the help of multiple passing runs. Thel goa
of our first study is to determine the effectiveness of ourhrodt
using a single failing run for a single-fault program. We lexied
the faulty versions that are seeded with multiple faults his t
study. Fig. 4 shows the cumulative percentage of all ranletsl s

the main conclusion of this study is that our approach dodseaio
quire a large test suite as a few runs is sufficient for eféectault
location.

Fig. 4 also shows the results of Sober by using all the testscas
in Siemens suite. Although Sober uses more test cases than ou
method does, our method still outperforms it. Although Sdbe
excellent at localizing the faults on predicate statemehtdoes
not deal very well with the non-predicate faulty statements

We also examined the effectiveness of our method using multi
ple failing runs for the same fault. We excluded the faultysi@ns
that are seeded with multiple faults. The number of passimg r
used in this study is five. Fig. 5 shows the results with ourhoet
and Tarantula on different numbers of failing runs (denasgél to
-5).

-1 Tarantula ——
-2 Tarantula -
-3 Tarantula
-4 Tarantula e
I -5 Tarantula ---=--
10 all Sober ---e

100 0 20 40 60 80
Score

(b) Tarantula & Sober

Percentage of faulty versions
a
g

Percentage of faulty versions

0 20 40 60 80
Score

(@) EFG

100

Figure 5. Single fault & Multiple failing runs.

By using multiple failing runs for the same fault, our method
still performs much better. About0% of the ranked sets of state-
ments had a score df% or lower with our method, while Taran-
tula only achieved;% in the same score range. Similarly, almost
53% of ranked sets of statements had a scor&086 or lower us-
ing our method, whereas the same was true for aBo% using
Tarantula. Even though our method was able to uniquely ifyent
the faulty statement in 29 cases, only 13 cases yieldedsobté&t
or less. This is because in the other 16 cases, the numbeatef st
ments in the backward slice of the wrong inputs was few enough
that even a rank of 1 would lead to a score larger th#n More-
over, our method achieved better results using more failints,
while Tarantula became worse if more failing runs were u3éis

of statements in each score range computed by our method ands because when more failing runs are used, it is more likedy t

Tarantula using different numbers of passing runs (denageél
to +5). In the graph, the x-axis represents the upper bourehdt
score range, and the y-axis represents the percentagekefrants
of statements achieving a score lower than or equal to thagerup
bound.

antula ——
2 Tarantula -
3 Tarantula
+4 Tarantula e
+5 Tarantula ---+--
all Sober ---e

Percentage of faulty versions
Percentage of faulty versions
@
3

0 20 40 60 80
Score

(a) EFG

100 0 20 40 60 80
Score

(b) Tarantula & Sober

100

Figure 4. Single fault & Single failing run.

The data shows that the overall our method performs better th
the Tarantula approach when only a few passing runs areaseil
When using five passing runs, abdufs of the ranked sets of state-
ments had a score af)% or lower with our method, whereas the
same was true for only abos8% using Tarantula. Both techniques

some failing runs will go through a few statements that arene
touched by any passing run and are not faulty. According ¢ th
Tarantula suspiciousness formula, these statementstmatéghest
suspiciousness. Therefore, the rank of the actual faudtiestent
drops when more failing runs are appliéhe main conclusion of
this study is that our technique exploits both positive aagative
evidence effectively.

4.4 Multiple Faults

In this experiment, we measure the ability of our method when
dealing with the programs containing multiple faults. Trenth-
marks used in this study contain: (1) faulty versions thatseeded
with multiple faults; and (2) combinations of two faulty se&ns
with single faults. We only combined two single-fault faulter-
sions if their version numbers are consecutive. In this st
calculated the score for a ranked set of statements by ubkimg t
faulty statement with higher rank. For example, supposeethes
two faulty statements in a faulty version. The rank of on¢esteent

is 3 and the other’s rank is 16. The final score of the rankedfset
statements is equal to 3 divided by total number of executed-s
ments. This is reasonable since our aim is to find at leastanrigy/f
statement in the faulty version no matter what faulty statett is.
Fig. 6 shows the experimental results with our method andrFar

tula using five passing runs and varying number of failingsr(#
to -9).

1 Tarantula ——
-3 Tarantula -
-5 Tarantula

[4 -7 Tarantula
v -9 Tarantula ---=--
0 20 40 60 80

Score

(b) Tarantula

Percentage of faulty versions
Percentage of faulty versions

100

Figure 6. Multi-fault programs.

Program DDG Exact | Approx. | Tarantula| Sober
Infer. Infer.
tcas 5.89 0.52 0.49 0.254 | 6.73
replace 7.76 | 35.73 23.22 0.459 | 37.97
printtokens 7.65 5.26 4.13 0.966 | 34.29
printtokens2 | 7.82 5.73 4.15 0.964 | 35.53
schedule | 20.25| 103.01 59.45 0.235 | 31.28
schedule2 | 26.52 | 109.92 70.37 0.247 | 33.98
totinfo 19.45| 67.31 32.95 0.216 | 12.61

Table 4. Efficiency of techniques in seconds.

To compare the efficiencies of approximate and exact inferen
ing algorithms we measured their execution times — thisystuas
conducted on a Dell PowerEdge 1900 server with two Intel Xeon
quad-core processors at 3.00 GHz, 16 GB of RAM. Table 4 sum-

The data shows that our method performs much better than marizes the results of the study. The columns show the pmogjra

Tarantula when dealing with multiple faults. Abot&% of ranked
sets of statements had a scorel6f% or lower while the same
was true for only abou®% using Tarantula. When less tha6%

of the code must be examined, our technique is approximé&tely
times more effective than Tarantula. As the number of aralyz
failing runs increases, both methods achieved worse sefiudt
and then became better and better. But to get good resultsittia m
fault benchmarks, our method needs more program runs tfzn th
required for single-fault program&’he main conclusion of this
study is that our technique is resilient as it functionsetffely even

if the failing runs exercise different faults.

4.5 Approximate vs. Exact Inference

The above experimental results are computed by exact Bayesi
network inference (the clustering algorithm). Since theotieti-
cal time complexity of exact inference is exponential to $iee

of DDG, it may be slow for large commercial software which is
much larger than Siemens programs, even though the greedy st
egy in the clustering algorithm works very well in practidénus,
we determine the effectiveness of our method with approterma
ference in this study. Fig. 7 shows a cumulative graph viethef
percentage of ranked sets of statements in each score ratige w
approximate inference as well as exact inference when usiag
passing runs and varying the number of failing runs.

Percentage of faulty versions
Percentage of faulty versions

n
3
YN

0 20 40 60 80
Score

(a) Approximate

100 0 20 40 60 80
Score

(b) Exact

Figure 7. Approximate vs. Exact inference.

The data shows that the results using approximate inferarece
only slightly worse than that using exact inference. In féese
results are still better than the results of Tarantula. Whsimg
the approximate inference, abalit% of ranked sets of statements
had a score 0f0% or lower and about(0% had a score 060%
or lower. When less than0% of the code must be examined,
the approximate inference technique is worse by ahéb§ than
using the exact inference technique, but still almost e more
effective than Tarantula. Therefore, for larger softwave,can use
approximate inference to prioritize the statements at tamost but
still achieve reasonably good results.

the average time taken to build DDGs for 5 passing and 5 ailin
runs, the average computation time with exact inference ath
erage computation time with approximate inference, theame
time for Tarantula, and the average time for Sober (usingesi
cases). All the timings are in seconds. First we see thatithe t
taken by our approach is reasonable. Second we can see that fo
larger traces, such as those of schedule and schedule®, afsin
proximate inference can save more thi#f¥% time over using exact
inference. Finally, as we can see, the time for Tarantulagisifs
cantly smaller. However, given the superiority of scoresdoiced
by our approach, we believe that the added cost is well jadtifi
Our approach in the long run saves time as it will reduce time ti
the developer spends on debugging.

5. Related Work

The most closely related works to our paper are those which pe
form fault localization using probabilistic program bef@avmod-
els. The work of Liu et al. [18, 19] applies probabilistic netslto
analyze the behavior of predicates in passing and failing fue.,
they consider control dependences). Their method buildsta-d
bution for the outcomes of each predicate in both passing ana
failing runs and locates the fault by comparing the distiins in
passing runs with those in failing runs. They suggest if thledv-

ior of a predicate in a failing run is significantly differefnom that

in passing run, it is probably relevant to the failure. Ptubstic
program dependence grapgPRDG) [5] compares the dependence
behavior in passing runs with that of a failing run. It exteritle
previous work to model not only control dependences butddga
dependences. As we already mentioned, while these works lea
the distributions for the dependences of each statementpiw-a
gram, our approach builds a general model for each instucti
type and then uses it for all programs. Moreover, our appgreses
the standard Bayesian network inference techniques tagbribe
faulty location.

Many other statistical techniques are proposed to idebtifys
in programs. Liblit et al. [17] proposed a method which usa®s-s
pling to collect data during program execution and idergifieed-
icates which are relevant to bugdieHard [6] and Archipelago
[20] are runtime techniques that randomizes the spaceaa#iddn
a heap at least twice as large as required to prevent heagption
and memory errorsExterminator[21] is a system that automat-
ically derivesruntime patchedo fix heap-based memory errors.
Jiang and Su [14] proposed an approach to automaticallyrgene
a faulty control flow path by clustering correlated predésatThe
faulty flow path can help users but it cannot provide the ebmz-
tion of faulty statements. Chilimbi et al. [7] presented atistical
debugging tool called HOLMES that used path profiles instefad
predicate profiles to isolate bugs.

Delta debuggind8, 28] is a debugging framework which lo-
cates the fault statements by analyzing the difference dmiva
failing and a passing run. The approach simplifies the fgitest
case to a minimal test case that induces the failure andésothe
difference between a passing and a failing test cséta debug-
ging can also isolate the cause-effect chains, which is a setribf va
ables and values relevant to the failure [28]. The pointsre/inew
relevant variables become the failure causes can be fudeer
tified to precisely locate the faulty code [8]. Groce [9] pospd
a novel approach which aims to explain errors based on distan
metrics for program executions. The work of Renieres andg®Rei
[23] uses thenearest neighbometric to search for a passing run
which resembles a failing run and identifies the part of cotieiv
is responsible for the failure.

Several works focus on fault localization by altering thieimal
states of a program ruRredicate switching29] identifies the root
cause of the failure by altering the control flow at runtim25]
presented a similar approach for altering branch outcomes i
failing run to produce a passing run. The work of Jeffrey efi8],
calledValue Replacemergeneralizes the previous work to altering
the states at any point of a program run. Qin et al. [22] preskn
a tool called Rx that makes the program survive from a sofwar
failure by changing its external environment instead ofithernal
states.

Program slicing [24, 26] identifies a subset of statemenisiwh
influence the variable at some point of a program. Dynamiz sli
ing [4, 16] has been shown to be effective for debugging. Riece
research has focused on minimizing the dynamic slice sigés-b
tersecting multiple slices [10]. Confidence-based anslyad] was
proposed to further prioritize the statements accordirtfédr like-
lihood of being faulty.

6. Conclusions

We presented a probabilistic approach for fault local@atd assist
in debugging. Learning was employed to construct univesath-
abilistic models that characterize the behaviors of varimstruc-
tion types used bwll programs Using these models a Bayesian
network called EFG is constructed based on a set of runs for

program Standard inference algorithms are employed to compute

the probability of each executed statement being faultg [€arn-
ing process above does not require the availability of laeg
suites. Our experiments show that for the Siemens benclemauk
method is highly effective in ranking statements usirsgreall num-

ber of runs— therefore, it does not require a large test suites for

the program being considered. Besides, it is effective plating
bothfailing and passing ruimformation (i.e., positive and negative
evidence) and works well famultiple faults Finally, the learning
required to construct probabilistic models is carried autifew
hours for the Intel x86 instruction set.

References

[1] http://www.elis.ugent.be/diablo/.

[2] http://valgrind.org/.

[3] http://genie.sis.pitt.edu/.

[4] H. Agrawal and J. Horgan. Dynamic program slicing.HhDI, pages
246-256, 1990.

[5] G. K. Baah, A. Podgurski, and M. J. Harrold. The probaiidi
program dependence graph and its application to fault disign In
ISSTA pages 189-199, 2008.

[6] E. D. Berger and B. G. Zorn. Diehard: probabilistic memsafety
for unsafe languages. PLDI, pages 158-168, 2006.

[7] T. M. Chilimbi, B. Liblit, K. K. Mehra, A. V. Nori, and K. Vawani.
Holmes: Effective statistical debugging via efficient pptbfiling. In
ICSE pages 34—44, 2009.

[8] H. Cleve and A. Zeller. Locating causes of program fakirInICSE
pages 342-351, 2005.

[9] A. D. Groce. Error explanation and fault localization with distance
metrics PhD thesis, 2005.

[10] N. Gupta, H. He, X. Zhang, and R. Gupta. Locating faultde using
failure-inducing chops. IASE pages 263-272, 2005.

[11] C. Huang and A. Darwiche. Inference in belief networkgrocedural
guide. IJAR, 15:225-263, 1996.

[12] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Exkpents
on the effectiveness of dataflow and controlflow-based wstaacy
criteria. pages 191-200, 1994.

[13] D. Jeffrey, N. Gupta, and R. Gupta. Fault localizatiosing value
replacement. INSSTA pages 167-178, 2008.

[14] L. Jiang and Z. Su. Context-aware statistical debuggfrom bug
predictors to faulty control flow paths. WSE pages 184-193, 2007.

[15] J. Jones and M. J. Harrold. Empirical evaluation of thentula
automatic fault-localization technique. ASE pages 273-282, 2005.

[16] B. Korel and J. Laski. Dynamic program slicing. 29(35+163,
1988.

[17] B. Liblit, M. Naik, A. Zheng, A. Aiken, and M. Jordan.
statistical bug isolation. IRPLDI, pages 15-26, 2005.

[18] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff. Soberass-
tical model-based bug localization.SIGSOFT Softw. Eng. Notes
30(5):286-295, 2005.

[19] C. Liu, X. Yan, and J. Han. Mining control flow abnormglfor logic
error isolation. INSDM, pages 106-115, April 2006.

[20] V. B. Lvin, G. Novark, E. D. Berger, and B. G. Zorn. Arclelago:
trading address space for reliability and security. ABPLOSpages
115-124, 2008.

[21] G. Novark, E. D. Berger, and B. G. Zorn. Exterminatortamnatically
correcting memory errors with high probability. RLDI, pages 1-11,
2007.

[22] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: trgdbings as
allergies - a safe method to survive software failuresS@SP pages
235-248, 2005.

[23] M. Renieres and S. Reiss. Fault localization with nsareighbor
queries. INASE pages 30-39, 2003.

[24] F. Tip. A survey of program slicing techniques. 3(3)1+289, 1995.

[25] T. Wang and A. Roychoudhury. Automatded path genemafr
software fault localization. IASE pages 347-351, 2005.

[26] M. Weiser. Program slicing. 10(4):352-357, 1984.

[27] C. Yuan and M. Druzdzel. An importance sampling aldoritbased
on evidence pre-propagation. UAl, pages 624-631, 2003.

[28] A. Zeller. Isolating cause-effect chains from compuyteograms. In
FSE pages 1-10, 2002.

[29] X. Zhang, N. Gupta, and R. Gupta. Locating faults thfvagtomated
predicate switching. IWCSE pages 272-281, 2006.

[30] X. Zhang, N. Gupta, and R. Gupta. Pruning dynamic sliaét
confidence. IPLDI, pages 169-180, 2006.

[31] X. Zhang and R. Gupta. Whole execution traces.MICRO, pages
105-116, 2004.

Seble

