
Learning Universal Probabilistic Models
for Fault Localization

Min Feng Rajiv Gupta
University of California at Riverside, CSE Department, Riverside CA, 92521

{mfeng, gupta}@cs.ucr.edu

Abstract
Recently there has been significant interest in employing prob-
abilistic techniques for fault localization. Using dynamic depen-
dence information for multiple passing runs, learning techniques
are used to construct a probabilistic graph model for a givenpro-
gram. Then, given a failing run, the probabilistic model is used to
rank the executed statements according to the likelihood ofthem
being faulty. In this paper we present a novel probabilisticapproach
in which universal probabilistic models are learned to characterize
the behaviors of various instruction types used byall programs.
The universal probabilistic model for an instruction type is in form
of a probability distribution that represents how errors inthe input
(operand) values are propagated as errors in the output (result) of
a given instruction type. Once these models have been constructed,
they can be used in the analysis ofany program as follows. Given
a set of runs for any program, including at least one passing and
one failing run, a Bayesian network called theError Flow Graph
(EFG) is then constructed from the dynamic dependence graphs of
the program runs and the universal probabilistic models. Standard
inference algorithms are employed to compute the probability of
each executed statement being faulty. We also present optimiza-
tions to reduce the runtime cost of inference using the EFG. Our
experiments demonstrate that our approach is highly effective in
fault localization even when very few passing runs are available. It
also performs well in the presence of multiple faults.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging

General Terms Experimentation, Verification

1. Introduction
Software often contains many faults since developing software is a
human-intensive activity. Software debugging is the process of lo-
cating and correcting faulty program statements. Unfortunately, de-
bugging can be a difficult task. The point of program failure is typi-
cally different from the faulty statement responsible for the failure.
Thus, identifying the possible fault locations occupies most time of
the debugging phase. Techniques developed to help automatethe
fault localization process to assist the developer includedelta de-
bugging [8, 28], dynamic program slicing [10, 16, 30], statealter-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PASTE’10, June 5–6, 2010, Toronto, Ontario, Canada.
Copyright c© 2010 ACM 978-1-4503-0082-7/10/06. . . $10.00

ing techniques [13, 25, 29], and probabilistic techniques [5, 15, 17–
19, 23].

Probabilistic techniques have proven to be effective in priori-
tizing the possible faulty statements with relatively low time cost.
Most existing probabilistic techniques [5, 7, 17, 18] work as fol-
lows: (1) two statistical profiles (e.g., path or predicate)are created
— one for the passing runs and the other for the failing runs; (2)
the two profiles are compared by using probabilistic methods; and
(3) faulty statement is located based on the differences between the
two profiles. Following this procedure, most existing probabilis-
tic techniques require many distinct passing runs and failing runs
to make the statistical profiles accurate. However, since test suites
are not often available, the number of program runs available for
debugging is often limited in practice. This paper targets at using
only a few passing runs and failing runs for fault localization.

We present a novel probabilistic method which differs from the
previous approaches in one significant way. While the previous
techniques employ the learning process to each individual program,
our approach uses learningonceand then applies its results in ana-
lyzing all programs. This approach is enabled by the following key
observation: on a given platform, all programs are constructed from
the same basic instruction types; thus learning techniquescan be
appliedonceto developuniversal probabilistic modelsfor the be-
havior of these instruction types and then these models can be used
in the analysis of program runs ofany program. In our probabilistic
method, each universal model can be seen as a probabilistic error
transfer function, describing how an instruction type propagates er-
rors. The universal models are learned and fixed before debugging.
Given a few runs of a faulty program, we construct a graph that
describes how errors are propagated in the faulty program. By ap-
plying probabilistic inference techniques in the graph, wecalculate
the fault probability for each statement in the program. When the
universal probabilistic models are used during fault localization for
a specific program, we simply require at least one passing andone
failing run. To the best of our knowledge, this is the first paper that
applies probabilistic inference models for fault localization.

We have implemented our technique and evaluated it using the
Siemen’s suite [12]. Experimental results indicate that our approach
to learning and inference is very effective. Our method using 5
passing and 5 failing runs works better than Sober [18] using
all passing and failing runs. The following observations show the
effectiveness and versatility of our approach:

• (Single Fault) While the effectiveness of fault localization in-
creases with the number of available passing runs, our tech-
nique is highly effective even when only asmall number of
passing runsare available. It also effectively exploits availabil-
ity of failing runs. Thus, our approach is both effective in ex-
ploiting positive evidence from passing runs and negative evi-
dence from failing runs.



• (Multiple Faults) When multiple failing runs corresponding to
different faults are analyzed simultaneously, as long as enough
passing runs are available, our technique assigns ahigh rank
to at least one of the faulty statements. Thus, multiple failing
runs can be exploited simultaneously by our technique – if they
correspond to the same fault, effectiveness of fault localization
is improved while if they correspond to different faults, atleast
one of the faults is ranked high.

The remainder of the paper is organized as follows. In section
2 we provide background information on Bayesian Networks and
illustrate their relevance for fault location. Section 3 presents the
fault localization framework in detail. Section 4 describes the im-
plementation details and section 5 presents the results of experi-
mentation. Section 6 discusses related work and the conclusions
are given in section 7.

2. Bayesian Network and Faults
Our probabilistic graph model is based upon a Bayesian Network
(BN) derived from the Dynamic Dependence Graphs (DDGs) of
program runs. In this section we provide a brief introduction to
Bayesian Network and illustrate its suitability for fault localization.

A Bayesian network, also called a belief network, is a prob-
abilistic graph model that represents a set of variables andtheir
probabilistic independencies. It has been widely used in the ma-
chine learning community to represent the probabilistic relation-
ship between cause and consequence.

Definition 1. The core of theBayesian networkrepresentation
is a directed acyclic graph, denoted asBN(U, N, E, Pr), where
U is a domain of random variablesx1, . . . , xn, N is a set of nodes
each of which corresponds to a variablexi in U , E is a set of edges
which correspond to direct influence of one node on another, and
Pr is a set of local distributions. If there is an edge from node
xi to another nodexj , xi is called a parent ofxj , and xj is a
child of xi. The set of parent nodes of a nodexi is denoted by
Pa(xi). Each local distribution inPr represents the probabilistic
relationship between a node and its parents and can be written
asP (xi|Pa(xi)). The joint distribution of all the variables is the
product of the local distributions:

P (x1, . . . , xn) =

n
∏

i=1

P (xi|Pa(xi)).

If the value of a variable is observed, then the variable is said
to be an evidence. A Bayesian network can be used to answer
probabilistic queries about any variable based on a set of evidences.
According to the Bayesian rule, the probability of variablexi on the
condition of evidencexj can be written as follows:

P (xi|xj) =
P (xi, xj)

P (xj)
=

∑

U−xi−xj
P (x1, . . . , xn)

∑

U−xj
P (x1, . . . , xn)

.

This process of computing the posterior distribution of variables
from givenevidenceis calledprobabilistic inference. Many proven
Bayesian network inference algorithms have been publishedin the
machine learning community. In this paper, we use two popular
inference algorithms: the clustering algorithm [11] and the EPIS
sampling algorithm [27].

Now let us consider a simple example that illustrates the poten-
tial of using Bayesian probabilistic model to estimate the probabil-
ity of a statement being faulty. Fig. 1(a) shows a piece of code that
contains only one branch statement and one assignment statement.
Fig. 1(b) shows the Bayesian network of two program runs of the
sample code. Both program runs go through the statement 2. Inthe
Bayesian network, the nodes “S1” and “S2” denote the correctness

Figure 1. Example.

of statement 1 and 2 and the node “i.j” denotes the correctness of
the execution instance of statementj in the i-th program run. Ac-
cording to the figure, the correctness of instance 1.1 and 2.1only
depends on statement 1 while the correctness of instance 1.2and
2.2 depends on not only statement 2 but also the previous instances.
For simplicity, we ignore the data dependence on variableflag. Our
goal is to find the faulty statement based on the correctness of vari-
ablex in these two program runs, assuming thatx is an output. We
can calculate the probability of statement 1 being faulty byusing
the following equation:

P (S1|V
2

1
, V 2

2
)

∝ P (S1, V 2

1
, V 2

2
)

=
∑

S2,V 1
1

,V 1
2

P (S1, S2, V 1

1
, V 1

2
, V 2

1
, V 2

2
)

=
∑

S2,V 1
1

,V 1
2

{P (S1)P (S2)P (V 1

1
|S1)P (V 1

2
|S1)

P (V 2

1
|V 1

1
, S2)P (V 2

2
|V 1

2
, S2)}

whereSi stands for the correctness of statement “i”, V
j

i stands
for the correctness of instance “i.j”, P (S1|V

2

1 , V 2

2 ) stands for the
probability of statement “1” being correct/faulty by giventhe cor-
rectness of instance 1.2 and 2.2, and all the probabilistic distribu-
tions above are learned in advance. We can also use the same way
to calculate the fault probability of statement 2. To further explain
the rationale behind our fault localization method, let us assume:

P (S1 = f) = P (S2 = f) = 0.1,

P (V 1

i
= w|S1 = f) = 0.5, and

P (V 2

i
= w|V 1

i
= w) = P (V 2

i
= w|S2 = f) = 1.0.

wherew andf meanwrongandfaulty, andi is 1 or 2. If we observe
the outputs of both execution instance 1.2 and 2.2 are wrong,then
we get the following probabilities:

P (S1 = f |V 2

1
= w,V 2

2
= w) ∝ 0.0325

P (S2 = f |V 2

1
= w,V 2

2
= w) ∝ 0.1

Thus, the results show the statement 2 is more likely to be faulty
in this case. If only execution instance 1.2 is wrong in the two
program runs, then the probabilities will be:

P (S1 = f |V 2

1
= w,V 2

2
= c) ∝ 0.0225

P (S2 = f |V 2

1
= w,V 2

2
= c) ∝ 0.0

In this case, it is impossible for statement 2 to be faulty because
if statement 2 is faulty then both instances have to be wrong.Thus,
statement 1 will be the only possible faulty statement. The example
shows that what our method does is essentially to find the statement
whose fault maximizes the probability of the observation. The
example illustrates how Bayesian model can help us locate faulty



statements. It is a good way to model the error propagation ina
program. Let us now consider our framework for fault localization.

3. Fault Localization Framework
The main purpose of our approach is to prioritize the statements ac-
cording to their probabilities of being faulty. A probabilistic graph
model, called theError Flow Graph (EFG), which is based on a
Bayesian network that formalizes the propagation of error in pro-
gram runs, is used to estimate the fault probability of each state-
ment. This framework consists of three main steps: (Learning) in
this step the parameters of probability distribution of each instruc-
tion type are learned; (EFG Construction) given a set of runs for
a program, we build the Dynamic Dependence Graphs (DDGs) for
the runs and convert them into an EFG; and (Fault Localization)
from the EFG this step estimates the fault probability of each state-
ment. The rest of this section describes these steps in detail and
illustrates them using a sample program.

3.1 Universal Probabilistic Models

Our probabilistic model consists of a set of probability distribu-
tions, one distribution for each instruction type, such that it repre-
sents the probability with which errors in an instruction’sinput val-
ues propagates to its output. The output of an instruction depends
upon its operands (i.e., dependences) as well as the statement it-
self. Our model takes as input the correctness of these factors and
predicts the correctness of the output.

Often probabilistic models use a conditional probability table
to represent the local probability distribution for an instruction in a
given program. However, these tables are not suitable for our model
because we need to represent the probabilistic distribution corre-
sponding to an instruction type used by all programs. The number
of (input) dependences of an instruction type varies from program
to program and thus building a single conditional probability table
to represent the distribution is not possible. Therefore instead of
using a conditional probability table, we design a special function
to represent the probabilistic distribution for each instruction type.
First, we define the following function to stand for the probabil-
ity of the output being wrong given the correctness of inputsof an
instruction type:

f(nc, nw) = λ(1 − e
−α

nw
nc+nw )

wherenc is the number of correct parents,nw is the number of
wrong or faulty parents, andλ andα are parameters to belearned
for each instruction type. Since the function can be used in any
situation regardless of the number of (input) dependences of an in-
struction, the learned probabilistic distribution is applicable in all
programs. The function is based upon the idea that the probability
of the output being wrong increases with the percentage of incor-
rect values in the inputs. When all the parents (including statement
nodes) are correct, its value is 0, i.e., the instance must becorrect.
When all the parents are faulty or wrong, the function reaches its
peak value. Then the probabilistic distribution of each instruction
type is defined as follows:

P (xi|Pa(xi)) =

{

f(nc, nw) xi =wrong
1 − f(nc, nw) xi =correct

The learning of the probabilistic model for a given instruction
type consists of two steps: generating thetraining datafor the in-
struction type; and using the training data to derive an approxima-
tion of theparameters(λ, α). Let us discuss these steps in greater
detail.

Collecting Training Data. Given an instruction type, the train-
ing data is generated by repeatedly applying the following process.

Inputs are generated randomly for an instruction type and the cor-
responding correct output is calculated. Next, rules are used to per-
form changes to the inputs and/or the instruction, the instruction
is reevaluated, and the correctness information of the operands, in-
struction, and the output is recorded. This process is applied re-
peatedly and information is recorded. The collected data essentially
characterizes the behavior of an instruction type under different
types of errors.

Type Example Instructions Replacement Rules

logical AND, OR operator & operand
compare CMP, SCASB operand
branch JA, JB, JNE operator & operand

arithmetic ADD, SUB operator & operand
move MOV, STOSB operand
shift SAL, SHL, ROL operator & operand
other CLC, CLI, PUSH operand

Table 1. Seven instruction types and their rules.

Next we discuss the various instruction types and the rules that
are used in performing changes during the generation of training
data. Our work is performed in context of the Intel x86 instruc-
tion set and we divide the instructions into seven instruction types
shown in Table 1. These types are formed based upon the type of
operations the instructions do which include: logical operations,
comparison operations, branches that test conditions, arithmetic op-
erations, move operations, shift operations, and others. Table 1 also
shows thereplacement rulesthat are applicable to each instruction
type. Before we discuss which rules can be applied to which in-
struction type, we discuss the two types of rules used:

• Operand replacement. We generate random values to substitute
all or a subset of inputs. The new values should be in the same
domain as the original inputs. This rule simulates the situation
that the input values are wrong. The generated data from sucha
replacement allows us to infer how probable it is for the output
to be wrong if the inputs are partially or fully wrong.

• Operator replacement. We use another instruction of the same
type to substitute the current instruction. The new instruction
has the same number of inputs as the original one. This rule
simulates operator mutation. The generated data allows us to
infer how probable it is for the output to be wrong if the in-
struction (and the statement it corresponds to) itself is faulty.

Both types of rules are not applicable to all instruction types as
shown in Table 1. In particular, theoperator replacementrule is
not applicable to three instruction types:move, compare, andother.
There are a number of reasons for this. In case ofmoveinstructions
no operator is involved — the compiler generates them to simply
alter the location of a value or make a copy of a value. In case of
most instructions in typeother, there is no adequate replacement
for an instruction as the other instructions have differentnumber
and/or type of inputs. In other cases, operations are generated by the
compiler to clear flags etc. Finally, in the case ofcomparedue to its
semantics for x86 there is no possible replacement. The compare
operation performs all possible relational operations andputs the
results in bits of theflag register. Conditional branch instructions
test the bit for the appropriate relation operator; thus, operator
replacement is applied to conditional branch instructions.

Finding Parameters. After generating the training data, we
can learn the model by adjusting the parameter of the function to
approximate the training data. Alg. 1 learns the parametersof the
functionf(nc, nw) from a set of training data. Each training data is
a triple (ni

c, ni
w, di), wheredi is the correctness of an instance node

givenni
c correct parents andni

w wrong parents. Alg. 1 enumerates



Algorithm 1 : Learn parameters.
Input : a set of training data (ni

c , ni
w , di)

Output : λ andα
begin

for each possiblenc do
for each possiblenw do

numc[nc, nw]← 0;
numw [nc, nw]← 0;

end
end
for each (ni

c , ni
w , di) do

if di = correct then
numc[nc, nw]← numc[nc, nw] + 1;

else
numw [nc, nw]← numw[nc, nw] + 1;

end
end
for each possible pair(λ, α) do

δ ←
∑

nc,nw
(f(nc, nw)−

numw [nc,nw ]
numc[nc,nw ]+numw[nc,nw ]

)2;

if δ < lowest then
record(λ, α);
lowest ← δ;

end
end

end

all possible parameters for which we keep 4 digits after the decimal
point and chooses the one which minimizes the deviation between
training data and learned function.

3.2 Error Flow Graph

In this section, we describe the Dynamic Dependence Graph
(DDG) and its use in constructing the Error Flow Graph (EFG).
The DDG is a directed acyclic graph representing dependences
between different execution instances of statements in a program
run.

Definition 2. The DDG of a program run,DDG(N, E), con-
sists of a set of nodesN and a set of directed edgesE where: each
nodeni ∈ N represents theith execution instance of statementn
in the program; and each edgemj → ni ∈ E corresponds to a
dynamic data or control dependence of theith execution instance
of statementn on thejth execution instance of statementm.

Fig. 2(b) shows an execution of the sample code (shown in
Fig. 2(a)) that follows the path corresponding to the false evalu-
ation of the predicate at node2. The value shown to the right of
each statement is the value computed by the statement duringthe
runtime. The DDG of this run is shown in Fig. 2(c) — the solid
(dotted) edges are data (control) dependence edges.

Next, we present the definition of an EFG and the algorithm for
constructing it from the DDG. The nodes in a DDG only repre-
sent the instances of the statements and thus mining a DDG does
not naturally result in the probability of a statement beingfaulty.
Therefore, to infer the fault probability of a statement, weintro-
duce the EFG which not only represents the statement instances
but also the statements themselves.

Definition 3. An Error Flow Graph (EFG) for a program run is
a 4-tuple(S, I,E, Pr) whereS is a set of statement nodes which
represent the statements in a program,I is a set of instance nodes
which correspond to the statement instances in a program run, E is
a set of edges which correspond to direct dependence of one node
on another, andPr is a set of probability distributions which stand
for the probability of one node given the value of its parents. Each
statement has a unique node in the EFG.

An EFG is a Bayesian network, representing the conditional
independencies between statements and instances. In the EFG,
each statement node takes two values, correct and faulty, which

Figure 2. Example program.

indicate whether the statement is faulty. Each instance node also
takes two values, correct or wrong, which indicates whetherthe
value produced by the statement instance is correct or corrupted.
The edges between instance nodes means that the correctnessof
one instance affects its children, while the edges from statement
nodes to instance nodes means that the correctness of an instance
also depends on its corresponding statement nodes.

Figure 3. EFG of two program runs.

Fig. 3 shows the EFG of two runs of the sample program
shown in Fig. 2. One run takes the path corresponding to the true
evaluation of the predicate at node 2 (as shown in Fig. 2(b)) while
the other run follows the path corresponding to the false evaluation.
The EFG contains all the nodes from the DDGs of both runs and
has a distinct statement node for each statement. The statement
nodes are marked by the bold circles. Each instance node has
incoming edges from its parents in the DDG and the corresponding
statement node, which forms a probabilistic distribution indicating
that the correctness of the value produced by the statement instance
depends on the input values and the statement itself. For example
in execution 1, node 2 has incoming edges from node 1 and node
S2, which forms a distributionP (V2|V1, S2) that indicates the
correctness of the value produced by node 2 is probabilistically
determined by the correctness of the value produced by node 1
and the correctness of the statement 2. The EFG describes howthe
errors propagates in the program run. Inference in the EFG islike
tracing back from the leaf nodes (where we observe the correctness
of the outputs) along the error flows to find the statement nodes



that have the highest probability of causing the errors. Intuitively,
by using multiple runs, we can get better estimation since more
evidence is observed.

Optimizations. Usually, there are thousands of instances in
a program run. Correspondingly, the constructed EFG contains
thousands of nodes and edges. Inference in such a large network
can be time consuming. To speed up the inference process, we
propose two optimization techniques.

First, in practice, we do not need to estimate the probability
for all the statements, since many statements are unrelatedto the
evidence. A dynamic slice of a statement instancexi, denoted by
DS(xi), is the subgraph of the EFG which includes nodexi as
well as all other nodes and edges from whichxi is reachable. This
is because the faulty statements are always in the dynamic slices
of the evidences. In other words, all the statements outsidethe
dynamic slices are removed from the EFG.

Second, most nodes in an EFG are built for library code. We
assume that the library code is correct and the fault is in theuser
code. Therefore, we do not perform inference on the corresponding
nodes. However, we cannot simply remove the library nodes from
the EFG because it will break the dependences in the original
EFG. Instead, we compress the consecutive library nodes on a
dependence path into one node. This greatly reduces the number
of nodes in an EFG while keeping all the dependences between
non-library nodes in the original EFG.

3.3 Fault Localization

An EFG is a Bayesian network which models the error propagation
in a set of program runs. Therefore, we can apply an inference
technique on the EFG to find the root cause of the error. This
process is made up of the following steps. First, we initialize the
evidences associated with the EFG. An evidence is the correctness
of a particular instance node. Most evidences can be obtained by
inspecting the output of a program run. If a statement instance
outputs a wrong value, its corresponding node is set to be wrong
as an evidence in the EFG, and vice versa. If a programmer has
additional knowledge about the program, he/she can also create
additional evidences. Next we can estimate the probabilityof each
statement being faulty, i.e., we compute the results of the following
equation:

P (Si = faulty|evidence).

After estimating the probabilities of all statements as above, in
the final step we rank the statements in descending order of their
probabilities.

In our implementation we considered two popular inference
algorithms to estimate these probabilities: clustering algorithm [11]
and EPIS algorithm [27]. The clustering algorithm is widelyused
for exact inference in Bayesian networks. Although this greedy
algorithm works well in practice, it may incur high time overhead
for very complicated networks. Therefore, we also use the state-of-
art EPIS algorithm which is a sampling based algorithm used for
approximate inference.

4. Experimental Evaluation
4.1 Experimental Setup

We implemented a fault localization framework which takes the C
source code of the programs and usesgcc generated Intel x86 bi-
naries. Then we used theDiablo [1] binary rewriting framework to
construct the static control flow graph from the Intel x86 binaries.
After that, it uses aValgrind[2]-based dynamic tracing tool devel-
oped by Zhang and Gupta [31] to execute the binaries and buildthe
dynamic data and control dependence graphs. The DDGs are then

converted into an EFG. The evidences in the EFG are initialized
by comparing the actual outputs with the standard outputs. Finally,
our implementation callsSMILE (Structural Modeling, Inference,
and Learning Engine) library [3] to estimate the fault probability of
each statement and outputs the sorted statement list.

The Siemens programs [12] are used for our experiments. It is
a set of programs commonly used to measure the effectivenessof
fault-localization techniques. Table 2 shows the characteristics of
the seven Siemens programs. All Siemens faulty versions contain
seeded faults. Most faults are related to computation, including
operator and operand mutations, missing and extraneous code, and
constant value mutation. Most faulty versions have only onefaulty
statement, but some are seeded with several faults in different
statements. We excluded a few faulty versions due to the following
two reasons: (1) they did not produce any failing runs from the
provided test cases; (2) one of faulty versions from printtokens
loops indefinitely far past the end of a string.

Program LOC # Ver. # test cases
tcas 138 41 1608

replace 516 31 5542
printtokens 402 7 4130
printtokens2 483 9 4115

schedule 299 9 2650
schedule2 297 9 2710

totinfo 346 23 1052

Table 2. The Siemens benchmark programs. From left to right:
program name, # lines of code, # faulty versions and # test cases.

In our experiments, we also compare the fault localization ef-
fectiveness of our method with Tarantula [15] and Sober [18]. This
is because they have proved to be quite effective on the Siemens
suite programs [15]. We also compare the results of exact Bayesian
network inference (the clustering algorithm [11]) and approximate
Bayesian network inference (EPIS algorithm [27]).

In our experiments, we rank only those program statements that
are in the backward slice of the wrong inputs. To evaluate the
techniques, we assign a score to each ranked set of statements that
is the percentage of program statements executed by failingruns in
the test suite thatneed to be examinedif statements are examined
in rank order. Suppose that for a ranked list of statementsS, the
actual faulty statement occurs at rankr and there are a total of
|S| statements exercised by failing runs. Then the score of ranked
statement listS is defined as follows:

score(S) =
r

|S|
× 100%.

A lower score is preferable because it means that more of the
statements executed by failing runs are ignored before the faulty
statement is found.

In the experiments, our goal is to determine the effectiveness
of our method when only a few runs are available. Therefore, every
time we ranked the executed statements for a faulty version,we just
used a small portion of the test cases. We ranked the statements of
each faulty version one hundred times. Each time, we randomly
selected a few test cases for statement ranking. Thus, each faulty
version has a hundred ranked sets of statements. The percentages
shown in the experimental results are the percentages with respect
to all ranked sets of statements, rather than the number of faulty
versions.

There are a few special considerations that we make in our
experiments for certain faults. First, macro definitions and variable
declarations will not appear in DDG traces. Therefore, any fault in
those places will not be exposed by doing inference in the EFG.
However, we can find that the faulty probability of the statements
related to those declarations is very high. We consider these kinds



of faults to be examined if we examine the statement where the
faulty macro or variable is used. Second, faults that involve omitted
statements will mean that we cannot actually examine the missing
code. However, we can examine statements that are adjacent to the
location where the code is missing.

4.2 Learning Parameters

We learned the parameters for each type of instruction in Intel x86
instruction set from randomly generated data sets using themethod
presented in Section 3.1. For each type of instruction, we generated
the training data. Table 3 shows the learned parameter values and
learning time for each type of instruction. As we can see, it took
only a few hours to learn the probabilistic models.

λ α Time (min)
logical 0.5978 16.4777 31

compare 0.5617 17.5729 30
branch 1.0451 3.1431 22

arithmetic 1.0000 16.9250 37
move 1.0000 30.0000 30
shift 1.0000 19.6437 28
other 1.0000 30.0000 19

Table 3. Parameters for probability functions and learning time.

These parameters show that the “logical” and “compare” type
of instructions will probably produce correct outputs eventhough
their inputs are partially wrong while “move” and “other” type of
instructions will definitely produce wrong outputs if any input is
wrong. In other words, an error will probably be propagated via
“move” and “other” type of instructions while it may be canceled
out via “logical” and “compare” type of instructions.

4.3 Single Fault

Usually, a software can contain multiple faults. Differentfailing
runs may be caused by different faults. Therefore, a conservative
way for fault localization is to use only one failing run at a time
and analyze it with the help of multiple passing runs. The goal
of our first study is to determine the effectiveness of our method
using a single failing run for a single-fault program. We excluded
the faulty versions that are seeded with multiple faults in this
study. Fig. 4 shows the cumulative percentage of all ranked sets
of statements in each score range computed by our method and
Tarantula using different numbers of passing runs (denotedas +1
to +5). In the graph, the x-axis represents the upper bound ofeach
score range, and the y-axis represents the percentage of ranked sets
of statements achieving a score lower than or equal to that upper
bound.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100

P
e

rc
e

n
ta

g
e

 o
f 

fa
u

lt
y

 v
e

rs
io

n
s

Score

+1 EFG
+2 EFG
+3 EFG
+4 EFG
+5 EFG  10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100

P
e

rc
e

n
ta

g
e

 o
f 

fa
u

lt
y

 v
e

rs
io

n
s

Score

+1 Tarantula
+2 Tarantula
+3 Tarantula
+4 Tarantula
+5 Tarantula

all Sober

(a) EFG (b) Tarantula & Sober

Figure 4. Single fault & Single failing run.

The data shows that the overall our method performs better than
the Tarantula approach when only a few passing runs are available.
When using five passing runs, about41% of the ranked sets of state-
ments had a score of10% or lower with our method, whereas the
same was true for only about33% using Tarantula. Both techniques

achieve better results as more passing runs are available.However,
the main conclusion of this study is that our approach does not re-
quire a large test suite as a few runs is sufficient for effective fault
location.

Fig. 4 also shows the results of Sober by using all the test cases
in Siemens suite. Although Sober uses more test cases than our
method does, our method still outperforms it. Although Sober is
excellent at localizing the faults on predicate statements, it does
not deal very well with the non-predicate faulty statements.

We also examined the effectiveness of our method using multi-
ple failing runs for the same fault. We excluded the faulty versions
that are seeded with multiple faults. The number of passing runs
used in this study is five. Fig. 5 shows the results with our method
and Tarantula on different numbers of failing runs (denotedas -1 to
-5).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100

P
e

rc
e

n
ta

g
e

 o
f 

fa
u

lt
y

 v
e

rs
io

n
s

Score

-1 EFG
-2 EFG
-3 EFG
-4 EFG
-5 EFG  10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100

P
e

rc
e

n
ta

g
e

 o
f 

fa
u

lt
y

 v
e

rs
io

n
s

Score

-1 Tarantula
-2 Tarantula
-3 Tarantula
-4 Tarantula
-5 Tarantula

all Sober

(a) EFG (b) Tarantula & Sober

Figure 5. Single fault & Multiple failing runs.

By using multiple failing runs for the same fault, our method
still performs much better. About10% of the ranked sets of state-
ments had a score of1% or lower with our method, while Taran-
tula only achieved6% in the same score range. Similarly, almost
53% of ranked sets of statements had a score of10% or lower us-
ing our method, whereas the same was true for about30% using
Tarantula. Even though our method was able to uniquely identify
the faulty statement in 29 cases, only 13 cases yielded scores of1%
or less. This is because in the other 16 cases, the number of state-
ments in the backward slice of the wrong inputs was few enough
that even a rank of 1 would lead to a score larger than1%. More-
over, our method achieved better results using more failingruns,
while Tarantula became worse if more failing runs were used.This
is because when more failing runs are used, it is more likely that
some failing runs will go through a few statements that are never
touched by any passing run and are not faulty. According to the
Tarantula suspiciousness formula, these statements have the highest
suspiciousness. Therefore, the rank of the actual faulty statement
drops when more failing runs are applied.The main conclusion of
this study is that our technique exploits both positive and negative
evidence effectively.

4.4 Multiple Faults

In this experiment, we measure the ability of our method when
dealing with the programs containing multiple faults. The bench-
marks used in this study contain: (1) faulty versions that are seeded
with multiple faults; and (2) combinations of two faulty versions
with single faults. We only combined two single-fault faulty ver-
sions if their version numbers are consecutive. In this study, we
calculated the score for a ranked set of statements by using the
faulty statement with higher rank. For example, suppose there are
two faulty statements in a faulty version. The rank of one statement
is 3 and the other’s rank is 16. The final score of the ranked setof
statements is equal to 3 divided by total number of executed state-
ments. This is reasonable since our aim is to find at least one faulty
statement in the faulty version no matter what faulty statement it is.
Fig. 6 shows the experimental results with our method and Taran-



tula using five passing runs and varying number of failing runs (-1
to -9).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100

P
e

rc
e

n
ta

g
e

 o
f 

fa
u

lt
y

 v
e

rs
io

n
s

Score

-1 EFG
-3 EFG
-5 EFG
-7 EFG
-9 EFG

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100

P
e

rc
e

n
ta

g
e

 o
f 

fa
u

lt
y

 v
e

rs
io

n
s

Score

-1 Tarantula
-3 Tarantula
-5 Tarantula
-7 Tarantula
-9 Tarantula

(a) EFG (b) Tarantula

Figure 6. Multi-fault programs.

The data shows that our method performs much better than
Tarantula when dealing with multiple faults. About43% of ranked
sets of statements had a score of10% or lower while the same
was true for only about9% using Tarantula. When less than10%
of the code must be examined, our technique is approximately5
times more effective than Tarantula. As the number of analyzed
failing runs increases, both methods achieved worse results first
and then became better and better. But to get good results on multi-
fault benchmarks, our method needs more program runs than that
required for single-fault programs.The main conclusion of this
study is that our technique is resilient as it functions effectively even
if the failing runs exercise different faults.

4.5 Approximate vs. Exact Inference

The above experimental results are computed by exact Bayesian
network inference (the clustering algorithm). Since the theoreti-
cal time complexity of exact inference is exponential to thesize
of DDG, it may be slow for large commercial software which is
much larger than Siemens programs, even though the greedy strat-
egy in the clustering algorithm works very well in practice.Thus,
we determine the effectiveness of our method with approximate in-
ference in this study. Fig. 7 shows a cumulative graph view ofthe
percentage of ranked sets of statements in each score range with
approximate inference as well as exact inference when usingfive
passing runs and varying the number of failing runs.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100

P
e

rc
e

n
ta

g
e

 o
f 

fa
u

lt
y

 v
e

rs
io

n
s

Score

-1 approximate
-2 approximate
-3 approximate
-4 approximate
-5 approximate

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100

P
e

rc
e

n
ta

g
e

 o
f 

fa
u

lt
y

 v
e

rs
io

n
s

Score

-1 EFG
-2 EFG
-3 EFG
-4 EFG
-5 EFG

(a) Approximate (b) Exact

Figure 7. Approximate vs. Exact inference.

The data shows that the results using approximate inferenceare
only slightly worse than that using exact inference. In factthese
results are still better than the results of Tarantula. Whenusing
the approximate inference, about45% of ranked sets of statements
had a score of10% or lower and about70% had a score of50%
or lower. When less than10% of the code must be examined,
the approximate inference technique is worse by about15% than
using the exact inference technique, but still almost 1.5 times more
effective than Tarantula. Therefore, for larger software,we can use
approximate inference to prioritize the statements at lower cost but
still achieve reasonably good results.

Program DDG Exact Approx. Tarantula Sober
Infer. Infer.

tcas 5.89 0.52 0.49 0.254 6.73
replace 7.76 35.73 23.22 0.459 37.97

printtokens 7.65 5.26 4.13 0.966 34.29
printtokens2 7.82 5.73 4.15 0.964 35.53

schedule 20.25 103.01 59.45 0.235 31.28
schedule2 26.52 109.92 70.37 0.247 33.98

totinfo 19.45 67.31 32.95 0.216 12.61

Table 4. Efficiency of techniques in seconds.

To compare the efficiencies of approximate and exact inferenc-
ing algorithms we measured their execution times — this study was
conducted on a Dell PowerEdge 1900 server with two Intel Xeon
quad-core processors at 3.00 GHz, 16 GB of RAM. Table 4 sum-
marizes the results of the study. The columns show the programs,
the average time taken to build DDGs for 5 passing and 5 failing
runs, the average computation time with exact inference, the av-
erage computation time with approximate inference, the average
time for Tarantula, and the average time for Sober (using alltest
cases). All the timings are in seconds. First we see that the time
taken by our approach is reasonable. Second we can see that for
larger traces, such as those of schedule and schedule2, using ap-
proximate inference can save more than40% time over using exact
inference. Finally, as we can see, the time for Tarantula is signifi-
cantly smaller. However, given the superiority of scores produced
by our approach, we believe that the added cost is well justified.
Our approach in the long run saves time as it will reduce the time
the developer spends on debugging.

5. Related Work
The most closely related works to our paper are those which per-
form fault localization using probabilistic program behavior mod-
els. The work of Liu et al. [18, 19] applies probabilistic models to
analyze the behavior of predicates in passing and failing runs (i.e.,
they consider control dependences). Their method builds a distri-
bution for the outcomes of each predicate in both passing runs and
failing runs and locates the fault by comparing the distributions in
passing runs with those in failing runs. They suggest if the behav-
ior of a predicate in a failing run is significantly differentfrom that
in passing run, it is probably relevant to the failure. Probabilistic
program dependence graph (PPDG) [5] compares the dependence
behavior in passing runs with that of a failing run. It extends the
previous work to model not only control dependences but alsodata
dependences. As we already mentioned, while these works learn
the distributions for the dependences of each statement in apro-
gram, our approach builds a general model for each instruction
type and then uses it for all programs. Moreover, our approach uses
the standard Bayesian network inference techniques to predict the
faulty location.

Many other statistical techniques are proposed to identifybugs
in programs. Liblit et al. [17] proposed a method which uses sam-
pling to collect data during program execution and identifies pred-
icates which are relevant to bugs.DieHard [6] and Archipelago
[20] are runtime techniques that randomizes the space allocated in
a heap at least twice as large as required to prevent heap corruption
and memory errors.Exterminator[21] is a system that automat-
ically derivesruntime patchesto fix heap-based memory errors.
Jiang and Su [14] proposed an approach to automatically generate
a faulty control flow path by clustering correlated predicates. The
faulty flow path can help users but it cannot provide the exactloca-
tion of faulty statements. Chilimbi et al. [7] presented a statistical
debugging tool called HOLMES that used path profiles insteadof
predicate profiles to isolate bugs.



Delta debugging[8, 28] is a debugging framework which lo-
cates the fault statements by analyzing the difference between a
failing and a passing run. The approach simplifies the failing test
case to a minimal test case that induces the failure and isolates the
difference between a passing and a failing test case.Delta debug-
ging can also isolate the cause-effect chains, which is a set of vari-
ables and values relevant to the failure [28]. The points where new
relevant variables become the failure causes can be furtheriden-
tified to precisely locate the faulty code [8]. Groce [9] proposed
a novel approach which aims to explain errors based on distance
metrics for program executions. The work of Renieres and Reiss
[23] uses thenearest neighbormetric to search for a passing run
which resembles a failing run and identifies the part of code which
is responsible for the failure.

Several works focus on fault localization by altering the internal
states of a program run.Predicate switching[29] identifies the root
cause of the failure by altering the control flow at runtime. [25]
presented a similar approach for altering branch outcomes in a
failing run to produce a passing run. The work of Jeffrey et al. [13],
calledValue Replacement, generalizes the previous work to altering
the states at any point of a program run. Qin et al. [22] presented
a tool called Rx that makes the program survive from a software
failure by changing its external environment instead of theinternal
states.

Program slicing [24, 26] identifies a subset of statements which
influence the variable at some point of a program. Dynamic slic-
ing [4, 16] has been shown to be effective for debugging. Recent
research has focused on minimizing the dynamic slice sizes by in-
tersecting multiple slices [10]. Confidence-based analysis [30] was
proposed to further prioritize the statements according totheir like-
lihood of being faulty.

6. Conclusions
We presented a probabilistic approach for fault localization to assist
in debugging. Learning was employed to construct universalprob-
abilistic models that characterize the behaviors of various instruc-
tion types used byall programs. Using these models a Bayesian
network called EFG is constructed based on a set of runs fora
program. Standard inference algorithms are employed to compute
the probability of each executed statement being faulty. The learn-
ing process above does not require the availability of largetest
suites. Our experiments show that for the Siemens benchmarks, our
method is highly effective in ranking statements using asmall num-
ber of runs— therefore, it does not require a large test suites for
the program being considered. Besides, it is effective in exploiting
bothfailing and passing runinformation (i.e., positive and negative
evidence) and works well formultiple faults. Finally, the learning
required to construct probabilistic models is carried out in a few
hours for the Intel x86 instruction set.

References
[1] http://www.elis.ugent.be/diablo/.

[2] http://valgrind.org/.

[3] http://genie.sis.pitt.edu/.

[4] H. Agrawal and J. Horgan. Dynamic program slicing. InPLDI, pages
246–256, 1990.

[5] G. K. Baah, A. Podgurski, and M. J. Harrold. The probabilistic
program dependence graph and its application to fault diagnosis. In
ISSTA, pages 189–199, 2008.

[6] E. D. Berger and B. G. Zorn. Diehard: probabilistic memory safety
for unsafe languages. InPLDI, pages 158–168, 2006.

[7] T. M. Chilimbi, B. Liblit, K. K. Mehra, A. V. Nori, and K. Vaswani.
Holmes: Effective statistical debugging via efficient pathprofiling. In
ICSE, pages 34–44, 2009.

[8] H. Cleve and A. Zeller. Locating causes of program failures. InICSE,
pages 342–351, 2005.

[9] A. D. Groce. Error explanation and fault localization with distance
metrics. PhD thesis, 2005.

[10] N. Gupta, H. He, X. Zhang, and R. Gupta. Locating faulty code using
failure-inducing chops. InASE, pages 263–272, 2005.

[11] C. Huang and A. Darwiche. Inference in belief networks:a procedural
guide. IJAR, 15:225–263, 1996.

[12] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments
on the effectiveness of dataflow and controlflow-based test adequacy
criteria. pages 191–200, 1994.

[13] D. Jeffrey, N. Gupta, and R. Gupta. Fault localization using value
replacement. InISSTA, pages 167–178, 2008.

[14] L. Jiang and Z. Su. Context-aware statistical debugging: from bug
predictors to faulty control flow paths. InASE, pages 184–193, 2007.

[15] J. Jones and M. J. Harrold. Empirical evaluation of the tarantula
automatic fault-localization technique. InASE, pages 273–282, 2005.

[16] B. Korel and J. Laski. Dynamic program slicing. 29(3):155–163,
1988.

[17] B. Liblit, M. Naik, A. Zheng, A. Aiken, and M. Jordan. Scalable
statistical bug isolation. InPLDI, pages 15–26, 2005.

[18] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff. Sober: statis-
tical model-based bug localization.SIGSOFT Softw. Eng. Notes,
30(5):286–295, 2005.

[19] C. Liu, X. Yan, and J. Han. Mining control flow abnormality for logic
error isolation. InSDM, pages 106–115, April 2006.

[20] V. B. Lvin, G. Novark, E. D. Berger, and B. G. Zorn. Archipelago:
trading address space for reliability and security. InASPLOS, pages
115–124, 2008.

[21] G. Novark, E. D. Berger, and B. G. Zorn. Exterminator: automatically
correcting memory errors with high probability. InPLDI, pages 1–11,
2007.

[22] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: treating bugs as
allergies - a safe method to survive software failures. InSOSP, pages
235–248, 2005.

[23] M. Renieres and S. Reiss. Fault localization with nearest neighbor
queries. InASE, pages 30–39, 2003.

[24] F. Tip. A survey of program slicing techniques. 3(3):121–189, 1995.

[25] T. Wang and A. Roychoudhury. Automatded path generation for
software fault localization. InASE, pages 347–351, 2005.

[26] M. Weiser. Program slicing. 10(4):352–357, 1984.

[27] C. Yuan and M. Druzdzel. An importance sampling algorithm based
on evidence pre-propagation. InUAI, pages 624–631, 2003.

[28] A. Zeller. Isolating cause-effect chains from computer programs. In
FSE, pages 1–10, 2002.

[29] X. Zhang, N. Gupta, and R. Gupta. Locating faults through automated
predicate switching. InICSE, pages 272–281, 2006.

[30] X. Zhang, N. Gupta, and R. Gupta. Pruning dynamic sliceswith
confidence. InPLDI, pages 169–180, 2006.

[31] X. Zhang and R. Gupta. Whole execution traces. InMICRO, pages
105–116, 2004.


