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ABSTRACT
While program hangs on large parallel systems can be detected via
the widely used timeout mechanism, it is di�cult for the users to
set the timeout – too small a timeout leads to high false alarm rates
and too large a timeout wastes a vast amount of valuable computing
resources. To address the above problems with hang detection, this
paper presents ParaStack, an extremely lightweight tool to detect
hangs in a timely manner with high accuracy, negligible overhead
with great scalability, and without requiring the user to select a
timeout value. For a detected hang, it provides direction for fur-
ther analysis by telling users whether the hang is the result of an
error in the computation phase or the communication phase. For
a computation-error induced hang, our tool pinpoints the faulty
process by excluding hundreds and thousands of other processes.
We have adapted ParaStack to work with the Torque and Slurm
parallel batch schedulers and validated its functionality and perfor-
mance on Tianhe-2 and Stampede that are respectively the world’s
current 2nd and 12th fastest supercomputers. Experimental results
demonstrate that ParaStack detects hangs in a timely manner at
negligible overhead with over 99% accuracy. No false alarm is ob-
served in correct runs taking 66 hours at scale of 256 processes and
39.7 hours at scale of 1024 processes. ParaStack accurately reports
the faulty process for computation-error induced hangs.

1 INTRODUCTION
Program hang, the phenomenon of unresponsiveness [34], is a
common yet di�cult type of bug in parallel programs. In large
scale MPI programs, errors causing a program hang can arise in
either the computation phase or the MPI communication phase.
Hang causing errors in the computation phase include in�nite
loop [31] within an MPI process, local deadlock within a process
due to incorrect thread-level synchronization [28], so� error in one
MPI process that causes the process to hang, and unknown errors
in either so�ware or hardware that cause a single computing node
to freeze. Errors in MPI communication phase that can give rise to
a program hang include MPI communication deadlocks/failures.
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It is widely accepted that some errors manifest more frequently
at large scale both in terms of the number of parallel processes and
problem size as testing is usually performed at small scale tomanage
cost and some errors are scale and input dependent [12, 29, 36, 39,
40]. Due to communication, an error triggered in one process (faulty
process) gradually spreads to others, �nally leading to a global hang.
Although a hang may be caused by a single faulty process, this
process is hard to locate as it is not easily distinguishable from
other processes whose execution has stalled. �us, the problem of
hang diagnosing, i.e. locating faulty processes, has received much
a�ention [11, 27, 28, 31].

Typically hang diagnosing is preceded by the hang detection step
and this problem has not been adequately addressed. Much work
has been done on communication-deadlock — a special case of
hang — using methods like time-out [17, 25, 32], communication
dependency analysis [20, 38], and formal veri�cation [37]. �ese
tools either use an imprecise timeout mechanism or precise but
centralized technique that limits scalability. MUST [22, 23] claims
to be a scalable tool for detecting MPI deadlocks at large scale,
but its overhead is still non-trivial as it ultimately checks MPI se-
mantics across all processes. �ese non-timeout methods do not
address the full scope of hang detection, as they do not consider
computation-error induced hangs. In terms of hang detection, ad
hoc timeout mechanism [2, 27, 28, 31] is the mainstream; however,
it is di�cult to set an appropriate threshold even for users that
have good knowledge of an application. �is is because the optimal
timeout not only varies across applications, but also with input
characteristics and the underlying computing platform. Choosing
a timeout that is too small leads to high false alarm rates and too
large timeouts lead to long detection delays. �e user may favor
selecting a very large timeout to achieve high accuracy while sac-
ri�cing delay in detecting a hang. For example, IO-Watchdog [2]
monitors writing activities and detects hangs based on a user spec-
i�ed timeout with 1 hour as the default. Up to 1 hour on every
processing core will be wasted if the user uses the default timeout
se�ing. �us, a lightweight hang detection tool with high accuracy
is urgently needed for programs encountering non-deterministic
hangs or sporadically triggered hangs (e.g., hangs that manifest
rarely and on certain inputs). It can be deployed to automatically
terminate erroneous runs to avoid wasting computing resources
without adversely e�ecting the performance of correct runs.

To address the above need for hang detection, this paper presents
ParaStack, an extremely lightweight tool to detect hangs in a timely
manner with high accuracy, negligible overhead with great scala-
bility, and without requiring the user to select a timeout value. Due
to its lightweight nature, ParaStack can be deployed in production
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runs without adversely a�ecting application performance when no
hang arises. It handles communication-error-induced hangs and
hangs brought about by a minority of processes encountering a
computation error. For a detected hang, ParaStack provides direc-
tion for further analysis by telling whether the hang is the result of
an error in the computation phase or the communication phase. For
a computation-error induced hang, it pinpoints faulty processes.

ParaStack is a parallel tool based on stack trace that judges a
hang by detecting dynamic manifestation of following pa�ern of
behavior – persistent existence of very few processes outside
ofMPI calls. �is simple, yet novel, approach is based upon the fol-
lowing observation. Since processes iterate between computation
and communication phases, a persistent dynamic variation of the
count of processes outside of MPI calls indicates a healthy running
state while a continuous small count of processes outside MPI calls
strongly indicates the onset of a hang. Based on execution history,
ParaStack builds a runtime model of count that is robust even with
limited history information and uses it to evaluate the likelihood
of continuously observing a small count. A hang is veri�ed if the
likelihood of persistent small count is signi�cantly high. Upon
detecting a hang, ParaStack reports the process in computation
phase, if any, as faulty.

�e above execution behavior basedmodel is capable of detecting
hangs for di�erent target programs, with di�erent input charac-
teristics and sizes, and running on di�erent computing platforms
without any assistance from the programmer alike. ParaStack re-
ports hang very accurately and in a timely manner. By monitoring
only a constant number of processes, ParaStack introduces negligi-
ble overhead and thus provides good scalability. Finally, it helps in
identifying the cause of the hang. If a hang is caused by a faulty
process with an error, all the other concurrent processes get stuck
inside MPI communication calls. If the error is inside communi-
cation phase, the faulty process will also stay in communication;
otherwise, it will stay in computation phase. Simply checking
whether there are processes outside of communication can tell the
type of hang, communication-error or computation-error induced,
as well as the faulty processes for a computation-error induced
hang. �e main contributions of ParaStack are:

• ParaStack introduces highly e�cient non-timeout mechanism
to detect hangs in a timely manner with high accuracy, negligi-
ble overhead, and great scalability. �us it avoids the di�culty
of se�ing the timeout value.

• ParaStack is a lightweight tool that can be used to monitor
the healthiness of production runs in the commonly used batch
execution mode for supercomputers. When there is a hang,
by terminating the execution before the allocated time expires,
ParaStack can save, on average, 50% of the allocated supercom-
puter time.

• ParaStack sheds light on the roadmap for a detected hang’s
further analysis by telling whether it was caused by an error in
computation or communication phase. In addition, it pinpoints
faulty processes for a computation-error induced hang.

• ParaStack is integrated into two parallel job schedulers Torque
and Slurm and we validated its performance on the world’s cur-
rent 2nd and 12th fastest supercomputers—Tianhe-2 and Stam-
pede. For a signi�cance level of 0.1%, experiments demonstrate

Figure 1: ParaStack work�ow – steps with solid border are
performed by ParaStack and those shown with dashed bor-
der require a complimentary tool.

that ParaStack detects hangs in a timely manner at negligible
overhead with over 99% accuracy. No false alarm was observed
in correct runs taking about 66 hours in total at the scale of
256 processes and 39.7 hours at the scale of 1024 processes. In
addition, ParaStack accurately identi�es the faulty process for
computation-error induced hangs.

2 THE CASE FOR PARASTACK
Hang detection is of value to application users and developers alike.
Application users usually do not have the knowledge to debug the
application. In batch mode, when a hang is encountered, the ap-
plication simply wastes the remainder of the allocated computing
time. �is problem is further exacerbated by the fact that users
commonly request a bigger time slot than what is really needed to
ensure their job can complete. If users are unaware of a hang occur-
rence, they may rerun the application with even a much bigger time
allocation, which will lead to even more waste. By a�aching a hang
detection capability to a batch job scheduler with negligible over-
head, ParaStack can help by terminating the jobs and reporting the
information to users when it detects a hang. �us the unnecessary
waste of computing resources is avoided.

Application developers need to detect a hang �rst and then de-
bug based on the information given by ParaStack. First, knowing
whether the hang-inducing error is in computation or communica-
tion sheds light on the direction for further analysis. To debug hangs
due to communication error, such as global deadlock, is hard and it
usually requires comparatively more heavyweight progress depen-
dency analysis, communication dependency analysis or stack trace
analysis. Since stack-trace analysis based tools such as STAT [12] do
not require runtime information, they can be applied immediately
a�er ParaStack reports a hang. In addition, the faulty process can
be identi�ed easily for a computation error induced hang, which
bene�ts developers signi�cantly by reducing from hundreds and
thousands of suspicious processes to only one or a few.
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Figure 2: Dynamic variation of Sout observed from 3 bench-
marks: LU, SP, FT fromNPB suite. All are executed with 256
processes at problem size D.

Figure 3: �e Sout variation of a faulty run of LU, where a
fault is injected on the le� border of the red region.

�ework�ow of our tool is depicted in Figure 1. �e path marked
with blue stars is the main focus of this paper. If a hang happens
and no faulty process is reported, we assume implicitly that the
hang is caused by communication errors. For ParaStack users,
debugging of a computation error induced hang has two phases:
(1) monitoring the execution to detect hangs and report the faulty
process with a lightweight diagnosis tool; and (2) debugging the
faulty process with a fully functional debugger. ParaStack is an
extremely lightweight tool for the �rst phase.

3 LIGHTWEIGHT HANG DETECTION
We begin by presenting the key observation that distinguishes the
runtime behavior of a correctly functioning MPI program from one
that is experiencing a hang. An MPI program typically consists
of a trivial setup phase followed by a time-consuming loop-based
solver phase where the la�er is more error-prone. �e solver loop
can be viewed as consisting of a mix of computation code and
communication code where the la�er belongs to the MPI library.
Depending upon the code being executed by a process, we classify
the runtime state of the process as: IN MPI if it is executing code
in an MPI call; or OUT MPI if it is executing non-MPI code. At
any point in time, each process can be only in one state. Further
OUT MPI signi�cance, denoted as Sout , is de�ned as the fraction
of an application’s parallel processes that are in state OUT MPI at
a given time. Next we argue that Sout can be used to distinguish
between healthy state and hang state.

– Healthy runtime state is characterized by Sout ’s periodic pat-
tern. Parallel processes run in and out of MPI functions repeatedly
in a healthy run. �us, a healthy process frequently switches be-
tween states IN MPI and OUT MPI . Because of the loop structure,

parallel processes are expected to show a repetitive pa�ern in terms
of how they �ip state from one to the other. �us, Sout is expected
to vary over time in a periodic pa�ern. Figure 2 shows the periodic
variation of Sout in healthy executions of 3 benchmarks: LU, SP,
and FT from NPB suite [5]. �is is obtained by repeatedly checking
Sout at �xed time interval of 1 millisecond. We see that the length
of the period varies as it is in�uenced by factors such as problem
size and application type.

– Hang runtime state is characterized by a persistently low Sout .
If a hang is caused by a computation error, the majority of processes
in state IN MPI should form a tight communication dependency
on the faulty processes and the faulty processes in state OUT MPI
should be in the minority. If a hang is caused by a communication
error, all processes should be in state IN MPI and thus Sout should
be 0 persistently. Figure 3 plots Sout during a run of LU benchmark
during which a hang is encountered – the dynamic variation ceases
and Sout is very low a�er the hang’s occurrence. �us, the health of
an application can be judged by looking for consecutive observations
of very low Sout .

Depending upon whether the utilized function is blocking or
not, we classify MPI communication styles into 3 types: blocking
style, i.e. a blocking communication function; half-blocking, i.e.
a non-blocking communication followed by a blocking function
like MPI Wait to wait for its completion; and non-blocking style
where a non-blocking communication is performed followed by a
check for completion using a busy waiting loop using non-blocking
message checking function like MPI Test. Our characterization
of runtime state is able to detect hangs for programs only using
the �rst two styles of communication. For a program that uses a
mix of di�erent communication styles, the lesser the use of third
communication style the more useful is our approach. For example,
HPL uses a mixed style with a small portion of the program in the
third style, processes can get stuck at multiple sites upon a program
hang and thus a signi�cant fraction of processes would ultimately
stay in blocking functions and thus be in IN MPI while some may
�ip states forever in busy-waiting loops. Our observation is still
useful in this case.

Putting Sout into Practice. Precisely tracking Sout will require
monitoring the runtime state of all processes continuously and this
will lead to high overhead. To achieve our objective of developing
a lightweight hang detection method, we neither monitor all pro-
cesses nor do we monitor their states continuously. In particular,
we determine the state of constant number of processes (say C), at
�xed time intervals (say I ), and compute S ′out that denotes the frac-
tion ofC processes that are in state OUT MPI. A hang is reported if
S ′out is observed to be persistently low (i.e., below a threshold) for
K consecutive intervals.

Now the next challenge is determine a selection of the values
for C , I , and K . In this work we �x C at 10 processes – this choice
is out of performance considerations and its justi�cation is given
later in Section 3.3. Let us �rst consider a simple scheme in which
the hang detection algorithm a priori �xes the values of both I and
K . In fact this scheme is similar in spirit to the commonly used
�xed timeout methods [2, 27, 28, 31] that avoid the complexities of
chosing the timeout value.
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Table 1: Adjusting the timeout method to various benchmarks, platforms and input sizes at scale 256 based on 10 erroneous
runs per con�guration. Metrics: AC – accuracy; FP – false positive rate; D – average response delay in seconds, i.e. the elapsed
time from when the fault is injected to when a hang is detected.

Platform→ Tianhe-2 Tardis
Benchmark(Input size)→ FT(D) FT(E) FT(D) LU(D) SP(D)

Metrics→ AC FP D AC FP D AC FP D AC FP D AC FP D

I1 = 400ms, K1 = 5 times 1.0 0.0 3.3 0.0 1.0 — 0.0 1.0 — 0.0 1.0 — 0.3 0.7 2.0
I2 = 400ms, K2 = 10 times 1.0 0.0 8.1 1.0 0.0 10.9 0.9 0.1 6.5 1.0 0.0 5.3 1.0 0.0 5.1
I3 = 800ms, K3 = 5 times 1.0 0.0 7.2 1.0 0.0 11.7 0.8 0.2 7.0 1.0 0.0 3.9 1.0 0.0 3.9
I4 = 800ms, K4 = 10 times 1.0 0.0 13.2 1.0 0.0 17.4 1.0 0.0 10.2 1.0 0.0 10.7 1.0 0.0 8.6

Next we studied the e�ectiveness of this simple scheme by study-
ing its precision, i.e. studying: (a) accuracy of catching real hangs;
and (b) false positive rate, i.e. detection of hangs when none exist.
In this study we used two values for I (400ms and 800ms), two
values for K (5 times and 10 times) and then ran experiments for
three applications (FT, LU, SP) on two platforms (Tianhe-2 and
Tardis). �e results obtained are given in Table 1 and by studying
them we observe the di�culty of se�ing the (I ,K) parameters for
di�erent platforms, di�erent input sizes, and di�erent applications.
In particular, we observe the following:

• (Platforms: Tianhe-2 vs. Tardis) Consider the case for FT at
input size D. For (I1,K1) while on Tianhe-2 all actual hangs are
correctly reported, on Tardis false hangs are reported during
the correct execution phase (i.e., before a hang actually occurs)
in all 10 runs.

• (Input sizes for FT: D vs. E) On Tianhe-2 though (I1,K1) has
a 100% accuracy for FT at input size D, for input size E the
accuracy drops to 0% and false positive rate goes up to 100%.

• (Target Application: LU and SP vs. FT) For parameter se�ings
(I2,K2) and (I3,K3), on Tardis though the accuracy for LU and
SP is 100%, the accuracy for FT is less and false positives are
reported.

Clearly the above results indicate that �xed se�ings of (I ,K)
are not acceptable and thus a more sophisticated strategy must be
designed. We observe that no �xed se�ing of parameters will work
for all programs, on all inputs, and di�erent platforms. �erefore
the choice of parameters must be made based upon on the runtime
characteristics of an application on a given input and platform. We
cannot leave this choice to the users as they are likely to resort
to guessing the parameter se�ings and thus will not have any
con�dence in the results of hang detection.

�erefore the approach we propose is one that automates the
selection and tuning of I and K at runtime such that hangs can be
reported with high degree of con�dence. In fact the approach we
propose allows the user to specify the desired degree of con�dence
and our runtime method ensures that a hang’s presence is veri�ed
to meet the speci�ed desired degree of con�dence. �e details of
this method are presented next.

3.1 Model Based Hang Detection Scheme
�e basic idea behind our approach is as follows. We randomly
sample Sout at runtime to build and maintain a model and detect
hangs by checking Sout against the model.

Random sampling of Sout . Variation of Sout over time is com-
posed of many small cycles, and all cycles exhibit similar trend
over time. Suppose the cycle time is Ct . If we randomly take a
sample from a time range of NCt where N ∈ N+, no ma�er how N
varies it is clear this randomly observed Sout will follow the same
distribution denoted as F (Sout ), considering the similarity across
cycles. Such random sampling can be achieved by inserting a good
uniformly generated random time step, denoted as rstep , that makes
the next sample fall at any point in one or several cycles, between
two consecutive samples.

Suppose I is themaximum time interval, and rand(I ) is a uniform
random number generator over [0, I ]. We make rstep = rand(I ) +
I/2 and thus the sampling interval ranges over [I/2, 3I/2] with
an average of I . An ideal model can be built either when I =
NCt or when the I is way bigger than Ct so that the sampling is
approximately random rather than time-dependent.

Automatically tuning I . Hand-tuning I is undesirable and
impractical as Ct varies across di�erent applications, input sizes,
and underlying computing platforms. Instead, we can achieve
approximate random sampling through enlarging I as below. We
design an automatic method to enlarge the maximum interval I in
the early execution stage by checking the samples’ randomness.
If the sampling is statistically found to lack randomness, we double
I , as a bigger I leads to be�er randomness, and then re-evaluate
the randomness. Below details the method we use to check the
sampling’s randomness.

Runs test [35] is a standard test that checks a randomness hy-
pothesis for a two-valued data sequence. We use this to judge the
randomness of a sample sequence. Given a sample sequence of
Sout , we set the average of samples as boundary. Samples bigger
than or equal to the boundary are coded as positive (+) and samples
smaller than that as negative (-). A run is de�ned as a series of
consecutive positive (or negative) values. Under the assumption
that the sequence containing N1 positives and N0 negatives is ran-
dom, the number of runs, denoted as R, is a random variable whose
distribution is approximately normal for large runs test. Given a
signi�cance level 0.05, for small runs test (N1 ≤ 20,N0 ≤ 20), we
can get a range for the assumed correct number of runs via table
in [35], i.e. the non-rejection region. If R is beyond this range, we
reject the claim that the sequence is random and thus relax I . On the
other hand, if either N1 ≤ 1 or N2 ≤ 1 and thus the non-rejection
region is not available, we also assume the sampling is not random
to avoid the risk of failing to identifying a non-random sampling
process.
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Figure 4: Hang detection. �ree panels show the empirical
distribution of randomly sampled Sout of LU, where the red
region shows the suspicion region, the blue curve shows the
probability density function P(Sout ), and the dashed black
curve shows the cumulative distribution function Fn (Sout ).
�e red arrow crosses the suspicion region 3 times meaning
3 consecutive observations of suspicion.

For example, consider anMPI program runningwith 10 processes
and thus the possible values of Sout are 0.1, 0.2, 0.3, …, 1.0. �ere
are a sequence 16 samples as follows

0.2 0.1 0.1 0.2 0.1 0.1 0.0 0.0
0.8 0.9 1.0 0.8 0.9 0.1 0.9 0.9,

which is equivalent to the two-valued sequence

− − − − − − − − + + + + + − + + .

Its boundary is 0.44375 withN1 = 7,N0 = 9 andR = 4. �e assumed
correct range is (4, 14) and the number of runs 4 is not inside the
range, so we claim the sampling is not random and double I .

Note the model needs to be renewed when I is doubled. �e size
of old samples collected at average time interval I is 2 times of the
size if the old samples were collected at interval 2I . �erefore, we
cut the sample size by half.

Suspicion of hang. As samples accumulate, an empirical cu-
mulative distribution function, denoted as Fn (Sout ), can be built,
where n is the number of samples. Given a probability p̂, we can
obtain t = F−1n (p̂). A suspicion is de�ned as Sout ≤ t , i.e. a very low
Sout . �e observed values can be classi�ed into a pair of opposite
random events:{

A : Suspicion if Sout ≤ t ,
A : Non-suspicion if Sout > t ,

Note p̂ is selected dynamically to ensure robustness at various
sample sizes and will be discussed in Section 3.2.

Signi�cance test of hang. A single suspicion does not justify
a hang’s occurrence; instead, a continuous detection of suspicions
indicates a hang with high con�dence. We can quantify the number
of suspicions (A) before the �rst observation of a non-suspicion (A)
as a geometric distribution. �e probability of Y = y observations

of event A before the �rst observation of A can be expressed as
follows:

P(Y = y) = qy · (1 − q)
where q is an estimation of the true suspicion probability, denoted as
p, by adapting p̂ and will be discussed in Section 3.2. Let us consider
the following null and alternate hypothesis:{

H0 : �e MPI application is healthy,
H1 : �e MPI application has hung.

Under H0, the probability to observe at least k consecutive As is

PH0 (Y ≥ k) = 1 −∑k−1
y=0 q

y · (1 − q)
= qk .

Given the con�dence level 1 − α , we reject H0 and accept H1 if
PH0 (Y ≥ k) ≤ α , i.e., as below:

qk ≤ α
⇒ k ≥ dloдqαe .

Hence a hang would be reported at a con�dence level of 1 − α if
dloдqαe times of consecutive suspicions are encountered as depicted
in Figure 4. �e theoretical worst case time cost required to detect
a hang is I · dloдqαe, considering a few normal suspicions in the
correct phase may appear before a hang really appears.

3.2 Robust Model with a Limited Sample Size
Ideally, we would have p̂ ≈ p if the sample size is large enough.
We can just apply q = p̂ to the model. However, the problem is
that the sample size can not be large enough as the sample size
always grows from 0, and the assignment q = p̂ thus would only
make a bad hang detection model. To overcome this di�culty, we
introduce a method for a achieving a credible q for each level of
sample size.

Since we only care about suspicion versus non-suspicion, the
sampling can be viewed as a Bernoulli process, i.e. Xi

i .i .d .∼ Ber (p),
where Xi is the i-th sample. By the rule of thumb [6], when np̂ > 5
and n(1 − p̂) > 5, p̂ follows

p̂ =

∑n
i=1 Xi
n

◦∼ N (p, p(1 − p)
n
).

Its 95% con�dence interval is p̂±1.96
√

p̂(1−p̂)
n . If we estimate p with

an error no bigger than e , i.e. p̂ ∈ [p − e,p + e], at 95% con�dence,

we have 1.96
√

p̂(1−p̂)
n ≤ e . �e minimal sample size to justify p̂ is

n̂ = MAX { 5
p̂
,

5
1 − p̂ ,

3.8416
e2

p̂(1 − p̂)},

where 0 < p̂ < 1. Because p̂ and 1−p̂ are exchangeable and 5
p̂ >

5
1−p̂

in (0, 0.5] , we only study

n̂ = fmax (p̂) = MAX { 5
p̂
,
3.8416
e2

p̂(1 − p̂)}, where p̂ ∈ (0, 0.5].

where p̂ in(0, 0.5] and fmax is the function that gets the maximum
between the given two terms.

Given a tolerance error e , our goal is to get an acceptable p̂ that
can be justi�ed by the smallest sample size n, where the smallest
ensures the model as soon as possible even with a small sample size.
We provide 4 acceptable tolerance levels, 0.3, 0.2, 0.1 and 0.05, to
study the relation among suspicion probability, tolerance error and
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Figure 5: Relation among sample size, suspicion probability
and tolerance error, where n̂(p̂) = 3.8416

e2 p̂(1 − p̂).

sample size as shown in Figure 5. Given e , let’s denote the minimal
n̂ as n̂m and the p̂ that minimizes n̂ as p̂m . With e equaling 0.3, 0.2,
0.1 and 0.05, we get (p̂m , n̂m ) respectively as (0.47, 11), (0.27, 19),
(0.12, 42) and (0.06, 86). �ese points specify a path demanding the
least sample size to step from a larger tolerance error to a smaller
one, i.e. from 0.3 to 0.05. At 95% con�dence, we estimate p as below:

p ∈ [0.17, 0.77] when 11 ≤ n < 19,
p ∈ [0.07, 0.47] when 19 ≤ n < 42,
p ∈ [0.02, 0.22] when 42 ≤ n < 86,
p ∈ [0.01, 0.11] when n ≥ 86.

It coincides with our intuition that a smaller p̂ with a smaller e must
be justi�ed by a larger n.

However, the model is discrete and very likely such p̂m does
not exist. We thus need to �nd the sub-optimal p̂, denoted
as p̂m′ , around p̂ = p̂m , which ensures a sub-minimum n̂, de-
noted as nm′ . With t1 = max{X }, where Fn (X ) < p̂m , and
t2 =min{X }, where Fn (X ) ≥ p̂m , we have

n̂m′ =min{ fmax (Fn (t1)), fmax (Fn (t2))},

upon which p̂m′ is known. With e equal to 0.3, 0.2, 0.1, 0.05, we can
respectively obtain (p̂m′ , n̂m′) as (p̂m′,0.3, n̂m′,0.3), (p̂m′,0.2, n̂m′,0.2),
(p̂m′,0.1, n̂m′,0.1), (p̂m′,0.05, n̂m′,0.05), where n̂m′,0.3 < n̂m′,0.2 <
n̂m′,0.1 < n̂m′,0.05. �erefore, we would have a p̂ with a known
maximal error at 95% con�dence for each level of sample size:

p̂m′,0.3 ∈ [p − 0.3,p + 0.3] when n ∈ [n̂m′,0.3, n̂m′,0.2),
p̂m′,0.2 ∈ [p − 0.2,p + 0.2] when n ∈ [n̂m′,0.2, n̂m′,0.1),
p̂m′,0.1 ∈ [p − 0.1,p + 0.1] when n ∈ [n̂m′,0.1, n̂m′,0.05),
p̂m′,0.05 ∈ [p − 0.05,p + 0.05] when n ≥ n̂m′,0.05.

Robust model. �e value of (p̂m′ , n̂m′) is continuously updated
as the sample size increases. At each sample size level, a suspicion
is de�ned by the obtained credible p̂m′ . Because of the maximum
error e , we might underestimate p (p̂m′ < p) and undermine the
hang detection accuracy. To avoid this, we make q = p̂m′ + e .
Because the con�dence of p̂m′ ∈ [p−e,p+e] is 95%, we claim q ≥ p
with 97.5% con�dence.

Before the hang detection is performed, ParaStack needs to ac-
cumulate at least n̂m′,0.03 random samples to build a model. �e
model building time is thus n̂m′,0.03 · I . Since di�erent applications
may have di�erent appropriate values of I that assure randomness,
the model building time also varies from one application to another.

3.3 Lightweight Design Details
One monitor per node can be launched to examine the runtime state
of all processes on a local node. But checking the call stack of all
processes to sample Sout can slowdown the target application’s
execution. Hence, following lightweight strategy is introduced.

CROUT MPI signi�cance. We monitor only a constant num-
ber, say C , of processes instead of all. Accordingly, we de�ne
CROUT MPI Signi�cance, denoted as Scrout , as the fraction of pro-
cesses at OUT MPI in a Randomly selected C processes. �e hang
detection scheme is still valid by checking Scrout as the idea of
looking for a rare event remains unchanged.

Since only C processes need to be checked and some of them
might coexist on the same node, they at most occupy C compute
nodes, each of which requires one monitor actively checking the
selected processes. We thus say monitors on these nodes are active
and the others are idle. �is design makes our tool extremely light-
weight because: (1) only C processes’ states need to be checked
at a time cost of several microseconds per check; (2) communica-
tion is only required in a very limited scope of no more than C
active monitors; and (3) the already trivial time cost can be possibly
overlapped by target applications’ idle time.

Parameter Setting. (1) �e lightweight design requires an ap-
propriate se�ing ofC and I . A largerC leads to more overhead, and
a smaller initial value of I also does so though it will be enlarged at
runtime. In addition, a small value for C like 2 or 3 can �a�en the
variation of Scrout and thus diminishes the �exibility of adjusting
p̂ that ensures model robustness. �erefore, we set C to 10 �rst
and then �nd I with initial value of 400 milliseconds to satisfy the
above requirements. (2) We perform the runs test every 16 samples
until randomness is ensured as that is large enough for runs test
and small enough to ensure ParaStack has the smallest sample size
required to check hangs. (3) We set α = 0.1%, which is statistically
highly signi�cant and implies 99.9% con�dence. Note this is the
only parameter that is tailored by the users.

Prevention of a corner case failure. Rarely a corner case
arises due to the dynamic adjustment of what de�nes a suspicion to
ensure model’s robustness. When a suspicion is de�ned as Scrout =
0 and one faulty process, whose state is OUT MPI a�er a hang
happens, is one of theC processes being monitored, i.e. Scrout , 0,
neither suspicions nor hangs will be observed. �is corner case
failure can be avoided by monitoring two disjoint random process
sets, since the faulty process cannot be present in both sets. Of
course more sets are required to be resilient for the case containing
multiple faulty processes. ParaStack alternates between the two
sets using each for a �xed number of observations. Since ideally
q ≤ 0.77 and loд0.770.001 = 26.5, the maximal times of suspicions
required to verify a hang is 27. ParaStack alternates between two
sets every 30 times to ensure it has enough time to �nd hangs while
monitoring the process set with Scrout = 0 before switching to the
other one with Scrout , 0.

Transient slowdowns at large scale. As noted in recentworks,
on large scale systems, the system noise can sometimes lead to a
substantial transient slowdown of an application [24, 33]. We also
occasionally encountered transient slowdowns on Tianhe-2 – typi-
cally in less than 4 runs out of a total of 50 runs. It is important not
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Figure 6: Faulty process identi�cation for computation-error
induced hangs. On the le� is an MPI program skeleton,
which hangs due to a computation error in process 100. Tra-
ditionally, the faulty process can be detected based on the
progress dependency graph as shown in the middle. Our
technique greatly simpli�es the idea by just checking run-
time states as shown on the right.

to confuse a transient slowdown with a hang. We observe that a
transient slowdown is distinguishable from a hang because, unlike
a hang, it is characterized by the presence of a few processes step-
ping through the code slowly. �is transient-slowdown-speci�c
e�ect can be identi�ed if any of the following is true: (1) at least
one process passes through di�erent MPI functions; (2) at least one
process steps in and out of MPI functions other than MPI Iprobe,
MPI Test, MPI Testany MPI Testsome and MPI Testall, i.e. a pro-
cess running in a busy-waiting loop stepping across non-MPI code
and a function like MPI Test is treated as staying in the MPI func-
tion. �us we check if such slowdown-speci�c e�ect exists based
on two stack traces of each target process upon a hang report from
the model-based mechanism. If it exists, we report a transient slow-
down rather than a hang and resume monitoring; otherwise, we
report a hang to users.

4 IDENTIFYING FAULTY PROCESS
Once a hang is detected, ParaStack reports the processes inOUT MPI
as faulty. �e reported processes are claimed to contain the root
cause of a hang that results from a computation error. If no process
is reported, we claim the hang is a result of a communication error.
Next we focus on locating the faulty process for a computation
error induced hang.

On the le� in Figure 6 we show the solver code skeleton of a typi-
cal MPI program that is expected to run at large scale. In addition to
the computation, all processes perform both local communication
and synchronization-like global communication. Synchronization-
like global communication stands for a communication type that
works like a synchronization across all processes such that no pro-
cess can �nish before all enter into the function call. For example,
MPI Allgather falls into this category, but MPI Gather does not.
In an erroneous run, process 100 fails to make progress due to a
computation error, so its immediate neighbors, processes 99 and
101, wait for it at the local communication, which in turns causes all
the others to hang at the global communication. Process 100 thus
should be blamed as the faulty process for this hang. Locating this
faulty process would take programmers a giant step closer to the

root cause considering hundreds and thousands of suspicious pro-
cesses are eliminated. Traditional progress-dependency-analysis
methods [27, 28, 31] are very e�ective in aiding the identi�cation of
faulty process for general hangs but they involves complexities like
recording control-�ow information and progress comparison as
shown in the middle of Figure 6. But for computation-error induced
hangs these complexities are not necessary. ParaStack instead is
inherently simple for this case.

Identi�cation. Across all processes, we identify processes in
state OUT MPI as the faulty ones for a computation-error induced
hang since all the other concurrent ones in IN MPI would wait for
the faulty processes. �is can be achieved by simply glancing at the
state of each process. As shown on the right in Figure 6, process
100 is easily located as it is the only one staying in state OUT MPI.

Busy waiting loop based non-blocking communication. If
a hang occurs in an application with busy waiting loops, in addition
to persistently �nding faulty processes in OUT MPI, we may also
occasionally �nd a few non-faulty in OUT MPI. For example, HPL
has its own implementation of collective communication based on
busy waiting loops, which canmake a few non-faulty processes step
back and forth in a track trace rooted at such HPL communication
functions when a hang appears. �is can mislead ParaStack into
believing that such non-faulty processes are faulty. To avoid this,
we check every process’s state several times and then select the
ones that are in OUT MPI persistently.

5 IMPLEMENTATION
ParaStack is implemented in C and conforms to the MPI-1 standard,
by which we can ensure the maximum stability by only using a few
old, yet good, widely-tested MPI functions while avoiding newly-
proposed more error-prone functions. It was tested on Linux/Unix
systems and integrated with popular batch job schedulers Slurm
and Torque. It is easily usable byMPI applications using mainstream
MPI libraries like MVAPICH, MPICH, and OpenMPI.

Job submission. We provide batch job submission command
for Slurm and Torque. It processes users’ allocation request, and
executes the application and ParaStack concurrently. It ensures
only one monitor per node is launched.

Mapping betweenMPI rank and process ID. ParaStack �nds
all the processes belonging to the target job by its command name
using the common Linux/Unix command ps. Users submit a job by
specifying the number of nodes and processes per node. Under this
se�ing, the MPI rank assignment mechanism implies two rules: (1)
MPI rank increases as process id increases on the same node; and
(2) MPI rank increases as node id, in a ordered node list, increases.
Suppose the number of target processes per node is ppn and a
monitor’s id is i . �eMPI processes from rank i∗ppn to (i+1)∗ppn−1
shares the same node with Monitor i that does the local mapping
by simply sorting process ids.

Hang detection. (1) ParaStack suspends and resumes a pro-
cesses’ execution using ptrace, and resolves the call-chain using
libunwind. (2) To obtain the runtime state, we examine stack frames
to check if they start with ’mpi’, ’MPI’, ’pmpi’, or ’PMPI’ until the
backtrace �nishes or such relation is found. If found, the state is
IN MPI ; otherwise it is OUT MPI. �is works as mainstream MPI
libraries use the above naming rule and users rarely use function
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Table 2: Default input sizes used by each application at var-
ious running scales. Inputs D and E are the two largest in-
puts that comewith the benchmarks. �e input size for HPL
speci�es the width of a square matrix and the input size for
HPCG speci�es the local domain dimension.

Scale 256 1024 4096 8192 16384
BT, CG

D E — —LU, SP
FT D,E E — — —
MG E — — — —
HPL 8*104 2*105 2.5*105 3*105 3.5*105
HPCG 64 * 64 * 64 — — —

names starting with such strings. (3) Idle monitorswait for messages
in a busy waiting loop consisting of a hundreds-of-milliseconds-
sleep and a nonblocking test to avoid preemption.

6 DISCUSSION
We discuss handling of complex situations by ParaStack.

Multi-threaded MPI program. A hybrid parallel program, us-
ing MPI+OpenMP or MPI+Pthreads, can have both thread-level and
process-level parallelism. (1) For thread levelMPI THREAD SINGLE
and MPI THREAD FUNNE- LED, only the master thread commu-
nicates. �us, ParaStack works by simply monitoring the master
thread. (2) For more progressive mode, MPI THREAD SERIALIZED
and MPI THREAD MULTIPLE, ParaStack must be adapted by re-
de�ning the runtime state of a process as: if at least one thread from
a process is in MPI communication, we say this process is in IN MPI ;
otherwise, it is OUT MPI. Hence, a hang can still be captured by
the fact that too few processes are in OUT MPI persistently.

Applications with multiple phases. An application may al-
ternate among several phases with di�ering behaviors leading to
imprecision in the Scrout model. However, ParaStack can be easily
adapted by constructing separate models for di�erent phases if the
application is instrumented to inform ParaStack of phase changes
during execution. ParaStack can build separate models by sampling
each of the phases and using them for respective phases.

Applications with load imbalance. ParaStack is developed
to detect hangs for applications with good load balance and is not
suitable for applications with severe load imbalance. For applica-
tions with severe load imbalance, near the end of execution, a few
heavy-workload processes may be running. �us our model based
mechanism can fail. We ignore this situation because applications
with severe load imbalance should not be deployed at large scale so
as to avoid computing resources waste. For moderate load imbal-
ance, we can apply the technique of detecting transient slowdowns
as the load imbalance is also characterized by the e�ect that a few
processes are still running slowly.

7 EXPERIMENTAL EVALUATION
Computing platforms. We evaluate ParaStack on three platforms:
Tardis, Tianhe-2 and Stampede. Tardis is a 16-node cluster, with
each node having 2 AMD Opteron 6272 processors (with 32 cores in
all) and 64GB memory. Tianhe-2 is the 2nd fastest supercomputer
in the world [1], with each node having 2 E5-2692 processors (with

Table 3: For an execution of HPL on a 15000*15000 matrix,
the clean run on average takes 185.05 seconds. Ot is the total
stack trace overhead due to n stack trace operations.

Time interval 10 ms 100 ms
Ot 50.88s 7.52s
n 18220 1870

24 cores in all) and 64GB memory. Stampede is the 12th fastest
supercomputer in the world [1], with each node having 2 Xeon
E5-2680 processors (16 cores in all) and 32GB memory. In�niband is
used for all. We allocate respectively 8 nodes—256 (8*32) processes—
on Tardis, 64 nodes—1,024 (64*16) processes—on Tianhe-2, and up
to 1024 nodes—16,384 (1024*16) processes—on Stampede.

Applications and input sizes. We use six NAS Parallel Bench-
marks (NPB: BT, CG, FT, MG, LU and SP) [5], High Performance
Linpack (HPL) [7], and High Performance Conjugate Gradient
Benchmark (HPCG) [21] for evaluation. �e execution of these
widely used benchmarks consists of a trivial setup phase and a
time-consuming iterative solver phase. �ough HPCG has multiple
phases, all phases are iterative. As ParaStack is developed to moni-
tor long-running runs, we use large available input sizes indicated
in Table 2 by default unless otherwise speci�ed. In our evaluation,
we ignore MG due to its short execution time on both Stampede
and Tianhe-2, and ignore FT on Stampede as it crashes at large
scale due to memory limit. We did not inject errors in HPCG on
Stampede and Tianhe-2 as it has multiple iterative steps and our
random error injection technique is not readily applicable.

Fault injection. On Tardis, to simulate a hang, we suspend the
execution of a randomly selected process by injecting a long sleep
in a random invocation of a random user function as faults are more
likely to be in the application than in well-known libraries [31]. We
use gprof to collect all the user functions. Dyninst [8] is used to
statically inject errors in application binaries. We discard the cases
where error appears in the �rst 20 seconds of execution because
real-world HPC applications spend the majority of time in the
later solver phase and building our model takes around 20 seconds.
Note our tool targets hangs in the middle of long runs such as
those reported in [3, 4] and the model building time is trivial in
comparison to the program execution time. On Stampede and
Tianhe-2 we inject errors in the source code and simulate a hang
by injecting a long sleep call in a randomly selected iteration of a
randomly selected process.

7.1 Hang Detection Evaluation
I. Overhead. To begin with, we measured the overhead of stack
trace for a single process running HPL, a highly compute intensive
application. We executed 5 clean runs and 5 runs with stack trace
using time intervals of 10ms and 100ms. �e average cumulative
total overhead (Ot ) and number of stack trace operations (n) are
given in Table 3. As we can see, the overhead is high for interval of
10ms – a 50.88 seconds increase over clean run that takes 185.05
seconds. However, for the interval of 100ms the overhead is low –
7.52 seconds. �us, for I of 100ms or higher we can expect our tool
to have very low overhead.
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Table 4: Performance comparison of running applications with ParaStack (I = 100ms), with ParaStack (I = 400ms) and without
ParaStack (clean) on Tardis at scale 256. Performance is measured by the delivered GFLOPS for HPCG and by the time cost in
seconds for the others, and Standard deviation of the performance is shown.

Benchmark BT CG FT LU MG SP HPL HPCG
Metric P S P S P S P S P S P S P S P S

clean 336.7 1.0 132.0 1.1 178.8 0.3 247.8 2.9 347.3 0.5 511.1 0.3 277.8 0.8 29.1 0.1
I=100 336.4 0.6 131.6 0.2 179.5 0.2 247.8 0.6 347.0 0.5 510.3 0.4 277.7 0.5 29.1 0.1
I=400 336.8 1.4 132.4 0.6 179.07 0.7 246.6 0.6 347.1 0.3 511.0 0.6 277.2 0.4 29.1 0.1

Figure 7: Performance comparison of running applications
with ParaStack (I = 100ms), with ParaStack (I = 400ms) and
without ParaStack (clean) on Stampede at scale 1024 based
on 5 runs in each setting. �e performance is evaluated as
GFLOPS for HPCG and as time cost in seconds for all the oth-
ers, and the the 5 runs are ordered by performance.

Table 5: ParaStack’s Overhead on Tianhe-2 at scale 1024
based on the average of 5 runs.

Benchmark BT CG LU SP HPL HPCG
I=100 2.44% 7.61% 3.35% 0.26% 0.12% 1.64%
I=400 -0.08% 0.55% 1.14% 0.04% 0.12% 0.35%

Now we study the impact of using ParaStack on runtimes for
all applications under two I se�ings of 100ms and 400ms at scales
of 256 and 1024 processes. Note I does not change in this study –
we disable the automatic adjustment of I . Experiment results are
based on 5 runs at each se�ing. Table 4 shows results at scale 256
and it shows that ParaStack has negligible impact on applications’
performance in either se�ing. At scale 1024, we separately present
the performance for each of the 5 runs in each se�ing on Stampede
and Tianhe-2 as the performance variations due to system noise are
greater than the prior experiment. On Stampede, Figure 7 shows the
performance for I = 400ms is o�en be�er than that with I = 100ms,
and is almost the same as that of clean runs (except for LU). Since
Tianhe-2 su�ers less system noise due to its lower utilization rate
than Stampede, the performance variation on it is less. Hence

Figure 8: Performance comparison of running applications
with ParaStack (I = 100ms), with ParaStack (I = 400ms) and
without ParaStack (clean) on Tianhe-2 at scale 1024.

we can expect Tianhe-2 be�er captures ParaStack’s overhead. On
Tianhe-2, Figure 8 clearly shows that I = 400ms is always be�er
than I = 100ms, and introduces a slight overhead compared with
the clean runs. Table 5 shows the overhead for each application.
�e overhead with I = 400ms is at most 1.14%, which is always
be�er than the overhead in the other se�ing. Hence for the rest of
the experiments we use the se�ing of I = 400ms.

II. False positives were evaluated using 100 correct runs of
each application at scale 256 on Tardis taking about 66 hours, 50
correct runs for BT, CG, FT, LU, SP, HPCG, and HPL at scale 1024
on Tianhe-2 taking about 27.9 hours, and 20 correct runs for BT,
CG, LU, SP, HPCG, and HPL at scale 1024 on Stampede taking about
11.8 hours. �e false positive rate was observed to be 0% when the
theoretical false positive rate is α = 0.1%. In addition, no false
positives were observed even in all erroneous runs performed in
experiments presented next.

III. Accuracy refers to the e�ectiveness of ParaStack in detecting
hangs in erroneous runs. Let the total number of faulty runs be
T and the total number of times that the hang can be detected
correctly beTh . �e accuracy is de�ned asTh/T . Table 6 shows the
accuracy based on 100 erroneous runs at scale 256 on Tardis, 50
erroneous runs at scale 1024 on Tianhe-2 and 20 runs at scale 1024
on Stampede. ParaStackmisses only 6 times out of 800 runs at scale
256. In these cases, hangs happen very early (even before ParaStack
has collected enough samples to build an accurate model) and thus
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Table 6: Accuracy of hang detection. �e rough time cost of
a correct run is shown.

Platform Tardis Tianhe-2 Stampede
# runs 100 50 20
Scale 256 1024 1024
Metric Time(s) ACh Time(s) ACh Time(s) ACh

BT 336 99% 487 100% 495 100%
CG 132 100% 177 100% 278 100%
FT 179 98% 100 100% — —
LU 247 98% 328 98% 311 100%
MG 347 100% — — — —
SP 511 100% 454 100% 528 100%

HPCG — 100% — — — —
HPL 277 99% 362 100% 411 100%

Table 7: Response delay on Tianhe-2: D is the average re-
sponse delay in seconds; S is the standard deviation.

Scale↓ Metric↓ BT CG FT LU SP HPL

1024 D 7.2 18.8 8.8 9.0 4.8 6.8
S 7.3 14.7 7.3 4.2 2.2 3.3

Table 8: Response delay on Stampede: D is the average re-
sponse delay in seconds and S is the standard deviation.

Scale↓ BT CG LU SP HPL
D S D S D S D S D S

1024 7.1 4.5 7.6 4.5 7.8 5.9 4.1 1.2 5.0 2.5
4096 5.4 3.6 24.1 13.1 4.3 1.3 3.7 2.0 5.6 4.7

I is continuously enlarged and the probability of Scrout = 0 is
increased. Hence there is not enough time to verify the hang before
the allocated time slot expires. One hang in LU is also missed at
scale 1024 on Tianhe-2; for all other runs at scale 1024, the accuracy
is 100% on Stampede and Tianhe-2.

Due to the high cost, a limited number of experiments was con-
ducted. At scale 4096, we studied ParaStack’s accuracy based on 10
erroneous runs for BT, CG, LU, SP, and HPL. For BT, LU, and HPL,
ACh = 1; for CG and SP, ACh equals 0.8 and 0.9 respectively. Also,
as the later two take less time, errors are more likely to happen ear-
lier. At scale 8192, the accuracy based on 5 erroneous runs of HPL
is ACh = 5/5. At scale 16384, the accuracy based on 3 erroneous
runs of HPL is ACh = 3/3.

IV. Response delay is the elapsed time from a hang’s occur-
rence to its detection by ParaStack. For the erroneous runs where
hangs are correctly identi�ed by ParaStack, we collected the re-
sponse delays for all applications. Figure 9 shows the response
delay distribution for 100 erroneous runs at scale of 256 on Tardis.
Table 7 shows the average response delay and the standard de-
viation based on 50 erroneous runs at scale of 1024 on Tianhe-2.
Table 8 shows the average response delay and the standard devia-
tion based on 20 erroneous runs at scale of 1024 and 10 erroneous
runs at scale of 4,096 on Stampede. At scale 8,192 the response delay
for 5 erroneous runs of HPL are 5, 6, 14, 16, and 17 seconds. At

Figure 9: �e response delay of hang detection based upon
100 erroneous runs for each application at scale of 256 on
Tardis. The horizontal axis represents response delay in sec-
onds and the vertical axis represents the number of runs that
encounter corresponding delay.

Figure 10: �e percentage of time savings ParaStack brings
to application users in batch mode based on 10 erroneous
runs of HPL with the average percentage equal to 35.5%.

scale 16,384 response delays for 3 erroneous runs are 6, 7, and 10
seconds. ParaStack commonly detects a hang with a delay of no
more than 1 minute at various scales. We observe that the response
delay not only varies across applications, it also di�ers from one
hang to another for a given application. As we know, the response
delay in worst case is I · dloдqαe. �e variation of q depending
upon sample size and the adaptation of I leads to the variation in
response delay.

V. ParaStack enabled time savings for application users.
Supercomputers typically charge users in Service Units (SUs) [9, 10].
�e total number of SUs charged for a job is equal to the product of
the number of nodes occupied, the number of cores per node, and
the elapsed wallclock time of the job. Application users run their
job assuming absence of hangs; thus, when running an application
in batch mode, the allocated time will be wasted if a hang arises and
the user is charged for it. ParaStack saves this cost by terminating
the application upon a hang. To quantify the time saving, we ran
HPL 10 times using a problem size 100,000 with a (uniform) random
error injected in the iterative phase. �e correct run takes around
518 seconds, so users are inclined to request a larger time slot –
conservatively let us assume a 10-minute time slot is requested. �e
percentage of time ParaStack saves is shown in Figure 10. For the 10
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Table 9: ParaStack’s generality for variation of platforms,
benchmarks and input sizes at scale 256 based on 10 erro-
neous runs per con�guration. Notes: (1) P stands for the de-
fault ParaStack with I being initialized as 400ms; P∗ stands
for ParaStack with I being initialized as 10ms. (2) AC, accu-
racy; FP, false positive rate; D, average response delay.

Platform Bench. P P*
AC FP D AC FP D

Tianhe-2 FT(D) 1.0 0.0 4.8 1.0 0.0 3.5
FT(E) 1.0 0.0 29.4 1.0 0.0 14.9

Tardis
FT(D) 1.0 0.0 14.0 0.9 0.0 25.2
LU(D) 1.0 0.0 4.5 1.0 0.0 1.1
SP(D) 1.0 0.0 3.3 1.0 0.0 1.0

Table 10: Evaluation of faulty process identi�cation.

Platform Tardis Tianhe-2 Stampede
Scale 256 1024 1024
Metric ACf PRf ACf PRf ACf PRf

BT 99/99 1.0 50/50 1.0 20/20 1.0
CG 100/100 1.0 50/50 1.0 20/20 1.0
FT 97/98 0.99 50/50 1.0 — —
LU 98/98 1.0 49/49 1.0 20/20 1.0
MG 100/100 1.0 — — — —
SP 100/100 1.0 50/50 1.0 20/20 1.0

HPCG 100/100 1.0 — — — —
HPL 99/99 1.0 50/50 1.0 20/20 1.0

runs, on average the time saved is 35.5%. With increasing number of
tests, the average time saved will approach 50%. Because ParaStack
detects a hang soon a�er its occurrence, if hang is expected to
happen randomly during execution, the average time at which the
program is terminated is about half of the execution time.

VI. ParaStack vs. timeout. Unlike timeout method, ParaStack
can report hang according to the user speci�ed con�dence which
automatically adjust parameters like sampling interval, what de-
�nes a suspicion, how many times of suspicions con�rm a hang.
Our experimental results in Table 1 already demonstrated the draw-
backs of timeout-based mechanism. In contrast, ParaStack’s default
con�guration shows 100% accuracy and 0% false positive rate. Even
though we initialize I with a very small value that does not deliver
random sampling – say I = 10 in comparison to the default value
of I = 400, ParaStack’s e�ectiveness (P∗) still compares well with
the default (P ). �is is because ParaStack has capability of adapting
I automatically so as to ensure random sampling. In short, the key
advantage of ParaStack is that it reports hang based on runtime
history with high con�dence 1−α while traditional timeout method
is based upon guesses as shown in Table 1.

7.2 Faulty Process Identi�cation
We evaluate the the e�ectiveness of faulty process identi�cation
using two metrics: faulty process identi�cation accuracy (ACf ); and
faulty process identi�cation precision (PRf ). As the faulty process
identi�cation is only performed a�er a hang is detected, this eval-
uation is based on the same experiment as conducted in the hang
detection accuracy evaluation. Recall, Th denotes the total number

of times that the hang is detected correctly. Let the number of times
that the faulty process is found be Tf out of Th times, and let xi be
the number of processes reported as faulty ones in the i-th run. For
the i-th run, if the true faulty process is in this report, we say its
precision is 1/xi in this single run; otherwise, it is 0. �e 2 metrics
are de�ned as ACf = Tf /Th and PRf = 1

Th
∑Th
i=1

1
xi .

Table 10 gives results based on 100 erroneous runs at scale of
256 on Tardis, 50 erroneous runs at scale of 1024 on Tianhe-2, and
20 erroneous runs at scale 1024 on Stampede. In terms of accuracy,
ParaStack misses the faulty process once at scale 256. Because
this is a rare occurrence, we can handle it by printing debugging
information for further analysis. �e precision of faulty process
identi�cation for FT is approximately 99.0% as ParaStack misses
the faulty process once out of 98 runs. �e precision for all other
applications is 100%.

At scale 4096, ParaStack’s e�ectiveness based on 10 erroneous
runs for BT, CG, LU, and SP isACf = 1.0, and PRf = 100%; for HPL,
ACf = PRf = 0.9. At scale 8192, ParaStack’s e�ectiveness based
on 5 erroneous runs of HPL is ACf = 5/5, and PRf = 86.7% as in
one run ParaStack identi�es 3 processes as faulty which includes
the real faulty process while it precisely identi�es the real faulty
process the other 4 runs. At scale 16384, ParaStack’s e�ectiveness
based on 3 erroneous runs of HPL is ACf = 3/3, and PRf = 100%.

8 RELATEDWORK
Automatic bug detection for MPI programs. Many runtime ap-
proaches have been proposed to detect bugs. Umpire [38], Mar-
mot [25], and Intel Message Checker [18] can detect MPI errors
including deadlocks, resource errors, and type mismatches. Ap-
proaches for detecting deadlocks can be divided into three cat-
egories: timeout-based [17, 25, 32], communication dependency
analysis [20, 38], and formal veri�cation [37]. �ese tools either use
an imprecise timeout mechanism or precise but centralized tech-
nique that limits scalability. MUST [22, 23] claims to be a scalable
tool to detect MPI deadlock at large scale based on distributed wait
state tracking, but its overhead is still non-trivial considering it
checks MPI semantics across all processes. As deadlock is a special
case of hang, the advantage of ParaStack over these non-timeout
tools is that it is able to detect deadlock statistically at runtime with
negligible overhead; the advantage of non-timeout tools is they are
precise and potentially gives detailed insights to remove the errors.
Also, ParaStack is be�er than time-out methods as has already been
justi�ed. DMTracker [19] �nds errors resulting from anomaly in
data movement. FlowChecker [15] detects communication-related
bugs in MPI libraries. SyncChecker [16] detects synchronization
errors between MPI applications and libraries. MC-Checker [14]
detects memory consistency in MPI one-sided applications. In con-
trast, our tool detects errors producing the symptom of program
hang due to various reasons.

Problem diagnosis in MPI programs at large scale. Tech-
niques in [13, 26, 30] debug large-scale applications by deriving
their normal timing behavior and looking for deviations from it.
A few recent e�orts focus on hangs and performance slowdowns.
STAT [12] divides tasks (process/thread) into behavioral equiva-
lence classes using call stack traces. It is very useful for further
analysis once ParaStack identi�es a hang, especially when hangs
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are hard to reproduce. STAT-TO [11] extends STAT by providing
temporal ordering among processes that can be used to identify the
least-progressed processes; however, it requires expensive static
analysis that fails in the absence of loop-ordered-variables. Au-
tomaDed [27, 28] draws probabilistic inference on progress depen-
dency among processes to nominate the least-progressed task, but
it fails to handle loops. Prodometer [31] performs highly accurate
progress analysis in the presence of loops and can precisely pin-
point the faulty processes of a hang. Prodometer’s primary goal is
to diagnose cause of hangs by giving useful progress dependency in-
formation. In contrast, ParaStack’s main aim is to detect hangs with
high con�dence in production runs. �us Prodometer’s capabilities
are complementary to our tool.

9 CONCLUSION
By observing Scrout , ParaStack detects hangs with high accuracy,
in a timely manner, with negligible overhead and in a scalable
way. Based on the concept of runtime state, it sheds light on the
roadmap for further debugging. It does not require any complex
setup and supports mainstream job schedulers – Slurm and Torque.
Its compliance with MPI standard ensures its portability to various
hardware and so�ware environments.
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