
Extended Whole Program Paths
�

Sriraman Tallam Rajiv Gupta Xiangyu Zhang
The University of Arizona

Department of Computer Science
Tucson, Arizona 85721

Abstract

We describe the design, generation and compression of
the extended whole program path (eWPP) representation
that not only captures the control flow history of a program
execution but also its data dependence history. This rep-
resentation is motivated by the observation that typically
a significant fraction of data dependence history can be
recovered from the control flow trace. To capture the re-
mainder of the data dependence history we introduce dis-
ambiguation checks in the program whose control flow sig-
natures capture the results of the checks. The resulting ex-
tended control flow trace enables the recovery of otherwise
unrecoverable data dependences. The code for the checks is
designed to minimize the increase in the program execution
time and the extended control flow trace size when com-
pared to directly collecting control flow and dependence
traces. Our experiments show that compressed eWPPs are
only

���
of the size of combined compressed control flow

and dependence traces and their collection requires ���
�

more runtime overhead than overhead required for directly
collecting the control flow and dependence traces.

1 Introduction
Execution traces have been collected and analyzed for

wide range of applications such as developing new op-
timizations, developing new architectural techniques, and
producing reliable software through testing and debugging.
Two common types of traces that are useful in above appli-
cations are control flow and dependence traces.

Control flow trace Control flow trace captures the com-
plete path followed by a program during an execution. It is
represented as a sequence of basic block ids (or Ball-Larus
path ids [4]) visited during the program execution. These
traces can be analyzed to determine execution frequencies
of shorter program paths [12]. Thus, hot paths in the pro-
gram can be identified and this knowledge has been used

�
Supported by grants from Microsoft, IBM, Intel and NSF grants

CCR-0324969, CCR-0220262, CCR-0208756, CCR-0105535, and EIA-
0080123 to the Univ. of Arizona.

to perform path sensitive instruction scheduling and opti-
mization by compiler researchers [3, 5, 7, 18] and path pre-
diction and instruction fetching by architecture researchers
[8]. Larus demonstrated that complete control flow traces
of reasonably long program executions can be collected and
stored by developing the compressed representation called
the whole program path (WPP) [12].

Dependence trace Dependence, data and control, traces
have also been used. Compiler researchers have used
these profiles for performing data speculative optimizations
for itanium [14, 15] and computation of dynamic slices
[1, 9, 19]. The latter have been used for software debug-
ging [2, 10], testing [11] and providing security by compiler
researchers and architecture researchers have used slicing
to study the characteristics of performance degrading load
instructions [21], thread creation using slicing [13], and
studying instruction isomorphism [17]. The dependence
history can be collected as follows. The control dependence
trace can be recovered by analyzing the control flow trace.
Also, the register data dependences (i.e., flow of value from
a def to a use through a register) can be recovered using the
control flow trace. However, recovery of memory depen-
dences (i.e., flow of value through memory – flow from a
store to a load) requires detection of def-use information
during run-time [1]. This trace is very long because each
dependence must identify the statements and their execution
instances involved in the dependence. Essentially, since the
memory dependences are at the granularity of statements,
while control traces are at the granularity of basic blocks (or
Ball-Larus paths), dependence traces are longer than control
flow traces.

Let us first briefly see how control flow and data depen-
dence traces are explicitly represented. There are two kinds
of explicit representations: those that are more appropri-
ate to use when the traces are stored on disk, such as the
Sequitur [16] compressed control flow trace representation
called the whole program path [12]; and those that are used
when traces are held in memory for analysis such as the
timestamped representations of control flow trace [20] and
dependence trace [19]. In this paper, we develop an ap-

proach for producing a compact representation of the traces
stored on disk.

The combination of control flow and dependence traces
is useful for a wide range of applications. In fact, fre-
quencies of control flow edges/paths and data dependence
edges/chains can be determined from these traces. How-
ever, the size of traces can be quite large. Table 1 gives an
idea of the sizes of traces for sample runs. It gives the sizes
of the control flow and dependence traces and factors by
which they can be compressed. As we can see, the length of
the dependence trace is significantly longer than the length
of the control flow trace. Moreover, as shown, the com-
pressibility of dependence trace using both Sequitur [16]
and VPC [6] is quite inferior to that of control flow trace.
Thus, even if the dependence traces are compressed before
being stored on disk, they can be quite long.

Table 1. Trace sizes and compressibility.
Program Uncomp. (MB) Comp. Factor

Sequitur VPC
Cont. Dep. Cont. Dep. Cont. Dep.

256.bzip2 154 540 57 1.37 61 5.3
186.crafty 184 604 77 1.53 25 5.7
252.eon 115 612 767 1.24 610 8.3
254.gap 72 528 362 1.51 179 7.2
164.gzip 197 408 90 1.18 116 4.5
181.mcf 291 687 1265 1.18 3417 6.2
197.parser 226 642 161 1.49 221 6.1
253.perlbmk 185 537 1542 1.2 49 4.8
300.twolf 177 513 59 1.25 29 4.6
255.vortex 182 618 3033 1.26 113 6.2
175.vpr 186 525 78 1.2 38 4.8

Average 179 565 681 1.31 442 5.8

In this paper we develop algorithms for generating an
extended control flow trace that not only captures the dy-
namic control flow history but also the dynamic data depen-
dence history. The memory dependences are not captured
by an explicit representation of data dependences. Rather,
memory dependences are embedded implicitly in the con-
trol flow trace. This representation of dynamic memory de-
pendences is motivated by the observation that all dynamic
register dependences can be recovered from the control
flow trace. To capture the remainder of the dynamic data
dependences, i.e. memory dependences, we present pro-
gram transformations that introduce disambiguation checks
whose control flow signatures capture the results of these
checks. The resulting extended control flow trace produced
enables the recovery of otherwise irrecoverable memory de-
pendences. Thus, our approach replaces the combination of
a control flow trace and dependence trace with a single ex-
tended control flow trace which is compressed to produce
the extended whole program path (eWPP) representation.
The extended control flow trace is smaller and more com-
pressible than the combination of original control flow trace
and the dependence trace. The enabling program transfor-
mations are carefully designed to enable the recovery of dy-

namic memory dependences at a small incremental cost in
terms of program execution time increase and increase in
control flow trace size.

Our experiments show that on an average the sizes of
compressed eWPPs are only 4% of the sizes of combined
compressed WPP and dependence traces. The uncom-
pressed extended control flow trace is 38% smaller and can
be captured with 20% more runtime overhead than the com-
bined uncompressed control flow and dependence trace.

The remainder of the paper is organized as follows. Sec-
tion 2 describes our new extended trace and the program
transformations needed to generate this trace. Section 3
presents algorithms for recovering dynamic memory de-
pendences from the extended control flow trace. Section
4 describes some important optimizations while Section 5
presents the experimental results. We conclude in section 6.

2 Extended Whole Program Paths
As the data presented in Table 1 shows, control flow

traces are shorter in length than dependence traces. This
is because control flow traces consist of a sequence of exe-
cuted basic blocks (or paths) while dependence traces con-
sist of def-use information, the dynamic memory depen-
dences. Each execution of a basic block or path may involve
several memory references. Moreover, Sequitur based com-
pression techniques are very effective for control flow traces
[12] but significantly less so for dependence traces. While
compression based on value predictors, VPC [6], provides a
greater degree of compression than Sequitur for dependence
traces, this benefit comes at a price. Traces compressed us-
ing VPC have to be decompressed before they can be ana-
lyzed unlike Sequitur which produces the compressed trace
in form of a grammar that can be readily analyzed. For in-
stance [12] shows how to traverse the compressed control-
flow trace to find hot-subpaths.

The above observation motivated us to search for an al-
ternative to the dependence trace. Note that the dependence
trace is needed because when used in conjunction with the
control flow trace it enables the recovery of all dynamic
memory dependences. The focus of this section is on de-
signing an extended control flow trace from which we can
extract dynamically exercised memory dependences. To
enable recovery of dynamic memory dependences the ex-
tended trace should include additional information. In de-
signing this extended trace we have the following goals:

� The additional information contained in the extended
trace should be in form of control flow so that the exist-
ing compression algorithm by Larus [12] can be used
to compress the extended trace.

� The incremental cost of generating additional informa-
tion should be minimized both in terms of the increase
in the size of the trace and the increase in the program
execution time due to the generation of the trace.

First let us consider the additional information that is
needed to recover the memory dependences from the con-
trol trace. Consider a path from

�������
to �	� � that passes

through
������

as shown in Figure 1. Let us assume that
memory dependences

����
���������� ��� ��� and
��
�
�������
�� �	� ��� are

potential memory dependences, due to the aliasing, that
may or may not be manifested during a particular execu-
tion of the path. While the control flow trace will capture
each execution of the path, additional information on the
addresses referenced by the

����� �
,
�����

, and �	� � are needed
to identify the dynamic memory dependences. Thus, imme-
diately preceding the �	� � , dynamic disambiguation checks
are introduced:

��� ������� � �
compares the addresses refer-

enced by
����� �

and ��� � while
��� ������� �
 compares the ad-

dresses referenced by
�����

and ��� � . As we will see later,
the control flow signature of the disambiguation checks cap-
tures the result of the comparison (true or false). Thus, the
extended control flow trace (i.e., the original control flow
trace augmented with the control flow signatures of the dis-
ambiguation checks) contains all the information needed to
identify the dynamic memory dependences.

use

def2 e1

e
2

e
2

e1

2

def

use

def
1e

disamb

def

disamb

1 1

2
e

Figure 1. Dynamic disambiguation.

To minimize the cost of the disambiguation checks, we
do the following. We first identify all the potential mem-
ory dependences for each use using static analysis. We then
classify each memory dependence into one of three cate-
gories: no-cost, fixed-cost, and variable-cost dependence.
As the names suggest, the three categories differ in the cost
needed for the disambiguation checks. Our program trans-
formations to enable this classification and the collection of
the memory dependence history are described next.

2.1 No-Cost Capture

While, in general, we need to introduce disambiguation
checks to capture dynamic memory dependences; however,
for a subset of dependences, disambiguation checks are not
needed as the outcomes of these checks can be determined
directly from the control-flow trace.

Definition 1. (Fully-free dependence) A def-use memory
dependence is a fully-free dependence iff under every

execution of the program all occurrences of the de-
pendence can be recovered from the program’s control
flow trace.

Figure 2 illustrates this situation. The two definitions and
one use in this example always refer to the same variable,
i.e. � . Moreover, for path 1.3.4, we are guaranteed that
dependence edge

���
is exercised and for all other paths that

arrive at 4 via 2, dependence edge
��

is exercised. Thus, the
control flow trace is sufficient to identify these dependences
when exercised.

Definition 2. (Partially-free dependence) A def-use mem-
ory dependence is a partially-free dependence iff, in
general, only some occurrences of the dependence can
be recovered from the program’s control flow trace.

Figure 3 illustrates this situation. The definition in node �
assigns a value through a pointer. Let use assume that a
points-to analysis indicates that the pointer � may point to
variable � or not. For path 1.3.4, we are guaranteed that
dependence edge

� �
is exercised. However, for all other

paths that arrive at 4 via 2, the dependence edge
� �

may
or may not be exercised. Thus, the control flow trace only
captures partial information for dependence edge

� �
, i.e.,

when exercised through 1.3.4.
The presence of free dependences can be recognized at

compile time as follows. First, given a
�����

that reaches a
�	� � , the

�����
and �	� � must always refer to the same variable

(say �). Next, if every path from the
�����

to the �	� � is ei-
ther definition-clear w.r.t � or if the

�����
is definitely killed

along the path, then the dependence

������ � �	� ��� is fully-free.

If the preceding condition is only true for a subset of paths
from

�����
to ��� � (i.e., along at least one of the paths, a defi-

nition of a may-alias of � is encountered), then this depen-
dence

������ � ��� ��� is partially-free.

2.2 Fixed-Cost Capture
Free capture is only possible when the

�����
and the �	� �

are guaranteed to refer to the same address. If the
�����

and
�	� � may, but not necessarily, refer to the same address, the
disambiguation check must be performed at run-time. If the�����

always refers to the same variable (say �), while the
�	� � may or may not refer to � , we can introduce a fixed
cost disambiguation check to enable detection of instances
of this dependence. By a fixed cost check, we mean that
every execution of the �	� � will require a constant amount
of additional work to perform the disambiguation check for
the

�����
and �	� � which is a comparison of the address of �

with the address read by the ��� � .
Definition 3. (Last-instance dependence) A def-use mem-

ory dependence is a last-instance dependence iff every
occurrence of this dependence is caused by the latest
execution of the definition statement prior to the exe-
cution of the use statement.

e
2

e1

+

1

X =
2

X =

3

.... = X
4

(def(X:2),use(X:4))

(def(X:1),use(X:4)) 1.3.4

 1.2.4

Figure 2. Fully-free.

e1

e2

or

X =
1

3
*P =

2

.... = X
4

(def(X:1),use(X:4))

(def(X:2),use(X:4))

(def(X:1),use(X:4)) 1.3.4

+ 1.2.4

Figure 3. Partially free.

use

if addr(def)==addr(use)

disamb e

ec T

ec

T F

def

e

disamb e

Figure 4. Fixed-cost check.

The reason why we can capture some dependences at a fixed
cost is because they are last-instance dependences. If the�����

always refers to the same variable and if the
�����

is
executed multiple times prior to executing the �	� � , only the
last execution of the

�����
is relevant to the executed �	� � as

the
�����

assigns to the memory address every time and hence
is a last-instance dependence.

A fixed-cost disambiguation check for dependence edge�
, denoted as

��� ������� � , has the form shown in Figure 4.
The control flow signature of

��� ����� � � is

 ����� ���� �

if the
check finds an address match; otherwise it is

 ��� �
. The

key point to note is that the result of the disambiguation
check is captured by its control flow signature and is incor-
porated in the extended control flow trace. There is no need
to explicitly save the

�����
information for this �	� � , i.e. the

dependence trace need not be collected.
The example in Figure 5 illustrates a situation in which

fixed-cost checks are needed to capture the three memory
dependences corresponding the use in node 5. In this exam-
ple we assume that it is known that pointer � is not assigned
in the code fragment shown. Thus the

�����
in node 1 and the

�	� � in node 5 always refer to the same address. Assuming
that � may or may not point to � / � , disambiguation checks
are needed to compare the addresses of � / � with � � .

It should be noted that in the transformed program, each
execution path from 1 to 5 uniquely identifies the exercised
memory dependence edge. For example, consider the path
1.2.4.4.6.7.8.5. The disambiguation check signatures (6.7)
and (8) indicate that � points to � not � . The control flow
1.2 indicates that

�����
in node 2 is the latest definition of

� before arriving at 5. Thus, we conclude that memory
dependence edge

��

is exercised along this path. Similarly,

determinations can be made for all other paths.

2.3 Variable-Cost Capture

In case of free-dependences both
�����

and ��� � were guar-
anteed to always refer to same address while in the case of
fixed-cost dependences the

�����
was always guaranteed to

refer to the same address while the addresses referred to by
the ��� � could vary. Now, we consider the final case where
both the

�����
and �	� � can refer to varying addresses.

This final situation is illustrated by the example in Fig-
ure 6. When the execution proceeds along path � � �
	 � � , the
value of � assigned through � � in node 2 reaches the use
of � in node

�
. While the statements in node � may be

executed several times, only the first execution of the defi-
nition assigns a value to � via � � . Thus, the dependence
between the definition of � � in node � and the use of � in
node

�
, denoted as

 � ��� � � �
� � � , is not a last-instance de-
pendence. In fact, by changing the assignment to ����� �
in node � , we can create situations where the dependence
exists between any-instance of � ��� � and ��� � .

Definition 4. (Any-instance dependence) A def-use mem-
ory dependence is an any-instance dependence if an
occurrence of a dependence can be caused by any one
of the executions of the definition statement prior to
the execution of the use statement.

To capture any-instance dependences we need to do two
things. First, all the addresses assigned to by the multiple
executions of the definition must be saved in a buffer. Sec-
ond, at the use a variable-cost check shown in Figure 7 must
be inserted. This check compares the use address with the
definition addresses saved in the buffer one at a time start-
ing from the latest address. The checks continued to be per-
formed till a match is found or no more addresses remain in
the buffer. The complete cost of this check is a variable as it
can vary from a minimum of one check to as many checks
as the number of addresses in the buffer. The size of the
buffer also continues to grow as the program executes. The
example of Figure 6 once transformed using the variable-
cost disambiguation results in the code shown in Figure 8.

3 Recovery Algorithms
In this section, we discuss the following. We first dis-

cuss how the memory dependences are recovered from the

e1

e2

e3

*P =
1

X =
3

Y =

5

4

.... = *P

2

e2disamb

e2
C

T

e3

e2

e1

e2
C

e3

T

disamb

C
3

5

3

*P =
1

X =2

4
Y =

.... = *P

FT

e8

9

7

6

e3
C

T

F

Figure 5. Fixed-cost disambiguation.

e1

e2

4

X =
P=&X

1

*P =
P++

2 3

.... = X

Figure 6. Any-instance dependence.

ec

ec T

T

def
save while more & no match do

if addr(def)==addr(use)

match=Tdisamb e

use

F
F

T

disamb e

e

Figure 7. Variable-cost check.

1e

2edisamb

2eC

2e

2eC
T

6

1

2

X =

3

7

4

F

5

P=&X

P++

T

T

F

.... = X

*P =

Figure 8. Variable-cost disambiguation.

control flow and dependence traces and then expressed as
annotations on the static program representation. We then
discuss how to recover the memory dependences from the
extended control flow trace and annotate the static program
representation.

....=Y

Read Y

Read X

2

3

*p =

....=Y

....=X

6

7

....=X

X=....

8

9

1

54

......

......

......

....=X

X=....

......

Execution Trace��� ��� ���
1 1 �	�
�
2 2 �	�
�
3 3 �	�
�
4 5 �	�
�
5 6 Y(1,1), X(1,1)
6 8 X(6,1)
7 2 �	�
�
8 7 Y(1,1), X(6,1)
9 8 X(7,1)

10 2 �	�
�
11 3 �	�
�
12 4 p = &X
13 6 Y(1,1), X(4,1)
14 8 X(6,2)
15 9 �	�
�

Figure 9. Control flow & dependence trace.
Consider the execution traces in Figure 9. The control

flow trace
���

consists of the sequence of basic block ids
executed and the data dependence trace
�
 gives the state-
ment number (basic block - id in this example since no basic
block has two stores to the same address) and the instance
of the definition at every use. Note that when ��� is encoun-
tered, we assume that it corresponds to the contents of the
address of � . For example, the definition corresponding
to the use at ��� � � � comes from the second execution in-
stance of basic block � , that is from the definition of � at
�
� � ��� . Given a use of a value stored at an address at
some execution point, the corresponding def, the program
statement and the instance can be directly obtained from
the dependence trace. Now lets consider how the dynamic
control flow and dependences can be annotated on the static

program representation. First executions of basic block are
assigned timestamps in the order of their execution. The
column � � of Figure 9 gives the timestamp values for the
sample execution. Using these timestamps, the control flow
trace can be annotated on the static control flow graph repre-
sentation by labeling each basic block with the sequence of
timestamps at which it was executed (see in Figure 10, the
time stamps prefixed ’B’). A dynamic dependence (data or
control) is annotated by labeling a static dependence edge
with a sequence of timestamp pairs such that the pair of
timestamps identify the execution instances of the state-
ments that were involved in the dynamic dependence. Fig-
ure 10 shows the labels that identify the dynamic memory
dependences next to each dependence edge. We now de-
scribe the process of recovering the memory dependences
and annotating the static program representation from the
extended control flow trace.

6

54

2

9

8

.....

......

....=Y

X=....

....=X

B[15]

(8,8)

B[8]
B[4]

....=X

......

......

Read Y
Read X

(8,1)

B[12]

....=Y

....=X
X=....

(9,8)

(5,1)

B[1]

B[5,13]

(5,1)(13,1)

*P =
7

B[2,7,10]

1

3B[3,11]

(13,12)

(6,5)(14,13) B[6,9,14]

Figure 10. Annotated trace representation.

Given the extended control flow trace, to recover the def-
inition corresponding to a given execution of a use, we need
to put together two types of information contained the trace:
the control flow signatures of disambiguation checks that
immediately precede a use; and the control flow informa-
tion that identifies and orders the reaching definitions exe-
cuted prior to reaching the use. The control flow signatures
of disambiguation checks identify the definitions and their
instances that could have produced the value referenced at
the use. The control flow information identifies the order in
which these potential definitions were executed and hence it
enables us to identify the latest definition which is actually
the one that is involved in the dependence.

Consider the example shown in Figure 11. The control
flow trace shows that prior to reaching the use in 5,

�������
is executed 3 times and

������

is executed once. The con-

trol flow signature produced preceding 5 indicates that the
value produced could have been produced either by

�����

in 3 due to appearance of signature

 � ��� � ���� � �

or by the
second execution of

����� �
in 2 as indicated by signature
 � �

�
� ����

�
� �

. However, when we examine the preceding
control flow trace we find that second execution of

����� �
in 2 follows the execution of

������

in 3. Thus, we con-

clude that memory dependence edge
�	�

was exercised un-
der this execution. Thus, we see that the extended control
flow trace contains sufficient information to establish the
dynamic memory dependences precisely.

e
1

e
2

1

3

5

4

1 2

variable−cost

def 2 def

fixed−cost

use

Control flow and addresses referenced:
1.2(X).4.1.3(Y).4.1.2(Y).4.1.2(Z).4.5(Y)

Control flow signature of disambiguation checks before 5:
 � �
�
�
 � ��� ������ �
 � �

�
����

�
�
 � �

�
�

Figure 11. Recovery example.

4 Optimizing Instrumentation
In this section we present a series of optimizations aimed

at tuning the insertion and execution of instrumentation
code so that the size of instrumentation code, the space and
time cost of executing it, and the compressibility of result-
ing trace are improved.

4.1 Instrumentation Code Size
So far, in our discussion, we have assumed that all po-

tential memory dependences are identified, classified, and
the program is instrumented according to the classification.
However, in practice, due to the conservative nature of static
analysis too many spurious memory dependence edges may
be present causing the cost of instrumentation to become
very high. The unnecessary instrumentation will not only
incur execution time overhead but will also increase the
length of the extended control flow trace and the cost of
recovering memory dependences.

To solve the above problem we use two phase profiling
consisting of the filtering phase and the collection phase.
In the filtering phase the program is instrumented to iden-
tify all memory dependence edges that are exercised at least
once during execution and in addition based upon their be-
havior we classify the dependences as no-cost, fixed-cost,
or variable-cost. Now that all actually encountered mem-
ory dependences have been identified, the program is instru-
mented only with the disambiguation checks that are needed

to capture these dependences. The instrumented program is
then run to collect the extended whole program path. Instru-
mentation needed for the filtering phase is similar to one
used in [1] for his second approximate slicing algorithm
– mapping between addresses and statements that defined
it last is maintained to detect all exercised memory depen-
dence edges.

4.2 Trace Length & Compressibility
Each time a load is encountered, the disambiguation

codes for all the corresponding stores (sources of the de-
pendence) are executed. Therefore the corresponding trace
produced can be long in length. A simple optimization can
ensure that we simply execute the disambiguation code for
a single store. We can track the last store for each address at
runtime and use it to quickly identify the source of the de-
pendence. The instrumentation code for only this source is
then executed – the purpose of the trace produced is then to
simply identify the precise instance of the defining store that
corresponds to this store. This optimization is shown in Fig-
ure 12. Note that not only the length of the trace produced is
reduced, but also the cost of executing the instrumentation
code.

disamb 1

disamb 2

disamb n

use

disamb 1 disamb 2 disamb n

source

use

Figure 12. Optimizing Trace Length.

disamb 1

src a?

disamb 2 disamb n

use a

src b?

disamb 1 disamb 2 disamb m

use b

src a?

use a

src b?

use b

disamb 1

source

disamb 2 disamb max(m,n)

use

Figure 13. Optimizing Trace Compressibility.

Next we consider another optimization that is aimed at
sharing the instrumentation code across different uses (i.e.,
loads). This optimization not only reduces the overall size
of the instrumentation code that is inserted but also in-
creases the compressibility of the trace produced by this

instrumentation code. We create a single copy of the in-
strumentation code as shown below. For each load its cor-
responding stores are numbered from � to � (

� � ��� �).
At each load, the source of the dependence is determined
and call is made to the shared instrumentation providing the
source id (� � � � � �) and a pointer to its correspond-
ing buffer. The instrumentation code is then executed pro-
ducing traces such that traces for different loads now look
similar thus enabling greater degree of compression. The
control flow trace produced still uniquely identifies the dy-
namic memory dependences. By finding the source of the
call to the instrumentation code from the control flow trace
we can determine which load execution is being processed,
by examining the control flow trace produced by the instru-
mentation code itself we know the source of the dependence
(� to �) and the specific execution instance of the source
that is involved. The compressibility improves because each
disambiguation involves executing a common piece of code
and hence these basic blocks repeat in the extended control
flow trace. Sequitur is then able to effectively capture these
repetitions and compress them.

4.3 Reducing the Number of Checks

For the variable-cost transformation, the number of
checks could be as high as the number of addresses stored
in the buffer. This cost could significantly increase the run-
time overhead. We greatly reduce this cost using the fol-
lowing optimization. Instead of using a linear search, we
adapt our buffer to allow binary search by saving along
with the address the global timestamp at which the address
was written to by the store instruction. At runtime, we also
track the global timestamp of the last write to each address.
Now, at runtime, when a load is encountered, we lookup
the timestamp of the latest write to the address being refer-
enced by the load. We search for this address in the buffer
using the last write timestamp. Since the timestamps in
the buffer appear in ascending order, we can employ binary
search to find the relevant timestamp and hence determine
the distance. Enabling linear search to be replaced by bi-
nary search greatly reduces the number of checks required.
For instance, if � billion instructions are executed, the num-
ber of checks for each load cannot exceed ��� (� billion) = � � .
For the benchmark runs we considered, on an average, we
only needed 10 checks for every dynamic dependence exer-
cised. The recovery algorithm can also be easily adapted to
disambiguate using binary search rather than linear search.

Figure 14 illustrates the above approach. It shows a snap-
shot of a sample buffer. Let us say that a load corresponding
to address ��� ����	 is encountered. The last write information
for the address will tell us that the timestamp at which the
last write to this address was performed is 1024. Now we
can search shown for 1024 using binary search as the times-
tamps appear in ascending order. Once the proper entry in
the buffer is found, the distance can be determined.

0x123

9998

binary search timestamp = 1024

Expanding buffer

1024

0x6780x899

156

0x123

12

address:

timestamp:

Figure 14. Reducing the number of checks.

4.4 Number of Buffer Entries

For the variable-cost transformation the buffer used to
save the addresses associated with a definition grows as the
definition is repeatedly executed. We address this problem
as follows. For every store instruction, we preallocate a
buffer of size 200K entries. In addition, we put a check to
detect if the buffer size is exceeded. If more buffer space is
needed, we allocate a large buffer and copy into it the past
history from the old buffer. We found that the number of
times copying was required is extremely small. On an aver-
age, for all the benchmarks we considered, the total amount
of buffer space needed was around 500 MB.

5 Experimental Results

We have implemented our algorithms using the Phoenix
Compiler Framework developed by Microsoft. The instru-
mentation code was inserted by using Phoenix to rewrite the
binaries of the benchmark programs. This was very conve-
nient to implement in Phoenix. The Intermediate represen-
tation with which we worked was the low-level x86 instruc-
tion set. This allowed us to clearly distinguish between reg-
ister dependences and memory dependences. Notice that
the register dependences can always be detected directly
from the control flow trace. Hence, the instrumentation was
performed to capture memory dependences. This is impor-
tant for carrying out a realistic evaluation as for the pro-
gram runs used in our experiments, on an average, 76.4%
of all dependences were register dependences for program
runs that execute in hundreds of millions of instructions (see
Table 2). The SPEC 2000 benchmarks were used to carry
out the experiments (we had to exclude 176.gcc because the
current version of Phoenix had problems with this bench-
mark). Two instrumented versions of each binary was cre-
ated apart from the original. The first version was to capture
control flow traces and memory dependence traces. The
second version was to capture extended control flow traces.
Being able to produce the instrumented binaries of each of
these using Phoenix allowed us to accurately measure the
overheads involved in collecting these traces. Based upon
this implementation we carried out an experimental evalua-
tion whose results are described next.

Table 2. Register vs. Memory dependences.
Program Instructions Register Memory

(millions) (%) (%)

256.bzip2 402 78 % 22 %
186.crafty 459 79.7 % 20.3 %
252.eon 378 72 % 28 %
254.gap 425 82.9 % 17.1 %
164.gzip 423 83.8 % 16.2 %
181.mcf 429 71 % 29 %
197.parser 415 74.2 % 25.8 %
253.perlbmk 354 72.2 % 27.8 %
300.twolf 405 79.2 % 20.8 %
255.vortex 418 69.4 % 30.6 %
175.vpr 407 77.5 % 22.5 %

Average 410 76.4 % 23.6 %

5.1 Trace Sizes
We first consider the various trace sizes. In Table 3, the

sizes of uncompressed control flow (
���

), data dependence
(

), extended control flow (

� ���
) traces are given. The

corresponding compressed trace sizes, i.e. � � � , �
�
 ,
and

� � � � respectively, are also given. As we can see,
on an average, the

� ���
is smaller than

�����
�
 by
38% while

� � � � is smaller than � � � � �

 by 96%
with Sequitur and 79% with VPC. In other words, whether
we use uncompressed traces or compressed traces, our ex-
tended control flow trace is superior to combined control
flow and dependence trace.

Table 4. Reason for reduced
� � � � size.

Program Sequitur VPC
Smaller Comp. of Smaller Comp. of����� (%) �	��� (%) ����� (%) �	��� (%)

256.bzip2 59.8 % 40.2 % 47.3 % 52.7 %
186.crafty 51 % 49 % 51.5 % 48.5 %
252.eon 43.4 % 56.6 % 43.2 % 56.8 %
254.gap 31.6 % 68.4 % 32 % 68 %
164.gzip 53.6 % 46.4 % 52.7 % 47.3 %
181.mcf 25.3 % 74.7 % 25 % 75 %
197.parser 30.5 % 69.5 % 30.6 % 69.4 %
253.perlbmk 35.5 % 64.5 % 36.4 % 63.6 %
300.twolf 41.5 % 58.5 % 42 % 58 %
255.vortex 37.7 % 62.3 % 38.1 % 61.9 %
175.vpr 57 % 43 % 57.3 % 42.7 %

Average 42.4 % 57.6 % 41.5 % 58.5 %

From the data in Table 3 we can see that reduced size
of

� � � � is due to two reasons. First the size of
� ���

is
smaller than the size of

���
�

 . This is because the de-
pendence trace must store at every load, the instruction and
its instance that produced the definition. For long traces, the
number of bits needed to store this information can be very
high. Table 4 shows the % by which

� ���
accounts for

in reducing the size of
�����
�
 and the % by which the

compression of
� ���

accounts for in getting the final trace
size to that of

� � � � . This translates into 42.4% smaller

Table 3. Compressed trace sizes.
Program Uncompressed Compressed (Sequitur) Compressed (VPC)

CF+DD eCF eCF/ WPP+cDD eWPP eWPP/ WPP+cDD eWPP eWPP/
(MB) (MB) CF+DD (MB) (MB) WPP+cDD (MB) (MB) WPP+cDD

256.bzip2 154 + 540 = 694 380 0.43 2.7 + 394 = 397 46.8 0.12 2.5 + 136 = 139 30.3 0.22
186.crafty 184 + 604 = 788 392 0.49 2.4 + 395 = 397 11.6 0.03 7.2 + 106 = 113 18.6 0.16
252.eon 115 + 612 = 727 414 0.57 0.15 + 494 = 494 6 0.01 0.19 + 74 = 74 2.1 0.03
254.gap 72 + 528 = 600 411 0.69 0.2 + 350 = 350 2.2 0.006 0.4 + 73 = 74 9.3 0.13
164.gzip 197 + 408 = 587 288 0.49 2.2 + 346 = 348 28.6 0.08 1.7 + 90= 92 19.4 0.21
181.mcf 291 + 687 = 978 735 0.75 0.23 + 573 = 573 16.7 0.03 0.09 + 110 = 110 7.7 0.07
197.parser 226 + 642 = 868 609 0.70 1.4 + 431 = 432 21 0.05 1 + 105 = 106 20.9 0.20
253.perlbmk 185 + 527 = 722 466 0.65 0.12 + 448 = 448 1.5 0.003 3.8 + 110 = 114 18.4 0.16
300.twolf 177 + 513 = 690 417 0.60 3 + 410 = 413 32 0.08 6.1 + 112 = 118 39.4 0.33
255.vortex 182 + 618 = 800 500 0.63 .06 + 490 = 490 4.5 0.01 1.6 + 100 = 101 12.2 0.12
175.vpr 186 + 525 = 711 318 0.45 2.4 + 438 = 440 17.4 0.04 4.9 + 110 = 115 24.8 0.22

Average 179 + 565 = 727 448 0.62 1.4 + 434 = 435 17.1 0.04 2.7 + 83 = 86 18.5 0.21

� ���
’s for Sequitur as indicated by column labeled Smaller� ���
. Second reason for compacted

� � � � is the effective
compression of

� ���
by Sequitur and VPC. On an average

this accounts for 57.6% reduction in trace size as indicated
by column Compression of

� ���
. As we can see, both of

these effects are important in achieving smaller
� � � � s.

We also studied the distribution of three types of dy-
namic memory dependences: no-cost, fixed-cost, and
varying-cost. The resulting data is given in Table 5. From
this data we can see that on an average 65.7% of the de-
pendences are hard dependences, i.e. varying-cost depen-
dences. However, the number of no-cost memory depen-
dences is also significant (average of 30.4%) which con-
tributes directly towards reducing the size of

� ���
.

Table 5. Distribution of memory dep. types.
Program No-Cost Fixed Varying

(%) (%) (%)

256.bzip2 40.8 % 3.1 % 56.1 %
186.crafty 48.5 % 0 % 51.5 %
252.eon 18.8 % 16.7 % 64.5 %
254.gap 3.4 % 0.6 % 96.0 %
164.gzip 72 % 0.1 % 27.9 %
181.mcf 6.9 % 3.5 % 89.6 %
197.parser 9.8 % 5.6 % 84.6 %
253.perlbmk 21.3 % 0.7 % 78 %
300.twolf 29.4 % 8.2 % 63.4 %
255.vortex 22.3 % 1.5 % 76.2 %
175.vpr 60.9 % 3 % 36.1 %

Average 30.4 % 3.9 % 65.7 %

5.2 Runtime Overhead
The execution time cost of the disambiguation checks

is mainly due to the address comparisons performed. In
particular, the greater the number of such comparisons, the
greater its cost. In Table 6 the average number of compar-
isons performed per dynamic data dependence are given in
column

��� � �������
 � � . These results were obtained as a re-
sult of applying number of optimizations described in Sec-
tion 4. However, the one significant contributing factor is

using binary search instead of linear search. If we had not
performed these optimizations then the number of checks
needed at run-time would have gone up by a significant
amount, as shown in the column � ��� � �������
 � � � making
collection of these traces impractical.

Table 6. Address Comparisons.
Program UChecks/ Checks/ Min Max

Dep. Dep.

256.bzip2 164814 11 1 24
186.crafty 18004 5 1 21
252.eon 35738 9 1 22
254.gap 661199 12 1 23
164.gzip 80493 8 1 22
181.mcf 194896 4 1 22
197.parser 107898 12 1 22
253.perlbmk 33341 8 1 23
300.twolf 170999 18 1 22
255.vortex 158386 10 1 23
175.vpr 26126 9 1 22

Average 150172 10 1 22

Table 7 shows the run-time overhead needed to collect
these traces. The running time of the 3 versions of each
program, that is, the original version, instrumented version
for collecting control flow and dependence traces (� ���),
and the instrumented version for collecting extended traces
(�
) is shown. For ��	 , the time spent in the filtering phase
alone is shown as

� � . Also, for versions � ��� and ��	 ,
the time spent on processing (CPU) and IO are separately
shown. Although the CPU time spent in � 	 is higher than
� ��� , coming from the checks needed per dependence, the
IO time is much less, extended traces are smaller than de-
pendence traces. On an average, there is a 20% increase
in runtime overhead when collecting extended control flow
traces when compared to collecting control flow and depen-
dence traces.
6 Conclusion

In this paper we presented a unified trace representation
that enables the capture of complete control flow and data

Table 7. Run-time Overhead in seconds.

Program Original CF + DD (�����) eCF (���)
CPU CPU + IO FP + CPU + IO

256.bzip2 5 102 + 502 = 604 171 + 120 + 387 = 678
186.crafty 5 80 + 578 = 658 400 + 91 + 446 = 937
252.eon 3 82 + 654 = 736 214 + 107 + 513 = 834
254.gap 3 152 + 488 = 640 303 + 168 + 399 = 870
164.gzip 5 67 + 407 = 474 124 + 82 + 332 = 538
181.mcf 7 101 + 496 = 597 194 + 114 + 403 = 711

197.parser 7 66 + 454 = 520 138 + 85 + 381 = 604
253.perlbmk 5 68 + 664 = 732 380 + 90 + 544 = 1014

300.twolf 6 67 + 552 = 619 120 + 86 + 441 = 647
255.vortex 4 121 + 638 = 759 308 + 141 + 520 = 969

175.vpr 7 82 + 550 = 632 100 + 102 + 374 = 576

Average 5 90 + 544 = 634 223 + 108 + 431 = 762

dependence histories. The key problem that we solved in
designing this unified trace is our ability to effectively con-
vert dynamic memory data dependences between stores and
loads into equivalent control flow trace information. The
unified trace produced is smaller than the alternative, i.e.
combination of control flow and dependence traces. We
also presented algorithms for traversing our extended trace
to recover data dependences or chains of data dependences.
Such information is useful in carrying out variety of code
optimizations as well as other software engineering appli-
cations such as dynamic program slicing.
Acknowledgements: We would like to especially thank
Hoi Vo of Microsoft Corp. for his support in both obtaining
and using the Phoenix Research Development Kit (RDK).
We also want to acknowledge the support provided by the
entire Phoenix Compiler Infrastructure group at Microsoft
in adapting our algorithms to work with Phoenix.

References

[1] H. Agrawal and J. Horgan, “Dynamic Program Slicing,” ACM
SIGPLAN Conference on Programming Language Design and
Implementation, pages 246-256, 1990.

[2] H. Agrawal, R. DeMillo, and E. Spafford, “Debugging with
Dynamic Slicing and Backtracking,” Software Practice and Ex-
perience, 23(6):589-616, 1993.

[3] G. Ammons and J.R. Larus, “Improving Data Flow Analysis
with Path Profiles,” ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), pages 72-
84, Montreal, Canada, 1998.

[4] T. Ball and J.R. Larus, “Efficient Path Profiling,” IEEE/ACM
International Symposium on Microarchitecture, 1996.

[5] R. Bodik, R. Gupta and M.L. Soffa, “Complete Removal of
Redundant Expressions,” ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages 1-14,
Montreal, Canada, June 1998.

[6] M. Burtscher, “VPC3: A Fast and Effective Trace-
Compression Algorithm,” Joint International Conference on
Measurement and Modeling of Computer Systems (SIGMET-
RICS), pages 167-176, June 2004.

[7] R. Gupta, D. Berson, and J.Z. Fang, “Path Profile Guided Par-
tial Redundancy Elimination Using Speculation,” IEEE Inter-
national Conference on Computer Languages, pages 230-239,
Chicago, Illinois, May 1998.

[8] Q. Jacobson, E. Rotenberg, and J.E. Smith, “Path-Based Next
Trace Prediction,” The 30th IEEE/ACM International Sympo-
sium on Microarchitecture, December 1997.

[9] B. Korel and J. Laski, “Dynamic Program Slicing,” Informa-
tion Processing Letters, 29(3):155-163, 1988.

[10] B. Korel and J. Rilling, “Application of Dynamic Slicing in
Program Debugging,” AADEBUG, pages 43-58, 1997.

[11] M. Kamkar, “Interprocedural Dynamic Slicing with Applica-
tions to Debugging and Testing,” PhD Thesis, Linkoping Uni-
versity, 1993.

[12] J.R. Larus, “Whole Program Paths,” ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation,
pages 259-269, Atlanta, GA, May 1999.

[13] S-W. Liao, P.H. Wang, H. Wang, J.P. Shen, G. Hoflehner,
and D.M. Lavery, “Post-Pass Binary Adaptation for Software-
Based Speculative Precomputation,” ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation,
pages 117-128, 2002.

[14] J. Lin, T. Chen, W-C. Hsu, P-C. Yew, R.D-C. Ju, T-F. Ngai,
S. Chan, “A Compiler Framework for Speculative Analysis and
Optimizations,” ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 289-299, 2003.

[15] J. Lin, W-C. Hsu, P-C. Yew, R. Ju, and T-F. Ngai, “A Com-
piler Framework for Recovery Code Generation in General
Speculative Optimizations,” PACT, pages 17-28, 2004.

[16] C.G. Nevil-Manning and I.H. Witten, “Linear-time, Incre-
mental Hierarchy Inference for Compression,” Data Compres-
sion Conference, Snowbird, Utah, IEEE Computer Society,
pages 3-11, 1997.

[17] Y. Sazeides, “Instruction-Isomorphism in Program Execu-
tion,” Value Prediction Workshop, June 2003.

[18] C. Young and M.D. Smith, “Better Global Scheduling Us-
ing Path Profiles,” IEEE/ACM International Symposium on Mi-
croarchitecture, pages 115-123, 1998.

[19] X. Zhang and R. Gupta, “Cost Effective Dynamic Program
Slicing,” ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 94-106, Washington
D.C., June 2004.

[20] Y. Zhang and R. Gupta, “Timestamped Whole Program Path
Representation and its Applications,” ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation,
pages 180-190, Snowbird, June 2001.

[21] C.B. Zilles and G. Sohi, “Understanding the Backward
Slices of Performance Degrading Instructions,” 27th Interna-
tional Symposium on Computer Architecture, 2000.

