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A
pplications written for
the embedded domain
must perform under the
constraints of limited
memory and limited
energy. While these con-
straints have always

existed, current trends, such as mobile comput-
ing and ubiquitous computing, bring more and
more complex applications to the embedded
domain, making performance, or
speed of execution, an important fac-
tor as well. For instance, we are now
able to run resource-intensive gam-
ing and multimedia applications on
handheld devices. Techniques that
reduce the memory and energy con-
sumption of programs have in gen-
eral done so at the cost of performance.
Simultaneously achieving small code size,
low energy consumption, and high perfor-
mance is a challenging task.

Processors, such as the ARM and MIPS
family of embedded cores, support more
than one instruction set to meet these con-
straints. In addition to the 32-bit instruc-
tion set, they support a 16-bit instruction

set. As we will explain, by using 16-bit code
one can achieve code size and energy reduction
at the cost of performance. 

Until recently, the choice between 32-bit
and 16-bit code had to be made by the pro-
grammer, and is highly undesirable. In this
article, we show how this task can be auto-
mated and how one can achieve the code-size
and energy-saving properties of 16-bit code

while simultaneously achieving perfor-
mance comparable to 32-bit code. We

focus on the encoding of a program’s
computations. This is in contrast

to the previous articles in this spe-
cial section, which primarily focus
on the elimination of superfluous

computations from a program.
The techniques described here are

in the context of the ARM family of
processors, which are frequently used in the
embedded computing realm. They are used
as general-purpose embedded processors,
found, for example, on multimedia-enabled
PDAs, as well as in specialized embedded
applications, such as embedded control.

ARM processors have a simple energy-effi-
cient architecture. The StrongARM [8],
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for example, has a five-stage pipeline. It performs in-
order issue, and has no branch prediction, has a 32-
kilobyte instruction cache and 32-kilobyte data
cache. Recent ARM processors, such as the Xscale
[2], still maintain shallow pipelines but incorporate
branch prediction and out-of-order completion.
Unlike high-performance processors, these proces-
sors have simple architectures, since they have a very
tight energy and cost budget. 

A Closer Look at the ARM Architecture

T
he ARM is a 32-bit RISC architec-
ture [10] supporting two instruc-
tion sets, a 32-bit ARM instruction
set, and a 16-bit Thumb instruc-
tion set. Corresponding to the two
instruction sets are two execution
states. In ARM state, 32-bit

instructions are executed, and in Thumb state, 16-bit
instructions are executed. The ARM ISA (instruction
set architecture) supports a three-address format,
predicated execution, and can access all sixteen 32-
bit registers. In Thumb state, however, instructions
are restricted to a two-address format, can access only
eight 32-bit registers in most cases, and do not sup-
port predicated execution. The Thumb instruction
set has limited expressive power compared to the
ARM instruction set. For example, in an ARM
instruction it is possible to specify a shift operation
along with an ALU operation in the same 32-bit
instruction, but in Thumb state two instructions are
required.

Since the full expressiveness of the 32-bit ARM
ISA is not always necessary, one can achieve consid-
erable code size reductions using 16-bit Thumb
instructions. The Thumb version of an application
is on average 30% smaller than its 32-bit ARM
counterpart [4]. It should be noted that using
Thumb code, with every 32 bits fetched, the proces-
sor fetches two Thumb instructions. Hence the
processor needs to fetch a word only every other
cycle, reducing the amount of energy spent on fetch-
ing instructions from the instruction cache. Consid-
ering that a lot of energy is spent in the instruction
cache (the cache is fully associative, requiring multi-
ple simultaneous lookups), this reduction is signifi-
cant. Thumb code being small also provides a good
locality of reference. Therefore there are fewer cache
misses in Thumb code compared to ARM code.
While there is a significant reduction in code size
and energy when we use Thumb code, sometimes
we lose a considerable amount of performance. This
is because for the same task we need many more
Thumb instructions compared to the number of
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ARM instructions. This loss is
incurred in spite of the good
locality provided by Thumb
code. We have observed this per-
formance loss to vary between
3% and 98%. From the preced-
ing discussion it is clear that
when performance is an impor-
tant criterion, 32-bit ARM code
should be the choice; when code
size is an important constraint,
16-bit Thumb code should be
the choice.

The ARM architecture sup-
ports switching between these
instruction sets within a single
executable. The Branch and
Exchange (BX) instruction and
Branch with Link and Exchange
(BLX) are provided to perform
this switch. The operand used by
these instructions is a register operand. When the
register operand has its least significant bit set, the
processor continues execution in Thumb state, and
execution continues in ARM state when the bit is
unset. The upper 31 bits of the effective address
specify the branch target.

The BX instruction can be used by assembly-level
programmers to switch between the two states.
Recent compilers also sup-
port directives that allow
the programmer to specify
the state for a given compi-
lation unit. Both preceding
approaches require the pro-
grammer to decide where
to switch states. With more
complex applications being
ported to the embedded
platform, this burden on
the programmer becomes
unreasonable, making an
automatic approach more desirable.

Profile-Guided Generation 
of Mixed Code
The basic approach we take for automatically gener-
ating mixed code consists of two steps. First, we find
the frequently executed functions using profiling.
Each of these are functions takes up more than 5%
of total execution time. Second, we use a heuristic
for choosing between ARM and Thumb codes for
these frequently executed functions. For all other
functions, we generate Thumb code. The preceding

approach is based upon the observation that we
should use Thumb state whenever possible. Func-
tions for which the use of Thumb code results in sig-
nificantly lower overall performance must be

compiled into ARM
code. 

In order to decide
between the use of ARM
code and Thumb code
for a frequently executed
function, we essentially
compare the characteris-
tics of the ARM and
Thumb code for that

function. We make the final decision based upon the
expected performance of the two versions of the
functions (ARM and Thumb) and their relative code
sizes.

We use a combination of dynamic instruction
counts and relative code sizes to make the decision. In
particular we choose Thumb code if one of the follow-
ing conditions hold: the Thumb instruction count is
lower than the ARM instruction count, or the Thumb
instruction count is higher by no more than T1% and
the Thumb code size is smaller by at least T2%.

The idea behind this heuristic is that if the
Thumb instruction count for a function is slightly
higher than the ARM instruction count, it may still
be appropriate to use Thumb code if it is sufficiently
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lsl  reg2,  #2
sub  reg1  reg2
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setshift  lsl  #2
sub  reg1,  reg2
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push  r4,  r5,  r6,  r7
mov  r7,  r11
mov  r6,  r10
mov  r5,  r9
mov  r4,  r8
push  r4,  r5,  r6,  r7

stmdb  r4, .. r11

push  r4, r5, r6, r7
setallhigh
push  r0,  r1, r2, r3

stmdb  r4,  r5,  r6,  r7
stmdb  r8,  r9,  r10,  r11

Figure 1. The adaptation of the pipeline in order to execute
AXThumb code, and the two code fragments in Thumb, ARM, and
AXThumb and their coalesced equivalent. Note that the coalesced
ARM instruction is composed from an AXThumb instruction pair at

decompressing time and fed to the ARM decoder.
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smaller than the ARM code as the smaller size may
lead to fewer instruction cache accesses and misses
for the Thumb code. The net effect is intended to be
that the cycle count of Thumb code should not be
higher than the cycle count for the ARM code. 

We found that the Mixed code size is significantly
smaller than the ARM code size and only slightly
bigger than the Thumb code size.
We also observed that Mixed code
gives instruction cache energy sav-
ings over the ARM code. More-
over, the energy savings are
comparable to those obtained by
Thumb code. Finally, the cycle
count of Mixed code is very close
to the cycle count of the ARM
code. In some cases it is even
slightly smaller due to the
improved instruction cache behav-
ior of Mixed Code. A more
detailed analysis, including a com-
parison with three other heuristics,
is available in [4].

Switching States at Finer
Granularity

T
he profile-guided
approach was
applied at the
granularity of
functions. Each
function was
compiled entirely

into ARM code or Thumb code.
This is because switching states is
practical only when applied to
long sequences of instructions.
State switch is achieved using the
BX instruction. The problem is that
the overhead involved in switching
states often overcomes the benefit of switching when
switching at finer granularities, such as at the
instruction level. This overhead consists not only of
the switching instruction but usually also involves a
number of no-ops to ensure such things as correct
alignment and correct usage of the BX instruction.
This overhead would negate the benefit of replacing
a small Thumb sequence with an ARM code
sequence. Using the profile-guided approach at finer
granularities is hence wasteful. 

While the switch is useful only for large code
sequences, using a peephole scan, one can find many
instances of short 16-bit sequences that have faster
ARM equivalents. One such case is illustrated in the

lower left half of Figure 1. The task is to shift the
contents of reg1 before subtracting from reg2. In
Thumb state, the shift operation requires a separate
instruction. It cannot be specified along with the
subtract instruction due to the lack of encoding
space (we have only 16 bits). In 32-bit ARM state,
however, both the shift and subtract can be specified

in one single cycle instruc-
tion. While both the ARM
and Thumb code are 32 bits
long, the ARM code is
faster, and therefore desir-
able where performance is
critical.

In order to be able to avoid
the slowdown of Thumb
compared to ARM in such
cases, we propose to extend
the Thumb instruction set to
accommodate coalescable
instructions called Augment-
ing Extensions (AX). The
processor pipeline is modified
to implement Instruction
Coalescing using these
instructions. Using these AX
instructions one can generate
16-bit AXThumb code,
which has higher perfor-
mance compared to Thumb
code while retaining the code
size and energy-saving prop-
erties of Thumb code.

Instruction Coalescing
and AXThumb
The idea is to coalesce two
16-bit instructions and exe-
cute one instruction
instead. To this end, we
extend the 16-bit Thumb
instruction set with aug-
menting instructions to
enable the processor to per-

form coalescing. The decode stage of the processor
is modified to enable two 16-bit Thumb instruc-
tions to be coalesced at runtime. The compiler gen-
erates code using these AXThumb extensions
replacing pairs of Thumb instructions with
AXThumb instructions. Unlike other prefix
instructions (used in [7] for example) where the
purpose of the prefix instructions was to improve
the expressive power of 16-bit instructions,
AXThumb is an extension to the ISA and microar-
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chitecture, enabling the execution of these instruc-
tions at zero cost in terms of execution cycles.

The AX extension to the Thumb instruction set
consists of eight instructions, each addressing a par-
ticular limitation of the Thumb instruction set. An
overview of these instructions is given in the table
here. These AX extensions essentially carry some
information required for
the correct execution of the
instruction that immedi-
ately follows it. These
instructions are processed
entirely in the decode stage
of the processor without
going through the rest of
the pipeline. The decode
stage is modified to exam-
ine two consecutive 16-bit
instructions to allow for the
AX processing to be carried
in parallel with the execu-
tion of another 16-bit
instruction, as shown in the
upper half of Figure 1. In
case an AX instruction is
found by the AX processing
unit, the relevant state car-
ried by the instruction is
saved in a special state reg-
ister. The contents of this
register are then used when
the next 16-bit instruction
is decoded. Hence, the
overall effect is like coalesc-
ing two 16-bit instructions
whenever possible, execut-
ing only one instruction. 

We describe two exam-
ples as shown in the lower
half of Figure 1, to illus-
trate the benefits of
Instruction Coalescing.
First, we revisit the shift
example described earlier.
While the ARM version requires the execution of
one instruction, the Thumb version requires the
execution of two instructions. This is overcome in
AXThumb where the setshift instruction is coa-
lesced with the following sub instruction, thereby
executing only one instruction, shown as the Coa-
lesced ARM instruction previously. This coalescing
is a zero-cost operation in terms of cycles, since the
coalescing is done in parallel with the processing of
a previous instruction. Hence, we save one cycle for

every AX Thumb pair in comparison to a Thumb
pair. In essence we have 16-bit code that can per-
form like 32-bit code.

The second example uses the setallhigh instruc-
tion. The call semantics in the ARM architecture
require the callee to save and restore nonvolatile reg-
isters. In Thumb state, saving is done using the push

instruction, which pushes the con-
tents of a list of registers onto the
stack. The push instruction can
specify only the low registers requir-
ing a set of moves to move the con-
tents of high registers to the low
registers before they can be saved.
This is avoided using AXThumb
setallhigh instruction, as illus-
trated in the example code in the
right lower half of Figure 1.

A detailed description of Instruc-
tion Coalescing and the AX Exten-
sions can be found in [3].

Predication

U
sing AXThumb
we also support
predication in
Thumb state.
Like instruction
coalescing, this
method also

takes advantage of the extra fetch
bandwidth (32 bits) already present
in the processor. We rely on the
compiler to place the instructions
from the true and false branches in
an interleaved manner, making one
instruction from the false path
immediately follow one instruction
from the true path, as shown in the
top half of Figure 2. A null opera-
tion is placed when the true and

false paths are unequal in length. Since the execu-
tion of a pair of instructions is mutually exclusive
(only one of them will be executed), we select the
appropriate instruction in the decode stage and pass
it on to the decompressor, while the other instruc-
tion is discarded.

The lower half of Figure 2 illustrates predication
through an example. A special setpred AX instruc-
tion precedes the sequence of interleaved code. The
new setpred instruction we introduce enables con-
ditional execution of Thumb instructions. This
instruction specifies two things. First, it specifies the
condition involved in predication (for example, eq
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and ne). Second, it specifies the count of predi-
cated instruction pairs that follow. Following the
setpred instruction are pairs of Thumb instruc-
tions; the number of such pairs is equal to count.
If the condition is true, the first instruction in
each pair is executed; otherwise the second
instruction in each pair is executed. In our exam-
ple, when we examine the AXThumb code, we
observe that the condition in this case is eq and
count is two, since there are two pairs of instruc-
tions that are conditionally executed. If eq is true,
the first instruction in each pair (the add instruc-
tion) is executed; otherwise, the second instruc-
tion in each pair (the sub instruction) is executed.
Therefore, after the AXThumb instructions are
processed by the decode stage, the corresponding
ARM instruction sequence generated consists of
three instructions. The sequence contains either
the add instructions or the sub instructions
depending upon the eq flag.

Results

T
he Instruction Coalescing mecha-
nism was implemented as part of
the SimpleScalar/ARM [1] simu-
lator using exactly one free
opcode in the Thumb instruction
set (ARM Architecture version
ARMv5TE) to implement the AX

extensions. The CACTI [9] energy model was used
to compute the I-cache energy. The benchmark
programs used are taken from the MediaBench [5],
CommBench [6], and NetBench [11] benchmark
suites. The results from our experiments are shown
in Figure 3. We see that the performance gap
between 32-bit code and 16-bit code has been
reduced without detriment to the code size and
energy saving properties of 16-bit code. The code
size is almost the same as Thumb code, since most
AXThumb transformations do not change the
number of instructions in the program. The 
I-cache energy reduction in AXThumb compared
to Thumb is the result of fewer fetches in
AXThumb compared to Thumb. This is due to
better utilization of instruction fetch queue, result-
ing in fewer wasted fetches. A more detailed analy-
sis of the results can be found in [3].

With the incorporation of more AX-type coa-
lescable instructions one can further improve the
performance of 16-bit code. Thus, the design of a
bridging instruction set like the AX extension, in
addition to the regular 16-bit and 32-bit ISA in
dual-width ISAs, can effectively bridge the perfor-
mance gap between 16-bit and 32-bit code.

Conclusion
Mixed-width instruction set processors provide a
unique opportunity to generate executables that
have the three properties essential to the embedded
computing realm: small code size, good perfor-
mance, and low energy consumption. We described
a profile-guided approach here that chooses instruc-
tions sizes at the granularity of functions. We have
also described Instruction Coalescing, a technique
that can be used to design 16-bit bridging instruc-
tions that can bridge the performance gap between
32-bit and 16-bit code. By using AXThumb
instructions we support predication in Thumb
state, which is currently available only in 32-bit
ARM state. These techniques can be used in tan-
dem to produce executables with the three proper-
ties essential to the embedded domain. 
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