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Although graph coloring is widely recognized as an effective technique for register allocation,

memory demands can become quite high for large interference graphs that are needed in

coloring. In this paper we present an algorithm that uses the notion of chque separators to

improve the space overhead of coloring, The algorithm, based on a result by R. TarJ an regarding

the colorability of graphs, partitions program code into code segments using clique separators.
The interference graphs for the code partitions are constructed one at a time and colored
independently. The colorings for the partitions are combined to obtain a register allocation for
the entire program. Thm approach can be used to perform register allocation in a space-efficient
manner. For straight-line code (e.g., local register allocation), an optimal allocation can be

obtained from optimal allocations for individual code partitions. Experimental results are
presented demonstrating memory demand reductions for interference graphs when allocating
registers using clique separators.
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1. INTRODUCTION

The problem of global register allocation is commonly formulated as a graph

coloring problem in which an assignment of a color to each node in an

interference graph is made such that no two nodes directly connected by an

edge have the same color [Chaitin et al. 1981; Chaitin 1982; Chow and

Hennessy 1984]. The nodes in an interference graph correspond to candidates

for registers, and edges connect nodes that must be allocated different
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registers. A coloring of this graph is equivalent to an assignment of registers.

Existing techniques for register allocation can be divided into two categories:

techniques for local register allocation and techniques for global register

allocation. Local register allocation deals with the allocation of registers in

straight-line code segments. The interference graphs for straight-line code

belong to a class of graphs called interval graphs [Golumbic 1980]. Although

graph coloring is an NP-complete problem for general graphs, interval graphs

can be optimally colored in polynomial time [Garey and Johnson 1979].

Global register allocation deals with the allocation of registers in code con-

taining branches. The interference graphs constructed during global register

allocation are no longer interval graphs, and since general graph coloring is

an NP-complete problem [Garey and Johnson 1979], polynomial time heuris-

tics are used to obtain suboptimal colorings.

Due to the increased amount of analysis performed by modern optimizing

compilers, interest in improving the space efficiency of such compilers is

growing. As an example, sparse evaluation graphs are being used to limit the

amount of data-flow information computed during program code optimization

[Choi et al. 1990]. By avoiding the computation of intermediate results, the

space requirement for saving data-flow information is reduced. In this paper

we present an approach for reducing the space requirements during global

register allocation. The size of an interference graph constructed for global

register allocation can be large, and hence, it is desirable to develop tech-

niques for limiting the memory demands of an interference graph. One

approach that has been advocated performs inexpensive local register alloca-

tion before performing global register allocation using coloring [Chow and

Hennessy 1984]. However, experience has shown that this strategy is usually

not successful since very few candidate nodes are allocated registers during

the local allocation phase, and hence most of the allocation is done during the

global allocation phase [Larus and Hilfinger 1986]. Thus, to improve the

efficiency of register allocation we must concentrate on improving the effi-

ciency of global register allocation algorithms.

In this paper we present a technique that improves the space efficiency of

graph-coloring-based global register allocation algorithms. The technique is

based on a result due to Tarjan [ 1985] regarding the colorability of a graph by

decomposition into subgraphs using clique separators, which states that if

each subgraph can be colored using at most k colors, then the entire graph

can be colored in k colors by combining the coloring of the subgraphs. In

register allocation, the subgraphs resulting from a decomposition of an

interference graph correspond to code segments in a program. Thus, clique

separators partition a program into code segments for which the register

allocation can be performed independently. We show that the partitioning of

the program can be carried out by examining the code; hence, the technique

does not require the construction of the entire interference graph and then

the execution of an algorithm on the graph to find the clique separators. The
clique separators are found in the code by selecting traces (paths) through the

control flow graph and finding separators along each trace. The interference

graphs for the code partitions are constructed one at a time, and a coloring
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heuristic (e.g., priority-based coloring) is used to color these subgraphs. Once

a subgraph is colored, its storage can be reclaimed and used by another

subgraph. The colorings for the subgraphs are combined, resulting in a

coloring of the entire interference graph for the program.

Register allocation using clique separators is carried out efficiently be-

cause, at a given point during register allocation, only an interference graph

for a single partition needs to be constructed. This reduces the space require-

ments for the interference graph. Furthermore, if the run-time complexity of

the coloring heuristic is a polynomial of a degree greater than one in the

number of nodes in the graph, the time spent on coloring reduces with the

number of partitions. The time savings obtained during coloring partially

offset the time spent on the detection of clique separators. The strategy is also

suitable for parallel implementations, as the code in each trace can be

decomposed in parallel and subgraphs can be colored in parallel. A parallel

implementation will not provide any total savings in space, but will improve

the run-time complexity of register allocation.

In the next section, we discuss background information, including a sum-

mary of Tarj an’s results and a revised definition of name spans (or live

ranges). An overall description of the technique is then presented in Section

3. In Section 4 we describe the partitioning technique using clique separators.

In Section 5 two coloring algorithms that use separators are presented. The

performance of a clique-based register allocation scheme is analyzed and an

implementation of the technique and results based on experimental studies

are presented in Section 6.

2. BACKGROUND

The technique for partitioning a program into code segments presented in

this paper utilizes the notion of clique separators [Gavril 1977]. A clique

separator is a completely connected subgraph whose removal disconnects the

graph. The idea of decomposing a graph coloring problem using clique separa-

tors was first developed by Tarjan [1985]. Clique separators are used to

decompose a graph into subgraphs that can be colored independently. A

coloring for the entire graph is obtained from the colorings of the subgraphs.

If each subgraph is colored using at most h colors, then the entire graph can

be colored using k colors by combining the colorings of the subgraphs. For the

graph shown in Figure la, the clique CS = {u ~, U2, u ~} is a separator, as its

removal results in disconnected subgraphs SI = { Va, us} and S’a =
{ U6, u ~, u., U3}, given in Figure lb. The subgrapbs that must be colored using
k colors, if a h-coloring for the entire graph is to be found, are shown in

Figure lc. These subgraphs are formed by including the members of the

clique separator in each of the disconnected subgraphs (Sl and S’z) shown in

Figure lb. In Figure lC colorings of the subgraphs using three colors are

given. These colorings are combined to obtain a 3-coloring for the entire

graph shown in Figure ld. The combining process involves renaming of colors

in one of the subgraphs so that both subgraphs use the same colors for the

members of the clique. In this example the coloring was achieved by inter-
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Fig. 1. Clique separators.

changing the use of colors c1 and C2 in the subgraphs that includes S1 and

CS. The subgraphs resulting from a decomposition maybe further decompos-

able using clique separators. A graph that cannot be decomposed any further

is called an atom. In the above example, S1 is an atom, but S’z is not an atom,

as it can be further decomposed by clique {UG, UT}.

The algorithm developed by Tarjan requires construction of the entire

graph, following which the separators are identified and the graph is decom-

posed. This approach is not useful for register allocation because it does not

reduce the space complexity of the algorithm. To avoid this problem, clique

separators in this paper are identified by examining the program code

instead of the interference graph of the entire program code.

Another technique to divide a program into partitions for which register

allocation can be carried out independently has been developed by Chi and

Dietz [1988] using cut points. A register cut point in a program is a point at

which the optimal allocation of live variables to registers can be determined

without actually applying a register allocation algorithm. For example, if

there is a single variable live at a point in the program, then one of the

registers will hold its value, and the remaining must be empty. The use of

clique separators to partition code is more general than register cut points. A

code segment can be divided into subparts using clique separators even if

optimal allocation at any point during the code segment is not known.

Before we can construct interference graphs, we must identify the name

spans that are represented as nodes of the interference graph. In earlier

global register allocation algorithms, a name span of a variable consisted of a

group of basic blocks in the control flow graph. However, in this work name
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Fig. 2. Constructing spans

spans are composed of a group of code statements that may include portions

of basic blocks. This modification is essential because clique separators of

interest may appear at any point in the code and not necessarily at basic

block boundaries.

Definition. A span corresponding to a variable X is defined as an isolated

group of contiguous code statements that satisfies the following conditions:

(1) There is no use of X outside the span that is reachable from a definition of
X inside the span, and (2) there is no use of X in the span that is reachable

from a definition of X outside the span.

Consider the flow graph in Figure 2. In this example three spans are

created for variable X. The definition of X in statement s ~ is used only by

statement SZ – 1, thus creating the span L1. The definition of X in state-

ment SZ is used in basic blocks B2, B3, and B4, which causes groups of

statements Sz . . . s~, S4 . . . s~, SG. . . S7, and Slo . . . S1l to be included in span

Lz. Furthermore, since the use of X in statement s ~~ is also reachable from

the definition of X in statement Sg, the statements Sg . . . Sg are also included
in Lz. The third span L~ is composed of statements S1l + 1 . . . S12. If the code

is stored in a linear code array and the code for basic blocks is stored in the

order Bl, B2, B3, and B4, then the span Lz can be represented as consisting

of statement groups SZ . . . SV and Sa . . . SI1.

3. OVERVIEW OF THE REGISTER ALLOCATION TECHNIQUE

A high-level algorithm for allocating registers using clique separators is given

in Figure 3. The approach is independent of the coloring scheme used in the

actual register allocation. A control flow graph representation of the program
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Given: An control t]ow graph representation of o program.
out put: Register allocation for the program.

Compute the name spans.

Parfi/ionLisf + 0
whl le the entire program has not been pmlitioned do

Select I trace composed of basic blocks that have not been included m
previous traces, giving preference to the blocks with h]gher execution counts.

Purti/ion the trace by identifying chque separators and add the
partitions at the end of the Fmw[ionbst.

endwhi le
for each partition Pin )’ar(/uonLm do

Construct the mferj%rence graph for P.

Co/or the graph using some graph coloring heunstlc.
Combine the cotorings with already processed partitions which involves:
renunm,g colors for the current partition; and

possibly generation of copy rode at merge and join points.

end for

Fig. 3. Overview of register allocation using clique separators.

is assumed. Details about the individual steps in the algorithm are explained

in subsequent sections.

A program is partitioned by selecting traces (paths) through the control

flow graph and finding clique separators in each trace [Fisher 1981]. A trace

consists of a sequence of basic blocks along an execution path. The statements

belonging to a trace are examined in sequence, and clique separators in the

trace are identified. After partitioning one trace, another trace is chosen, and

the partitioning process is repeated until the entire program is partitioned.

Each basic block is only included in one trace. When partitioning a trace, all

live variables at the beginning of a trace are assumed to be defined at the

start of the trace. The resulting partitions contain statements from basic

blocks that are not only connected to each other, but also lie along an

execution path. The selection of traces is typically based on the time a

program spends in different parts of the program [Fisher 1981]. The traces

constructed earlier in the selection process account for a greater percentage of

the program’s execution time than those selected later. The order in which

the partitions are processed by the register allocation heuristic is the same as

the order in which traces were found. This process of ordering results in the

generation of better quality code for parts of the program where more

execution time is spent. Branch and merge points of traces are handled

during register allocation by incorporating live spans that overlap the traces.

Consider a situation where a segment of straight-line code has been

partitioned using clique separators. An optimal register allocation for the

entire segment can be constructed from optimal solutions for each of the

partitions. This is a highly desirable characteristic since compilers for the

current generation of superscalar processors, in an effort to exploit instruc-
tion-level parallelism, create large segments of straight-line code through

program transformations such as loop unrolling [Dongarra and Jinds 1979]
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and in-line expansion [MacLaren 1984]. If the code contains branches, better

register allocation can be achieved for partitions processed earlier, at the

expense of code quality for partitions processed later. Thus, code partitions

resulting from traces with high probability of execution are processed before

other partitions. As register allocation proceeds from one partition to the next

partition, an attempt is made to assign the same register to a name span

extending across multiple partitions. This goal is achieved by renaming colors

assigned to a partition. If different registers must be assigned to different

portions of a name span, code for moving values among the registers is

generated. This copy code is typically introduced at branch or join points in

the code. If a portion of a name span is not assigned any register (i.e., it is

spilled), load and store instructions are also introduced.

4. PARTITIONING TRACES INTO SEGMENTS

First consider the problem of partitioning straight-line code into code seg-

ments for which register allocation can be carried out independently. At any

given point in a code segment, there are several overlapping spans that are

represented by nodes of a clique in the interference graph. The clique

corresponding to any program point in the code segment represents a separa-

tor. This is because the removal of the clique from the interference graph

results in subgraphs consisting of spans that end before the clique and spans

that start after the clique. Furthermore, these subgraphs are not connected

by an edge, as the spans from these subgraphs do not overlap. The nodes

forming a clique separator are included in both the subgraphs, into which it

divides the interference graph. If we divide the code at each of the possible

separators, each resulting partition will contain a single statement. The

interference graph corresponding to a partition will contain all values live at

that point. Since a span can appear in any number of these subgraphs, this

partitioning of the subgraph into subparts does not result in proportionally

smaller subgraphs. As a result, partitioning using all clique separators will

cause register allocation to be more time expensive.

The above problem can be avoided by choosing the cliques carefully. The

maximum number of cliques, chosen as separators, in which a span can occur

can be fixed to a small constant (say, c). Thus, the maximum number of

subgraphs in which a span can occur is c + 1. If the entire graph containing

n vertices is divided into m subgraphs, then each subgraph on average will

contain (c + l)n/m nodes. Assuming m is large, the subgraphs will be
significantly smaller than the interference graph for the entire program. One

approach for partitioning is to first partition a code segment assuming c has

the value one. If a code partition is larger than the maximum acceptable size,

we can further partition this code segment by increasing the value of c to

two. We can continue to increase the value of c until all resulting partitions

are sufficiently small. Our experience has shown that, if c is chosen to be one,

very few separators are found. However, if c is chosen to be two, frequent

separators are found, in practice. Thus, in this work we use an algorithm that
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uses the value two for c. However, if the size of a partition reaches a certain

maximum, the code is partitioned at that point.

The example presented in Figure 4 contains a separator that consists of the

spans {b, i, f) and that satisfies the condition c = 2. This separator divides the

code segment into two parts; hence, the interference graph is divided into the

two subgraphs shown in Figure 4. The interference graph for a single code

segment represents only the information regarding the spans that are live

during that period. Thus, the spans that end before the code segment and the

spans that begin after the code segment are excluded from the graph. The

members of the separator are included in both of the resulting subgraphs. In

the example shown, {b, i, ~ is included in both subgraphs. The subgraphs are

colored independently, and their colorings are combined to obtain the coloring

for the entire graph. As mentioned before, if there are no branches in the code

the colorings can always be combined. However, in the presence of branches

we cannot always combine the colorings through renaming.

To identify the separators, we scan the code in a trace from beginning to

end, constructing and updating three sets, namely, PRE, POST, and

CLIQUE. By examining the sets, we determine whether the clique at that

point in the program should be chosen as a separator or not. The set CZIQVll

contains the members of the current clique. The set PRE contains the spans

that have already ended, but either overlap at least one of the members of

CLIQUE, are not colored, or interfere with a node not colored. The set POST

contains the spans that have not yet begun, but overlap with at least one

member of the set CLIQUE. Thus, in the example in Figure 4, at the point at

which the separator {b, i, O occurs, the three sets contain the following:

PRE = {a, e}, POST = {g, c}, and CLIQUE = {b, i, f). The clique separator

formed by members of CLIQUE is chosen iff it can be divided into disjoint

sets CLIQUEPE ~ and CLIQUEPo~~, such that spans from PRE do not

OVerlaP SPanS from CLIQUEP OST ~ SPanS from POST do not overlap spans
from CLIQUEpR~, and the sets PRE and POST are nonempty. For the

clique {b, i, O, the set CLIQUEp~~ is {i, H, and the set CLIQUEPos~ is {b}.

The above condition ensures that no span appears in more than two consecu-

tive separators. Furthermore, in choosing a separator, sets PRE or POST are

nonempty to ensure that the interference graph for a code segment contains

at least one node that is not present in the subgraphs preceding and succeed-

ing it. In addition to locating separators in the above fashion, our algorithm

also keeps track of the size of the current partition. If the number of spans in

the current partition exceeds a certain maximum ( MAXSIZE), the clique at

that point is chosen as a separator. The algorithm that constructs the sets

and checks for separators is summarized in Figure 5.

5. REGISTER ALLOCATION COLORING ALGORITHMS USING CLIQUES

When partitioning a trace, interference graphs are constructed for each
partition, one at a time. The graphs are colored, and the results are combined

with graphs of adjacent partitions. A new trace is selected, and partitioning of
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Fig. 4 Clique separators m program code

that trace is performed. This process culminates in register allocation for the

entire program code.

The spans that form a clique separator are present in the interference

graphs of the code partitions preceding and succeeding the clique. Thus, they

may be allocated different registers. For straight-line code, Tarjan’s result

allows renaming of registers in one of the segments so that the same registers

are used in both code segments. In the presence of branches, the partitions

preceding and succeeding a code segment may already have been allocated

registers that cannot be renamed. ln this situation, code to transfer values

from one register to another is introduced. If the number of registers avail-

able is less than the number of live values, then the register allocation

algorithm must choose the values to be held in registers and spill the

remaining values into memory.

Next we present adaptations of two specific coloring-based algorithms,

Chaitin’s [1982] algorithm and Chow and Hennessy’s [ 1984] priority-based

algorithm, to exploit the notion of clique separators.

5.1 Chaitin’s Algorithm

A register allocator based on Chaitin’s algorithm is given in Figure 6, An

interference graph is constructed for a partition and then colored using

Chaitin’s coloring heuristic. The coloring heuristic removes each node in the
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Partition Trace {
PRE = POST = CLIQUE=@

START= CURRENT = first instruction in the trace;

SIZE = Q PAR TITIONLIST = @

repeat
for each span s$,ar, that starts at the current instruction do

SIZE = S[ZE + 1;

CLIQUE = CLIQUE U { S,lart ]

POST = POST - { s,,.,, )

for each span s,, such thats, has not yet started and s.,.,, overlaps ~i do

POST= POSTU {~i }

end for
end for
for each spans,ti that ends at the current instruction do

PRE = PRE U {send)

CLIQUE = CLIQUE - { S,,ti ]

end for
for each span si that no longer overlaps a member of CLIQUE

A is marked as belonging to a partition
A all of the spanswith which it interferes are also marked

do PRE = PRE - {s, ) endfor
i f (CURRENT= last instruction in the trace) then

add partition containing instructions from START to CURRENT to the PAR TITIONLIST

else if (S[ZE=MAX.WE) then
add partition contammg instructions from START to CURRENT to the PARTITIONLIST

S[ZE = [ CLIQUE I ; START= CURRENT= next instruction in the trace;
else if Check ( CLIQUE) then

add partition containing instructions from START to CURRENT to the PARTITIONLIST

SIZE = I CLIQUE I ; START= CURRENT= next instruction in the trace;
endif

unt i 1 (CURRENT= last instruction in the trace)

1

Check ( CLIQUE) {

CLIQUEPR~ = ( s : s & CLIQUE and it overhps a span from PRE )

CLIQUEPOW = { s: s E CLIQUE and it overlaps a span from POST ]

CLIQUEPOW =

if(PRE#$)A(POST#+)

A ( CLIQUEpRE ~ CLIQUEPOST = ~ )

then return(true) endi f
return(false)

1

Fig. 5. Finding separators.

graph for which the number of edges incident to the node is less than the

number of colors. If no such node exists, then spilling is needed. A span is

chosen to spill, and its associated node is then deleted from the graph. The

attempt to color continues, spilling again if necessary until all nodes have
been removed. The node chosen to spill is selected based on the number of

edges connected to the node and the nesting levels of the code partition. The
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Allocate Reglstcrs {
Spdt the progmm mto execution traces
repeat

Select a trace that has not been proccsscd
repeat

Fmd a p,art]tlon m the cument trxe

repeat

Construct Interference graph for the part]tmn

repeat
Delete all nodes with the number of netghbors less thml the number of rcgls[ers,
If graph not empty then

from the remmning nodes choose one to spdl

Spltl all IISusesand definitions along this trace
endl f

until graph ISempty
until no new spIIls occur
Color the Graph
Combine colors mld generate copy code ]f needed

unt 11 no more parutmns m [he [race
until untd nu more traces

)

Fig 6. Regrster allocation algorithm based on Chaitm’s approach.

higher the number of edges, the more likely it is that after the removal of the

node it will be possible to color other nodes in the graph. The nesting level is

considered in an attempt to ensure that spill code is introduced in code

partitions that are not nested inside loops and, therefore, are executed less

frequently. After all nodes have been removed, if any spilling was necessary,

then the graph is reconstructed using the revised code for the partition. Once

the coloring of the graph is successful, register allocation performed in the

current partition is propagated to other partitions that contain the same

spans but have not been colored, eliminating the need to combine the

colorings of individual partitions by renaming colors. Any spill code for the

partition is also generated. This technique incorporates spills by storing the

definition and loading the value before each of the uses along the trace being

processed.

In Chaitin’s algorithm, a name span was either entirely spilled or assigned

a register for the entire duration of the live range. However, in our algorithm,

if a definition is spilled along a trace, it is not considered spilled for any new

trace. This introduces some copy code at the onset of the trace, moving the

definition from memory to the register allocated on the new trace. However,
this amount of copy code is likely to cost less than the cost of spilling a span

in all traces.

5.2 Prlorlty-Based Algorithm

We next describe a priority-based coloring algorithm that uses our partition-

ing method. In implementing a priority-based coloring algorithm, a method

for computing node priorities is used. The priority of a node or span is

measured in terms of the savings in execution time (TOTfiSAV ) that are
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incurred by its being allocated a register instead of memory [Chow and

Hennessy 1984]. A variable referenced inside a loop body is likely to be

referenced more often, and hence, the total savings resulting from allocating

a register to a span is normalized with respect to the loop-nesting depth. The

priorities are maintained to guide the coloring of an interference graph.

During coloring, when a portion of a span is spilled, the priority of the span is

updated.

An overall algorithm for global register allocation using clique separators

and based on priorities is summarized in Figure 7. In this algorithm, the

program is partitioned into code segments, and an interference graph for a

single partition is constructed and colored. The span priorities are main-

tained globally and updated as portions of spans are spilled. One by one, the

subgraphs are constructed and colored. The constrained nodes in the graph,

those that have fewer neighbors than the number of registers, are colored

last, as they can be colored no matter what colors are allocated to their

neighbors. During the coloring of a partition, only priorities of those nodes

that belong to the current partition are examined. A constrained node in the

current graph is colored before other nodes with lower priorities are consid-

ered. The node with highest priority is selected and colored if a register is

available. If the portions of the name span represented by this node had

already been assigned a color during the processing of other partitions, an

attempt is made to assign the same color. If this is not possible, another color

is assigned, and following the coloring of the partition, copy code is intro-

duced at appropriate points in the program. If no register is available to color

a currently selected node, the portion of the span belonging to the current

partition is spilled, and the priority of the span is updated. Overallocation of

registers is prevented by allocating registers to only those spans for which

TO TMSAV is positive.

In the algorithm presented, the priority of a node, which is the value

TOTALSAV, is not normalized by the length of the span. In the algorithm

developed by Chow and Hennessy [1984], the priority is normalized by the

length of the span, because the global allocation phase is preceded by the

local register allocation phase. During global allocation the unallocated vari-

ables have occurrence frequencies that do not differ greatly, as the local

allocation, based on the occurrence frequencies of variables, smoothes out the

frequency differences in spans during global allocation. Thus, the adjustment

of the priority by the span length is needed, as a longer range occupies the

register for a longer period of time. However, in the above algorithm there is

no local allocation phase, and hence, the priorities are not normalized. If

several live spans have the same priority, the shortest span is colored first.

6. PERFORMANCE EVALUATION

To evaluate the performance of the clique separator approach to register

allocation, we present space and time complexities for the coloring process
and experimental results detailing the space savings and cost of the clique

technique.
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Allocate Registers {

for each span do compute priority HMAL,SAV endfor
unconstrained ~ { nodes whose degree is less than the number of registers )
constrained +-- { all nodes that do not belong to unconstrained set ]

P~tion the program by identifying the separators wrd
determine the order for processing the partitions.

repeat
Construct the irueijierence graph for the partition to be processed next.
repeat

Choose span lr from constrained with highest priority TOTMSAV.

i f lr has more colored neighbors than number of registers then
Spill the portion of span lr in the current partition.
Update the priority TOTALSAV for lr.

e 1se i f color assigned to Ir in earlier partitions is not av~ilable then
Assign another color to lr and introduce Copy code.

else
Assign appropriate color to lr.

end if
unt i 1 all constrained nodes m current partition have been processed

unt 11 all partitions have been processed
Assign colors to unconstrained nodes.

)

Fig. 7. Priority-based register allocation.

In the analysis below, n is the number of live ranges, and m is the number

of program partitions created by the clique separators. We assume that nodes

to be colored are chosen using a priority-based scheme.

Space complexity. The space complexity of the coloring heuristic when

applied to an x-node interference graph is 0(x2), as there can be at most

x(x – 1) edges in the graph. Since only the interference graph for a single

code partition, consisting of 0( n/m) nodes, is constructed at any given point

in time, the space required by the algorithm is 0( n2/rn 2).

Run-time complexity. The run-time complexity of a priority-based coloring

heuristic when applied to an interference graph with x nodes is 0(x2), since

in each iteration of the loop, one span is chosen, and we may have to perform

x iterations. The time complexity of processing a single code partition is

0( n2/m2 ), as its interference graph contains 0( n/m) spans. Since there are
m partitions to process, the run-time complexity of the coloring algorithm is

O(nz/m). This time does not include the time for partitioning.

In the above analysis, it is assumed that the subgraphs resulting from

partitioning are constructed and colored one at a time. An approach for

further speeding up the coloring process is to construct the graphs and color

them in parallel. However, there will not be any savings in storage, as all

graphs would have to be constructed simultaneously. The complexities of

various priority-based register allocation approaches are summarized in
Table I.
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Table I. Complexities of Priority-Based Register Allocation Approaches

Without With partitioning

Partitioning Sequential Parallel (m processo;sl

Space 0(n2) o(?z’/rn2) O(n2)

Time O(n2) 0(n2/m) O(n2/m2)

The clique separator technique using Chaitin’s approach and described in

Section 3 was implemented in C on a Sun 3/50 Workstation. In order to

analyze the space performance of the clique separator approach, the exhaus-

tive technique using Chaitin’s coloring algorithm in which one interference

graph for the entire program is constructed was also implemented. Both

techniques use the same heuristics in selecting nodes to color and spill.

Results of experiments to investigate the space performance of the two

approaches for a sample of programs are given in Table II. The programs,

with the exception of the towers program, contained one procedure. The

towers program had two procedures, the results of which are presented

separately.

The experiments were designed to determine the difference in sizes of the

interference graphs generated by the two methods and the quality of code

produced. Table II displays the results assuming an unlimited numbers of

registers, thus eliminating the need for spill code. In the table, the first

column is the name of the program, and the second column gives the number

of nodes in the interference graph for the entire program that was generated

by the exhaustive algorithm. The column labeled “Clique subgraphs” lists all

of the sizes of interference graphs constructed using the clique technique,

with the average-size subgraph given in the fourth column, labeled “Average

size.” The last column, “Savings,” gives the percentage difference between the

graph constructed with the exhaustive technique and the maximum-size

graph constructed using cliques.

As can be seen from Table II, the size of the graphs constructed by the

clique method were considerably smaller than that constructed for the entire

program. On average, the size of the graphs colored in the clique separator

method are more than five times smaller than the graph generated by the

exhaustive approach. The largest graph found using cliques in each program

was, on average, more than two times smaller than the graph for the entire

program. The results indicate a significant memory savings, since once the

graphs have been used, the storage can be reclaimed for use by another

graph. These experiments also found that the same number of registers were

allocated in both schemes. Thus, the same quality of code was produced when

no spills were generated.

Another set of experiments was performed to compare the two register

allocation approaches in the presence of spilling. Table III presents the

results of these experiments. The second column in Table III gives the

number of registers that are available to the register allocators, and the

fourth column gives the number of spills for each technique. These results
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Table 11, Comparison of Techniques without Spilhng

Nodes in
Entire Average Savings

Program program Clique subgraphs size (%)

Sheve 34 4,5,5,4,8,6,7,9,5>6 6 74

Bubble Sort 57 1, 17,5, 10,15,23,8,8 11 59

Changer 26 3,7, 11,2,7 6 58

Towers of hanoi 6 6 6 0

Hanoi proc 11 11 11 0

FFT 233 6,28,5,2, 10,14,13,14, 12, 19 60

92,20,10,4,42,20, 15,14,12

Matrix Multiply 74 2,4,5,4,3,6, 15, 10 54

34,7, 17,7, 17

indicate that both techniques performed about the same in terms of generat-

ing spill code. In all but one case, the same number of spills was generated. In

that one case, the clique approach generated one more spill; however, since

heuristics are being used in both cases, the exhaustive method could also

generate more spills. Importantly, these results indicate that the quality of

code produced by the two methods is similar.

Table III also gives the time that it took both allocators to execute on the

longer programs. These numbers were generated to determine the increased

execution time of the clique technique. To determine these numbers, the

allocators were run five times, and the results were averaged. Column 5 gives

the total time that it took each allocator to execute. Columns 6–9 give a more

detailed analysis of the timings for the clique separator approach: The times

given in column 6 are for partitioning the program into cliques, in column 7
for building the interference graphs, in column 8 for coloring the graphs, and

in column 9 for spilling registers. From the timings, the clique separator took

more time to execute, basically due to the partitioning. The percentage of

increased execution time of the clique approach to the exhaustive approach

ranged from 34 percent to 96 percent. Approximately 60 percent of the

execution time for the clique technique was spent in partitioning. The clique

technique took less time to build the graphs, less time to color, and less time

to spill than did the exhaustive approach. From these results, it is clear that,

although the time to allocate using cliques may be more than for the

exhaustive approach, it is a practical approach and can reduce memory

overhead.

7. CONCLUSION

We have presented a technique for allocating registers using coloring that

avoids construction of the interference graph for the entire program code.

Graphs for smaller portions of the code are constructed and then colored

independently. The colors of adjacent graphs are then combined, leading to a

coloring of the entire graph. By using this method, the memory demands for

coloring are dramatically reduced. Experimental results indicate that the
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Table III. Clique Performance in the Presence of Spilling

Program Number of Number of
Timing (average of 5 samples in seconds)

Name Registers Method spills Total Partition BuildGraph Color Spill

Bubble Sort 7

8

Matrix Multiply 9

10

FFT 9

10

11

13

Chaitin

Clique
Chaitin
Clique

Chaitin

Clique
Chaitin

Clique

Chaitin
Clique

Chaitin
Clique
Chaitin

Clique

Chaitin
Clique

2
2
1
1

4

4

3
3

8
9

6
6
4

4

1
1

2.35
3.23
2.48

3.32

3.33
4.88

3.39
4.85

26.60

51.72
24,86
44.82
24.96

45.22

25.25
44.10

2.33

2.28

2.89

2.80

32.62

26.91

27.09

25.82

0.98

0.67

1.02

0.68

1.34

1.15
1.31

1.17

11.84

9.98
11.40

7.55
11.46

7.66

11.94
7.68

0.26 0.00

0.24 0.00

0.25 0.00

0.28 0.00

0.40 0.02
0.47 0.02
0.46 0.00
0.48 0.00

2.52 0.10
2.44 0.08

2.07 0.06
1.95 0.04
2.18 0.06

1.97 0.02

2.01 0.02
1.91 0.02

largest subgraph constructed is about five times smaller than the entire

interference graph. We also demonstrated that the time to allocate registers

using cliques is higher than constructing and coloring the entire interference

graph due to the need to partition the code. It is expected that the clique

approach would lead to better time performance when the heuristic used to

color the graph is expensive and based on the number of nodes. Using the

clique approach, more expensive algorithms, such as the optimal, may be

possible.

Although program traces were used in the technique presented in this

paper to determine cliques, another approach is to consider the basic blocks

in a flow graph one at a time [Gupta et al. 1989]. In this approach clique

separators are determined across basic block boundaries, taking into account

the branching and merging of control flow. At a divergence of control flow, the

different paths are considered independently, searching for clique separators.

When control flow merges, a separator for one of the paths is found (the one

that is more likely to execute), and the other path uses this clique separator.

Although we basically have considered performing register allocation se-

quentially, another advantage of the clique-based approach is that a parallel

version of register allocation can be performed. Once the traces are found, the

code partitioning can be performed in parallel for each trace, and then the

graphs can all be constructed and colored in parallel. Renaming would have

to be done to adjust the colors of the registers. We are currently developing a

parallel algorithm for allocating registers using the clique approach in order

to investigate its performance. We are also considering the performance of

using cliques when more expensive algorithms are used for coloring.
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