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This paper presents a technique to select a representative set of test cases from a test suite that

provides the same coverage as the entu-e test suite This selectlon m performed by ldentlfymg,

and then ehmmating, the redundant and obsolete test cases in the test suite. The representatl~ e

set replaces the orgznal test mute and thus, potential y produces a smaller test suite The

representative set can also be used to identify those test cases that should be rerun to test the

program after it has been changed. Our techmque us independent of the testing methodology and

only requu-es an association between a testing requirement and the test cases tb at satisfy the

requirement We i] lustrate the technique using the data flow testing methodology. The reduction

that is possible with our technique is illustrated by experimental results,
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1. INTRODUCTION

To accommodate testing during the many stages of a program’s lifetime, a

suite of test cases is typically developed and stored with the program. Since

test cases in the existing test suite can often be used to test a modified

program, the test suite is used for retesting. However, if the test suite is
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inadequate for retesting, new test cases may be developed and added to the

test suite. Thus, changes to an evolving program cause the size of the test

suite to grow, making efficient test suite management desirable. A reduction

in the size of the test suite decreases both the overhead of maintaining the

test suite and the number of test cases that must be rerun after changes are

made to the software. Managing the stored test suite includes both designing

new test cases and eliminating unnecessary test cases. New test cases are

designed wherever they are required to test the changed program. However,

in practice, test cases are not removed from the test suite, since it is usually

difficult to identify those test cases that are no longer necessary.

Unnecessary test cases include both obsolete and redundant test cases. A

change in a program causes a test case to become obsolete by removing the

reason for the test case’s inclusion in the test suite. A test case is redundant

if other test cases in the test suite provide the same coverage of the program.

Thus, because of obsolete and redundant test cases, the size of the test suite

continues to grow unnecessarily as software changes are made. Determining

a minimum set of test cases that provides the same coverage of the changed

or affected parts of the program is desirable. One technique [14] uses a

dynamic analysis of the program to reduce the number of test cases. This

technique executes the program with test cases from the test suite until the

structural coverage criterion is satisfied. Any remaining unexecuted test

cases are obsolete and can be eliminated. The ad hoc way in which the test

cases are chosen impacts on the number of redundant test cases that are

found. Further, this technique applies only to structural coverage and not to

testing criteria in general.

This paper presents a new reduction technique that assists in a number of

stages of testing deterministic programs. To perform the reduction, we de-

velop a heuristic that selects a representative set of test cases that is a subset

of a test suite, but still provides the desired testing coveragel of the program.

We use coverage to mean any method of completeness with respect to a test

selection criterion [2]. The reduction technique requires an association be-

tween the test cases and the testing requirements of the program, but is

independent of the test selection criteria and can be applied if this association

can be made. The reduction technique can also accommodate test suites that

reflect more than one test selection criteria. The reduction can be performed

on the entire, stored test suite or on a test suite consisting of those test cases

that test changed or affected parts of a program. We implemented our

technique by incorporating it into a data flow testing system [8] that is part

of the Free Software Foundation’s GNU CC compiler. G (Copyright (C) 1987,

1989 Free Software Foundation, Inc., 675 Mass Avenue, Cambridge, MA

02139.) Our experiments include using the technique during initial program

development, after implementation-type and functional changes are made to

the program. Our results demonstrate the reduction in the size of the test

suite that can be achieved by our technique.

1 We use coverage to mean any metric of completeness with respect to a test selection criterion

[2] and thus, ,t applies to any testing methodology.

ACM Transactions on Software Engmeermg and Methodology, Vol. 2, No. 3, July 1993.



272 . M. J, Harrold et al.

In the next section, we discuss approaches to retesting after program

changes and illustrate the usefulness of our technique. Section 3 details the

test suite reduction algorithm as it applies to a single test selection criterion

and an example is given. Section 4 demonstrates our methodology as applied

to data flow testing. In Section 5, we discuss the way in which we handle test

suites based on more than one test selection criteria and thus, illustrate

the generality of our technique. Our experimental results are presented in

Section 6 and concluding remarks are given in Section 7.

2. TEST SUITE MANAGEMENT

For a particular program, a test selection criterion translates into a set of test

case requirements, whose satisfaction provides the desired measure of com-

pleteness with respect to that criterion. For each test case requirement, an

associated testing set consists of the subset of the test suite that satisfies the

requirement. Our test suite reduction technique uses both the test case

requirements and their associated testing sets. Black box or functional

testing uses the program specifications to identify the test case requirements.

The associated testing sets are determined during test suite development.

Whenever a test case is developed for a specification, the user includes the

test case in the associated testing set for any other specification that it also

tests. White box or program-based testing uses the components of the pro-

gram to derive the test case requirements and the associated testing sets

are determined by considering the execution paths of the test cases. The

program is instrumented to record the execution path of a test case that is

then used to associate test cases with program-based requirements in the

program.

A program modification may cause a change in a program’s test case

requirements: new requirements may be added or existing requirements may

be deleted/modified. Although some existing test cases in the test suite may

retest the modified software, the change in test case requirements may

require new test cases and may also allow unnecessary test cases to be

eliminated. There are two basic approaches to retesting after program

changes: incremental [7, 10, 11, 16, 18] and retest-all [13]. Both of these

approaches can benefit from our reduction technique.

An incremental approach to testing after program changes can use our

reduction technique in two ways. First, it can use the technique to find a

reduced set of test cases for the retesting. With incremental testing, an

analysis uses information saved from previous testing sessions to determine

the effects of program modifications. The analysis updates the test case

requirements to reflect the changed program and identifies a subset of the

test suite for the retesting. There may be redundancy in this subset since

several test cases may test the same changed parts of the program. Although

it is desirable to eliminate this redundancy and reduce the amount of

retesting, existing incremental methods do not identify a smaller set of test

cases that provides the required coverage of the modified program. Thus, our
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reduction technique can be used to reduce the retesting by eliminating these

redundant test cases.

The second way that an incremental approach can use our reduction

technique is to reduce the size of the stored test suite. The test suite is

continually updated so that it always reflects those test cases that satisfy the

test case requirements. After executing the program with the test cases

identified for retesting, an incremental approach determines unsatisfied test

case requirements and reports them to the user. New test cases are developed

for these unsatisfied test case requirements and added to the test suite. Any

test case that becomes obsolete, because of the removal of the only testing

requirement associated with it, is eliminated. Although this approach does

eliminate test cases that no longer satisfy a test case requirement, it does not

eliminate redundant test cases. New test cases that are added to the test

suite may cause other test cases in the test suite to become redundant, in

that they satisfy the same test case requirements. Current incremental

testing techniques do not eliminate redundant test cases. Our reduction

technique can be used to eliminate redundancy and reduce the size of the

stored test suite.

A retest-all approach tests modified programs without identifying a subset

of the test suite that can be used for the retesting. Thus, the program is

executed with all test cases in the test suite. More test cases are added until

all test case requirements are satisfied. In the retest-all approach, the

associated testing sets are not updated to reflect the removal of test case

requirements and thus, obsolete test cases remain in the test suite. Addition-

ally, there is no attempt to remove redundant test cases. The test suite can

become quite large since unnecessary test cases are not removed and new test

cases are added. Our reduction technique can be used to eliminate both

obsolete and redundant test cases from the test suite.

3. TEST SUITE REDUCTION

We state the problem of selecting a representative set of test cases that

provides the desired testing coverage of a program or part of a program as

follows:

Giuen: A test suite TS, a set of test case requirements rl, rz, . . . . r. that

must be satisfied to provide the desired testing coverage of the program, and

subsets of TS, Tl, T2, . . ., T., one associated with each of the r,’s such that

any one of the test cases t]belonging to T, can be used to test r,.

Problem: Find a representative set of test cases from TS that satisfies all

of the r, ‘s.

The r,’s can represent either all of the program’s test case requirements or

those requirements related to program modifications. A representative set of

test cases that satisfies the r,’s must contain at least one test case from each

T,. Such a set is called a hitting set of the group of sets Tl, T2, . . . , T.. A

maximum reduction is achieved by finding the smallest representative set of
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test cases. However, this subset of the test suite is the minimum cardinality 2

hitting set of the T,’s and the problem of finding the minimum cardinality

hitting set is NP-complete [4]. Therefore, since we are unaware of any

approximate solution to the problem, we develop a heuristic [5, 6] to find a

representative set that approximates the minimum cardinality hitting set.

The heuristic first includes all test cases that occur in single element T,’s in

the representative set and marks all T,’s containing any of these test cases.

Then, all unmarked T,’s of cardinality two are considered. Repeatedly, the

test case that occurs in the maximum number of T,’s of cardinality two is
chosen and added to the representative set. Again, all unmarked T,’s contain-
ing these test cases are marked. This process is repeated for T,’s of cardinal-

ity 3,4, ..., mar, where max is the maximum cardinality of the T,’s. We

consider the T,’s with lesser cardinalities first because they contain fewer test
cases from which to choose. At any given time, only those T,’s from which no
element has yet been chosen are considered. When examining the T,’s of size

n, there may be a tie because several test cases occur in the maximum
number of T,’s of that size. In this case, the heuristic examines the unmarked
T,’s with cardinality ( n + 1) for those test cases that were involved in the tie.
The test case that occurs in the maximum number of T,’s of cardinality

(n + 1) is chosen. If a decision cannot be made, the T,’s with greater cardinal-
ity are examined and finally a random choice is made.

For example, in Table I, the test suite TS consists of test cases, t,, the test

case requirements, REQ,, and the associated testing sets, T,. The heuristic

first adds test case t5 to the representative set since T2 is the only singleton

T,. REQI and REQZ are marked as being satisfied since tb is associated with

each of them. Then, we consider unmarked T,’s of cardinality two (i. e., T4, T~,

and T6). Each of the test cases t~ and t4 appears in one of these T,’s while

each of test cases t~ and t6 appears in two of those Tl ‘s. Since there is a tie

between test cases tl and t6 for the maximum, we continue processing with

unmarked T,’s of the next higher cardinality. Thus, T~ and T7 are considered

next. We only use the test cases involved in the tie to compute the maximum
for cardinality 3. Test case tl appears in Td while test case t~ appears in

neither of the T,’s. Thus, test case tl is chosen and added to the representa-

tive set. T~, T~, and T6 are marked since they contain tl. Processing contin-

ues with TJ, the only unmarked r, of cardinality 2. Again there is a tie

between t~ and t~ causing T,’s of cardinality 3 to be examined. Test case t~

appears in TT, and thus, it is added to the representative set, which allows

the remaining T,’s ( T4, T7, and T8 ) to be marked. The resulting representa-
tive set is {tl, t3,t5}.For the test plan update problem, tz, t4,t6,and t7 can be

eliminated from the test suite. For the test selection problem, only test cases

t~,t~,and t5must be rerun to satisfy the test case requirements.
The algorithm, ReduceTestSuite, that implements this heuristic is given in

Figure 1. In step 1, algorithm ReduceTestSuite initializes and preprocesses

the T, ‘s. First, the maximum cardinality, M~_ CARD, of the input sets is

2 The cardmatzty of a finite set is the number of elements m the set.
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Table I. Test Suite TS Consists of Test Cases t,, Testing Requirements are REQ, and

Associated Testing Sets are 2’,

L rl T,

1
2

3

4

5

6

7

8

REQI

REQ.

REQ3

REQL

REQ5

REQG

REQ7

REQ8

{t, , tJ

{%}

{t,. t,. t,}

{t3,tJ
{tl,t’1)
{t,, t,)
{t,,t~,t7}
{k. tg, tl> t71

determined and the cardinality currently being processed, CUR_ CARD, is
initialized to one. Next, Reduce TestSuite initially forms the representative
set, RS, by taking the union of all of the 7’,’s that are single element sets. All

T,’s containing some element in the initial RS are marked; marked sets are

not reprocessed. Then, in Step 2, ReduceTestSuite determines the remainder

of RS. Unmarked T,’s with increasing cardinality are examined. A list, LIST,

is constructed that consists of those test cases in the T,’s with cardinality

equal to the current cardinality, CUR_ CARD. A new test case, NEXT _TEST,

is chosen from test cases in LIST and added to RS. Subsequently, all

remaining unmarked TZ’s containing NEXT_ TEST are marked as repre-

sented in RS. The function, SelectTest, is used to determine NEXT_ TEST,

the next test case to add to RS. SelectTest recursively examines the TZ’S of

cardinality SIZE for test cases contained in the greatest number of the T, ‘s.

The array COUNT is used to store the number of T,’s of cardinality SIZE

containing the tj’s in LIST. If several Tj’s are found, the T,’s of the next

higher cardinality are examined to select a single test case from these test

cases. ReduceTestSuite repeats this process unti~ either a single test case is

found or one is chosen at random. A random choice is made if no higher

cardinality sets remain to be examined. The Boolean variable MAY_ RE-

DUCE is set whenever one of the sets with cardinality MAl CARD is

marked. Whenever MAY_ REDUCE is set, MAX_ CARD is reinitialized to

the highest cardinality of the remaining sets. Resetting MAX_ CARD is an

optimization that may reduce the time to select the next test case.

We analyze the worst case run-time of ReduceTestSuite to demonstrate

that it is efficient and therefore suitable to incorporate into a test suite
management methodology. Let n denote the number of associated testing

sets T,, nt denote the number of test cases t,, and MAX_ CARD, the maxi-

mum cardinality of the groups of sets. Reduce TestSuite involves two main

steps: (1) computing the number of occurrences of various test cases in sets of

varying cardinality and (2) selecting the next test case to add to the represen-

tative set. These steps are performed repeatedly until a representative set is
found. Computing the number of occurrences of various test cases in sets of

varying cardinality takes 0( n* M=_ CARD) time since there are n sets and
all elements of these sets are examined once. Selecting the next test case to
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atgorfthur ReduceTestSmte

input T1, T,, ., T. associated testing sets for II. rz, , r. respectlv el y, contsmng test cases from t,, tz, ..., ~

output RS a representstwe set of T,, Tz, , T,
declare MAl_CARD, CUR.CARD. 1 nt

LIST hst of t, ‘S

NEXT_TEST. one of t,, tl, 7k,

MARKED urray[l.. n] of boolean, uutially false

MAY.REDUCE boolean
Muxo. returns the maximum of a set of numbers
Cardo. retrims the cardmahty nf a set

begin
P Step 1. auw+hxatlon */

M,O_CARD = Max(Card(TI)) /“ get the mcmmum csrdrrmhty of the T,’s */

RS = U T,, Card(Tl) = 1 /* take umon of all single element T,’s */

foreacb T, such that T, m RS # 0 do MARKEDII] .= true /’ msrk ail T, contmmng elements m RS */

CUR.CARD = 1 /* consider single element sets first*/

/* Step 2 compute RS according to the heuristic for setx of higher cardmahty */

Innp

CUR.CARD = CUR.CARD + 1 /* consider the sets wdfr next hler cardmaldy */

while there sre T, such that (Csrd(T,) = CUR_CARD and not Marked[l] do

/’ process all unmarked sets of currentcardnrahty’/
LIST = all t, E T, where Csrd(T,) = CUR_CARD and rrot Marked[l]

I* all; m T, of s=. CUR_CARD’1

NEXT_TEST = SelectTest(CUR_CARD,LIST) /* get another; to include m RS”/
RS .= RS U {NEXT.TEST} /“ add tbe test to RS “/
MAY.REDUCE = fake
foreach T, where NEXT_TEST e T, do

MARKED[l] .= true /“ mark T, corrtmmrrg NEX’T.TEST’/
if Cwd(T,)= MAJ_CARD then MAY_REDUCE ,.1

endfor

if MAY_REDUCE then /+&y to reduce MAX_CARD */

MN_CARD := Msx(Csrd(T,)), for all 1 where MARKED[l] = false
endwhile

until CUR_CARD. M.W_CARD

end ReduceTestSude,

functiou SelectTest(SIZE, LIST)

/* tfus fnactron selects the next q tc be urcluded m RS */

declare COUNT array[l nt]

begin

foreach ; m LIST do compute COUNT[tJ, the number of unmsrked Tj’s of cardmahty SIZE cmrfaurmg L

Construct TESTLIST conslstmg of testx from LIST for which COUNT[l] M the mammum

if Csrd(TESTLIST)=l then return(the test case m TESTLIST)

elseif SIZE= MAX_CARD then return(any test case m TESTLIST)

else returu(SelectTest(S IZE+l, TESTLIST))

end SelectTest

Fig. 1 Algorithm ReductTestSuite for finding a representative set from a group of sets,

be included in the representative set requires examining the counts associ-

ated with each test case. This step takes at most 0( nt* MAX_ CARD) time.
Selecting a test case and recomputing the counts is repeated at most n times
since after selecting a test case at least one additional test case is covered by
the representative set. Therefore, the overall run-time of Reduce TestSuite is

O(n( n + m )MAl_CARD).
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Although the above analysis provides the worst-case run-time of Re-

duceTestSuite, our experiments demonstrate that in practice it executes

much faster. We first recorded the actual execution times of Reduce TestSuite

for a set of test programs using the associated testing sets obtained during
program testing. Then, for each test program and its testing requirements,
we constructed a second set of associated testing sets to force ReduceTest-

Suite to perform poorly and recorded the actual execution times of Re-

duceTestSuite with these associated testing sets. For a set of test case
requirements, r-l, rz, . . . , r~ and a set of test cases, tl,t2,...,tnithe associ-
ated testing sets are formed as follows:

‘2 ‘or ‘f ‘s{k(L- l)MODnt+ l,k(t)MODnt+l} fori = 1,2, . . ..n – ]

T~ forr~ is{tl, t2, . . ..t~t}

Thus, for a test program having five test case requirements and four test

cases, we construct the following associated testing sets:

TI = {tl, tz}

T2 = {t2, t~}

Ta = {tJ, t4}

T4 = {t4, t1}

T~={tl, t2, t~, t4}.

Since this construction of T,’s contains little overlap in the subsets, a mini-

mum number of r, are satisfied by each test case. Furthermore, since one of

the T,’s is the entire test suite and a tie will occur in all other subsets, the

computation will consider the maximum cardinality at least once. Table II

compares the execution time of ReduceTestSuite on the associated testing

sets obtained during program testing with the worst-case scenario found by

constructing the associated testing sets from the same test suite. In all cases,

ReduceTestSuite performs better on the actual associated testing sets found

during testing than the worst-case constructed sets; in most cases, it per-

forms much better on the actual associated testing sets.

4. APPLICATION TO DATA FLOW TESTING

We incorporated the representative set algorithm into a data flow testing
system [8]. Data flow testing is a methodology that uses the data dependen-
cies in a program to guide the selection of the test cases [3, 12, 15]. Data flow

analysis determines the relationships between definitions of variables and

uses of the same variable. Definitions of variables occur in statements where

a variable gets a value, such as assignment statements and input statements.
Uses of variables occur where a variable’s value is fetched, such as output

statements, conditional statements and the right-hand side of assignment
statements. A definition that reaches a use forms a definition-use pair. We
illustrate the reduction technique using the Rapps and Weyuker data flow

criterion [17], although it can also be applied to other criteria. For the
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Table II. Run-Times for ReduceTestSuite for Actual and Constructed Associated Testing Sets

procedwe

trityp
atof
getop
Calc
qsort
trityp2

3qroot
sqroot2
sqroot3
3qroot4
sqroot5

lest cases actual associated
testing sets

16 1.50
2 .07
4 .28
7 .23
5 .10

19 .27

6 .07
6 .10
6 .25
5 .08
6 .10

comtructed associated
testing sets

—
9.28

.13

.80

.60

.30
2.35
.35
.41

.62

.20

.25

“all-uses” criterion, definition-use pairs are computed both within individual

procedures [1] and across procedure boundaries [9]. The required definition-

use pairs are identified as the test case requirements and test cases that

satisfy the definition-use pairs are developed. A test case satisfies a particu-
lar definition-use pair if a subpath from the definition to the use, with no

intervening redefhition of the variable, is traversed during the program’s

execution with the test case as input. To determine if a test case satisfies a

particular definition-use pair, the program is instrumented so that it outputs

the execution path of a test case. Then, an acceptor takes both a

definition-use pair and the execution path and determines whether the test

case satisfies the path. To determine the associated testing sets, the acceptor

is run with each of the testing requirements and each of the test cases as

input. ReduceTestSuite is used to provide a reduction in the number of test

cases to rerun to validate a changed program and to control the size of the

test suite.

To illustrate the Reduce TestSuite algorithm as it applies to the test update

problem, consider the flow graph for a simple program segment given in

Figure 2. Statements of the form “X = “ represent definitions of X while

statements of the form “== X“ represent uses of X. Data flow analysis is
performed on the program and the required definition-use pairs are identi-

fied. The definition of X in BI has uses in Bz, B~, B~, and B6 and the

definition of X in B~ has uses in B~ and B6. A definition-use pair is denoted

by an ordered pair where the first coordinate is the node in the control flow

graph containing the definition and the second coordinate is the node contain-

ing the use. The definition-use pairs for variable X are: (Bl, B2 ), (Ill, B5),

(Bl, BG), (Bl, B~), (B~, B~), and (B~, BG). Test cases are supplied and ac-
cepted until all required definition-use pairs have been satisfied or dismissed
as infeasible by the user3. A possible set of test cases, their execution paths

and the definition– use pair(s) satisfied by each of them is given in Table 111.

.-
3 A path through a program for which no input wdl cause its execution is said to be Infeasible
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.R
1‘2@“E’J

“w
i

B, B*

‘9

Fig. 2. Control flow graph for partial example

program: “X = “ represents a definition of X and

“ = X“ represents a use of X.

I I

Table III. Testing Information

test case execution path definition-use pan-(s)

1 Bl>Bz>B~, B6, BT, B9 (BI, B2), (BI, BG)

2 Bl, Bz, Bd, B5>B6, B7, Bg (Bl, B6)

3 Bl, B;, BL, B6, B~, Bg (B1, B~), (B~, B,)

4 Bl, B3, Bi, B~, B6, Bg, Bg (B,, B~)

Table III(a). Addendum to Table III, Reflecting New Test Case Requirements and

New Test Cases

test case execution path defimtion–use pair(s)

5 B1, B2, B4, %1 B8)% (Bl, &~

6 Bl>Bz, Bd. B~, B6, B7 (B3, B,)

Test cases are numbered according to the order in which they were supplied

for testing.

Now suppose that the program is changed by inserting uses of variable X

in statements in nodes BT and B~. The partial control flow graph given in
Figure 3 shows the changes that result. Due to the changes, the following

definition-use pairs are added (Bl, BT), (Bl, Bs), (Bs, BT), and (Bs, Bs).
Tests tl and t2 satisfy (131, BT) and tests t3 and t4 satisfy (B~, Bs). However,

since no existing test cases can be used for the other two pairs, additional test

cases are developed. Two test cases are required since the definitions are on

different control paths in the program. Thus, the following information is

added to Table III.
Consider a request for a test suite reduction at this point. Inspection of the

existing test cases reveals some redundancy. For example, test t6 also
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!
I
I

I

Fig. 3. Control flow graph for partial example program:

“X = “ represents a definition of X; “ = X“ represents a

use of X. B, :=x

Bg

Table IV. Definition-Use Pairs and Their Associated Testing Sets

definition-use pair associated testing set

(Bl, B2)
(B,, B,)
(Bl, B,)

(Bl, B,)

(B,, B5)

(B,, B,)

(Bl, B,)

(Bl, Bs)

(B~, B7)

(B,> B,)

{tl,t~,t,}
{L2}
(tl,t2,t~,t6}
{ta,t~,Lj}
{t4,t6)
{t3, tl> t~}

{tl,tJ
{tJ
{t,}

{t,, t’L}

satisfies ( I?l, BG) and (Bl, 11~). The associated testing sets for the definition-

use pairs are identified and listed in Table IV. ReduceTestSuite considers the

associated testing sets. First, the singleton sets {tz}, {t5},and {tG} are added to

the representative sets and all definition-use pairs associated with any of
these test cases are marked. Thus, all definition-use pairs except (13~, Bs)
are marked. Then, the remaining sets are inspected and elements from

doubleton sets are identified and added to the representative set. Here, only

the set {t3,t4}remains, so t3 is added to the representative set and ( 11~, Bs) is

marked. The resulting representative set is {tz, t~,t5,t6},which becomes the
new test suite since other test cases in the test suite are eliminated. Thus,
two of the six test cases are redundant and can be eliminated without losing

the desired testing coverage of the program.

The reduction technique can also be applied to the test selection problem.

Suppose that incremental analysis of another change in the modified example

program indicates that all existing definition-use pairs for the definition of X

in l?l must be retested. These definition-use pairs are: ( Bl, B2 ), (Bl, B~),

(Bl, BG), (Bl, B7), and (Bl, B8). The associated testing sets for these defini-
tion–use pairs are listed in Table V. The heuristic can be used to identify a
representative set for the retesting that still provides the desired coverage

of the changed part of the program. Test cases t2 and t5 are added to
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Table V. Definition-Use Pairs and Their Associated Testing Sets

definition-use pair associated testing set

(Bl, B2) {tz,ts}
(Bl, B,) {t,, t,]

(B,, B5) {t,}
(Bl, B6) {t,, t5, t,}
(Bl, B7) {t,}
(B1, B8) {ts}

the representative set and definition-use paiH3 ( ~1, ~z ), (~1, ~5), ( ~1, ‘6),

(Bl, B7), and (Bl, B8 ) are marked. Test case t~ is added to the representative
set since either of test cases t~ or t6 satisfy definition-use pair (Bl, Ba).

Rerunning the program with test cases t2,t3,and t5 provides the desired

coverage of the changed program.

5. TEST SUITES REPRESENTING MULTIPLE TEST SELECTION CRITERIA

We have presented our technique for controlling the size of a test suite as if a

single test selection criterion were used for the testing. However, typically in
practice, a program is validated using test suites that satisfy a combination of

different testing methodologies. For our purposes, we classify testing method-
ologies according to the relationships among the test suites that are used for
the testing. We discuss the technique as it applies to two test selection
criteria but it can be easily extended to handle a greater number of method-
ologies. There are three broad classifications of the relationships among test
suites: (1) the test suite associated with one methodology is a subset of the
other, (2) the test suite of the two methodologies may overlap but one is not

contained in the other, and (3) the test suites of the two methodologies are

completely independent.

The first classification occurs when combining testing methodologies such

that one methodology creates test cases that are also used in the other

methodology. For example, consider using both functional and structural

testing. Functional testing is usually performed first on a program and test

cases are developed and used to test the program specifications. Then, these

test cases are used to determine the coverage achieved according to some

structural requirements of the testing. Test cases are developed for any

structural testing requirements that remain unsatisfied. In this case, the set

of functional test cases is a subset of the set of structural test cases. Thus,

any reduction of the test suite for the structural testing should not elimi-

nate any of the required functional tests. We apply our algorithm to this com-

bination of functional and structural test suites by first identifying the

representative set for the required functional test cases. Then, we use this
representative set as the initial representative set for the structural test

suite. Those associated testing sets whose intersection with the initial repre-

sentative set is not empty are marked. The rest of the representative set for

the structural test suite is identified by applying the algorithm to the
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remaining associated testing set. For this combination of testing methodolo-

gies, one representative set is always a subset of the other.

The second classification occurs when combining testing methodologies

such that there is a nonempty intersection between the test suites for the two

methodologies. Here, the test suites for the two sets of test case requirements

have some test cases in common, but one test suite is not necessarily a subset

of the other. A representative set is first identified for one of the testing

methodologies. Then the intersection of this representative set and the

second test suite becomes the initial representative set for the second test

suite. Any associated testing sets whose intersection with the initial repre-

sentative set is nonempty is marked, and the heuristic is applied to the

remaining associated testing sets to complete this representative set. Al-

though one of the representative sets may be a subset of the other, in general,

this is not the case. However, the two representative sets have some test
cases in common,

In the third combination of testing methodologies, the intersection of the

test suites associated with the test case requirements is empty. Thus, the

representative sets for the two test suites will have no test cases in common.
The representative set for each of the test suites is computed independently
by applying the heuristic to each of them.

6. EXPERIMENTATION

We incorporated a data flow tester into Free Software Foundation, Inc’s GNU

CC compilero [8] and used our algorithm to implement the test suite

reduction technique. We performed three separate experiments to determine

the possible reduction of the test suite size that our technique can provide for

different stages of the software life cycle. Our experiments used two different

test selection criteria (1) function test cases based on a program’s specifica-

tions and (2) “all-uses” data flow testing criterion. In all experiments, the

functional test cases were used to test the program and then test cases were

developed to satisfy any uncovered definition-use pairs. We described the

reduction technique for this type of test suite in Section 5 (the first classifica-

tion) and our reduction is performed accordingly. We used a team of testers

consisting of five graduate students having varying familiarity with both the

project and data flow testing (e.g., one of the students implemented the tester

while another had no previous knowledge of formal testing procedures). The

students were given the programs to be tested and instructions about using
the tester. Each member of the testing team performed the experiments

individually. We summarize the results of the experiments in Tables VI, VII,

and VIII. For each program tested, its number of source lines, number of

definition-use pairs, and number of test cases before the reduction is listed.

Then, the number of redundant test cases found by the experiment along

with the percent of reduction is given.
In Experiment 1, we used our data flow tester to find an “all-uses”

adequate test set for a set of small C programs by starting the experiment
with a given set of functional test cases. The program descriptions and
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Table VI. Experiment 1: Reduction During Program Development

procedure source du-pairs original redundant %reduction

lines test cases test cases

trityp 21 39 16 3 18.7

atof 17 63 2 1 50.0

getop 19 33 5 3 600

Calc 33 3 11 4 36.4

qsort 20 43 4 2 50.0

Sqroot 19 13 5 2 40.0

Table VII. Experiment 2: Reduction During Program Maintenance for

Performance Improvement

procedure source du-pairs original redundant %reduction
lines restcases test cases

rntyp2 30 42 13 7 54.6

sqmot2 21 25 6 2 33.3

sqmot3 33 44 5 1 20.0

sqm0t4 17 17 7 2 2%.6

Sqmot.?l 17 24 5 1 20.0

Table VIII Reduction During Program Maintenance for Program Enhancements

procedure source du-pairs original redundant %reduction
lines test cases test cases

calc2 41 4 80 0 0.0

calc3 60 4 13 4 30.8

catc4 72 4 14 0 0.0

cak5 86 16 18 3 16.7

gcmp2 27 57 4 1 25.0

getop3 38 69 5 2 40.0

reduction achieved are shown in Table VI. Trityp is a program that classifies

triangles as to their types, atof is the C procedure that converts character

data to floating point data, getop and talc are routines for a calculator

program, qsor-t is a quicksort routine, and sqroot is a program to calculate
the square root. After initial testing, we applied our reduction technique to

the resulting test set to find a representative set of test cases that provides
the same coverage of the program. This reduced test set replaced the original
test set. Our goal here was to identify and remove redundant test cases
introduced during program development. In all cases, our algorithm achieved

significant reduction in the number of test cases.
In Experiment 2, we made changes to the implementations of two of the

programs without changing the program’s specification. In trityp 2, we im-
proved the implementation of the trityp program to make it more efficient.

We also changed the algorithm used for the sqroot program in several ways
to get sqroot 2, sqroot 3, sqroot 4, and sqroot 5. In all cases, we used the
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reduced test suite of Experiment 1 to retest, so the test set had already been
reduced before we started testing in Experiment 2. With this experiment, we
hoped to gain insights into the possible test set reduction that could be
achieved during program maintenance when only structural program changes

were made. We used the technique described in Section 5 by first reducing

the functional test cases and then reducing the rest of the test suite. Table

VII gives the results of Experiment 2. Again, in all cases, our technique found

redundant test cases, so a reduced test suite results.
In Experiment 3, we changed the function of the talc program by adding

new features. Since talc calls getop, both were changed and retested. Here,

we were changing both the function and structure of the program. Our

objective in this experiment was to determine the amount of redundancy

introduced by program enhancements. Table VIII shows the results of our

experiments. In both calc2 and calc4, the additional test cases introduced no

redundancy into the test suite; in all other cases, redundant test cases were

found.

Although the programs tested are small, our experiments show that a

considerable reduction can be made in the size of the test suite. The reduction

for our examples ranged from 19% to 609% when actually developing the

program. The reduction ranged from 20’% to 557. for implementation changes

and from O% to 407e when making program enhancements. For larger

programs, we expect our technique to scale up favorably. For a program with
a few lines of code, each test case in the test suite may satisfy a small number

of test case requirements. However, for a larger program, each test case may

satisfy many test case requirements. Thus, test cases developed to satisfy

specific test case requirements may cause redundancy. For example, for unit

testing, test cases are developed for individual procedures. However, when

the procedures are integrated, many of the test cases may be redundant and
can be eliminated.

7. CONCLUSION

We have presented a technique that helps manage a test suite by identifying

redundant and obsolete test cases. The identification of unnecessary test

cases can be used to reduce the size of the test suite by eliminating both

obsolete and redundant test cases. This identifllcation can also be used to

select test cases to run by eliminating the obsolete and redundant test cases

from consideration. The technique is not dependent on any particular test

selection criterion and can be used as long as the association between

requirements and test cases can be made. The technique can either be

integrated into a testing methodology or be used as a stand-alone tool. Thus,

as a program is being developed and tested, the methodology could be used to

identify unnecessary test cases. Experimentation shows that even for small

programs, a significant reduction in the test suite may be realized.
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