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Abstract
Floating point representation has limited precision and in-
puts to floating point programs may also have errors. Conse-
quently, during execution, errors are introduced, propagated,
and accumulated, leading to unreliable outputs. We call this
the instability problem. We propose RAIVE, a technique that
identifies output variations of a floating point execution in
the presence of instability. RAIVE transforms every float-
ing point value to a vector of multiple values – the values
added to create the vector are obtained by introducing artifi-
cial errors that are upper bounds of actual errors. The prop-
agation of artificial errors models the propagation of actual
errors. When values in vectors result in discrete execution
differences (e.g., following different paths), the execution is
forked to capture the resulting output variations. Our evalu-
ation shows that RAIVE can precisely capture output varia-
tions. Its overhead (340%) is 2.43 times lower than the state
of the art.

Categories and Subject Descriptors F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming Lan-
guages; D.2.5 [Software Engineering]: Testing and Debug-
ging; G.1.0 [Numerical Analysis]: General

Keywords floating point representation; instability; cancel-
lation; vectorization

1. Introduction
Data processing using floating point programs is essential
in the emerging big data era. During program execution, er-

rors can be introduced, propagated and accumulated, poten-
tially leading to unreliable outputs. We call this the float-
ing point instability problem. The errors introduced include
those due to precision limitations in physical instruments or
human efforts in acquiring the inputs, called the external er-
rors, and those from limited representation precision, called
the internal errors. Handling instability is critical because
important decisions may be based on data processing results
– results of computer simulations may be used to setup ex-
pensive scientific wet bench experiments; commercial deci-
sions may be made based upon results of mining customer
data etc. Evidence suggests that widely used data processing
programs suffer from instability. We will show in Section 5
that a widely used implementation of the k-means data min-
ing algorithm [13] can produce completely different cluster-
ing results; an information retrieval program pagerank [14]
may produce completely different rankings, both due to the
instability problem.

Researchers have developed various techniques to ad-
dress the instability problem. Static techniques such as ab-
stract interpretation and theorem proving [9, 18, 23] were
proposed to reason about the existence or the absence of
instability. Interval arithmetic [24, 26] and affine arith-
metic [10, 12, 17] model errors as ranges or affine formulas
to reason about execution stability. Program transformation
was proposed to improve precision and stability [1, 5]. Re-
cently in [2], an on-the-fly predictor was proposed to detect
instability. Based on the prediction result, the execution may
switch to a higher precision.

While mostly focusing on internal errors, existing works
use the ideal execution with infinite precision as the oracle
to reason about instability in actual execution and then aim
to eliminate the differences between the two executions to
produce reliable results. However, we argue that these ap-
proaches may be undesirably restricted in their scope. Even
if the detected differences between ideal and actual execu-
tions are eliminated (e.g., by hoisting the precision) the exe-
cution may nonetheless be unstable as the same differences
may be easily triggered by minor perturbations of the in-
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put (due to external errors). Consider the example in Fig. 1
with a predicate (line 3) that is unstable when the input x is
close to 0.0045. The curve at the bottom shows how output
y varies with input x. Observe that y = f(x) is on the left
and y = g(x) on the right, and there is a discontinuity right
at x = 0.0045. In contrast, the curve on the top is slightly
off due to internal errors. Particularly, the discontinuity is
at a value close to 0.0045. Assuming the technique in [2]
reports that the unstable input range is rl so that higher pre-
cision should be used for values in the range. Unfortunately,
even use of infinite precision is insufficient as it does not
alert the user that the program output may change substan-
tially in the presence of a small external error when input x
is close to 0.0045. In other words, instability is a property of
the computation performed on a given input, which cannot
be completely evaded by hoisting representation precision.
Thus we argue that achieving the same results from the ideal
and actual executions ignores instability due to external er-
rors which are inevitable in the real world.

Figure 1. Inevitable External Errors

Moreover, a patch to the problem may not exist, which
is different from functional bugs. In our example, the insta-
bility is due to the interface between the continuous float-
ing point domain (i.e. variable c at line 3) and the dis-
crete boolean domain (i.e. the branch outcome at line 3)
and intrinsic to the algorithm. Changing the implementation,
which is a typical method to improve stability for the float-
ing point domain, is unlikely to completely fix the problem
due to the involvement of the discrete domain.

In this paper, we observe that the key to handling runtime
instabilities is not to achieve an execution close to the ideal
one, but rather to inform the user of the possible (output) ef-
fects of the instabilities so that he/she can adjust the decision
accordingly. We propose a novel technique that discloses the
possible effects of errors on outputs in an actual execution
for a given input i, including both internal and external er-
rors. It does so without explicitly mutating the input i, which
usually requires a large number of sample executions to ex-
pose output variations if the input is of high dimension and
input correlation is complex. Instead, our technique vector-
izes the subject program such that each floating point vari-
able is represented by a vector of multiple values. Initially,
the values in a vector are identical, representing the value
in the actual execution (called the actual value). When exe-
cution encounters operations that yield non-trivial errors, it
explicitly introduces artificial errors to the actual value. The

injected errors are the lower and upper bounds of the ac-
tual error (note that actual errors cannot be efficiently com-
puted without high precision representations). Vectorization
allows the mutated values to go through the same sequence
of floating point operations. If they lead to discrete differ-
ences (e.g., taking different paths), the execution is forked
to follow the different discrete options to capture the output
variations caused by errors.

Consider the example in Fig. 1 . Given an input x0 within
rl, our technique detects that the predicate at line 3 is un-
stable. It hence forks the execution to take both branches.
As such, the output variations within rl are indicated by the
differences between y = f(x0) (from the true branch) and
y = g(x0) (from the false branch). The essence of our ap-
proach is that if internal representation errors can lead to dif-
ferent branch outcomes at a predicate, a small perturbation
in external input is very likely to lead to the same difference.
Hence we model the possible effects of external errors by
modeling only internal errors.

Our key contributions include:
• We propose a novel vectorization based approach that

addresses instability that can be triggered by internal
or external errors and captures output variations in the
presence of instability.
• We address a number of critical technical challenges,

including avoiding unnecessary forks that may generate
too many processes, and handling error suppressions that
can properly stop error propagation.
• We develop the RAIVE (Runtime Assessment of float-

ing point Instability by VEctorization) prototype. It pre-
cisely predicts output variations in the presence of errors,
with both the precision and the recall close to 100%. The
detected output changes are substantial. Its overhead is
2.43 times smaller than the state of the art runtime insta-
bility predictor [2] that cannot predict output variations,
but rather just the stability of an execution. It correctly
classifies executions on over 99.99% of the inputs of the
programs we studied as stable.

2. Background
Floating Point Representation. IEEE 754 [19] defines the
format of a 64-bit floating point value as shown in Fig. 2. The
corresponding decimal value f is given by f = (1 − 2s) ×
(1 + m × 2−52) × 2e−1023 where variable s is the sign bit,
m the significand, which is also called mantissa, and e the
exponent. There are 53 mantissa bits, including an implicit

exponent (11 bits)sign significand (52 bits)

63 52 0
...

Figure 2. Float Point Representation.

leading bit of “1”. Any values that require more significand
bits to represent cannot be precisely represented.
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We use x to denote the floating point value of a variable
x in the actual world (with limited precision), called the
actual value. The corresponding value in the ideal world
(with infinite precision) is called the ideal value and denoted
as x̂. The difference between the two is called the absolute
error of x, denoted as ∆̂x. The relative error x, denoted by
∆x, is defined as |∆̂x/x|. It indicates whether the actual
value is reliable. Initially errors are introduced in source
code constants at compile time, or when reading external
inputs at runtime. The initial errors are propagated to the
internal of program execution through operations.
Discrete Factor and Instability. A discrete factor is an op-
eration that has floating point values as operands and pro-
duces a discrete value [3]. They are the interface between the
continuous domain and the discrete domain (e.g., integer and
boolean). Typical examples are control flow predicates and
type casts. Discrete factors have been used to detect instabil-
ity caused by representation errors [2]. If an actual floating
point value (with error) and the corresponding ideal value
lead to different discrete results – one having the true branch
outcome and the other the false – the execution is considered
unstable. A discrete factor that yields different discrete val-
ues in the actual and the ideal worlds is called an unstable
factor [2]. The intuition is that if we consider the output of an
execution as a mathematical function over inputs, the form
of the function is determined by the executed path. In the
presence of unstable factors, the paths and hence the func-
tions are different in the two worlds, indicating substantial
output differences.
Relative Error Inflation and Cancelled Bits. Many exist-
ing works on instability detection [2, 22] are built upon de-
tecting relative error inflation, i.e., instances when the rela-
tive error of the result of a floating point operation is substan-
tially larger than those of the operands. This is because in-
stabilities are rooted at relative error inflation in most cases.
Per IEEE 754, the result of a subtraction/addition is normal-
ized by left-shifting to remove the leading zeros. The relative
error inherited from the operands thus gets inflated. If after
subtraction z = x − y, the significand bits are left-shifted
by d bits, the relative error inherited from the operands,
(∆̂x − ∆̂y)/z, may become 2d times larger than the relative
errors of x and y, because z is 2d times smaller than x or y.
The left-shifted bits are also called the cancelled bits [22],
which can be cost-effectively monitored by comparing the
exponents of the result and the larger operand. In particu-
lar, d = max(εx, εy) − εz , with εx being the exponent of
x. In TAG [2], when the number of cancelled bits is larger
than some pre-defined threshold τc, the relative error is con-
sidered inflated. TAG further tracks the propagation of the
value with an inflated relative error. An execution is con-
sidered unstable if the value can reach a discrete factor, as
discrete difference (from the ideal execution), such as path
difference, may be induced by the value.

3. Vectorization and RAIVE Overview
In this section, we overview RAIVE with an example and
briefly explain a few important technical challenges.

Given a subject program, RAIVE leverages the compiler
to transform it to a vectorized version, in which each float-
ing point variable x is represented by a vector of four 64-
bit floating point values 〈x1, x2, x3, x4〉. All floating point
operations are transformed to the corresponding vector op-
erations. Initially, the vector values x1,..., x4 have the same
actual value of x. These values remain identical after float-
ing point operations. A lightweight online relative error in-
flation detection mechanism is also inserted in the subject
program. When an error inflation is detected for a variable
x, the corresponding value is considered unreliable. Since
we cannot precisely compute the error of x, which requires
using higher precision, RAIVE computes an upper bound of
the absolute error, denoted as δ, and mutates the first two
values in x’s vector, called the left pair, to x− δ and x+ δ,
respectively. The same perturbation is applied to the last two
values, called the right pair. As such, the right pair is a sim-
ple duplication of the left pair. The perturbed vector further
goes through floating point operations such that the value
differences in x’s vector lead to value differences in other
vectors, simulating the propagation of the unreliable actual
value.

Upon executing a discrete factor (e.g., a predicate on
floating point values), RAIVE tests if the values in the left
pair lead to different discrete values (e.g., different branch
outcomes) – meaning that some previously inflated relative
errors have been propagated to the factor and caused dis-
crete difference; the execution may likely become unstable.
A naive solution would be to fork the execution right away so
that each of the resulting executions proceeds with a unique
discrete value generated at the unstable discrete factor. For
instance, assuming an unstable predicate, the original exe-
cution is forked to two with one executing along the true
branch and the other along the false branch. As such, the
outputs generated by the forked executions denote the possi-
ble output variations in the presence of errors.

However in real-world programs, discrete differences do
not necessarily lead to final output variations. For instance,
even if a predicate on floating point values has different
branch outcomes in the presence of errors, the two branches
may have identical or highly similar effect such that the two
forked executions have very little or no state differences. To
address this problem, we develop a highly sophisticated run-
time. Particularly, when encountering an unstable predicate,
RAIVE executes both branches in sequence (in the same ex-
ecution). To avoid interference between the branches (e.g. a
write in one branch affects a read in the other branch, which
is infeasible according to program semantics), RAIVE exe-
cutes one branch on the left pairs of the vectors and the other
branch on the right pairs. In other words, each variable up-
date in a branch only modifies half of the vector. At the join
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point of the two branches, RAIVE compares the left and the
right pairs in each vector that was updated in the branch(es).
If all of them have negligible differences, the unstable pred-
icate was benign and there is no need to fork the execution.
Otherwise, RAIVE forks the execution.
Example. Consider an example program in the first col-
umn of Fig. 3. It involves both computation and decisions
(i.e. lines 5, 10 and 15). All the variables are of the 64-bit
double-precision type. The execution on an x86 platform is
presented in the second column. The ideal execution, shown
in the third column, uses infinite precision emulated via soft-
ware with two to three orders magnitude of slow-down.

Initially, a very large value is assigned to a (line 1); the
same large value plus one is assigned to b (line 2). In the
actual execution, the increment cannot be represented and
b has the same value as a. Thus, an error is introduced at
line 2 in the actual execution. As such, c = b − a at line
3 has values 0 and 1 in the actual and ideal executions,
respectively. Then c is used in subtraction with a large value,
the result of which is further used in a conditional statement
(lines 4 and 5). The error introduced earlier does not cause
any problem as it is too small in comparison with the large
operand value 237 at line 4. At line 7, a and b are passed to
max(), inside which b−a is again performed. However, since
the result is directly used in a conditional (line 10), the error
manifests itself by yielding different branch outcomes in
the two executions, leading to different return values, which
are used in the subtractions with a (line 13) and then with
a constant value 0.5. The resulting different values cause
different branch outcomes at line 15, and eventually different
outputs.

Working of RAIVE. Initially, the vector of variable a holds
four identical 64-bit value 254. At line 2, the floating point
addition is transformed to a vector addition. Due to the same
precision limitation as the non-vectorized actual execution
(in the second column), b’s vector holds four identical val-
ues. Inside box D©, the subtraction at line 3 causes relative er-
ror inflation (Section 2). In particular, the result of the opera-
tion is 0 whereas the operands are very large values. RAIVE
detects the inflation such that it introduces artificial errors
in the vector that denote the bounds of the absolute errors.
The first value -64 is a lower bound; the second value 64 de-
notes an upper bound. The right pair is a simple duplication
of the left pair. We will discuss how the bounds are com-
puted in Section 4.1. At line 4, the vector of d becomes four
identical values despite the differences in c. In other words,
the errors are suppressed by the subtraction with the large
operand 237 (due to the precision limitation of the opera-
tion). Therefore, the four values of d’s vector yield the same
branch outcome (at line 5), correctly modeling the fact that
both the actual (column 2) and the ideal (column 3) execu-
tions take the same branch.

In box E© inside the function max(), the same relative er-
ror inflation is observed at line 9. However, since the variable

TAG RAIVE

x′ the error bit of x 〈x1, x2, x3, x4〉 denoted as xv ,
1 a = 254; av = 〈254, 254, 254, 254〉;
1.1 a′ = F ;

... ...
3 c = b− a; cv = bv − av ;

3.1
3.2
3.3
3.4
3.5

if (b′ ∧ a′) c′ = T ;
elseif (b′) c′ = ¬(εa − εb > τs);
elseif (a′) c′ = ¬(εb − εa > τs);
else
c′ = (max(εb, εb)− εc > τc);

if(max(εb, εa)− εc > τc)

δ = 2max(εb1 ,εa1
)−τc+1;

cv = cv + 〈−δ, δ,−δ, δ〉;

... ...
18 o = h ∗ 2; ov = hv ∗ 2v ;

18.1 o′ = h′ ∨ 2′

Figure 4. Boxed statements correspond to instrumentation. Note
that in RAIVE, the original floating point related statements are
completely replaced by vector statements. Labels 3.1-3.5 denote
instrumentation for line 3.

t with inflated error is directly used in the predicate at line
10, different branch outcomes are observed. The predicate is
an unstable discrete factor. Observe that in this case, the ac-
tual and ideal executions do differ at line 10. RAIVE does not
fork the execution at this point as the instability may be be-
nign. Instead, inside box F©, it first executes the true branch
with a vector mask that enables only the left pairs of vectors.
As a result, the left pair of e is assigned the left pair of a,
which holds two identical values of 254 (line 11). After that,
it further executes the false branch with a mask enabling the
right pairs. Hence, the right pair of e is assigned the right
pair of b, which also holds the same two values. At the join
point of the two branches, RAIVE tests if the left and right
pairs of e are identical or have negligible differences. In this
case, since they are identical, the instability at line 10 is be-
nign. No forking is needed. Intuitively, although the actual
and ideal executions have different control flow inside the
max() method due to the error, the relative error of the re-
turn value is very small (i.e. 1/r). In other words, the predi-
cate at line 10 only becomes unstable when a and b are very
close; however in such a case, returning either a or b does
not make much difference and thus the instability is benign.
RAIVE continues execution with the full vectors.

In box G©, RAIVE detects error inflation at line 13 and in-
troduces artificial errors. The errors cannot be suppressed by
the operation at line 14. As such, another unstable predicate
is detected at line 15. However in this case, the two branches
yield different left and right pairs in h. RAIVE forks the exe-
cution (box H©). In one execution, the left pair of h is copied
to the right pair so that h holds four identical value of 10
for the continuation. In the other execution, the right pair is
copied to the left. As such, both executions can proceed with
full vectors. Eventually, the two executions report two possi-
ble outputs, −20 and 20, which precisely capture the possi-
ble output variations in the presence of any internal error or
external error (e.g., error on input variable a).

Key Advances Over the State-of-The-Art. RAIVE has the
following advantages over the state-of-the-art runtime insta-
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†We use r to denote the large number 254, or 1801439 8509481984, and r1 to denote 237. Other large values are represented relative to r

and r1.

Figure 3. (First column) example program with max() inlined; (second column) actual execution with each entry denoting actual
computed value; (third column) ideal execution; (fourth column) TAG [2] execution; and (fifth column) RAIVE execution. rF in the TAG

approach means value r is tagged with a false error bit. The shaded sub-execution denotes the new execution after the user manually annotates
the benign unstable predicate (line 10).

bility detector TAG [2]. TAG detects relative error inflation,
i.e., instances when the relative error of the result of a float-
ing point operation is substantially larger than those of the
operands. It taints a variable when its relative error is in-
flated. It further monitors the propagation of the taint bit. The
bit may be reset when a tainted operand is used in a binary
operation with a much larger untainted operand. If a taint bit
reaches a discrete factor, the execution is considered unsta-
ble and terminated. Re-execution with a higher precision is
needed.

- Capturing Output Variations Caused by Both Internal
and External Errors. TAG cannot detect output variations.
Instead, when TAG detects an unstable discrete factor, it sim-
ply terminates the execution and switches to a higher preci-
sion. Furthermore, as we discussed in Section 1, if exter-

nal errors are possible, even using the infinite representa-
tion precision cannot address the problem that the execution
may produce different outputs due to the errors. In contrast,
RAIVE does not terminate an unstable execution, but rather
forks multiple executions to capture output variations. It han-
dles both internal and external errors.

The third column in Fig. 3 shows the execution of TAG.
In box A©, value 0 in c is tainted due to the error inflation at
line 3. But the taint bit is reset at line 4. Later, TAG detects
that a tainted value reaches a discrete factor in box B© and
terminates. In contrast, RAIVE reports the possible output
variations. Assume the value 254 of a at line 1 is loaded from
a file. Even if we used infinite precision in the execution, the
same output variation would still occur if a has some small
external error.
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- Handling Benign Differences. TAG cannot automatically
determine if an unstable factor is benign or harmful. It sim-
ply terminates when an unstable factor is detected. Or, the
user can choose to manually annotate some discrete factors
beforehand such that instability warnings at those factors are
ignored. The predicate in box B© in Fig. 3 is unstable but be-
nign. TAG cannot handle this. In contrast, RAIVE leverages a
novel runtime that evaluates both branches to overcome the
problem.

- Avoiding Undesirable Error Suppression. TAG uses a
single bit to denote the presence of an inflated relative error.
However, this may become problematic in error suppression.
In box C©, the subtraction e− a causes a relative error infla-
tion. Because f is 0 at line 14, substantially smaller than 0.5,
the error bit is reset. The predicate at line 15 is hence consid-
ered stable. This is problematic: as shown in the second and
the third columns, the actual and ideal executions have dif-
ferent branch outcomes at line 15, leading to different final
outputs.

In normal cases, absolute errors are much smaller than
the actual values even when the relative errors are inflated.
However at line 14, the absolute error of f is 1.0 (from the
actual and ideal values), larger than the value of f itself (i.e.
f = 0) and even the other operand 0.5. Unfortunately, this
information cannot be represented by the single error bit.

In contrast, RAIVE injects artificial errors that denote the
bounds of the absolute errors (box G©). It easily supports er-
ror propagation in which operand(s) with inflated error(s)
lead to a result with inflated error, since the different values
in the operand vectors often lead to different values in the re-
sult vector. Furthermore, error suppression can occur implic-
itly and appropriately during floating point operations. For
example, in box D©, the errors are suppressed by the subtrac-
tion whereas in box G©, the operand 0.5 is not large enough
to suppress the errors.

- Lower Runtime Overhead by Vectorization. Although
TAG features much lower overhead compared to techniques
based on high precision libraries [5] and affine analysis [10],
it is still very expensive (827% overhead according to Sec-
tion 5). This is due to the expensive instrumentation and the
poor instruction pipeline performance. The left column of
Fig. 4 shows part of the TAG instrumentation for the exam-
ple in Fig. 3. Lines 1.1, 3.1-3.5, 18.1 denote instrumentation
for lines 1, 3, and 18, respectively. Line 3.1 means that the
result is tagged true if both operands are tagged (true). Lines
3.2-3.3 handle the case when only one operand is tagged. In
this case, if the difference between the operand exponents
εa and εb is larger than a threshold τs, the relative error is
suppressed and the result tag c′ is false. Line 3.5 detects rel-
ative error inflation. Instrumentation similar to lines 3.1-3.5
is added for each subtraction/addition. For multiplications
and divisions, since neither inflation nor suppression could
happen, the result tag is simply the union of the operand tags
(e.g. line 18.1). The nesting branches in instrumentation lead

to poor instruction pipeline performance. The fine-grained
interleaving of the boolean type error bit propagation and
the floating point type computation also prevents aggressive
instruction scheduling, causing performance penalty.

RAIVE leverages the native support for vectors. In par-
ticular, each original floating point instruction is rewritten
to a vector instruction. Note that the operations on individ-
ual vector values are performed simultaneously on separate
FPUs such that they do not cost additional cycle(s). Such
vectorization is shown in the right column in Fig. 4. At line 3,
the original subtraction is replaced with a vector subtraction.
In addition, we only need instrumentation for detecting error
inflation and checking discrete factors. For example, the in-
strumentation for line 3 in RAIVE is much simpler than that
in TAG. No instrumentation is needed for multiplications or
divisions. This not only reduces the number of instructions,
but also avoids interleavings of integer/boolean instructions
and floating point instructions.

4. Design of RAIVE Runtime
RAIVE is a runtime technique. The given floating point pro-
gram is transformed using the compiler. This transformed
program has a special execution model that is supported via
vectorization. The execution may fork multiple processes
and produce a set of outputs that denote possible variations
in the presence of errors. The execution model can be intu-
itively described as follows. The program state (for floating
point variables) is a set of pairs, each representing an in-
terval for the possible values of the variable (e.g., 〈x1, x2〉
for variable x). Initially, each pair has two identical values
(e.g., 〈x, x〉). Floating point operations are performed on the
pairs. RAIVE monitors these operations. When it detects rel-
ative error inflation, it introduces artificial errors to the pair
so that it becomes 〈x−δ, x+δ〉. The introduced error δ over-
approximates the error incurred by the operation and hence
the pair denotes the lower and upper bounds of x at this op-
eration. Upon encountering a conditional, if there exists a
pair of values 〈x1, x2〉 for x such that one of the values (x1
or x2) satisfies the condition and the other does not, RAIVE
executes both branch outcomes of the conditional. The states
for the branch outcomes are managed separately. At the join
point of the branch we get two different sets of (output)
pairs – 〈yt1, yt2〉 for the true branch and 〈yf1 , y

f
2 〉 for the false

branch. If these pairs agree, RAIVE joins them, knowing that
there is no output variation induced by the branch deviation.
If they do not agree, RAIVE separates the pairs (from the two
branches) permanently via forking.

Observe that the aforementioned execution model re-
quires maintaining a store for pairs and supporting non-
interference when evaluating both branches of a conditional.
In order to achieve these goals, we develop a vector based
semantics that can be implemented using the latest vector
instruction support. In particular, we use a vector of four
values to denote each floating point variable in the original
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program. Normally, the first two values (called the left pair)
denote the interval of the variable value and the right pair
is simply a duplication of the left pair. When both branches
of a conditional need to be evaluated, the left and right pairs
are used/updated in isolation to achieve non-interference.

4.1 Semantics

Program P ::= s
Stmt s ::= s1; s2 | skip | x := e | x := f2i(y) |

if x 1 y then s1 else s2 |
while x 1 y do s

Expr e ::= x | v | e1 op e2 | sin(e)
BinOp op ::= + | − | ∗ | /
V alue v, w ::= n | r | b
V ar x, y ∈ Identifier n ∈ Z r ∈ Real b ∈ Boolean

Figure 5. Language.

We use a language in Fig. 5 to facilitate discussion. We
model two kinds of discrete factors: f2i denoting a type cast
from floating point to integer and 1 denoting a relational op-
eration on two floating point variables. Mathematical func-
tions are modeled by a representative function sin(e).

The semantics is presented in Fig. 6. The related defini-
tions are presented close to the top. In particular, the store
σ is a mapping from a variable to a vector of four values.
It is constituted by two disjoint stores, σl and σr, denoting
the mappings from a variable to the first two values (i.e.,
left pair), and to the last two values (i.e., right pair), re-
spectively. The execution mode is denoted by ω, which has
three possible values: REGULAR denoting regular exe-
cution in which both the left and right stores are updated,
LEFT denoting left execution in which only the left store
is updated, and RIGHT denoting right execution in which
only the right store is updated. When an unstable predicate
is encountered, that is, the values in the vectors (involved in
the predicate) yield non-uniform branch outcomes, RAIVE
needs to determine if the instability is benign by execut-
ing both branches in sequence. The executions of the two
branches need to be isolated so that they do not interfere with
each other and their results can be properly compared at the
join point. In particular, the first branch execution only oper-
ates on the left pairs, called the left mode, whereas the second
branch execution only operates on the right pairs, called the
right mode. Execution modes and mode changes are imple-
mented using the mask instruction provided by the CPU. The
instruction defines which values in a vector are visible and
operatable. The variable join set Φ contains the variables de-
fined during the branch executions of an unstable predicate.
At the branch join point, Φ is scanned to determine if forking
is necessary.

To make presentation easier, we extend the syntax of
expression to represent a vector of values, and the syntax of
statement to include a few new commands: mode switch
to switch the current execution mode; join is to commit the
updates from the two branches of a predicate and determine

if the execution should be forked; spawn is to fork an
execution.These statements are auxiliary and only present
during evaluation.

4.1.1 Expression Rules
Expression rules evaluate a floating point expression to a
vector of four values. The evaluation may be moderated by
the execution mode. During expression evaluation, relative
error inflation is also detected. Rule [CONST] shows that a
floating point value v is expanded to a vector of four identical
values.

Subtraction of two vectors (Rule [SUB]) is performed by
subtracting the corresponding values and adjusting the re-
sulting values with δ, which is computed as follows: (1) if
the current execution mode is REGULAR or LEFT (for
branch execution using the left store) and there is relative er-
ror inflation (or cancellation) in the subtraction of the actual
values v1 and w1, or v2 and w2, δ is computed from the ex-
ponents by δ = 2max(εv1 ,εw1

,εv2 ,εw2
)−τc+1. Intuitively, τc is

the threshold to detect inflation, meaning that an addition/-
subtraction causes relative error inflation if the result is left-
shifted by at least τc bits, suggesting the first τc significand
bits of the two operands are identical. Since we consider that
the result value cannot be trusted in this case, it is equivalent
to that the absolute error of the result can be as large as the
value represented by the τc-th significand bit of the largest
operand (i.e. the first bit that differs in the operands), which
can be computed by the aforementioned formula. (2) If the
current mode is RIGHT , the values in the right pairs are
used to detect inflation and compute δ. (3) If there is no in-
flation, δ = 0. Additions are handled in the same way. The
first line in box D© in Fig. 3 shows an example of condition
(1), with τc = 49.

In Rule [MULT], the values in the operand vectors are
multiplied respectively, denoting the propagation of errors,
if injected previously. The rule for division is similar. Note
that although multiplication or division can enlarge absolute
errors, they do not inflate relative errors. Intuitively, when
an operand x with an absolute error ∆̂x is multiplied with
another operand y, both x and ∆̂x are enlarged by y so
that the resulting relative error (i.e., the ratio between the
absolute error of result and the actual result) is unchanged.

For non-library function calls, parameter vectors are di-
rectly passed to callees and used there. In contrast, an ex-
ternal library function is generally evaluated on the respec-
tive vector values (Rule [SIN]). We cannot vectorize library
functions as we do not have their source code. For better effi-
ciency, we re-implement some frequently used library func-
tions to directly support vectorization.

4.1.2 Statement Rules
RAIVE has three execution modes. Statement semantics may
be different in these modes.
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E ::= E; s | [·]s | x := [·]e | if [·]e then s1 else s2 | [·]e op e | 〈v1, v2, v3, v4〉 op [·]e | x := f2i([·]e) | sin([·]e)
DEFINITIONS: Store σ : V ar → 〈V alue, V alue, V alue, V alue〉 Mode ω ::= REGULAR | LEFT | RIGHT

σl(x) = 〈x1, x2〉, σr(x) = 〈x3, x4〉, if σ(x) = 〈x1, x2, x3, x4〉
V arJoin Φ ::= P(V ar), the set of variables that need to be inspected at the join point of the two branches of an unstable predicate.
εx: the exponent of x τc: the pre-defined threshold for determining relative error inflation.
Expr e ::= ... | 〈v1, v2, v3, v4〉 Stmt s ::= ... | mode switch | join | spawn(σ, ω,Φ, s)
cancellation(v, w) = (max(εv , εw)− εv−w > τc)

EXPRESSION RULES σ, ω : e
e−→ e′

σ, ω : v
e−→ 〈v, v, v, v〉 [CONST] σ, ω : x

e−→ σ(x) [VAR]
σ, ω : 〈v1, v2, v3, v4〉 − 〈w1, w2, w3, w4〉

e−→ 〈v1 − w1 − δ, v2 − w2 + δ, v3 − w3 − δ, v4 − w4 + δ〉

where δ =


2max(εv1 ,εw1 ,εv2 ,εw2 )−τc+1 (ω = REGULAR ∨ ω = LEFT ) ∧

(cancellation(v1, w1) ∨ cancellation(v2, w2)) (1)

2max(εv3 ,εw3
,εv4 ,εw4

)−τc+1 ω = RIGHT ∧ (cancellation(v3, w3) ∨ cancellation(v4, w4)) (2)
0 otherwise (3)

[SUB]

σ, ω : 〈v1, v2, v3, v4〉 ∗ 〈w1, w2, w3, w4〉
e−→ 〈v1 ∗ w1, v2 ∗ w2, v3 ∗ w3, v4 ∗ w4〉 [MUL]

σ : sin(〈v1, v2, v3, v4〉)
e−→ 〈sin(v1), sin(v2), sin(v3), sin(v4)〉 [SIN]

STATEMENT RULES σ, ω, Φ : s
s−→ σ′, ω′, Φ′, s′

REGULAR EXECUTION MODE:
Let σ(x) = 〈x1, x2, x3, x4〉 in the following rules:

σ, REGULAR, Φ : x := 〈v1, v2, v3, v4〉
s−→ σ[x 7→ 〈v1, ..., v4〉], REGULAR, Φ, skip [ASSIGN]

Let b1 = v1 1 w1, ..., b4 = v4 1 w4 in the following IF rules:

σ, REGULAR, Φ : if 〈v1, ..., v4〉 1 〈w1, ..., w4〉 then s1 else s2
s−→ σ, REGULAR, Φ, s1 if b1 = b2 = T [IF-Stable-True]

σ, REGULAR, Φ : if 〈v1, ..., v4〉 1 〈w1, ..., w4〉 then s1 else s2
s−→ σ, REGULAR, Φ, s2 if b1 = b2 = F [IF-Stable-False]

σ, REGULAR, Φ : if 〈v1, ..., v4〉 1 〈w1, ..., w4〉 then s1 else s2
s−→ σ, LEFT, Φ, s1;mode switch; s2; join [IF-Unstable-T]

if b1 ≡ T ∧ b2 ≡ F

σ, REGULAR, Φ : if 〈v1, ..., v4〉 1 〈w1, ..., w4〉 then s1 else s2
s−→ σ, LEFT, Φ, s2;mode switch; s1; join [IF-Unstable-F]

if b1 ≡ F ∧ b2 ≡ T

σ, LEFT, Φ : mode switch; s
s−→ σ, RIGHT, Φ, s [MODE]

σ, ω, Φ : join; s
s−→ σ, REGULAR, {}, s if ∀x ∈ Φ ∧ x is live, cancellation(x1, x3) ∧ cancellation(x2, x4) [JOIN]

σ, ω, Φ : join; s
s−→ σr[∀x ∈ Φ, x 7→ σl(x)], REGULAR, {}, spawn(σl[∀x ∈ Φ, x 7→ σr(x)], REGULAR, {}, s); s [JOIN-Split]

if ∃x ∈ Φ ∧ x is live, ¬cancellation(x1, x3) ∨ ¬cancellation(x2, x4)

σ, REGULAR, Φ : y := f2i(〈v1, v2, v3, v4〉)
s−→ σ[y 7→ (int)v1], REGULAR, Φ, skip if (int)v1 = (int)v2 [F2I]

σ, REGULAR, Φ : y := f2i(〈v1, v2, v3, v4〉)
s−→ [F2I-Split]

σ[y 7→ (int)v1], REGULAR, Φ, spawn(σ[y 7→ (int)v2], REGULAR,Φ, skip); skip if (int)v1 6= (int)v2

σ, ω, Φ : while v 1 w do s
s−→ σ, ω, Φ, if v 1 w then s;while v 1 w do s else skip [WHILE]

RIGHT EXECUTION MODE:

σ, RIGHT, Φ : x := 〈v1, v2, v3, v4〉
s−→ σr[x 7→ 〈v3, v4〉], RIGHT, Φ ∪ {x}, skip [R-ASSIGN]

Let b1 = v1 1 w1, ..., b4 = v4 1 w4 in the following IF rules:

σ, RIGHT, Φ : if 〈v1, ..., v4〉 1 〈w1, ..., w4〉 then s1 else s2
s−→ σ, RIGHT, Φ, s1 if b3 = b4 = T [R-IF-Stable-T]

σ, RIGHT, Φ : if 〈v1, ..., v4〉 1 〈w1, ..., w4〉 then s1 else s2
s−→ σ, RIGHT, Φ, s2 if b3 = b4 = F [R-IF-Stable-F]

σ, RIGHT, Φ : if 〈v1, ..., v4〉 1 〈w1, ..., w4〉 then s1 else s2
s−→ [R-IF-Unstable]

σ, RIGHT, Φ, spawn(σl[∀x ∈ Φ, x 7→ σr(x)], REGULAR, {}, s2); s1 if b3 6= b4

GLOBAL RULES σ, ω, Φ, s → σ′, ω′, Φ′, s′

σ, ω : e
e−→ e′

σ, ω, Φ, E[e]e → σ, ω, Φ, E[e′]e
[G-EXPR]

σ, ω, Φ : s
s−→ σ′, ω′, Φ′, s′

σ, ω, Φ, E[s]s → σ′, ω′, Φ′, E[s′]s
[G-STMT]

Figure 6. Operational Semantics.
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Regular Mode. The first set of statement rules is for the
regular execution mode. Rule [ASSIGN] describes that all
the four fields of the left hand side variable are updated.

Most of the complexity of RAIVE lies in the handling
of conditional statements. It first determines if a predicate
is stable. If so, the execution proceeds with the uniform
branch outcome. Otherwise, it executes the two branches in
sequence to detect if the instability is benign. If not, RAIVE
forks the execution to capture the different effects of the
instability.

Rules [IF-Stable-True] and [IF-Stable-False]
describe that during regular execution, if the left pair has
the identical true/false value, the execution proceeds to the
true/false branch. Note that only the left pair needs to be
inspected as the right pair is a duplication during regular
execution.

Rules [IF-Unstable-T] and [IF-Unstable-F]
specify the semantics when the left pair does not concur.
If the first value b1 is false (Rule [IF-Unstable-F]), it
first executes the false branch in the left mode, and then ex-
ecutes the mode switch statement to change to the right
mode for true branch execution (Rule [MODE]). After exe-
cuting the two branches, the updates in them are inspected
by the join statement.

Rules [JOIN] and [JOIN-Split] specify the seman-
tics of the join statement. In Rule [JOIN], the left and right
pairs of all live updated variables are identical or have triv-
ial differences, suggesting benign instability. In particular,
RAIVE inspects each live variable in Φ, by comparing its
left and right pairs. If the comparison of two values incurs
cancellation (i.e. the number of cancelled bits is larger than
the threshold τc), we consider the two values under com-
parison have trivial difference. If the differences are always
trivial for all live variables, the instability is benign, the ex-
ecution is not forked. During inspection, only variables that
are live at the join point of the branches are considered (i.e.
those that may be used beyond the join point). We use a stan-
dard static live variable analysis. After joining, Φ is reset. In
Rule [JOIN-Split], if the differences are not trivial, the
execution is split. In the parent process, the updates during
right execution are discarded, by overwriting the right store
values with the left store values. In the child process, the up-
dates during left execution are discarded, by overwriting the
left store values with the right store values.

Rules [F2I] and [F2I-Split] specify the semantics of
type casts from floating point to integer in the regular mode.
If the left pair yields different integer values, the execution
forks based on the different discrete integer values.

The evaluation of while loops (Rule [WHILE]) is stan-
dard, which unrolls the loop once each time. Since loops are
essentially unrolled during evaluation, unstable loop predi-
cates are handled like normal predicates. To prevent poten-
tial infinite forking, we limit the number of forks allowed
for a loop predicate (to 10). In practice, such a limit is never

reached. But if the limit is reached simply continue with one
of the executions.

Example. Box H© in Fig. 3 shows an example of Rule
[JOIN-Split]. At the join point, Φ = {h} and the dif-
ferences between the left and right pairs of h are substan-
tial and the execution is forked. In the continuation of the
original execution, hv = 〈10, 10, 10, 10〉 after copying the
left pair to the right, whereas in the spawned execution,
hv = 〈−10,−10,−10,−10〉 after copying the right to the
left. 2

Right Mode. The next set of rules is for the right execution
mode. According to Rule [ASSIGN-Right], in right exe-
cution, only the right pairs are updated, while the left pairs
retain their values. Moreover, the left-hand-side variable x is
inserted to the variable set Φ for inspection at the join point.

Rules [R-IF-Stable-T], [R-IF-Stable-F], and
[R-IF-Unstable] evaluate conditional statements in the
right mode. Rule [R-IF-Unstable] specifies the case
in which another unstable predicate is encountered, which
suggests nesting unstable predicates. Since we use only the
right pairs in the right mode, we cannot afford evaluating the
two branches of the inner unstable predicate in sequence.
Therefore, we fork the execution right away. Particularly,
the original execution proceeds with the true branch (of the
inner predicate) with the same right mode. The spawned ex-
ecution proceeds with the false branch in the regular mode,
discarding all the updates during the former branch evalu-
ation (in the left mode). As such, the join operation at the
join point of the outer unstable predicate has no effect. The
left mode rules are similar and hence omitted.

Figure 8. The control flow graph for the example in Fig. 7.

Example. Fig. 7 shows an example for nesting unstable pred-
icates. The first column shows the program. The next three
columns show its original execution. The last three columns
show the spawned execution. Initially, a has a large value r
and the input to b is r + 1. However due to the limited pre-
cision, the represented value in b is r. At line 3, the actual
value of c is 0, and artificial errors are introduced due to the
relative error inflation. Since line 4 is unstable, line 5 is ex-
ecuted in the left mode and Φ contains t. The execution is
switched to the right mode at line 6. Another inflation is de-
tected at line 8 so that errors are introduced to the third and
fourth values, leading to non-uniform branch outcome. The
execution is forked according to Rule [R-IF-Unstable].
Note that the updates on the left pairs of all the variables
in Φ are discarded and replaced with the right pairs in the
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Program Exec. I Exec. II
σ ω Φ σ ω Φ

1 a = r; σ[a] = 〈r, r, r, r〉 REGULAR {}
2 b = input(); σ[b] = 〈r, r, r, r〉 REGULAR {}
3 c = a− b; σ[c] = 〈−δ, δ,−δ, δ〉 REGULAR {}
4 if (c < 0) 〈T, F, T, F 〉 LEFT {}
5 t = a+ 6; σ[t] = 〈r + 6, r + 6,−,−〉 LEFT {t}
6 else { RIGHT {t}
7 c = b+ 2; σ[c] = 〈−,−, r + 2, r + 2〉 RIGHT {t, c}
8 d = c− a; σ[d] = 〈−,−, 2− δ, 2 + δ〉 RIGHT {t, c, d}
9 if (d < 0) 〈−,−, T, F 〉 RIGHT {t, c, d} σ[c] = 〈r + 2, ..., r + 2〉 REGULAR {}

σ[d] = 〈2− δ, 2 + δ, 2− δ, 2 + δ〉
σ[t] = 〈0, 0, 0, 0〉

10 t = c+ 6; σ[t] = 〈−,−, r + 8, r + 8〉 RIGHT {t, c, d}
11 else t = a ∗ 2; σ[t] = 〈2r, 2r, 2r, 2r〉 REGULAR {}
} σ[t] = 〈r + 6, r + 6, r + 8, r + 8〉 REGULAR {}

12 o = t+ a; σ[o] = 〈2r + 6, 2r + 6, 2r + 8, 2r + 8〉 REGULAR {} σ[o] = 〈3r, 3r, 3r, 3r〉 REGULAR {}

Figure 7. An example for nesting unstable predicates. Symbol r represents a large floating point value. Assume the input value is r + 1
which cannot be precisely represented and hence the represented value is r at line 2. Other large values can be precisely represented.

spawned execution, which proceeds with the regular mode
and an empty Φ. The original execution continues with the
right mode and the join operation is performed before line
12. Since variables c and d are not live beyond line 12, only
t’s vector values are compared. Since the differences are triv-
ial, the execution is not forked.

As in Fig. 8, RAIVE captures the effects of the left-
most path (1-5→12) and the middle path (1-4→7-10→12)
through the original execution, and the effect of the right-
most path (1-4→7-9→11-12) through the spawned execu-
tion. 2

4.2 Understanding the Essence of RAIVE

Next, we informally discuss a few properties of RAIVE.
First, the goal of RAIVE is to expose output variations

caused by discrete differences. Such differences are caused
by discrete factors (i.e. operations that have floating point
operands and discrete type result such as integer or boolean)
instead of floating point operations. Hence, RAIVE is most
suitable for programs with both floating point and discrete
operations (e.g., the example in Section 1), and less ef-
fective for mathematical cores composed of floating point
operations only (e.g., a code snippet that computes y =
x2 + 2x + 3). The real world floating point programs we
study contain non-trivial number of discrete operations. As
such, output variations are mainly due to discrete differences
(caused by errors). Our experiments will illustrate this later.
Intuitively, errors through floating point operations cause
continuous output changes, whereas errors through discrete
operations may cause discontinuous differences that are usu-
ally much more substantial.

Second, RAIVE introduces artificial errors that are bounds
of the absolute error when relative error inflation occurs. The
resulting value differences in the vector are further propa-
gated via the following vectorized floating point operations.
However, the values in the vector of a variable are not guar-
anteed to stay as the bounds of the variable value, as during

binary operations errors from multiple operands may inter-
fere with each other. In other words, at the moment when
the artificial errors are introduced, the values in the vector
denote the lower and upper bounds of the actual value. How-
ever, when these values (with errors) are propagated to other
variables through operations, especially binary operations,
the values in the vectors of result variables may not represent
the bounds. A very important point, however, is that RAIVE
does not need to guarantee these values to be the bounds. In-
stead, the (different) values in a vector are essentially sam-
ples in the error range. These samples are sufficiently dis-
tant so that they expose discrete differences. This is because
the artificial errors RAIVE introduces are very conservative.
In contrast, affine analysis [10] focuses on modeling con-
tinuous changes caused by errors through affine formulas.
Hence, they need to compute the bounds of values, which is
very expensive (i.e. 3-4 magnitude of slowdown according
to [10]).

Note that an approach that tries to use multiple sample
runs to expose output variations is inferior to RAIVE. This is
because RAIVE essentially not only packs multiple sample
executions into a vectorized execution, but also avoids un-
necessary samples by detecting benign unstable predicates.
According to our experiment (Section 5), while an execution
may encounter many unstable predicates, most of them are
found to be benign.

Third, similar to existing work [2, 22], RAIVE uses a
threshold to detect relative error inflation, which is key to
detecting unstable discrete factors. In theory, the detection
is neither sound nor complete due to the use of threshold.
However, RAIVE does not aim to detect unstable discrete
factors, but rather expose output variations in the presence
of errors. It has a sophisticated runtime mechanism to deter-
mine if an unstable predicate is benign. Therefore, we use a
conservative threshold for relative error inflation detection.
The resulting false positives of unstable predicates are effec-
tively suppressed by the runtime mechanism. Furthermore,
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as shown in Section 5, all inputs falling into the unstable
range tend to cause the same discrete differences and hence
the same (or highly similar) output variations. The net effect
of having false positives in detecting unstable factors is to
report the same output variations for a larger set of inputs.
We also show in Section 5 that the unstable ranges are very
tiny such that even though RAIVE reports output variations
for a larger range, such output variations are well possible
because they can be easily induced by external errors.

5. Evaluation
We implement RAIVE using GCC-4.7.2. to support C/C++
and Fortran. We leverage the Advanced Vector Extensions
(AVX) on x86 64 architecture to support vectors. It features
instructions operating on 256-bit vector registers, called ymm
registers, which can store up to four double precision floating
point values. The execution mask in our semantics is also na-
tively supported by the CPU. We modify the lexical analysis
of GCC. Each floating point variable is replaced with a 256-
bit type supported by GCC. Floating point operations are
also replaced accordingly. After lexical analysis, we further
instrument the GIMPLE IR code to support functionalities
such as error inflation detection and the execution modes.

Since the Fortran frontend of GCC does not support AVX
natively, some language features are difficult to vectorize.
One example is the primitive complex type in Fortran. Since
a double precision complex value consists of two 64-bit val-
ues (the real and the imag parts), a complex value cannot
be directly transformed to a vector. Hence we transform a
complex value to a C struct that consists of two 256-bit vec-
tors. This transformation is more challenging than vectoriz-
ing scalar floating point variables because we need to further
replace the operations on complex values with operations on
the C struct values. RAIVE handles all the language features
that we have encountered in the benchmark set.

We evaluate efficiency and effectiveness of RAIVE and
compare it with HPL [2, 5] and TAG [2]. HPL uses 128-bit
quadruple precision. For fair comparison, we re-implemented
HPL using GCC. Our implementation is faster than [5].
We use the programs in [2] for comparison, including
SPEC CFP2000 and a biochemical data processing pro-
gram deisotope. In addition, we include two widely used
data-mining programs k-means and pagerank. Note that
these programs are much more complex than those used in
studies that focus on numerical programs (e.g., [10]). They
contain a lot of discrete operations. Their LOCs are shown
in Table 1 column 2. All experiments were run on a machine
with Intel i7-2640M 2.80GHz processor and 8GB RAM.

5.1 Performance
In the first experiment, we evaluate the runtime overhead
of RAIVE. We use the reference inputs from SPEC. For
deisotope, k-means and pagerank, we use the inputs
that come with the programs. The results are shown in Ta-
ble 1. Column 3 shows the native execution time. Columns

Program LOC Native HPL o/h TAG o/h Vec-only RAIVE
time(s) time(s) o/h time(s) o/h

168.wupwise 2.1k 79.70 6043% 292% 141.6 178% 179.5 225%
171.swim 0.4k 122.5 7356% 359% 163.7 133% 178.5 146%
172.mgrid 0.4k 39.27 35031% 1639% 89.9 228% 355.7 905%
173.applu 4k 39.91 21112% 1458% 108.6 272% 163.9 410%
177.mesa 63k 8.60 3364% 538% 19.97 232% 27.63 321%
178.galgel 15.3k 28.26 23867% 1592% 124.5 441% 209.2 740%
179.art 1.2k 10.08 15786% 735% 21.13 210% 28.00 277%
183.equake 1.3k 12.55 21876% 1525% 52.37 417% 65.28 520%
187.facerec 2.4k 35.72 10784% 1492% 145.8 408% 180.8 506%
188.ammp 13.4k 53.02 16263% 822% 78.76 148% 160.6 303%
189.lucas 3k 24.24 23536% 1333% 74.52 307% 87.56 361%
191.fma3d 60k 38.33 13169% 1110% 142.9 373% 155.9 406%
200.sixtrack 47.2k 59.50 47540% 1056% 95.34 160% 214.6 360%
301.apsi 7.5k 51.47 13220% 719% 104.6 203% 166.1 322%
deisotope 2.2k 11.82 469% 205% 15.01 127% 18.69 158%
k-means 7k 12.69 925% 329% 14.12 111% 16.23 127%
pagerank 0.25k 13.29 5491% 1653% 41.17 309% 66.83 502%
AVERAGE 9826% 827% 229% 340%

Table 1. Performance (o/h stands for overhead). AVERAGE
is geometric mean.

4 and 5 present the overhead for HPL and TAG. Observe
that the average overhead of HPL exceeds 98x. The average
overhead for TAG is 827%.

The last two columns present the time and overhead of
RAIVE. We collect the data with τc = 48, which is the
threshold used in detecting relative error inflation (Sec-
tion 2). The average overhead is 340%, which is 2.43 times
smaller than that in the TAG approach. The higher overhead
in some of the programs (e.g., 178.mgrid) is due to the
exceptionally large number of additions and subtractions in
the hot loops. These operations have to be instrumented for
error inflation detection.

We further study the breakdown of overhead for RAIVE.
We run the programs with vector instructions but without
detecting instability. It means that a program is transformed
to its vector version, where floating point values are stored
in 256-bit vectors and operated with AVX instructions. The
four values in a vector are always identical. This is to study
the overhead of vectorization. The results are shown in the
vec-only columns. The average overhead is 229%. While
theoretically AVX instructions should not cost additional cy-
cles, there are a few possible reasons for the slow-down.
First, the processor we use (CPUID: 06 2AH) is an early
version supporting AVX. According to the Intel Manual, the
latencies for AVX in our processor are higher than later ver-
sions [20]. Second, we suspect the compiler is not able to
perform aggressive optimizations for AVX instructions be-
cause they are relatively new. We anticipate RAIVE will have
lower overhead in the future with new hardware and better
compiler support. We argue that the overhead is acceptable
given the capability of reporting output variations. Note that
without our technique, achieving the same capability may
entail a large number of sample executions, especially when
the input dimension is high.
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5.2 Effectiveness

Instability Detection. The experiment is setup as follows.
For each program, we collect 1E+14 samples within an input
range. We execute the program on these samples with HPL,
TAG, and RAIVE. We extend HPL to also compute the actual
floating point values with 64-bit precision such that they can
be compared with their high precision version to collect the
ground truth (of instability). For TAG and RAIVE, we collect
data for three configurations with different τc values. The re-
sults are shown in Table 2. We only focus on the programs
with instability reported. For each program, the input sample
range and the total number of samples are shown in the first
row labeled OVERALL. The six following rows present the
detection results for the configurations. The second column
shows the configuration. The third column shows the num-
ber of samples in which instability is reported (i.e. at least
one unstable discrete factor has been encountered), and its
percentage over the total sample number is presented in the
fourth column. The last column shows the detected problem-
atic range that contains the unstable samples.

We have the following observations. (1) RAIVE has com-
parable or better effectiveness than TAG in instability detec-
tion. The detected ranges by RAIVE are similar to or smaller
than those by TAG for the same configuration. Both of them
can correctly determine that over 99.99% of the inputs lead
to stable executions. However, the overhead of RAIVE is
2.43x smaller than TAG. (2) Threshold τc = 52 is the best
configuration for most benchmarks considered. It reports the
smallest number of unstable samples without any false nega-
tives except for pagerank. The maximum possible thresh-
old value is 53. Threshold τc = 44 is safe (for the programs
we considered) as it does not cause any false negatives. Note
that using a larger τc means that we have a stricter condi-
tion in determining relative error inflation. (3) With τc = 44,
although the number of detected unstable samples is 3.75-
2258 times larger than the ground truth, these samples only
denote a trivial part of the input range. This implies it is un-
likely for RAIVE to have false warnings in instability de-
tection. In contrast, according to [2], interval analysis and
techniques based on solely detecting error inflations report a
lot more false positives. More importantly, as we will show
later, the false positives in detecting instability have little ef-
fects on the main results, output variations.
Handling Benign Unstable Predicates and Forking. An
important advantage of RAIVE is the capability of handling
benign unstable predicates. The results are in Columns 2-
4 in Table 3. Column 2 lists the average number of un-
stable predicates encountered in a single sample execution.
Note that column 3 in Table 2 shows the number of sam-
ple runs in which unstable factors were detected. They have
different meanings. Column 3 in Table 3 shows how of-
ten RAIVE can proceed without forking after executing the
two branches separately. Column 4 shows the number of
forks. Observe that 2 of the 6 programs (with instability de-

tected) encounter benign unstable predicates. If these predi-
cates were not properly handled, there would be a lot of un-
necessary forks. Also observe that since most unstable pred-
icates are benign, the number of forks is very small. Intu-
itively, it is unlikely for a program to have multiple sources
of instability for a given input.
Output Variations. The experiment is set up as follows. We
first identify the input range that is reported as unstable by
HPL. Then we collect two samples at the boundary of the
range, denoted as lb and ub, and use the output variations
between the two executions as the ground truth as they
denote the two boundary stable executions. Observe that
the range is mostly very small such that external errors
can easily cause input variations in the range. Then we
execute the program on RAIVE for all the unstable samples
(with τc = 52) and collect the output variations for each
sample. We then compute the output coverage for a sample
i as follows. Let O1, ..., On be the n output variables and
Ot(ub) the value of a t’th variable in the ub sample. Since
an execution in RAIVE may fork, we use range(Ot(i)) to
denote the range of Ot for the ith sample.

recall = (
n∑
t=1

range(Ot(i)) ∩ [Ot(lb), Ot(ub)]
|Ot(ub)−Ot(lb)| ) / n

precision = (
n∑
t=1

range(Ot(i)) ∩ [Ot(lb), Ot(ub)]
range(Ot(i))

) / n

Recall denotes how much ground truth output variation is
covered by RAIVE; precision represents how much output
variation reported by RAIVE denotes true variation.

The results for τc = 52 are in columns 5-7 in Table 3.
Column 5 shows the number of output variables. The last
two columns show the average precision and recall over all
samples. Observe that RAIVE has close to 100% precision
and recall for most cases, meaning that any sample within
the range can precisely predict the same output variations in
the presence of (both internal and external) errors. This is be-
cause the output variations caused by discrete differences are
much more substantial than those by continuous numerical
operations and RAIVE can precisely simulate discrete dif-
ferences caused by errors. Since the discrete differences are
stable within the range, the output variations are mostly sta-
ble across sample runs too. The precision and recall are not
100% in some cases because of the continuous differences.
Galgel has the lowest recall as its continuous differences
are non-trivial compared to the discrete differences.

The last column shows the maximum relative standard
deviation (i.e., standard deviation divided by mean) of the
output values for the same output variable. We only present
the maximum as there are outputs whose values are almost
identical across all the forked runs as they are not affected by
the path differences. Observe that there are substantial out-
put variations. The RSD for galgel cannot be computed
as many of its forked executions do not produce any output.
Note that existing techniques focusing on numerical behav-
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approach # of cases % detected range

equake

OVERALL 1E+14 [0.8650, 0.8750]
HPL 2 2.00E-12% [0.8690799016130847, 0.8690799016130848]

TAG(τc=44) 4516 4.52E-09% [0.8690799016026333, 0.8690799016130848]
TAG(τc=48) 279 2.79E-10% [0.8690799016130570, 0.8690799016130848]
TAG(τc=50) 20 2.00E-11% [0.8690799016130829, 0.8690799016130848]

RAIVE(τc=44) 4516 4.52E-09% [0.8690799016128591, 0.8690799016133106]
RAIVE(τc=48) 280 2.80E-10% [0.8690799016130709, 0.8690799016130988]
RAIVE(τc=52) 20 2.00E-11% [0.8690799016130829, 0.8690799016130848]

facerec

OVERALL 1E+14 [0.6694, 0.6695]
HPL 30700 3.07E-08% [0.6694295316764218, 0.6694295316764524]

TAG(τc=44) 37267458 3.73E-05% [0.6694295316577891, 0.6694295316950752]
TAG(τc=48) 2314523 2.31E-06% [0.6694295316751556, 0.6694295316777159]
TAG(τc=52) 162943 1.63E-07% [0.6694295316762312, 0.6694295316766320]

RAIVE(τc=44) 115423 1.15E-07% [0.6694295316763000, 0.6694295316766643]
RAIVE(τc=48) 70847 7.08E-08 % [0.6694295316762782, 0.6694295316766333]
RAIVE(τc=52) 55712 5.57E-08% [0.6694295316762792, 0.6694295316765709]

galgel

OVERALL 1E+14 [0.8184, 0.8185]
HPL 57695 5.77E-08% [0.8184459012000007, 0.8184459012253359]

TAG(τc=44) 37972131 3.80E-05% [0.8184458998299998, 0.8184459039575860]
TAG(τc=48) 3728089 3.28E-06% [0.8184459002196792, 0.8184459020723309]
TAG(τc=52) 1233455 1.23E-06% [0.8184459019084903, 0.8184459020723309]

RAIVE(τc=44) 43930919 4.39E-05% [0.8184437893753897, 0.8184481724703180]
RAIVE(τc=48) 3258832 3.26E-06% [0.8184459011753019 , 0.8184459399554056]
RAIVE(τc=52) 229573 2.30E-07% [0.8184459011900151, 0.8184459014121039]

deisotope

OVERALL 1E+14 [1.11, 1.12]
HPL 2 2.00E-12% [1.1156381266106556, 1.1156381266106557]

TAG(τc=44) 653 6.53E-10% [1.1156381266105905, 1.1156381266106557]
TAG(τc=48) 40 4.00E-11% [1.1156381266106518, 1.1156381266106557]
TAG(τc=52) 5 5.00E-12% [1.1156381266106553, 1.1156381266106557]

RAIVE(τc=44) 315 3.15E-10% [1.1156381266106398, 1.1156381266106712]
RAIVE(τc=48) 22 2.20E-11% [1.1156381266106545 , 1.1156381266106566]
RAIVE(τc=52) 2 2.00E-12% [1.1156381266106556, 1.1156381266106557]

k-means

OVERALL 1E+14 [0.5640, 0.5650]
HPL 233 2.33E-10% [0.56446068002405417 0.56446068002405649]

TAG(τc=44) 100819 1.01E-07% [0.56446068002355170, 0.56446068002455988]
TAG(τc=48) 6064 6.06E-09% [0.56446068002402601, 0.56446068002408664]
TAG(τc=52) 325 3.25E-10% [0.56446068002405417, 0.56446068002405741]

RAIVE(τc=44) 50572 5.06E-08% [0.56446068002380185, 0.56446068002430756]
RAIVE(τc=48) 3140 3.14E-09% [0.56446068002403901, 0.56446068002407040]
RAIVE(τc=52) 325 3.25E-10% [0.56446068002405417, 0.56446068002405741]

pagerank

OVERALL 1E+14 [1.10, 1.11]
HPL 122 1.22E-10% [1.1026503685992210, 1.1026503685992331]

TAG(τc=44) 593 5.93E-10% [1.1026503685991619, 1.1026503685992211]
TAG(τc=48) 38 3.80E-01% [1.1026503685992174 , 1.1026503685992211]
TAG(τc=52) 2 2.00E-12% [1.1026503685992210, 1.1026503685992211]

RAIVE(τc=44) 593 5.93E-10% [1.1026503685991912, 1.1026503685992504]
RAIVE(τc=48) 38 3.80E-11% [1.1026503685992190, 1.1026503685992227]
RAIVE(τc=52) 2 2.00E-12% [1.1026503685992210, 1.1026503685992211]

Table 2. Instability detection.

program # of unstable preds. # preds (%) that merge # fork # output var. precision recall %RSD

178.galgel 253385 253382 (99%) 3 7 100% 71% -
183.equake 1 0 (0%) 1 12 99% 99% 69%
187.facerec 14 9 (64%) 5 10 100% 100% 6.4%
deisotope 1 0 (0%) 1 30 97% 97% 43%
k-means 1 0 (0%) 1 92 100% 100% 55%
pagerank 1 0 (0%) 1 10 100% 100% 16%

Table 3. Average number of unstable predicates, and forks for an execution, and output variations across samples. RSD stands for relative
standard deviation.
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ior [10, 16] cannot report output variations caused by dis-
crete differences.

We have also repeated the same experiment on τc = 44.
In this case, we have much more unstable sample runs. How-
ever, the results are very similar to those in Table 3. The pre-
cision and recall are still close to 100%. The only difference
is that RSD values are smaller due to the larger sample size.
The observation is hence that the output variations are not
sensitive to the threshold. The reason is that all these unsta-
ble sample runs lead to the same path differences and hence
the same output variations. In other words, using a more con-
servative (i.e., smaller) threshold only means that the same
output variations are exposed by a larger set of inputs (falling
in the unstable range). On the other hand, as long as an input
falls into the unstable range, any errors, including internal
and external errors, cause the same output variations.

5.3 Case Studies
K-means [13] implements a widely used clustering algo-
rithm, which partitions inputs into k clusters by the given
distance metrics. The core algorithm is shown in Fig. 9. In
each iteration, it first computes the centroids for the current
k clusters (line 2) and then the sum of the distances from
each element to its centroid (line 3). It then traverses all el-
ements to check if the current partition can be further im-
proved (lines 5-14). This is done by checking for an element
e, if there is a cluster J whose centroid is closer than e’s cur-
rent cluster K. If so, e is moved to J . The algorithm repeats
until the overall distance stabilizes (line 15).

1 do {
2 getclustermeans(cluster, data); / ∗ Find the centroids ∗ /
3 total dist = ...; / ∗ Compute current total dist ∗ /
4 total dist new = 0;
5 foreach element e {
6 K = cluster[e]; / ∗ Element e belongs to cluster K ∗ /
7 dist = distance[e];
8 foreach cluster J {
9 dist new = euclid(e, J);
10 if (dist new < dist) {

/ ∗Move element e from cluster K to J. ∗ /
11 cluster[e] = J ;
12 distance[e] = dist new;
13 dist = dist new;

} }
14 total dist new+ = dist;

}
15 }while (total dist new < total dist);

Figure 9. Pseudocode snippet for k-means.

Since there is an element e with a very similar distance
to the centroids of J and K, leading to an unstable predicate
dist new < dist at line 10, RAIVE detects the instability
and evaluates both branches. But it cannot merge the two
branches and hence forks, yielding two different clustering
results as shown in Fig. 10. While we used simple input
data in the case study, real world data set could be very
complex and can hardly be manually inspected. RAIVE can
automatically identify the possible clustering outputs.

(a) Result from the original exec. (b) Result from the forked exec.

Figure 10. Clustering result variations of an unstable execution
for k-means; 92 genes are grouped into five clusters; each cluster
has a unique color.

1 while (cont) {
2 cont = 0;
3 foreach page p{
4 foreach neighbor n
5 neighbor sum+ = score(n)/num out links;
6 new score = ...+ (... ∗ neighbor sum);
7 diff = abs(new score− score(p));
8 if (diff > threshold)/ ∗ unstable ∗ /
9 cont = 1
10 }
11 score(p) = new score;

Figure 11. Pseudocode snippet for pagerank.

Pagerank [14] is one of the most widely used algorithms in
information retrieval. It was invented by Google and used
to rank result pages for a search request. It computes a
score for each page according to the number and quality of
other pages linked to it. The score represents the probability
that a random surfer will visit a page. A page with many
high-score pages linked to it also has a high score. Part of
the algorithm is shown in Fig. 11. In each iteration, a new
score is computed for each page according to its incoming
neighbors’ previous scores. The algorithm repeats until the
absolute difference between the new score and the old score
is smaller than a threshold for all pages.

In this experiment, we use a set of similar pages. RAIVE
reports instability at line 8 as diff and theshold are
very close to each other. Hence, the execution is split to
two and one of them iterates more. The iteration differences
substantially change the final rankings of the pages. While
the program printed the top 10 pages, we showed the top 3
in the following table.

Orig. (35 iterations) Forked (34 iterations)
page id score page id score
722 0.999997000... 968 0.99999499...
723 0.999997000... 969 0.99999499...
724 0.999997000... 970 0.99999499...

Observe that the results are completely different. Also,
there may not be a patch to the code that can fix the insta-
bility problem, which does not lie in the numerical core of
the algorithm, but rather in the interface between the floating
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point computation and the discrete logic. It is a property of
the algorithm and the provided input. Furthermore, generat-
ing inputs that expose such instabilities may not be as use-
ful as in exposing functional bugs due to the infeasibility of
fixing them. Therefore, we argue that showing the possible
outputs to the user provides a reasonable solution.

/*coarse-grained search*/
142 Position = (LLX,LLY )

...
/*fine-grained search*/

168 CurSimilarity = GraphSimFct(LLX,LLY, ...)
169 If (CurSimilarity > Similarity) Then
170 Similarity = CurSimilarity
171 Position = (LLX,LLY )
172 EndIf

Figure 12. Benign unstable predicate in 187.facerec.

Benign Unstable Predicate in 187.facerec. Facerec is
a Fortran program for face recognition. It consists of two
phases of search. The first one is coarse-grained and the sec-
ond one is fine-grained. It is possible that both phases iden-
tify the same object. The related code snippet is shown in
Fig. 12. The object identified in the first phase is saved in
Position at line 142. Lines 168-172 are for the second
phase. In particular, the newly computed CurSimilarity
is compared with the current Similarity (line 169). If
the new similarity is larger, the current similarity and po-
sition are updated. If both phases identify the same object,
the difference between the two similarity metrics is very
small, leading to instability at line 169. RAIVE executes
both branches: lines 170-171 and the fall-through. At the
join point 172, the vector for Similarity has trivial dif-
ferences inside. Intuitively, since the two similarity metrics
are very close, the update in the true branch has little effect.
Moreover, the integer variable Position has the same val-
ues in the two branches as the same object was identified in
the two phases. As such, the instability is benign.

6. Related Work
RAIVE is related to dynamic instability detection techniques
such as interval analysis [21, 26], high precision compu-
tation [5], and error tagging [2]. Compared to these tech-
niques, RAIVE is much more efficient and can reason about
output variations.

A dynamic technique was proposed in [22] to detect
bit cancellations. It does not distinguish benign and prob-
lematic cancellations and thus reports many false alarms.
Researchers have proposed techniques to generate tighter
bounds for interval arithmetic [15, 16] and affine arithmetic
tools [10, 17]. Affine arithmetic handles variable correlations
using affine forms. These techniques are very expensive (3-4
orders of magnitude slowdown [10]) and may have difficulty
scaling to complex programs. They mostly focus on numer-
ical cores and can hardly reason about discrete differences
caused by errors, which are common in real world programs
and usually induce substantial output variations.

There are also a large body of work on abstract interpre-
tation, SMT solving, model checking and code perturbation
to tackle the internal error problem [9, 23, 25, 29]. Robust-
ness analysis [7] tries to statically prove that a floating point
program is free from instability problems. While it is quite
successful in handling simple programs, the mathematical
complexity and the iterative nature of many real world pro-
grams are difficult to address by the technique. Moreover, as
instability problems are input dependent and rarely happen,
dynamic analysis may be more preferable when completely
fixing instability is difficult.

RAIVE is also related to uncertain data processing. In [28],
a static analysis is proposed to analyze probabilistic pro-
grams that operate on uncertain data. In [6], an abstraction
was proposed to help developers operate on and reason about
uncertain data. A sampling technique was proposed in [3] to
expose discontinuity in output functions, in the presence
of input uncertainty. Different from RAIVE, they explicitly
model and sample external errors.

In [8], a technique is proposed to search for error-causing
inputs that can maximize result errors due to internal errors.
In [30], researchers propose to reason about the portability
of numerical programs by using symbolic analysis to find
inputs that cause different branch decisions, when the pro-
gram is executed with the same input on different platforms.
Recently, [11, 27] propose techniques to reason about the
required precision to compile a given program with given
output requirements.

7. Conclusion
We propose RAIVE, a technique to detect output variations
caused by errors (both internal and external) in floating point
computation. It transforms a floating point value to a vector
of four values and encodes the presence of an error by inject-
ing value differences into the vector. Error propagation and
suppression are performed implicitly by vectorized floating
point operations. Instability is detected by checking if all
vector elements lead to the same discrete result at discrete
factors. Evaluation shows that RAIVE can precisely identify
output variations. Compared to the state-of-the-art, RAIVE’s
overhead is 2.43 times lower, averaging 340%, and it has the
new capability of reporting output variations.
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