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Abstract
Many vertex-centric graph algorithms can be expressed us-
ing asynchronous parallelism by relaxing certain read-after-
write data dependences and allowing threads to compute ver-
tex values using stale (i.e., not the most recent) values of
their neighboring vertices. We observe that on distributed
shared memory systems, by converting synchronous algo-
rithms into their asynchronous counterparts, algorithms can
be made tolerant to high inter-node communication latency.
However, high inter-node communication latency can lead to
excessive use of stale values causing an increase in the num-
ber of iterations required by the algorithms to converge. Al-
though by using bounded staleness we can restrict the slow-
down in the rate of convergence, this also restricts the ability
to tolerate communication latency. In this paper we design
a relaxed memory consistency model and consistency proto-
col that simultaneously tolerate communication latency and
minimize the use of stale values. This is achieved via a coor-
dinated use of best effort refresh policy and bounded stale-
ness. We demonstrate that for a range of asynchronous graph
algorithms and PDE solvers, on an average, our approach
outperforms algorithms based upon: prior relaxed memory
models that allow stale values by at least 2.27x; and Bulk
Synchronous Parallel (BSP) model by 4.2x. We also show
that our approach frequently outperforms GraphLab, a pop-
ular distributed graph processing framework.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming—Distributed pro-
gramming; D.3.3 [Programming Languages]: Language
Constructs and Features—Concurrent programming struc-
tures; D.3.4 [Programming Languages]: Processors—Run-
time environments
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1. Introduction
The data- and compute-intensive nature of many modern ap-
plications makes them suitable candidates for execution on
large scale clusters. A subclass of these applications are it-
erative graph algorithms (e.g., graph mining, graph analyt-
ics, PDE solvers) that can be expressed via asynchronous
parallelism by relaxing certain read-after-write data depen-
dences. This allows the threads to perform computations us-
ing stale (i.e., not the most recent) values of data objects.
It is well known that asynchronous algorithms can improve
the efficiency of parallel execution on shared-memory mul-
tiprocessors by avoiding the costly synchronizations that
are required by the corresponding synchronous algorithms
[6, 14]. Recent works [44, 48] have proposed programming
support and scheduling techniques for taking advantage of
asynchrony in exploiting loop level parallelism on shared-
memory systems.

Exploitation of asynchrony to enhance performance on
distributed shared memory (DSM) based clusters is largely
an unexplored topic. With DSM, although an application
thread can access all objects as if they are stored in shared
memory, the access latency experienced by the thread varies
based upon the node at which the object is physically stored.
Therefore the key to obtaining high-performance on a cluster
is successfully tolerating the high inter-node communication
latency. On our Tardis cluster which has 16 nodes, the la-
tency of accessing an object stored in the DSM increases by
2.3 times if instead of being found in the local cache (DSM)
it has to be brought from a remote node. We observe that
to tolerate the long inter-node communication latency, the
asynchronous nature of algorithms can be exploited as fol-
lows. When a thread’s computation requires an object whose
stale value is present in the local cache, instead of waiting for
its most recent copy to be fetched from a remote node, the
stale value can be used. By tracking the degree of staleness
of cached objects in terms of the number of object updates
that have since been performed, we can limit the extent to



which use of stale values is permitted. However, fruitfully
exploiting this idea is challenging due to the following:

• Allowing high degree of staleness can lead to excessive
use of stale values which in turn can slow down the al-
gorithm’s convergence, i.e. significantly more iterations
may be needed to converge in comparison to the syn-
chronous version of the algorithm. This can wipe out the
benefits of exploiting asynchrony.

• Allowing low degree of staleness limits the extent to
which long latency fetch operations can be tolerated as
the situation in which the cached value is too stale to
be used becomes more frequent causing delays due to
required inter-node fetches.

In this paper we address the above challenge by designing
a relaxed memory consistency model and cache consistency
protocol that simultaneously maximize the avoidance of long
latency communication operations and minimize the adverse
impact of stale values on convergence. This is achieved by
the following two ideas:

• First, we use a consistency model that supports bounded
staleness and we set the permissible bound for using stale
values to a high threshold. By doing so, we increase
the likelihood of avoiding long latency fetch operations
because if a stale value is present in the cache it is highly
likely to be used.

• Second, we design a cache consistency protocol that in-
corporates a policy that refreshes stale values in the cache
such that when a stale value is used to avoid a long la-
tency operation, the likelihood of the value being mini-
mally stale is increased. Thus, this refresh policy avoids
slowing down the convergence of the algorithm due to
use of excessively stale values.

Hence, significant performance improvements can be ob-
tained by effectively tolerating inter-node fetch latency. The
focus of our work is on asynchronous graph algorithms and
thus we rely upon an object-based DSM as opposed to a
page-based DSM. However, our ideas are equally applica-
ble to page-based systems.

Extensive research has been conducted on memory con-
sistency models for parallel environments [2, 7, 11, 13, 19,
21, 22, 26, 27, 31, 38, 39, 43, 60, 67] and a hierarchy of
these models can be found in [23, 49]. From the perspec-
tive of our work these models can be categorized into three
main categories. Some of the models are too strong – for ex-
ample, cache consistency [21] guarantees that each read of a
memory location obtains the most recently written value, i.e.
it does not permit the use of stale values. Other models are
too weak – for example slow memory [26] and PRAM [43]
have been shown to allow programming of asynchronous al-
gorithms [22] but their use requires significant programming
effort to ensure program correctness. As shown in [24], the

time taken for flow of updates in PRAM increases rapidly
with the number of processes, which delays convergence.

Finally, the models that are most relevant to our work are
ones that allow bounded staleness, i.e. they allow reads to
obtain stale values as long as they are not too stale as de-
termined by a specified bound. Staleness is measured either
in terms of number of versions by which the value is out-
of-date (InterWeave [11]) or in terms of number of itera-
tions since the object received its value (SSP [13]). While
we also make use of bounded staleness in our work, as we
demonstrate in this paper, in context of asynchronous algo-
rithms this alone is not enough. It must be coupled with
a strategy for mitigating the adverse impact of stale val-
ues on the algorithm’s convergence. Finally, a number of
graph processing frameworks have been developed. This in-
cludes distributed frameworks such as Giraph [1], Pregel
[47], GraphLab [46], and PowerGraph [20]. The shared-
memory based graph processing frameworks provide effi-
cient solutions while addressing specific challenges: con-
strained memory (GraphChi [37]) and easy programmability
(Ligra [59]). In [50] a shared-memory based implementation
of a graph processing DSL is developed using Galois [36]
system. These frameworks are largely based upon the Bulk
Synchronous Model (BSP) [64] and do not provide support
for programming asynchronous algorithms that leverage the
use of stale objects to improve performance. GRACE [66],
a shared memory based graph processing system, uses mes-
sage passing and provides asynchronous execution by using
stale messages. Since shared-memory processing does not
suffer from communication latencies, these systems can per-
form well for graphs that fit on a single multicore server.

The key contributions of this work are as follows:
1. We present a vertex centric approach for programming

asynchronous algorithms with ease using Distributed
Shared Memory (DSM) that is based upon a memory
consistency model that incorporates bounded staleness.

2. We design a consistency protocol that tracks staleness
and incorporates a policy for refreshing stale values
to tolerate long latency of communication without ad-
versely impacting the convergence of the algorithm. Our
experiments show that the use of this fetch policy is crit-
ical for the high performance achieved.

3. We demonstrate that, on an average, our asynchronous
versions of several graph algorithms outperform algo-
rithms based upon: prior relaxed memory models that al-
low stale values by at least 2.27x and Bulk Synchronous
Parallel (BSP) [64] model by 4.2x. We also show that our
approach performs well in comparison to GraphLab, a
popular distributed graph processing framework.

The remainder of the paper is organized as follows. Sec-
tion 2 shows how we express asynchronous parallel algo-
rithms. In Section 3, we present the relaxed object consis-
tency model that incorporates the use of stale objects for fast



access and the design of our DSM system that implements
the relaxed execution model. The key component of DSM,
the relaxed consistency protocol, is presented in Section 4.
We discuss the implementation of our prototype, experimen-
tal setup, and results of evaluation in Section 5. Related work
and conclusions are given in Sections 6 and 7.

2. Asynchronous Parallelism
We consider various iterative algorithms that move through
the solution search space until they converge to a stable so-
lution. In every iteration, the values are computed based on
those which were computed in the previous iteration. This
process continues until the computed values keep on chang-
ing across subsequent iterations. The asynchronous model
for parallel computation allows multiple threads to be ex-
ecuted in parallel using a set of possibly outdated values
accessible to those threads. By using an outdated value, a
thread avoids waiting for the updated value to become avail-
able. Algorithm 1 shows a basic template for such conver-
gence based iterative algorithms. A set of threads execute the
DO-WORK method which iteratively performs three tasks:
fetch inputs, compute new values, and store newly com-
puted values. At the end of DO-WORK, if a thread detects
that the values have not converged, it votes for another it-
eration. This process ends when no thread votes for another
iteration, which is detected in the MAIN method.

The DSM-FETCH method fetches an object from the DSM
(line 7). For example, in a vertex centric graph algorithm,
the vertex to be processed is initially fetched using this
method. Then, to fetch its neighbors, again, DSM-FETCH is
used (line 10). In synchronous versions of these algorithms,
this DSM-FETCH method incurs very high latency because
it may result in a remote fetch to access the most recent
value. However, when these algorithms are implemented
using the asynchronous computational model, some of the
objects used in the computation are allowed to reflect older
values, i.e., they do not reflect the most recent changes.
Hence, these methods may return a stale vertex value.

Let us consider the single source shortest path (SSSP)
algorithm which computes the shortest path from a given
source node to each node in a graph. To guarantee conver-
gence, the iterative algorithm assumes that the graph does
not have a negative cycle. Figure 1 shows an example sub-
graph along with the distance values calculated for nodes a
and b at the end of iterations i = 0, 1, 2, 3 and the initial
value for c at the end of iteration i = 0. Since the algo-
rithm is implemented based on asynchronous parallelism, a
perfectly valid execution scenario can be as follows:

• During i = 1, c observes d0(a) = 20 and d0(b) = 28.
Hence, d(c) is set to min(20 + 20, 16 + 28) = 40.

• During i = 2, only updated value d1(b) = 20 is observed
by c and d(c) is set to min(20 + 20, 16 + 20) = 36.

Algorithm 1 A basic template for Iterative Algorithms

1: function DO-WORK(thread-id)
2: curr← GET-START-INDEX(thread-id)
3: end← GET-END-INDEX(thread-id)
4: error← ε
5: while curr < end do
6: oid← GET-OBJECT-ID(curr)
7: object← DSM-FETCH(oid)
8: r-objects← ∅
9: for r-id ∈ object.get-related-object-ids() do

10: r-objects← r-objects ∪ DSM-FETCH(r-id)
11: end for
12: old-value← object.get-value()
13: comp-value← f (object, r-objects)
14: object.set-value(comp-value)
15: DSM-STORE(object)
16: error = MAX(error, |old-value − comp-value|)
17: curr← curr + 1
18: end while
19: /* Local termination condition */
20: if error > ε then
21: vote to continue
22: end if
23: end function
24:
25: function MAIN
26: INITIALIZE-DSM(object-set)
27: do
28: parallel-for all threads do
29: DO-WORK(thread-id)
30: end parallel-for
31: BARRIER
32: /* Global termination condition */
33: while at least one thread votes to continue
34: end function

c 
20 

12 16 

a 

b 

0 1 2 3 

d(a) 20 15 15 15 

d(b) 28 20 10 10 

d(c) 40 ? ? ? 

Figure 1: An example subgraph for SSSP.

• During i = 3, c observes that d2(a) = 15, but it remains
oblivious to the change in d(b) which leads to d(c) to be
set to min(20 + 15, 16 + 20) = 35.

• During i = 4, c observes that d2(b) = 10 and that d2(a)
is still the same. Hence, d(c) is set to min(20+ 15, 16+
10) = 26.



0 1 2 3 4 5 6 7 8 

d(a) 20 - 16 - - 15 14 13 - 

d(b) 28 22 21 - - 18 17 9 - 

d(c) 40 - 38 36 - - 34 33 25 threshold = 0 

d(c) 40 - - 37 - - 35 33 - threshold = 1 

d(c) 40 - - - - - 34 - - threshold = 2 

Figure 2: Execution instances showing intermediate values
of d(c) for statically set staleness thresholds of 0, 1 and 2.

In the above execution, d(c) was always computed using
d(a) and d(b), one of which did not reflect recent changes.
Using older values made the intermediate values of d(c)
inconsistent. However, if the updated values of both d(a) and
d(b) are guaranteed to be observed during future iterations,
the algorithm converges to its correct solution. Hence, an
intuitive and straightforward way to hide fetch latencies in
these algorithms is to allow the use of previously fetched
older values. This can be achieved by using delta coherence
as shown in [11], that allows objects which are no more than
x versions out-of-date. However, statically maintaining x as
a threshold will not yield the expected performance benefits.

Figure 2 shows execution instances when staleness thresh-
old is statically set to 0, 1 and 2. When the threshold is 0,
change in d(b) from 28 to 22 at the end of iteration 1 is im-
mediately seen in iteration 2. This change gets hidden when
the threshold > 0; for e.g., with threshold = 1, d(b) = 21 is
noticed directly in iteration 3 and d(b) = 22 is never seen.
As we can see in Figure 2, setting the staleness threshold
to 1 or 2 allows computations to avoid immediate fetches;
however, the computations choose to work with stale values
(for e.g., in iterations 4 and 5) even when algorithms could
have progressed using fresher values. These computations
can be considered redundant or wasteful. Note that d(a) and
d(b) can continue to remain unchanged (as in iterations 3
and 4) across a long series of consecutive iterations, making
the situation worse for any threshold > 0. A key observation
is that if any subset of the set of values is used to com-
pute the new value updates across subsequent iterations, the
algorithm can be deemed to have progressed across these
iterations. Hence, it is important for the updated values to be
observed by required computations in order to make a faster
progress towards the correct stable solution.

Also, when a requested object’s staleness has already
crossed the static threshold, a DSM fetch is required. This
enforces a limit on the number of remote fetches that can be
avoided. For example, for a threshold x, every xth access to
an object can potentially cause a fetch from its global copy
which may be present on a remote location.

Note that SSSP’s monotonic nature along with the minia-
ture subgraph in the example allows the discussion at hand
to be simple; however, the observations drawn from this ex-
ample apply to other more complex situations too.

To formalize the discussion, we define following terms:

Current Object: An object whose value reflects the most
recent change.

Stale Object: An object which was current at some point
in time before the present time.

Staleness of an object: The number of recent changes
which are not reflected in the object’s value.

In our example, during i = 2, d1(a) = 20 is a current
object and d0(b) = 28 is a stale object. It is easy to follow
that the staleness value of current objects is always 0.

In summary, we draw the following conclusions for asyn-
chronous versions of convergence based iterative algorithms.

• Since these algorithms do not enforce strict data depen-
dence constraints (in particular, read-after-write depen-
dences for objects), they can tolerate use of stale objects.

• To maintain a good convergence rate, it is recommended
that these algorithms rely more on the current values of
objects and less on the stale values of objects.

Even though these conclusions inherently seem contra-
dictory, they give us a key insight that maintaining a right
mix of current and stale objects along with carefully balanc-
ing staleness of these objects can lead to better performance
of these algorithms on DSM.

By allowing computations to use stale objects, the path to
the final solution in the solution search space may change.
This means that the total number of iterations required to
converge to the final solution may also vary. However, since
local caches can quickly provide stale objects, data access
will be faster and time taken to execute a single iteration
will drastically reduce. This reduction in time can result in
significant speedups for various iterative algorithms if we
minimize the staleness of values available without stalling
computation threads. Note that since stale objects are often
used for computations, termination of these iterative algo-
rithms needs to be handled carefully and additional checks
must be performed along with the algorithm specific termi-
nation conditions (discussed further in Section 4).

This analysis motivates the need for a relaxed model
that can provide fast access to, possibly old, data that is
minimally stale in order to achieve better performance for
convergence based iterative algorithms.

3. Relaxed Object Consistency Model
The relaxed object consistency model we present accom-
plishes two goals. First, it achieves programmability by pro-
viding a single writer model that makes it easy to reason
about programs and intuitive to write correct asynchronous



parallel algorithms. Second, it enables high performance
through low latency access of objects which requires careful
(minimal) use of stale objects. To achieve the above goals,
we have identified four constraints that together describe
our consistency model and are enforced by our cache con-
sistency protocol. Next we present these constraints and an
overview of how they are enforced.

Object consistency constraints for Programmability. We
define our consistency model with respect to a single ob-
ject, i.e. we do not enforce any ordering among operations
on different objects even if they are potentially causally re-
lated. For each object, we rely upon having a single writer,
i.e. the same machine is responsible for updating a particular
data item in every iteration. Our iterative object centric ap-
proach for programming asynchronous algorithms naturally
maps to the single writer discipline and allows the program-
mer to intuitively reason about the program. We enforce the
single writer discipline by fixing the assignment of compu-
tations to machines such that threads on the same machine
update the same set of objects in every iteration. Although
our consistency model does not enforce any ordering on the
writes to an object from different machines, the programmer
does not need to be concerned about this as chaotic writes to
the same object by multiple machines are prohibited by en-
suring that there is only a single writer for each object. Us-
ing the single writer discipline gives us another advantage –
our consistency protocol does not have to deal with multiple
writes to same objects. This simplifies the consistency pro-
tocol by eliminating the need to maintain write/exclusive ob-
ject states. Now we are ready to state two of our constraints
on writes and reads to each object and describe how they are
enforced.

(Local Updates) Local writes must be immediately visible.
This constraint enforces an ordering on multiple writes to an
object by the same machine. To satisfy this constraint and
provide strict ordering of writes to an object by its single
writer, threads in our system do not maintain any thread-
local cache and all writes directly go to the global copy
of the object. Our system employs machine level caches to
make remote objects locally available; these caches are write
through to make writes visible across different machines.

(Progressive Reads) Once an object is read by a thread,
no earlier writes to it can be read by the same thread.
This constraint makes our model intuitive to programmers
by guaranteeing that the updated values for an object will
be seen in the order of writes to that object. Since we only
have one global copy of an object at its home machine, any
stale-miss or a refresh on stale-hit (described later) at another
machine will only make its local copy current.

As we see, the above two constraints are primarily re-
quired to guarantee correctness and allow programmers to
intuitively reason about program execution.

Object consistency constraints for Performance. For
high performance we must permit the use of stale objects
and avoid long latency communication operations. The con-
straints we present next involve the use of stale object values.

(Bounded Staleness) A read is guaranteed to receive an
object whose staleness is no more than a particular thresh-
old. A bound on staleness allows the threads to notice the
updated values at some point in the future. This constraint
is satisfied by altering the definition of a cache hit as de-
scribed in the next section. The strictness of this bound can
be relaxed using asynchronous invalidate messages, as done
in our protocol.

(Best Effort Refresh) A series of reads by the same thread
for the same object should preferably reflect updated values,
independent of the threshold. The previous constraint alone
does not guarantee that updates will be observed by threads
that depend on those updates. Hence, this final constraint is
introduced to allow threads to quickly observe the updated
values which helps the algorithm to progress at a faster rate.
This final constraint is enforced by our cache consistency
protocol which specifically employs a mechanism for asyn-
chronously refreshing objects on stale-hits to allow fast ac-
cess to updated objects.

Any DSM implementation that wishes to satisfy our ob-
ject consistency model must satisfy the first three constraints.
This does not mean that the fourth constraint can be ignored.
Even though the fourth constraint is a loose constraint, the
protocol is expected to do its best to satisfy this constraint.

4. Relaxed Consistency Protocol
Next we introduce the new consistency protocol which sat-
isfies the model proposed in the previous section. In Section
4.1, we introduce various notations and terms which will be
used to discuss the working of the protocol in Section 4.2.

4.1 Definitions and Notation
Formally, M = {m0,m1, . . . ,mk−1} is the set of k ma-
chines (nodes) in the cluster. The mapping function h maps
an object o to its home machine mi i.e., on DSM, if o resides
on mi, then h(o) = mi.

Every machine mi ∈ M has a cache ci which locally
stores objects and tracks their staleness. An entry in the
cache is of the form 〈o, staleness〉 where o is the actual
object and staleness is its staleness value. Since we do
not use thread-level caching, these caches provide the fastest
data access.

Every machine mi ∈ M has a directory di to track the
set of machines which access the objects mapped to that
machine. A directory entry for an object o is of the form
doi = {mj |mj ∈M and o ∈ cj} ∀ o such that h(o) = mi.



Also, we keep a threshold t which is used to determine the
usability of locally available o. Hence, o can be considered

current if staleness = 0

stale if 0 < staleness ≤ t

invalid if staleness > t

We change the meaning of a hit and a miss in the cache
as follows. If the requested object in local cache is either
current or stale, it is a hit. Otherwise, it is a miss. Hence, for
an object o requested at a machine mi, we determine a hit or
a miss as follows:

hit if o ∈ ci and staleness ≤ t

miss otherwise

For ease of discussion, we further categorize a hit and a
miss. For a requested object which is present in the local
cache, it is a current-hit, a stale-hit or a stale-miss if the
object in cache is current, stale or invalid, respectively. If
the requested object is not in the local cache, it is simply a
cache-miss. Hence, for an object o requested at a machine
mi, the result can be one of the following:

current-hit if o ∈ ci and staleness = 0;

stale-hit if o ∈ ci and 0 < staleness ≤ t;

stale-miss if o ∈ ci and staleness > t;

cache-miss if o /∈ ci.

4.2 Protocol
In this section, we discuss the basic working of our proto-
col using the terms introduced in the previous section. The
traditional directory based coherence mechanism [10, 40] is
useful to enforce strict consistency. Our protocol extends the
directory based protocol to control the degree of coherence,
as required at runtime. In the following discussion, we as-
sume that machine mi requests for object o.

On a cache-miss, mi first sends a read request to mj =
h(o). On receiving the read request from mi, mj sets doj ←
doj ∪{mi}. After fetching o from the DSM, mi adds 〈o, 0〉 to
ci . While adding 〈o, 0〉 to ci, if ci is full, object o′ is evicted
from ci based on the Least Recently Used (LRU) replace-
ment policy. To evict o′, mi sends an eviction message to
mp = h(o′). On receiving the eviction message from mi,
mp sets do

′

p ← do
′

p \ {mi}.
When mi writes o back to the DSM, it sends a write

message to mj = h(o) and continues immediately. On
receiving the write message from mi, mj asynchronously
sends an invalidation message to all mq ∈ doj \ {mi} and
sets doj ← doj ∪ {mi}. When mq receives invalidation for
o, it sets 〈o, staleness〉 ← 〈o, staleness + 1〉 in cq . We
use invalidate-on-writes instead of broadcasting updates so
that we can avoid consecutive updates to be propagated to

remote nodes which makes the intermediate updates, before
the object is actually read, redundant.

On a stale-miss, the current value of o is fetched from
the DSM and mi sets 〈o, staleness〉 ← 〈ocurr, 0〉 in ci.

On a current-hit, the local copy of o is used by mi. No
further processing is required in this case.

On a stale-hit, the local copy of o is used by mi and a
DSM fetch request is issued asynchronously to refresh the
local copy of o. When the current value of object is received
from the DSM, mi sets 〈o, staleness〉 ← 〈ocurr, 0〉 in ci.

By allowing cache misses in the traditional protocol to
be considered as cache hits in our protocol, o ∈ ci can
remain outdated until its staleness ≤ t. To allow visibility
of more recent values of o for subsequent reads on mi, the
protocol incorporates refresher threads. The refresher thread
observes that mi has read a stale value of o from ci as its
staleness > 0; hence, it initiates a fetch to update o ∈ ci
with its current value from the DSM. This prevents o from
remaining outdated for long time and thus causes subsequent
reads to receive fresher values.

Figure 3 shows the state transition diagram for object en-
tries in machine caches. The gray text in parentheses indi-
cates the source of the event and the small text at the bottom
of the transitions show how an object’s staleness is main-
tained. The shared state represents that the object is current.
On receiving an invalidation message for a current object,
the state of object changes to stale state. Every invalidation
message increments the staleness by 1. A hit occurs when
the object is either in shared or stale state and the staleness
of the object is at most equal to the threshold value. If the
current staleness is greater than the threshold value, a stale-
miss occurs and the current value is fetched. This allows the
state of the object to be changed to shared state. Figure 4
shows the state transition diagram for object entries in direc-
tories. The gray text on transitions indicates how the set of
machines locally accessing the object is maintained. Since
the global copies in DSM are always current, the object is
always considered to be in shared state. The set of machines
having copies of the object (stale or current) is maintained
appropriately during the incoming read, write, and evict re-
quests. Each write request leads to invalidation messages to
respective set of machines.

Termination Semantics. Since stale objects will often be
used during computations, termination of iterative algo-
rithms needs to be handled carefully. Along with the al-
gorithm specific termination conditions, additional checks
must be performed to make sure that the final values are not
computed using stale values, i.e., all the required updates
are visible to all machines. This is achieved by making sure
that there are no outstanding invalidate or refresh messages
and that all the objects used for computation in last iteration
were current objects.
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Figure 3: State transition diagram for cache entries. The
operations are shown in black on the transition and the

source of those operations are shown in gray.
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Read
do = do U {mi} 

Figure 4: State transition diagram for directory entries. The
protocol messages are shown in black on the transitions and

the operations to maintain the set of machines currently
accessing the object are shown in gray.

4.3 Optimizations
The above protocol satisfies the relaxed object consistency
model proposed in Section 3. To further enhance the overall
performance of the system, we perform the following stan-
dard optimizations over the protocol.

Work Collocation. Since the single writer model requires a
unique node to perform all computation that updates a given
object throughout the execution, the home node can itself
be used as the single writer. In other words, computation
for objects can be assigned to the nodes that maintain the
global copy of those objects (similar to locality in [15]). This
eliminates the write latency of remote objects and reduces
the protocol traffic as write messages are converted into local
signals on the home machine.

Message Aggregation. When multiple messages are sent
to the same destination node, these messages can be aggre-

gated into fewer number of messages (similar to bulk trans-
fer in [51]). Message aggregation can significantly reduce
the latencies incurred by transfer of multiple small messages
since individually sending small messages is significantly
slower than sending fewer number of large messages.

Message Flattening. When same requests are made for the
same destination node, messages can be flattened to remove
redundant requests and send minimal messages to the desti-
nation node. Message flattening becomes useful when mul-
tiple computations depend on a remote high degree vertex
(flattening read and refresh messages) or when same ob-
jects are updated multiple times (flattening invalidation mes-
sages).

Object replication. If the nature of computation is known
prior to execution, the objects required for computations on
a given node can be replicated in the machine caches during
startup to reduce remote access requests for warming up the
caches in the the first iteration.

5. Experimental Setup
In this section, we discuss few details of our system, the
benchmark programs and the inputs used to evaluate our
relaxed consistency protocol.

5.1 System Prototype
Next we describe our prototype implementation including
the design of the DSM, runtime, and the cluster it runs on.

DSM. To avoid the complexities introduced by false shar-
ing and coherence granularity, we built an object based DSM
in C++ similar to dyDSM [33]. The objects are distributed
across the cluster such that there is exactly one global copy
of each object in the DSM. METIS [30] is used to partition
graphs across various machines to minimize edge-cuts. The
relaxed consistency protocol was implemented in the DSM
to relax the strict consistency and leverage stale values. Each
node maintains a directory which is populated during initial-
ization based on the objects placed on that node. Also, each
node maintains a fixed size local cache for faster object ac-
cess. The size of the local cache is large enough to hold ob-
jects required for computations on the local machine. How-
ever, we do not replicate all objects in these caches during
initialization and allow them to fill up only with objects that
are needed on that node.

The protocol is implemented via a set of threads on each
node where each thread is responsible for a separate func-
tion. These threads primarily communicate through the read,
write, evict, and invalidation messages and perform required
operations to maintain the directory and cache metadata. The
protocol messages are communicated using MPI send/recv
commands. Message aggregation is used to combine mul-
tiple messages for the same destination in order to reduce
communication latencies.



The heart of our protocol is the way it satisfies the Best
Effort Refresh constraint enforced by our model. A sepa-
rate refresher thread is responsible for updating the objects
that will be required in the near future. The refresher thread
blocks on a refresh-queue which maintains object-ids of ob-
jects that need to be refreshed. It picks up the object-id from
this refresh-queue and issues a fetch from dyDSM. After re-
ceiving the current object, the refresher thread updates the
stale copy in local cache with its current value.

Runtime. To evaluate the effectiveness of our protocol, we
have developed a runtime that facilitates writing of parallel
algorithms that run using the DSM. Each node has a sin-
gle computation thread which repetitively executes the DO-
WORK method as presented in Algorithm 1. The workload
is distributed across all the nodes during initialization and
later, the computation thread works on the same workload in
every iteration. Hence, this implementation satisfies the sin-
gle writer model. Since the computation thread is expected
to block when the required protocol read, write, and evict re-
quests are sent to the home machine, sending of these mes-
sages is taken care by the computation thread itself.

The computation thread is responsible for communicat-
ing the need to refresh objects which it will require in near
future. On a stale-hit, the computation thread uses the locally
available stale object. However, before using this stale ob-
ject, it enqueues the object-id in the refresh-queue. Since the
refresh thread will update the object with its current value
in the local cache, the next request for this object by the
computation thread will reflect its refreshed value, allowing
computations to observe updated values. Staleness of objects
used for computation is checked to ensure that termination
is done correctly. Also, message queues are checked to be
empty to make sure that there are no outstanding messages.

To transfer objects to and from the DSM, the runtime pro-
vides DSM-Fetch and DSM-Store methods. This hides the
internal details of the protocol and allows parallel algorithms
to directly execute over the DSM using these two methods.

System. We evaluate our protocol on Tardis which is a
commercial 16-node cluster, running CentOS 6.3, Kernel
v2.6.32-279. Each node has 64 GB memory and is connected
to a Mellanox 18 port InfiniBand switch.

5.2 Benchmarks and Inputs
We use a wide range of modern applications (as listed in
Table 1) and evaluate their asynchronous implementations.
These applications are based on vertex centric model where
each vertex iteratively computes a value (e.g., colors for GC,
ranks for PR, and shortest paths for SSSP) and the algorithm
stops when these vertex values become stable. We obtained
these algorithms from various sources, implemented them in
C++, and inserted the DSM fetch and store calls. Because of
their vertex centric nature, they follow the same template as
shown in Algorithm 1. These applications belong to impor-

Application Type
Heat Simulation (HS) Partial Differential
Wave Simulation (WS) Equations (PDEs)
Graph Coloring (GC)

Graph MiningConnected Components (CC)
Community Detection (CD) [45]
Number of Paths (NP)
PageRank (PR) [53]

Graph AnalyticsSingle Source Shortest
Path (SSSP)

Table 1: Convergence based Iterative Algorithms.

Graph Edges Vertices
Orkut [52] 234, 370, 166 3, 072, 441
LiveJournal [52] 68, 993, 773 4, 847, 571
Pokec [54] 30, 622, 564 1, 632, 803
HiggsTwitter [25] 14, 855, 875 456, 631
RoadNetCA [41] 5, 533, 214 1, 971, 281
RoadNetTX [41] 3, 843, 320 1, 379, 917
AtmosModl [4] 10, 319, 760 1, 489, 752
3DSpectralWave [62] 30, 290, 827 680, 943
DielFilterV3Real [16] 89, 306, 020 1, 102, 824
Flan1565 [18] 114, 165, 372 1, 564, 794

Table 2: Real-world graphs & matrices used in experiments.

tant domains (e.g., scientific simulation and social network
analysis) and are divided into following three categories.

(i) Partial Differential Equations. The algorithms for
solving partial differential equations (PDEs) are conver-
gence based iterative algorithms which makes them suitable
for asynchronous parallelism. We implemented two bench-
marks which solve specific PDEs, namely, heat simulation
(HS) and wave simulation (WS). Both the benchmarks itera-
tively determine the value of current cell based on the values
of neighboring cells. The algorithms converge when all the
cell values stabilize based on a pre-specified tolerance.

(ii) Graph Mining. These set of applications analyze vari-
ous structural properties of graphs. We implemented four ap-
plications in this category: Graph Coloring (GC), Connected
Components (CC), Community Detection (CD), and Num-
ber of Paths (NP). CC and CD are based on iterative label
propagation [69]. The vertices are assigned labels which are
initialized during setup. In every iteration, the label of a ver-
tex is chosen based on its current label and the labels of its
neighboring vertices. For CC and CD, the vertices start with
unique labels; however, subsequent iterations in CC choose
the minimum label whereas those in CD choose the most
frequent labels [45]. For GC, the vertices are initialized with
an invalid color and in subsequent iterations, a vertex is as-
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Figure 5: Real-world graph datasets used for evaluation of graph mining and analytics benchmarks and sparse matrices used
for PDE benchmarks. Orkut, LiveJournal, Pokec and HiggsTwitter are graphs from popular social networking and blogging
platforms which represent power-law distribution. RoadNetCA and RoadNetTX are road networks for California and Texas
states which exhibit a non-skewed distribution. AtmosModl, 3DSpectralWave, DielFilterV and Flan1565 are sparse matrices
based on atmospheric model, 3D spectral elastic wave modeling, high-order vector finite element method in EM and 3D steel

flange model. The x-axis indicates the number of elements in a row (or column) which are non-zero.

signed a unique color which is not assigned to any of its
neighbors. If two neighboring vertices are assigned the same
color, one of the vertex (chosen arbitrarily but fixed) is as-
signed a new unique color. For NP, all vertices except the
source vertex have number of paths initialized to 0 and for
source vertex, it is initialized to 1. In subsequent iterations,
vertices calculate the number of paths by adding those of
their neighbors.

(iii) Graph Analytics. These applications model their
problems as a graph and are targeted to address specific
queries which are not dependent on the structure of graphs
alone. PageRank (PR) and Single Source Shortest Path
(SSSP) fall in this category. For SSSP, all vertices except
the source vertex have their distance initialized to∞ and for
source vertex, it is initialized to 0. In subsequent iterations,
distance to a vertex is calculated by summing up the dis-
tances of all neighboring vertices and the weights on corre-

sponding edges connecting those vertices and then, choosing
the minimum sum. PR is a popular algorithm which itera-
tively computes the rank of a page based on the ranks of its
neighbors [53].

Input Data Sets. We ran the benchmarks on publicly avail-
able [61, 63] real-world graphs and matrices listed in Ta-
ble 2. The graph inputs are used to evaluate the Graph Min-
ing and Analytics benchmarks, whereas the matrices are
used for PDEs.

The graphs cover a broad range of sizes and sparsity (as
shown in Fig. 5) and come from different real-world origins.
Orkut, LiveJournal and Pokec are directed social networks
which represent friendship among the users. HiggsTwitter is
a social relationship graph among twitter users involved in
tweeting about the discovery of Higgs particle. RoadNetCA
and RoadNetTX are the California and Texas road networks
respectively, in which the roads are represented by edges and



Orkut LiveJournal Pokec HiggsTwitter RoadNetCA RoadNetTX

CD SCP 1, 530.79 1, 141.16 572.24 70.70 2.64 1.10
RCP 974.92 307.95 238.43 36.46 1.95 1.17

CC SCP 1, 846.50 1, 045.28 316.16 261.08 77.85 62.16
RCP 710.13 316.46 154.70 78.11 69.10 66.26

GC SCP 1, 568.78 629.59 228.89 72.87 0.53 0.56
RCP 733.03 254.53 101.09 35.48 0.95 0.64

NP SCP 182.36 141.67 81.02 31.87 139.30 174.23
RCP 124.67 117.64 39.97 12.20 140.70 179.28

PR SCP 4, 191.12 3, 754.83 1, 767.52 602.56 12.06 7.19
RCP 2, 710.07 2, 047.06 275.29 88.85 11.82 8.39

SSSP SCP 1, 735.11 759.69 248.48 49.96 74.32 71.92
RCP 714.98 317.62 118.72 39.98 72.30 73.28

Table 3: Execution times (in sec) of SCP and RCP for various graph mining and analytics benchmarks on a 16-node cluster.

the vertices represent the intersections. AtmosModl, 3DSpec-
tralWave, DielFilterV3Real and Flan1565 are sparse matri-
ces (as shown in Fig. 5) which represent models from various
domains like atmospheric models, electromagnetics, hexa-
hedral finite elements, and 3D consolidation problem. The
graph inputs are used to evaluate the Graph Mining and An-
alytics benchmarks, whereas the matrices are used for PDEs.

6. Experimental Results
Now we present a detailed evaluation of our system includ-
ing comparison with closely related protocols and systems.

6.1 Benefits of Exploiting Staleness
To study the benefit of using stale values we compare the
performance of the following two protocols:

• RCP: This is the Relaxed Consistency Protocol devel-
oped in this paper. The threshold is set to a very high
number 1 (=100) and refresher threads are used; and

• SCP: This is the Strict Consistency Protocol that does
not allow the use of stale values at all and is based upon
the traditional directory-based write through cache coher-
ence strategy. This is used as the baseline, to evaluate the
above protocols that allow the use of stale values.

In order to better understand the effectiveness of our
protocol, we do not use the object replication optimization
during this evaluation.

Across inputs. Table 3 and Table 4 compare the execution
times (in sec) for SCP and RCP on a 16-node cluster. On
an average, RCP achieves 4.6x speedup over SCP for PDE
benchmarks and 2.04x speedup for graph mining and analyt-
ics benchmarks. The speedups vary across different bench-
mark and input combinations: for example, speedups for PR

1 Since our RCP protocol does a good job in satisfying the Best Effort
Refresh constraint, the need of using low threshold values is eliminated.
Through experiments, we found that thresholds above 4 do not show any
difference mainly because the refresher threads quickly eliminate objects
with higher staleness values.

Atmos- 3DSpec- DielFilter- Flan-
Modl tralWave V3Real 1565

HS SCP 110.11 464.68 75.12 180.38
RCP 23.99 40.00 29.27 93.79

WS SCP 61.45 237.76 106.14 218.55
RCP 14.51 28.87 48.00 149.18

Table 4: Execution times (in sec) of SCP and RCP for PDE
benchmarks on a 16-node cluster.

across different inputs range from 1.02x to 6.8x whereas for
HS, they vary from 1.9x to 11.6x. Note that RCP and SCP
give similar performance for RoadNetCA and RoadNetTX.
This is because these graphs are sparse and do not have a
skewed degree distribution (Figure 5e and Figure 5f); hence,
partitioning them over the DSM leads to very few edge cuts.
Thus, SCP does not suffer much from remote fetch latencies
that are tolerated by RCP.

Across configurations. The speedups achieved by RCP
over SCP, on clusters of different sizes, are shown in Fig-
ure 6. These speedups are based upon the Pokec graph in-
put for graph analytics and mining algorithms and the At-
mosModl matrix input for PDEs. On average, RCP achieves
1.6x speedup on 2 nodes, 1.9x speedup on 4 nodes, 2.6x on
8 nodes and 3.3x on 16 nodes. Since RCP mainly focuses
on reducing remote fetches by using locally available stale
values, speedups achieved by RCP increase as the cluster
grows. This is also the reason for achieving no performance
benefits for few benchmarks (e.g., CD, NP) when the cluster
is small; the overheads of the system mask the little benefits
achieved by the protocol.

6.2 Bounded Staleness vs. RCP
The delta coherence [11] protocol supports bounded stal-
eness by allowing use of objects which are no more than
x versions out-of-date. In other words, it allows the use of
stale values by statically using x as the staleness bound, but
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Figure 6: Speedups achieved by RCP over SCP on clusters
of 2, 4, 8, and 16 nodes.

it does not use refresher threads. In this section we demon-
strate that via the use of stale values delta coherence can tol-
erate remote access latency, but the use of stale values slows
down the algorithm’s convergence. In the remainder of this
section, Stale-n refers to the delta coherence protocol with
a staleness bound of n. In order to separate out the benefits
achieved from latency tolerating property of RCP, we relax
the writes in SCP similar to that in RCP. We denote SCP
with relaxed writes as SCP+RW. Writes in Stale-n are also
similarly relaxed. The detailed results presented are based
upon the Pokec graph input for graph analytics and mining
algorithms and the AtmosModl matrix input for PDEs.
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The execution times of RCP and Stale-n (n = 1, 2, 3),
normalized with respect to the SCP+RW, are shown in Fig-
ure 7. RCP consistently achieves better performance than all
other protocols considered. On an average, RCP executions
times are lower than SCP+RW by 48.7%. The performance
of Stale-n varies across different thresholds because when
the threshold is increased, the convergence gets adversely
affected (e.g., PR, SSSP). No staleness value (n = 1, 2, 3)
consistently performs the best for Stale-n. On an average,
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Figure 8: Number of remote fetches that stall computation
threads normalized wrt SCP+RW.

the best performing Stale-n, which sometimes performs bet-
ter than SCP+RW (e.g., WS), increases execution time over
SCP+RW by 10.5% while the worst performing Stale-n al-
ways performs worse than SCP+RW. On an average, RCP
gives 56% reduction in execution time over the best Stale-n.

To further analyze the relative performances of RCP and
Stale-n, we present additional data, once again normalized
with respect to SCP+RW. Let us consider the fraction of
remote fetches that fall on the critical path of execution,
i.e. they cause the computation thread to stall while waiting
for the remote fetch to complete. From the results shown
in Figure 8 we determine, that on an average, computation
thread under RCP blocks for only 41.83% of remote fetches
which are due to compulsory cache misses. In contrast, the
best Stale-n causes stalls on 85.6% of remote fetches. Since
remote fetches are long latency operations, we expect RCP
to perform better than both SCP+RW and best Stale-n.

Figure 9 shows the distribution of staleness of values
used. We observe that in RCP the staleness of values is
typically 0 or 1 – in fact on an average 97.4% of values have
staleness of 0 and 2.2% of values have staleness of 1. Stale-
2 and Stale-3 use slightly more stale values in CC, CD and
PR. It is interesting to see that in GC, RCP uses more stale
values than Stale-2 and Stale-3; this is mainly because Stale-
2 and Stale-3 use stale color values to quickly stabilize and
hence, color values do not change much. However, in RCP,
as color values are received through refresh, the stabilized
colors do get changed, in turn leading to more changes
and hence, stale values. Using stale values slows down the
convergence of these algorithms which can be seen from the
data in Figure 10. On an average, RCP requires 49.5% more
iterations than SCP+RW while Stale-2 and Stale-3 require
146.4% and 176.2% more iterations than SCP+RW. Note
that Stale-n versions for NP did not terminate within 5 times
the time required when run with SCP+RW; hence, we do
not show the data related to remote fetches, iterations, and
staleness values for these cases.



  90%

  92%

  94%

  96%

  98%

  100%

S
ta

le
−

3

S
ta

le
−

2

S
ta

le
−

1

R
C

P

S
ta

le
−

3

S
ta

le
−

2

S
ta

le
−

1

R
C

P

S
ta

le
−

3

S
ta

le
−

2

S
ta

le
−

1

R
C

P

S
ta

le
−

3

S
ta

le
−

2

S
ta

le
−

1

R
C

P

S
ta

le
−

3

S
ta

le
−

2

S
ta

le
−

1

R
C

P

S
ta

le
−

3

S
ta

le
−

2

S
ta

le
−

1

R
C

P

S
ta

le
−

3

S
ta

le
−

2

S
ta

le
−

1

R
C

P

S
ta

le
−

3

S
ta

le
−

2

S
ta

le
−

1

R
C

P

S
ta

le
n

es
s 

P
er

ce
n

ta
g

e

Benchmark

SSSP	 WS				 HS				 CC				 CD				 NP				 PR				 GC				

Staleness: 3

Staleness: 2

Staleness: 1

Staleness: 0

Figure 9: Percentage of objects used with staleness n.

  0

  0.5

  1

  1.5

  2

  2.5

  3

  3.5

  4

  4.5

SSSP WS HS CC CD NP PR GC

N
o
. 
o
f 

It
e
ra

ti
o
n
s

Benchmark

RCP

SCP+RW  

Stale−1

Stale−2

Stale−3

Figure 10: Number of iterations performed before
converging normalized wrt SCP+RW.

It is interesting to note that even though Stale-n effec-
tively tries to avoid remote fetches on the critical path, it is
often done at the cost of delaying convergence. This delay in
convergence, in turn, results in more remote fetches. Thus,
the overall performance can be adversely affected (e.g., HS,
PR). On the other hand, even though Stale-n sometimes con-
verges in nearly same number of iterations (e.g., WS), the
overall performance gains are less when compared to bene-
fits achieved from RCP. This is mainly because the compu-
tation thread often blocks when the staleness of local objects
crosses beyond the threshold n and hence the reduction in
remote fetches is not as significant as in RCP. This inter-
play between reduction in remote fetches and increase in the
number of iterations for convergence makes the best choice
of n to be specific for each benchmark. This can be clearly
observed by comparing WS and PR: Stale-2 performs better
than Stale-1 for WS whereas the latter performs better than
the former for PR. Hence, in Stale-n, selecting the value of
n is benchmark specific and hard to do. RCP releases users
from such concerns and outperforms Stale-n in each case.

Finally, we examine the communication overhead of RCP
and Stale-n w.r.t. SCP+RW by comparing the number of pro-
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Figure 11: Number of protocol messages normalized wrt
SCP+RW.

tocol messages required in each case. As shown in Figure 11,
in most cases, RCP requires fewer protocol messages com-
pared to SCP+RW and in the remaining cases, it requires less
than 5% additional messages. This is mainly because there
is a drastic reduction in the number of remote fetch requests
for RCP (as seen in Figure 8), most of which are reduced to
asynchronous refresh requests. PR using RCP requires only
22.8% messages of that required by SCP+RW because inval-
idate and refresh messages are far fewer than the reduction in
the remote fetch requests. Even though WS and HS also ex-
perience a similarly large reduction in remote fetch requests
using RCP, they require sufficiently more invalidate and re-
fresh messages which leads to their overall communication
costs to be nearly same as SCP+RW.

6.3 Design Choices of RCP
To better understand our design choices for the relaxed con-
sistency protocol, we evaluate the protocols using synthetic
benchmarks that exploit different application specific prop-
erties. The synthetic benchmarks are designed similar to
other benchmarks which mainly fetch neighboring vertices
and compute new vertex values. The data is based upon the



HiggsTwitter graph input and the programs were run for a
pre-configured number of iterations.

Piggy-backing Updates vs. RCP Invalidates. Figure 12
shows the effect of allowing multiple writes on RCP, SCP
and SCP with piggy-backed updates (SCP+PB) where the
updates are sent to remote nodes along with invalidation
messages. The execution times are normalized with respect
to configurations where an object is written once per itera-
tion. We observe that even though SCP+PB performs bet-
ter than SCP, the execution times for both the configura-
tions increase drastically when objects are written more of-
ten in an iteration. It is interesting to note that the benefits
achieved from SCP+PB over SCP reduce as the number of
times objects are written per iteration increases; this happens
because redundant updates are sent by SCP+PB which be-
comes costly. On the other hand, RCP easily tolerates mul-
tiple writes and consistently performs similar to the base-
line. The resulting execution times normalized with respect
to SCP are shown in Figure 13.
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Sensitivity of RCP to Object Sizes. In Figure 14, we com-
pare the performance of SCP, SCP+PB, and RCP for dif-
ferent object sizes. Object sizes are varied by adding a bloat
to the base object which, by itself, only consists of a double
value (8 bytes). We can see that sending updates with invali-
dates performs similar to when only invalidates are sent and
RCP consistently performs better than the other 2 configura-
tions.
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Figure 14: Execution times of SCP with and without
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Sensitivity of RCP to Communication Delay. In Figure 15
we show the impact of fetch latency on the maximum stale-
ness of object values used for computations. We observe that
as the fetch latencies are increased, the maximum staleness
varies. As expected, we notice that most of the objects have
low staleness values, leaving very few objects which are very
stale. Hence, it is important to control the staleness using an
upper bound which avoids potential staleness runaways in
such cases.
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Figure 15: Maximum staleness for objects used in RCP
with varying communication delay.

6.4 Comparison with Other Systems
To exhibit the effectiveness of exploiting asynchrony, we
compare the performance of asynchronous algorithms run-
ning using RCP with the performance of the popular bulk



SSSP PR GC CC NP

Orkut RCP 161.88 822.95 92.79 90.31 2.35
GraphLab 239.4 829.3 248.66 102.02 140.5

LiveJournal RCP 21.73 343.96 17.44 22.09 133.43
GraphLab 15.7 295.1 X 66.99 150.2

Pokec RCP 9.47 169.47 8.81 7.1 1.74
GraphLab 8.7 159.9 173.47 40.52 76.4

HiggsTwitter RCP 2.5 15.64 3.59 4.1 0.48
GraphLab 5.5 X 263.45 16.21 32.5

RoadNetCA RCP 49.47 7.70 0.93 56.96 16.51
GraphLab 60.3 88.4 50.22 220.9 37.4

RoadNetTX RCP 44.21 5.05 0.53 50.94 15.83
GraphLab 18.3 78 60.76 115.6 X

Table 5: Execution times (in sec) of SSSP, PR, GC, CC, and NP using RCP and GraphLab (GL) on a 16-node cluster.
An x indicates that execution did not complete either because it crashed or continued for over 60 minutes.

synchronous parallel (BSP) model as it is supported by ex-
isting graph processing frameworks. In addition, we also
compare the performance of our system with GraphLab [46],
a popular distributed graph processing framework.
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Figure 16: Execution times for BSP based implementations
normalized wrt their asynchronous versions that use RCP.

RCP vs. Bulk Synchronous Parallel. The Bulk Syn-
chronous Parallel (BSP) is a parallel computation model
that was proposed to efficiently parallelize applications on a
set of processors [64]. Algorithms based on the BSP model
perform a series of supersteps where each superstep is com-
posed of the following three phases: Computation - multiple
processes and threads concurrently execute several compu-
tations using locally available data values; Communication
- the computed data values are made available to required
processes and threads; and Synchronization - a barrier is ex-
ecuted by all the processes to conclude the superstep.

Recent advances in developing generic frameworks for
parallel applications heavily rely on this model. However,
by maintaining a separate communication phase, the up-
dated values are forcibly propagated throughout the sys-

tem, which unnecessarily introduces significant overhead for
asynchronous algorithms.

Figure 16 shows the execution times of BSP based im-
plementations for our benchmarks normalized with respect
to their corresponding asynchronous versions that make use
of our proposed protocol. On an average, our asynchronous
algorithms are faster than BSP based algorithms by 4.2x.
Apart from PR, BSP versions take 2.8x to 5.2x more than
their asynchronous versions using our protocol. PR takes
7.9x more time with BSP mainly because it spends more
time in the communication phase compared to other bench-
marks. Again, BSP version for NP did not terminate within
10 times the time required when run with RCP and hence,
we do not show its performance.

Comparison with GraphLab. GraphLab [46] is a pop-
ular graph processing framework which is closest to our
work because it provides shared memory abstractions to
program over a distributed environment. We compare the
performance of GraphLab with RCP using five benchmarks
– SSSP, PR, GC, CC, and NP – four of which are provided
in the graph analytics toolkit distributed with the GraphLab
software. Since GraphLab provides both synchronous and
asynchronous versions of some of these programs, we report
the best times obtained here. In order to have a fair compari-
son, similar to replication of boundary vertices in GraphLab,
caches were pre-populated with replicas of boundary ver-
tices to eliminate latencies incurred by cache warmups.

In Table 5 we report the absolute execution times (in sec)
for SSSP, PR, GC, CC, and NP using RCP and GraphLab for
the four power law graph inputs, as GraphLab has been de-
signed to efficiently handle such graphs. The relative perfor-
mance of GraphLab and RCP varies significantly across in-
puts and benchmarks. We observe that for the Orkut and Hig-
gsTwitter inputs RCP consistently outperforms GraphLab.
For the LiveJournal and Pokec inputs, GraphLab provides



superior performance for SSSP and PR. Finally, for GC and
CC benchmarks RCP consistently outperforms GraphLab
across different inputs. Overall, the performance of RCP
compares favorably with GraphLab for power law graphs. It
should be noted that RCP is based on the the Relaxed Con-
sistency Model which is orthogonal to GraphLab’s consis-
tency models. Hence, this model can also be incorporated in
GraphLab.

Although GraphLab has been designed primarily for
power law graphs, we did test it for other inputs. As shown
in Table 5, on the RoadNetTX graph the above bench-
marks took 0.5 sec to 50.9 sec using RCP and 18.3 sec to
115.6 sec on GraphLab. We also coded other benchmarks on
GraphLab and compared their performance for different in-
puts. For both NP and WS, RCP consistently outperformed
GraphLab.

7. Related Work
Weak Memory Models. Extensive research has been con-
ducted on weak memory models that relax consistency in
various ways. A hierarchy of these models can be found in
[49] and [23]. We have already discussed the relevant ones;
here we provide a complete characterization of the models.

A number of models are too strong for asynchronous
algorithms. Release consistency [19] and its variants like
lazy release consistency [31, 67] relax consistency by de-
laying visibility of updates until certain specially labeled
accesses. Causal memory [2] is weaker than Lamport’s se-
quential consistency [38] which guarantees that processes
agree on the relative ordering of operations that are poten-
tially causally related [39]. Entry consistency [7] guarantees
consistency only when a thread enters a critical section de-
fined by synchronization variables. Scope consistency [27]
enforces that all updates in the previous consistency session
are visible at the start of current consistency session for the
same scope. Even though entry consistency and scope con-
sistency can be used to mimic relaxed coherence, by man-
ually controlling synchronization variables and consistency
scopes, none of these models inherently relax the consis-
tency.

Other models are too weak and hence not a good fit for
asynchronous algorithms. Pipelined RAM (PRAM) [43] pro-
vides fast data access similar to our proposed model: on a
read, it simply returns the local copy and on write, local
values are updated and the new value is broadcast to other
processors. However, it allows inconsistent data-views be-
cause relative order of updates from different processes can
vary. Also, it enforces a strict constraint that all processors
must agree on the order of all observed writes by a sin-
gle processor. This means, broadcast of these updates can-
not be skipped, and hence, as shown in [24], the time taken
for flow of updates in PRAM increases rapidly as the num-
ber of processes increase. This increase in flow of updates

can delay the convergence of asynchronous algorithms. Our
pull-based model allows object values to be skipped since it
does not constrain the order of observed writes to different
objects and hence, is more flexible to provide faster conver-
gence. Slow memory [26] makes the consistency model weak
enough for a read to return some previously written value.
This allows the cache to be non-coherent, but requires extra
programming effort to guarantee convergence.

Mermera [22] tries to solve the same problem for iterative
asynchronous algorithms by using slow memory. Programs
written on mermera handle the correctness and convergence
issue by explicitly maintaining a mix of slow writes, coher-
ent writes, and specialized barriers (to flush slow writes).
Also, slow memory is based on delayed updates; if it is im-
plemented to support a DSM which is not update based,
once the stream of delayed updates enters the memory, local
copies will be invalidated and the same issue (waiting for re-
mote fetch) arises. To enable ease of programming and allow
intuitive reasoning about execution, our consistency model
guarantees the same correctness semantics as the traditional
cache consistency model and, at the same time, allows relax-
ation of consistency for use of stale objects.

Finally, a number of models support bounded staleness.
This is same as delta coherence as used in InterWeave [11],
that allows use of objects that are no more than x versions
out-of-date. Even though this mechanism proved to be useful
to reduce network usage, maintaining a static staleness up-
per bound x is not useful; a low value of x will only hide
few remote fetches because stale objects will quickly be-
come useless while a high value of x can significantly delay
the convergence as updates are slowly propagated through
the system, allowing many wasteful computations. This is-
sue is also faced by the stale synchronous parallel (SSP)
model [13]. SSP defines staleness as the number of iterations
since the object at hand received its value. Their experiments
show that the convergence behavior begins to degrade when
the staleness bound is increased past a certain value. Hence,
statically bounding staleness is not the correct approach to
improve performance of asynchronous iterative algorithms.
The challenge is to allow use of stale objects when up-to-
date values are not available but, at the same time, minimize
the staleness of such objects. Delta consistency introduced in
[60] has a similar approach as delta coherence, but enforces
a temporal bound on staleness. This requires mechanisms for
temporal synchronization to compute the global virtual time
(GVT). Again, since there is no global ordering for writes
from different processors to the same location, correctness
semantics need to be externally ensured. Also, none of these
models proactively try to maintain low staleness by fetching
and updating values. This means, fetches on critical paths
are blocked often because the values become too stale which
limits their performance benefits.



DSM Coherence Frameworks. Many coherence frame-
works, for page as well as object based systems, support
multiple coherence schemes to effectively deal with vari-
ety of behaviors. Shasta [56] is a page based DSM that pro-
vides flexibility of varying coherence granularity for shared
data structures. CASHMERe [34] provides a scalable shared
memory which uses page sized coherence blocks. It uses
an asynchronous protocol but, the focus is not towards re-
laxation of coherence. TreadMarks [32] is designed to re-
duce communication for maintaining memory consistency.
It uses lazy release consistency and multiple writer based
protocols that provide strict consistency guarantee and in-
curs less communication. In [3] dynamic adaption between
single writer and multiple writer protocols is proposed to
balance false sharing with computation and memory costs.
This work is tangential to our goal which is improving per-
formance of asynchronous iterative algorithms by allowing
controlled use of stale objects.

We deal at a higher abstraction level by using object
based DSM like Orca [5] and Munin [8]. Munin uses co-
herence mechanisms based upon object types. Also, relax-
ation of coherence in Munin is limited in between syn-
chronization points and at them the delayed updates are
flushed to remote copies. Object View [42] shares similar
goals as Munin and Orca; it provides extensions to Java
to specify intended use of objects by computation threads.
This allows runtime to use low-overhead caching proto-
cols customized to application requirements. Problem Ori-
ented Object Memory [35] allows relaxation of strict con-
sistency by letting objects to fall in different consistency
models. Since we aim to specifically improve performance
of asynchronous algorithms, we do not distinguish objects
based on usage types. Cachet [58] dynamically adapts across
multiple micro-protocols that are optimized based upon ac-
cess patterns. [9] focuses on reducing communication re-
quired to maintain consistency among distributed memories.
[28, 57, 68] and others try to relax consistency using basic
memory models previously described. Since they inherently
aim to provide a consistent DSM, relaxation of consistency
is not explored in these works.

Graph Processing Frameworks. Recently, there have been
many advances in developing frameworks for distributed
graph processing. Google’s Pregel [47] provides a syn-
chronous vertex centric framework for large scale graph
processing which uses message passing instead of a shared
memory abstraction. GraphLab [46] provides a framework
for asynchronous execution of machine learning and data
mining algorithms on graphs. It allows users to choose
among three different data consistency constraints to balance
program correctness and performance. PowerGraph [20]
provides efficient distributed graph placement and com-
putation by exploiting the structure of power-law graphs.
It provides both, synchronous and asynchronous execution
and enforces serializability by avoiding adjacent vertex pro-

grams from running concurrently. GraphChi [37] provides
efficient disk-based graph processing on a single machine
for input graphs that cannot fit in memory.

Ligra [59] presents a simple shared memory abstrac-
tion for vertex algorithms which is particularly good for
problems similar to graph traversal. [50] presents a shared-
memory based implementations of these DSLs on a gen-
eralized Galois [36] system and compares its performance
with the original implementations. These frameworks are
based on the Bulk Synchronous Parallel (BSP) [64] model
and the MapReduce [15] philosophy which allow users to
write code from a local perspective and let the system trans-
late the computations to larger datasets. However, they do
not provide support for programming asynchronous algo-
rithms by using stale values. The ideas we presented in this
paper can be incorporated in above frameworks to support
asynchronous algorithms. GRACE [66], a shared memory
based graph processing system, uses message passing and
provides asynchronous execution by using stale messages.
Since shared-memory processing does not suffer from com-
munication latencies, these systems can perform well for
graphs which can fit on a single multicore server. Another
programming model that has been used in recent works is
one that supports thread level speculation [55]. This model
also does not permit the use of stale values; in fact the use
of a stale value when detected causes misspeculation. In
Section 6.4, we showed that asynchronous algorithms out-
perform their BSP counterparts.

8. Conclusion
We presented an effective solution for exploiting the asyn-
chronous nature of iterative algorithms for tolerating com-
munication latency in a DSM based cluster. We designed a
relaxed object consistency model and the RCP protocol. This
protocol tracks staleness of objects, allows threads to utilize
stale values up to a given threshold, and incorporates a policy
for refreshing stale values. Together, these features allow an
asynchronous algorithm to tolerate communication latency
without adversely impacting algorithm’s convergence. We
demonstrate that for a wide range of asynchronous graph
algorithms, on an average, our approach outperforms: prior
relaxed memory models that allow stale values by at least
2.27x; and BSP model by 4.2x. We also show that our ap-
proach performs quite well in comparison to GraphLab.
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