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Abstract

We introduce a class of transformations which modify the representation of dynamic data structures
used in programs with the objective of compressing their sizes. Based upon a profiling study of data value
characteristics, we have developed the common-prefix and narrow-data transformations that respectively
compress a 32 bit address pointer and a 32 bit integer field into 15 bit entities. A pair of fields which have
been compressed by the above compression transformations are packed together into a single 32 bit word.
The above transformations are designed to apply to data structures that are partially compressible, that
is, they compress portions of data structures to which transformations apply and provide a mechanism
to handle the data that is not compressible. The accesses to compressed data are efficiently implemented
by designing data compression extensions (DCX) to the processor’s instruction set. We have observed
average reductions in heap allocated storage of 25% and average reductions in execution time and power
consumption of 30%. If DCX support is not provided the reductions in execution times fall from 30% to
18%.
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1 Introduction

Over the last decade, the memory and CPU performance gap has become a major performance bottleneck

in modern computer architectures. Cache has been proposed as an effective component to bridge this gap.

Since cache is usually much smaller than the main memory and the user space, it is very important to make

good use of the cache memory in order to achieve good performance. Traditional approaches to improve

cache performance such as doubling the size, increasing the associativity from hardware, or rearranging data

objects or data fields within objects by compilers, do not change the data density in the cache. However,

as we will see, a large percentage of the bits stored in both the cache and the main memory are redundant.

By removing these redundant bits, more data items can be kept in a cache of given size and alleviate the

memory bottleneck by reducing the number of cache misses.
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The user space is divided into three areas: stack, global and heap. The data structures allocated in

different areas show different cache and memory accessing behavior. Those allocated in stack usually have

much better performance than the rest. Data layout optimizations can be used to optimize the behavior of

global and heap data accesses. Those allocated in the global data space, even if they have bad performance,

can be optimized well by existing compilers. However, those allocated in the heap have bad cache behavior

and they are hard to optimize at compile time since they are allocated dynamically. The focus of this research

is mainly on the dynamic data structures.

We introduce a class of transformations which modify the representation of dynamically allocated data

structures used in pointer intensive programs with the objective of compressing their sizes. The fields of a

node in a dynamic data structure typically consist of both pointer and non-pointer data. Therefore we have

developed the common-prefix and narrow-data transformations that respectively compress a 32 bit address

pointer and a 32 bit integer field into 15 bit entities. A pair of fields which have been compressed can

be packed into a single 32 bit word. As a consequence of compression, the memory footprint of the data

structures is significantly reduced leading to significant savings in heap allocated storage requirements which

is quite important for memory intensive applications. The reduction in memory footprint can also lead to

significantly reduced execution times due to a reduction in data cache misses that occur in the transformed

program.

An important feature of our transformations is that they have been designed to apply to data structures

that are partially compressible. In other words, they compress portions of data structures to which transfor-

mations apply and provide a mechanism to handle the data that is not compressible. Initially data storage

for a compressed data structure is allocated assuming that it is fully compressible. However, at runtime,

when uncompressible data is encountered, additional storage is allocated to handle such data. Our experi-

ence with applications from Olden test suite demonstrates that this is a highly important feature because all

the data structures that we examined in our experimentation were highly compressible, but none were fully

compressible.

For efficiently accessing data in compressed form we propose data compression extensions (DCX) to a

RISC-style ISA which consist of six simple instructions. These instructions perform two types of operations.

First since we must handle partially compressible data structures, whenever a field that has been compressed

is updated, we must check to see if the new value to be stored in that field is indeed compressible. Second

when we need to make use of a compressed value in a computation, we must perform an extract and expand

operation to obtain the original 32 bit representation of the value.

We have implemented our techniques and evaluated them. The DCX instructions have been incorporated

into the MIPS like instruction set used by the simplescalar simulator. The compression transformations

have been incorporated in the gcc compiler. We have also addressed other important implementation issues
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including the selection of fields for compression and packing. Our experiments with six benchmarks from

the Olden test suite demonstrate an average space savings of 25% in heap allocated storage and average

reductions of 30% in execution times and power consumption. The net reduction in execution times is

attributable to reduced miss rates for L1 data cache and L2 unified cache and the availability of DCX

instructions.

2 Profiling Study for Compression Scheme Design

Before the design of a dynamic and effective data compression technique, we need to profile programs and

collect information that would guide us in the development of new compression techniques. In this section,

such a framework is presented for profiling dynamically allocated data objects. The framework allows us

to analyze the value characteristics and lifetime of the dynamically allocated objects. More specifically, the

framework allows us to carry out and answer the following questions.

• What data structures should be compressed?

• How should they be compressed?

• When should they be compressed?

2.1 Type based profiling

Usually, a program contains a large number of objects of a given type and there are a number of fields within

the given type. For example, all the nodes of a linked list are of the same structure with several fields: a

pointer field to link the nodes together and some other data fields. Often there exists a significant degree of

value similarity across the same fields from different nodes. Space requirements could be reduced by taking

advantage of this similarity. However, a compression strategy that treats uniformly all fields in a type is too

coarse and would miss many opportunities in practice. A new type-based profiling technique which collects

the following information is proposed to solve this problem.

• The lifetime of each object and the total number of load and store accesses to this object are found

through profiling. This information identifies the overall behavior of each dynamically allocated object.

• The value characteristics for each field of each type in the program are determined. This information

is organized as the value range summary of all field instances. Value characteristic information can be

collected at different granularity and it is possible to keep an additional list of most frequently used N

values and their access frequencies.

To collect the above information, a straightforward approach is a complete instrumentation of all access

points including the creation point at malloc(), the deletion point at free() and all load and store accesses.
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Although it is easy to trace at the high level the type information of objects through malloc() and free()

function call points, a high level variable access can be translated to either a register access and a memory

access. Since we are only interested in memory accesses, instrumentation at a high level is thus insufficient.

One possible approach is to trace the load and store accesses by modifying the code generation part of the

compiler but it is too expensive. In this section we describe a type-based profiling framework which combines

the use of high level instrumentation and lower level simulation.

SUIF

Modified

Simplescalar

.c files .spd files my SUIF

pass

instrumented

.spd files

instrumented

.c files

SUIF

gcc
object code

results

Figure 1: Type based profiling framework.

Figure 1 shows the framework which combines the use of SUIF 1.0 compiler [1] and Simplescalar simulator

[2]. The original C programs are first converted to SUIF intermediate representations (IRs) by scc. A new

pass is written to instrument these IRs and high level type of information is inserted into the instrumented

code. The results of the new pass are still IRs and they are converted back to C programs by s2c (a conversion

tool in SUIF). Then the instrumented version of C programs are compiled by gcc provided in Simplescalar

and the MIPS-like executable code is generated. The Simplescalar simulator, which has been modified to

process high level type information, is used to simulate the execution and collect profiles.

Since nearly all data items are accessed at word level, we only consider the accesses at word size level

from now on. Although there are accesses to fetch double precision floating point values, double word-sized

values, or subword level values, the overall percentage of such accesses is usually very small.

Next, let us discuss the experiments and their results in answering the what, when and how questions of

data compression using this framework.

2.2 Compression Scheme Design

2.2.1 Selecting object types to compress

A program may contain multiple data types, each exhibiting different access patterns and different com-

pressibility. The data types that an optimizing compiler should compress are those, by transforming which,

positive impact on performance is expected. The fields in a data type should also be considered separately

with the aim of maximizing benefit. Since different compression schemes might group fields differently, and

thus affect the overall compressibility, this section will discuss how to separate and pick out different data

structures for compression. The compression of different fields is left to subsequent sections.
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As described, the collected profiles provide the information about the number of objects for each type

and the information about the value ranges for all fields of a given type. Potential space savings can thus

be calculated from this information. Experiments were conducted to identify the appropriate data types to

compress in SPEC95int benchmark suite. Most programs from this benchmark suite have at least one of the

following properties.

• There are a set of similar types and a generic type. The generic type is used to build up the data

structure but each node is of a specific type. Object instances are accessed by type casting to a specific

type. Programs 130.li and 126.gcc, which themselves are compilers, exhibit this property. These

programs build up a syntax tree for each function and each node in the tree could be of a specific type

(e.g., for an expression, a FOR statement, or an IF statement, etc).

• The program first allocates a large chunk and starting address of the node is recalculated (aligned) to

a special address. Because of implicit address arithmetic, the compiler has difficulty in remapping the

fields and their offsets. Program 124.m88ksim exhibits this property.

The above identified properties block further processing of SPEC95int benchmarks and we conclude that

they are not good for automatic compression transformations.

The programs from Olden benchmark suites [3] were further studied. Olden is a pointer intensive bench-

mark suite (Table 1). Although the types of a program are divided into several groups, each group has only

one type. The clear type isolation provides good opportunities for compiler-based compression. The main

data structures that were considered for compression are given in Table 1.

Program Application Main data structure

bh Barnes & Hut N-body force computation algo-
rithm

Heterogeneous tree

bisort Bitonic Sorting Binary Tree
health Columbian health care simulation Doubly- linked lists
mst Minimum spanning tree of a graph Heterogeneous tree
perimeter Perimeter of regions in images Quad-tree
treeadd Recursive sum of values in a balanced B-tree Binary tree
tsp Traveling salesman problem Balanced binary tree
voronoi Computes the voronoi diagram of a set of points Balanced binary tree

Table 1: Olden Benchmark Summary.

2.2.2 Choosing the compression scheme

A major challenge in the design of a compression scheme is to balance the dynamic compression costs and

the benefits of compression. A dynamic compression scheme should be simple and fast for most if not
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all of the accesses. If applying traditional compression techniques (e.g., a dictionary based approach or

Huffman coding), there are at least two memory accesses: one to fetch the encoded data and the other to

fetch the decoding data. As the cache and memory accesses are already the bottleneck and the major focus

of applying compression dynamically is to reduce the total number of these accesses, these techniques are

not appealing for dynamic compression. The new compression scheme that would be suitable to have in a

dynamic environment should get all information about a value in one access for most if not all of the data

accesses. Of course, subsequent computation to extract the decoded value might be inevitable. A logical

comparison of the traditional and new compression schemes is shown in Figure 2.

access

encoded

value

access

decode

table

access

encoded

value

compute

decoded

value

(a)  using a traditional compression scheme

(b) using a desired new compression scheme

Figure 2: Access sequences with different compression schemes.

To design a compression scheme that can get all information from one memory access, no complicated

encoding scheme should be used but rather we should discard directly the redundant bits from original word

representation. The following two types of redundancy was identified (see Figure 3):

(a) pointer addresses share the same prefix

0 231-1- 231+1

11 … 1 xxx 00… 0 xxx

(b) small positive or negative values

P

Q

prefix(P) = prefix(Q)

same chunk

xxx xxx1 0

Figure 3: Representing a 32-bit value with fewer than 32 bits.

• If a pointer is saved in a place that is close to the place it points to, the value of the pointer and the

address of the pointer share the same prefix. Since the value is accessed always from its address, the
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prefix of the value can be considered as redundant as it can be constructed from its address easily. In

this case, the prefix bits of the pointer can be safely discarded.

• If a value is close to zero, the higher order bits are sign extensions and they are either all 0s or all 1s. In

either case, there is no need to remember all these identical bits and thus the prefix bits are considered

as redundant. Only the sign bit should be remembered and the rest can be safely discarded.

With the compression opportunities identified, one could dynamically discard all redundant bits and

use the least possible bits to represent a value, or discard some redundant bits but use fixed number of

bits to represent a value. Since data values change dynamically, the former strategy would bring too much

complexity to dynamic memory management and thus is not used. For the latter, we need to choose the

fixed number of bits based upon the cost-benefit analysis of using this fixed number of bits to carry out

compression.

Potential savings in space due to redundancy removal

The benefits of a dynamic compression scheme come from the space savings and the corresponding cache

miss reduction due to the space savings. As a result, the benefit estimation is based upon space savings

and the experiment is designed as follows. The original scheme always represents a word-sized value with 32

bits. The new scheme uses a fixed bit width L and if after removing the redundant prefix bits from a value’s

representation, the required number of bits is less that L, L bits are used to represent this value; otherwise,

32 bits are used to represent the value. The total number of bits required for representing values involved

in all accesses for different values of L were collected.

4 bits 8 bits 12 bits 16 bits 20 bits 24 bits 28 bits 32 bits
20

40

60

80

100

N
or

m
al

iz
ed

 R
eq

ui
re

d 
B

its

bh
bisort
health
mst
perimeter
treeadd
tsp
voronoi

Figure 4: Required bits with fixed length.

The programs from the Olden suite with small inputs were executed to collect the profiling information.

The results are shown in Figure 4 with the original required bits normalized as 100%. A smaller fixed length
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saves greater number of bits for each compressible value. However, if L is too small, the probability that

a value will be represented using 32 bits is high. From the results in Figure 4, it can be seen that some

benchmarks achieve the best profiling results at the point with fixed 4 bits while some achieve the best

results with 8 or 16 bits. However, if the fixed length is bigger than 16 bits, the required bits increase almost

linearly for all benchmarks.

Potential costs of redundancy removal

Let us now study the cost of dynamic compression. The real cost is implementation dependent and a

precise estimation can only be done when both the compression scheme and the lower level architecture

are all well defined. A coarse estimation is presented instead and it is sufficient to guide the design of the

compression scheme. Since the benefits come from the compression of fields whose majority instances are

compressible values, a successful compression scheme should speedup the accesses of compressible values;

otherwise, the slowdown of majority accesses will significantly lower the overall performance. On the other

hand, the accesses of incompressible values could be slower than those of compressible ones. Thus, the

cost estimation is performed by answering the following question. If only accesses of incompressible values

are slowed down, would the cost from accessing incompressible values be offset by the benefit obtained from

accesses of compressible values? This in turn depends on the distribution of compressible and incompressible

values. The results for Olden benchmark programs are shown in Figure 5. A memory access is considered to

be a fitting access if its value can be represented by fixed 4, 8, 16 bits respectively. The results in Figure 5

show that more than half of the accesses could be expensive non-fitting accesses if using 4 bits. While with

16 bits, the percentages of fitting accesses are between 69% and 99%. As a result, 16-bit is a cost-effective

point and a good candidate to use.
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Figure 5: Distribution of values with fixed length.

Dynamic values change frequently and it is expensive to convert a compressible value to an incompressible

one and vice versa. With dynamic expansion of values considered, a study of the benchmarks has been done
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Figure 6: Distribution of values with fixed storage.

from the storage point of view and the results are shown in Figure 6. All values are initially allocated with

fixed lengths, 4 bits, 8 bits and 16 bits respectively. If a value changes from compressible to incompressible,

it gets expanded and stays as an incompressible value from then onwards. Therefore later accesses will be

fitting-accesses even if they are accessing the incompressible value. The results show that with a fixed 16-bit

representation, the majority memory accesses fit this length and dynamic conversion is very infrequent.

From the above analysis and the results in estimated costs and benefits, we conclude that a well-balanced

compression scheme should represent a 32 bits value with fixed 16 bits, allow dynamic expansion, but not

allow dynamic shrinking.

2.2.3 Choosing the time for compression

The next problem to be considered is that of determining when these types should be compressed. The

following three possible schemes are studied.

• Complete compression at the beginning. The simplest scheme is to compress all fields of a type at the

beginning. If implementing in a compiler, it means that the memory layout of the type is reduced to

half of its original size at compile time. It has the simplicity that the offset of each fields is known at

compile time and code generation is therefore simplified.

• Selective compression at the beginning. Since different fields exhibit different compression opportuni-

ties and some fields such as floating point value fields are general hard to compress. Consider the cost

the program has to pay at runtime to access incompressible fields, it is more preferable to compress

only those highly compressible fields and leave the rest as they are. This scheme still has the property

that the offsets of the fields are known at compile time.

• Compression after last write. Since the compressibility of a value can only be changed by a write

operation, after the last write of a field, its representation is fixed and more aggressive compression
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scheme can be used and we do not have to worry that the values might change later. This completely

eliminates the cost that a compression scheme has to pay to handle conversions from compressible

values to incompressible ones.

Figure 7 shows the experimental results in studying the Olden benchmark programs under different

compression time. For the selective compression scheme at the beginning, a field is chosen if 80% of its

instances are compressible. The x axis of the figure shows the execution time which has been normalized

to 5000 units. The y axis shows the required heap space during the execution. “free()” is not considered

during program execution and thus the memory requirements increase continuously and decrease to zero at

the end of the execution.

The scheme that compresses an object after its last write can remove the dynamic conversion cost from

compressible values to incompressible ones. It can also achieve best space savings for 4 out of 8 programs.

Although it looks like an appealing approach, it is difficult to apply in practice. Usually at some program

point, only a small number of nodes in a data structure are modified. However, the whole data structure

might be traversed and nodes are dynamically selected for modification. It would be very expensive, and

sometimes impossible, to predict the last write to a particular node.

Comparing the two schemes that compress data items at the beginning, the results show that although

compressing all the fields achieves more space reduction at the beginning, it requires more data expansion

during program execution. For example let us assume there are 1000 nodes each of which contains four fields.

Two are highly compressible – 90% of them are compressible; the other two are almost uncompressible - 5% of

them are compressible. At the beginning of the program execution, all fields contain zeros. Using the scheme

that compresses all fields at the beginning, we need (1000 nodes × 4 fields/node × 2 words/4 fields) = 2000

words. However, as the program runs, we need 1000 nodes × 4 fields/node × ((90% × 1 word/2 fields + 10%

× 3 words/2 fields) × compressible 2 fields/4 fields+ (5% × 1 word/2 fields + 95% × 3 words/2 fields) ×

other 2 fields/4 fields) = 4100 words. On the other hand, if we only compress two highly compressible fields,

we need 1000 nodes × 4 fields/node × ((90% × 1 word/2 fields + 10% × 3 words/2 fields) × compress-

ible 2 fields/4 fields+ (100% × 2 word/2 fields) × other 2 fields/4 fields) = 3200 words. Thus the scheme

that compresses all fields requires more space than the selective compression scheme.

Moreover, the results show that selecting only highly compressible data fields for compression reduces

both the space requirements and dynamic costs of accessing incompressible values. Overall, the scheme that

compresses selected fields at the beginning achieves the best result for 5 out of 8 programs and almost the

best for another 2 programs.
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Figure 7: Deciding the time for compression.
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3 Profile-guided data compression transformations

3.1 Data compression transformation

Based upon the results of experimental study in the preceding section we use the following strategy. We

decided to compress all objects of a given type if there was no address arithmetic and no type casting.

Promising fields were selected for compression at the beginning of the execution. A 32-bit value is represented

using fixed 16 bits and while dynamic expansion is allowed, dynamic shrinking is not allowed. We will

exploit two types of value representation redundancy: common prefix redundancy of pointer addresses and

sign extension redundancy in small values. In the example below, a pointer field and a small value field are

packed into a single 32-bit field value next.

Original Structure: Transformed Structure:
struct list node { struct list node {
· · ·; · · ·;
int value; int value next;
struct list node *next; } *t;

} *t;

In this way, 4 bytes are saved from each node in the linked list. Although indicated by a type re-

declaration, this transformation is not done at the source level and there is no need to generate the new

declaration at source code level. Instead the optimizing compiler will change the memory layout before

code generation and then generate new code sequences accordingly. As we see, there are two types of fields:

pointer addresses and small value fields. They are handled differently through two types of data compression

transformations.

Common-prefix transformation for pointer data. The pointer contained in the next field of the link

list can be compressed under certain conditions. In particular, consider the addresses corresponding to an

instance of list node (addr1) and the next field in that node (addr2). If the two addresses share a common

17 bit prefix because they are located fairly close in memory, the next pointer is classified as compressible.

In this case the common prefix from address addr2 which is stored in the next pointer field is eliminated.

The lower order 15 bits from addr2 represent the representation of the pointer in compressed form. The

32 bit representation of a next field can be reconstructed when required by obtaining the prefix from the

pointer to the list node instance to which the next field belongs.

Narrow data transformation for non-pointer data. Now let us consider the compression of the narrow

width integer value in the value field. If the 18 higher order bits of this value are identical, that is, they are

either all 0’s or all 1’s, it is classified as compressible. The 17 higher order bits are discarded and leaving a

15 bit entity. Since the 17 bits discarded are identical to the most significant order bit of the 15 bit entity,

the 32 bit representation can be easily derived when needed by replicating the most significant bit.
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Packing together compressed fields. The value and next fields of a node belonging to an instance

of list node can be packed together into a single 32 bit word as they are simply 15 bit entities in their

compressed form. Together they are stored in value next field of the transformed structure. The 32 bits of

value next are divided into two half words. Each compressed field is stored in the lower order 15 bits of the

corresponding half word. According to the above strategy, bits 15 and 31 are not used by the compressed

fields.

To select fields for compression, the candidate fields are classified from the type-based profiling described

in the previous section. A field is identified to be highly compressible if 90% of the fields instances are

compressible. A pointer value is considered as compressible if it shares the 17 bits prefix with its address

and a small value is considered as compressible if the higher order 18 bits are the same.

A critical issue is that of pairing compressed fields for packing into a single word. Based on the profiling

information, fields are further categorized into hot fields and cold fields. With all categorized fields, there

are two choices in packing. It is possible to pack two hot fields together if they are typically accessed in

tandem. This is because in this situation a single load can be shared while reading the two values. It is also

useful to compress any two cold fields even if they are not accessed in tandem. This is because even though

they cannot share the same load, they are not accessed frequently. In all other situations it is not as useful

to pack data together because even though space savings will be obtained, execution time will be adversely

affected.

Next the handling of incompressible data in partially compressible data structures is described. The

implementation of partially compressible data structures requires an additional bit for encoding information.

This is why fields are compressed down to 15 bit entities and not into 16 bit entities.

Partial compressibility. The basic approach is to allocate only enough storage to accommodate a com-

pressed node when a new node in the data structure is created. Later, as the pointer fields are assigned

values, it is checked to see if the fields are compressible. If they are, they can be accommodated in the

allocated space; otherwise additional storage is allocated to hold the fields in uncompressed form. The pre-

viously allocated location is now used to hold a pointer to this additional storage. Therefore for accessing

incompressible fields the approach has to go through an extra step of indirection.

If the incompressible data stored in the fields is modified, it is possible that the fields may now become

compressible. However, such checks are not carried out and instead the fields in such cases are left in uncom-

pressed form. This is because exploitation of such compression opportunities can lead to repeated allocation

and deallocation of extra locations if data values repeatedly keep oscillating between the compressible and

incompressible kind. To avoid repeated allocation and deallocation of extra locations the approach is sim-

plified so that once a field is assigned an incompressible value, from then on wards, the data in the field is

always maintained in uncompressed form.
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The most significant bit (bit 31) in the word is used to indicate whether or not the data stored in the word

is compressed or not. It contains a 0 to indicate that the word contains compressed values. If it contains

a 1, it means that one or both of values were not compressible and instead the word contains a pointer to

an extra pair of dynamically allocated locations which contain the values of the two fields in uncompressed

form. While bit 31 is used to encode extra information, bit 15 is never used for any purpose.

The example in Figure 8 illustrates the above method using an example in which an instance of list node

is allocated and then the value and next fields are set up one at a time. As we can see first storage is

allocated to accommodate the two fields in compressed form. As soon as the first incompressible field is

encountered additional storage is allocated to hold the two fields in uncompressed form. Under this scheme

there are three possibilities which are illustrated in Figure 10. In the first case both fields are found to be

compressible and therefore no extra locations are allocated. In the second case the value field, which is

accessed first, is compressible but the next field is not. Thus, initially value field is stored in compressed

form but later when the next field is found to be incompressible, extra locations are allocated and both fields

are store in uncompressed form. Finally in the third case the value field is not compressible and therefore

extra locations are allocated right away and none of the two fields are ever stored in compressed form.

Applicability. Similar to object layout optimization techniques, data compression transformations need

to rearrange the fields in an object. A basic assumption of object layout transformations states that it

is ensured by the programmer that application of layout transformations are safe (program correctness is

ensured). Generally, if there is no address arithmetic and fields are accessed from their names, the assumption

can be satisfied. Starting from this assumption, the optimizing compiler automatically transform the data

types and generate corresponding code.

Memory allocation. Ccmalloc [4], a modified version of malloc, is used to carry out storage allocation.

This form of storage allocation was developed by Chilimbi et al. [4] and as described earlier it improves the

locality of dynamic data structures by allocating the linked nodes of the data structure as close to each other

as possible in the heap. Compared to system malloc, it has one more pointer parameter which indicates the

parent node of the new node. The new node is allocated in the same cache line chunk as it parent node if

there are still enough space to hold the new one. Otherwise, a new chunk is allocated. As a consequence,

this technique increases the likelihood that the pointer fields in a given node will be compressible. Therefore

it makes sense to use ccmalloc in order to exploit the synergy between ccmalloc and data compression.

3.2 Instruction set support

Compression reduces the amount of heap allocated storage used by the program which typically improves

the data cache behavior. Also if both the fields need to be read in tandem, a single load is enough to read
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Original: Create left link and then right.

left

right

addr1

t

nil

addr1

addr2 addr2

addr3

; addr1 = 0x40008010

; addr2, addr3 point to

;      anywhere in the space

t->left = addr2;

t->right = addr3;

left

right

t

Transformed: Both left and right links are compressible

; addr1 =  0x40008010

; addr21= 0x40008020

; addr31= 0x40008040

ASSIGN(t->lr, right, addr21);

ASSIGN(t->lr, left, addr31);

      lr

addr1

t

addr1

t

0

nil addr21

     lr0

addr31 addr21

Transformed: left link is compressible and right is not

; addr1  = 0x40008010

; addr21= 0x40008020

; addr31= 0x43218040

ASSIGN(t->lr, right, addr21);

ASSIGN(t->lr, left, addr31);

      lr

addr1

t

addr1

t

0

nil addr21

     lr1
addr21

addr31

Transformed: left link is uncompressible

; addr1  = 0x40008010

; addr21= 0x43218020

; addr31= 0x43218040

ASSIGN(t->lr, right, addr21);

ASSIGN(t->lr, left, addr31);

    lr

addr1

t

addr1

t

1      lr1
addr21

addr31

addr21

nil

Figure 8: Dealing with incompressible data (ASSIGN() is a MARCO that assigns a given value (thrid
parameter) to either left or right part (the second paramter) of a compressed field (the first parameter)).

both the fields. However, the manipulation of the fields also creates additional overhead. To minimize this

overhead new RISC-style instructions are designed. Six simple instructions have been designed of which

three each are for pointer and non-pointer data respectively that efficiently implement common-prefix and

narrow-data transformations. The semantics of the these instructions are summarized in Figure 9. These

instructions are RISC-style instructions with complexity comparable to existing branch and integer ALU

instructions. Let us discuss these instructions in greater detail.

Checking compressibility. Since we would like to handle partially compressible data, before actually

compressing a data item at runtime, first a check is made to determine whether the data item is compressible.

Therefore the first instruction type that is introduced allows efficient checking of data compressibility. Two

new instructions have been designed and they are described below. The first checks the compressibility of
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pointer data and the second does the same for non-pointer data.

bneh17 R1, R2, L1 – is used to check if the higher order 17 bits of R1 and R2 are the same. If they are the

same, the execution continues and the field held in R2 can be compressed; otherwise the branch is taken

to a point where we handle the situation, by allocating additional storage, in which the address in R2

is not compressible. A nil pointer is represented by the value 0 in both compressed and uncompressed

forms. To distinguish the compressed nil pointer from an allocated address whose lower order 17

bits are zeros, we modified our malloc routine so that it never allocates storage locations with such

addresses to compressed fields.

bneh18 R1, L1 – is used to check if the higher order 18 bits of R1 are identical (i.e., all 0’s or all 1’s).

If they are the same, the execution continues and the value held in R1 is compressed; otherwise the

value in R1 is not compressible and the branch is taken to a point where we place code to handle this

situation by allocating additional storage.

BNEH17  R1,R2,L1
      if ( R2 != 0 ) && ( R131..15 != R231..15 )

goto L1

31              ...         15    14   ...         0

R1

R2

BNEH18  R1,L1
     if ( R131..14  != 0 )  && ( R131..14  != 0x3ff )

goto L1

R1
31                  ...           14    13   ...     0

XTRHL    R1,R2,R3
        if ( R314..0 != 0 )  /* Non-NULL case */

R1 = R231..15  R314..0
        else

R1 = 0
     31 ... 15                       14 ... 0

R2

31     30 ... 16        15       14 ... 0

R3

R1

XTRHH    R1,R2,R3
        if ( R330..16 != 0 )  /* Non-NULL case */

R1 = R231..15  R330..16
        else

R1 = 0

R3

R1

31     30 ... 16       15 14    13 ... 0

R2

XTRL    R1,R2
       if ( R214  == 1 )

R1 = 0x1ffff R214..0
       else

R1 = R214..0

-

xxxxxxxxxxxxxxxxR1

31 30   29 ... 16       15     14 ... 0

R2

XTRH    R1,R2
        if ( R230  == 1 )

R1 = 0x1ffff R230..16
       else

R1 = R230..16

0

xxxxxxxxxxxxxxxxR1

R2

0 -

0

x

x

-

0

-

     31 ... 15                       14 ... 0

31     30 ... 16        15       14 ... 0

Figure 9: DCX instructions.
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Extract-and-expand. If a pointer is stored in compressed form, before it can be dereferenced, its 32-bit

representation must be reconstructed. Compressed non-pointer data should be handled similarly before its

use. Therefore the second instruction type that is introduced carries out extract-and-expand operations.

There are four new instructions that we describe below. The first two instructions are used to extract-and-

expand compressed pointer fields from lower and upper halves of a 32-bit word respectively. The next two

instructions do the same for non-pointer data.

xtrhl R1, R2, R3 – extracts the compressed pointer field stored in lower order bits (0 through 14) of

register R3 and appends it to the common-prefix contained in higher order bits (15 through 31) of R2

to construct the uncompressed pointer which is then made available in R1. The case when R3 contains

a nil pointer is also handled. If the compressed field is a nil pointer, R1 is set to nil.

xtrhh R1, R2, R3 – extracts the compressed pointer field stored in the higher order bits (16 through 30)

of register R3 and appends it to the common-prefix contained in higher order bits (15 through 31) of

R2 to construct the uncompressed pointer which is then made available in R1. If the compressed field

is a nil pointer, R1 is set to nil.

The instructions xtrhl and xtrhh can also be used to compress two fields together. However, they are

not essential for this purpose because typically there are existing instructions which can perform this

operation. In the MIPS like instruction set that was used in this work this was indeed the case.

xtrl R1, R2 – extracts the field stored in lower half of the R2, expands it, and then stores the resulting 32

bit value in R1.

xtrh R1, R2 – extracts the field stored in the higher order bits of R2, expands it, and then stores the

resulting 32 bit value in R1.

Next a simple example is given to illustrate the use of the above instructions. Let us assume that an in-

teger field t → value and a pointer field t → next are compressed together into a single field t → value next.

In Figure 10(a) it is shown how compressibility checks are used prior to appropriately storing newvalue and

newnext values in to the compressed fields. In Figure 10(b) we illustrate the extract and expand instructions

by extracting the compressed values stored in t → value next. In the code sh is an existing MIPS instruction

that stores the least-significant 16 bits of the register to an memory address.

3.3 Without instruction set support

The compaction overhead comes from checking, extracting and possible expanding of data fields at runtime. If

DCX instructions are not provided, we can still perform the discussed data compression transformations but
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; $16 : &t− > value next

; $18 : newvalue

; $19 : newnext

; branch if newvalue is not compressible

bneh18 $18, $L1

; branch if newnext is not compressible

bneh17 $16, $19, $L1

; store compressed data in t− > value next

ori $19, $19, 0x7fff

sh $18, 0($16)

sh $19, 2($16)

j $L2

$L1:

; allocate extra locations and store pointer

; to extra locations in t− > value next

; store uncompressed data in extra locations

· · ·
$L2: · · ·

(a) Illustration of compressibility checks.

; $16: &(t− > value next)

; $17: uncompressed integer t− > value

; $18: uncompressed pointer t− > next

; load contents of t− > value next

lw $3,0($16)

; branch if $3 is a pointer to extra locations

bltz $3, $L1

; extract and expand t− > value

xtrl $17, $3

; extract and expand t− > next

xtrhh $18, $16, $3

j $L2

$L1:

; load values from extra locations

· · ·
$L2: · · ·

(b) Illustration of extract and expand instructions.

Figure 10: An example.
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expect greater overhead. The instructions executed when DCX support is not available is shown in Figure 11.

In comparison to the DCX based code in Figure 10, the main difference is that the DCX instructions are

expanded into multiple instructions that implement their logic which was presented in Figure 9. In the new

code we use more registers (i.e., $2 and $20) to store intermediate results. This sometimes causes additional

spill code to be generated if we run out of available registers. While there are several branch instructions

generated in this code, as shown by the experiments presented later, we did not see large performance

degradation due to bad branch prediction.

4 Experimental Results

4.1 Experimental setup

Techniques described have been implemented to evaluate their performance. The transformations have been

implemented as part of the gcc compiler and the DCX instructions have been incorporated in the MIPS

like instruction set of the superscalar processor simulated by simplescalar [2]. The evaluation is based

upon six benchmarks taken from the Olden test suite which contains pointer intensive programs that make

extensive use of dynamically allocated data structures. We used “-O3“ compiler option when generating the

object code for simulation. We did not apply the technique to SPECint benchmarks due to the limitations

described in section 2.2.1.

In order to study the impact of memory performance we varied the input sizes of the programs and also

varied the L2 cache latency. The programs were run for three input sizes – small (this is the standard input

that is typically used to run the benchmark), medium and large (see Figure 12(a)). The cache organization

of simplescalar is shown in Figure 12(b). There are first level separate instruction and data caches (I-cache

and D- cache). The lower level cache is a unified-cache for instructions and data. The L1 cache used was a

16K direct mapped cache with 9 cycle miss latency while the unified L2 cache is 256K with 100/200/400 cycle

miss latencies. Our experiments are for an out-of-order issue superscalar with issue width of 4 instructions

and the Bimod branch predictor.

4.2 Impact on storage needs

The transformations applied for each program and their impacts on node sizes are shown in Figure 13. In

the first four benchmarks (treeadd, bisort, tsp, and perimeter), node sizes are reduced by storing pairs

of compressed pointers in a single word. In the health benchmark a pair of small values are compressed

together and stored in a single word. Finally, in the mst benchmark a compressed pointer and a compressed

small value are stored together in a single word. The changes in node sizes range from 25% to 33% for five

of the benchmarks. Only in case of tsp is the reduction smaller – just over 10%.

The runtime savings in heap allocated storage are measured for each of the three program inputs. The
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; $16 : &t− > value next

; $18 : newvalue

; $19 : newnext

; $20 : 0xffffc000 preloaded

and $2, $18, $20

beq $2, $0, $L1

beq $2, $20, $L1 ; finish the logic of bneh18

beq $19, $0, $L1

or $2, $16, $19

srl $2, $2, 15

bne $2, $L1 ; finish the logic of bneh17

ori $19, $19, 0x7fff

sh $18, 0($16)

sh $19, 2($16)

j $L2

$L1:

; allocate extra locations and store pointer

; to extra locations in t− > value next

; store uncompressed data in extra locations

· · ·
$L2: · · ·

(a) Illustration of compressibility checks.

; $16: &(t− > value next)

; $17: uncompressed integer t− > value

; $18: uncompressed pointer t− > next

; $20 : 0xffffc000 preloaded

lw $3, 0($16)

bltz $3, $L1

andi $2, $3, 0x4000

beq $2, $0, $L3

addi $17, $3, 0x3fff

j $L4

$L3: or $17, $3, $20 ; finish the logic of xtrl

$L4: srl $2, $3, 16

bne $2, $0, L5

mov $18, $0,

j $L2

$L5 and $18, $3, $20

ori $18, $18, $2 ; finish the logic of xtrhh

j $L2

$L1:

; load values from extra locations

· · ·
$L2: · · ·

(b) Illustration of extract and expand instructions.

Figure 11: The code without DCX instructions for the previous example.
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Program Application

treeadd Recursive sum of values in a B-tree
bisort Bitonic Sorting
tsp Traveling salesman problem
perimeter Perimeters of regions in images
health Columbian health care simulation
mst Minimum Spanning tree of a graph

Program small input medium input large input

treeadd 20 1 21 1 22 1
bisort 32768 1 128000 1 312000 1
tsp 65536 1 131072 1 262144 1
perimeter 12 1 13 1 14 1
health 3 2000 1 3 3000 1 3 4000 1
mst 512 1 1024 1 2048 1

(a) Benchmarks and inputs used.

Parameter Value

Issue Width 4 issue, out of order
Instruction cache 16K direct map
Icache miss latency 9 cycles
Level 1 data cache 16K direct map
Level 1 data cache miss latency 9 cycles
Level 2 unified cache 256K 2-way asso.
Memory latency
(level 2 cache miss latency) 100/200/400 cycles

(b) Cache configurations used.

Figure 12: Experimental setup.
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Program Transformation Applied Node Size Change (bytes)

treeadd CommonPrefix/CommonPrefix from 28 to 20
bisort CommonPrefix/CommonPrefix from 12 to 8
tsp CommonPrefix/CommonPrefix from 36 to 32
perimeter CommonPrefix/CommonPrefix from 12 to 8
health NarrowData/NarrowData from 16 to 12
mst CommonPrefix/NarrowData from 16 to 12

Figure 13: Applied transformations.

results are given in Figures 14(a-c). The average savings are nearly 25% while they range from 10% to 33%

across different benchmarks. Even more importantly these savings represent significant levels of heap storage

– typically in megabytes. For example, the 20% storage savings for tsp represents 1.0 Mbytes, 2.0 Mbytes,

and 3.9 Mbytes of heap storage savings for small, medium and large program inputs respectively. It should

also be noted that such savings cannot be obtained by other locality improving techniques described earlier

[5, 6, 7, 4, 8].

From the results in Figure 14(a-c) another very important observation is made. The extra locations

allocated when non-compressible data is encountered are non-zero for all of the benchmarks. In other words

we observe that for none of the data structures to which our compression transformations were applied,

were all of the instances of the data encountered at runtime actually compressible. A small amount of

additional locations were allocated to hold a small number of incompressible pointers and small values in

each case. Therefore the generality of our transformation which allows handling of partially compressible

data structures is extremely important. If the application of compression was restricted to data fields that

are always guaranteed to be compressible, no compression would have been achieved and therefore no space

savings would have resulted.

The increase in code size caused by compression transformations was also measured (see Figures 15).

The increase in code size prior to linking is significant while after linking the increase is very small since the

user code is small part of the binaries. However, the reason for significant increase in user code is because

each time a compressed field is updated, our current implementation generates a new copy of the additional

code for handling the case where the data being stored may not be compressible. In practice it is possible to

share this code across multiple updates. Once such sharing has been implemented, the increase in the size

of user code will also be quite small.

4.3 Impact on execution time

Based upon the cycle counts provided by the simplescalar simulator we studied the changes in execution

times resulting from compression transformations. The impact of input size and L2 latency on execution

times was also studied. The execution time in number of cycles for the scheme using original malloc is shown
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Storage (bytes)
Program Original Compressed nodes + Space

Extra locations = Total savings

treeadd 12582900 8388600 + 13440 = 8402040 33.2 %
bisort 786420 524280 + 25600 = 549880 30.1 %
tsp 5242840 4194272 + 6080 = 4200352 19.9 %
perimeter 4564364 3260260 + 5120 = 3265380 28.5 %
health 566872 509952 + 320 = 510272 10.0 %
mst 3414020 2367492 + 320 = 2367812 30.6 %
average 25.4 %

(a) Reduction in heap storage for small input.

Storage (bytes)
Program Original Compressed nodes + Space

Extra locations = Total savings

treeadd 25165812 16777208 + 26560 = 16803768 33.2 %
bisort 3145716 2097144 + 136320 = 2233464 29.0 %
tsp 10485720 8388576 + 12160 = 8400736 19.9 %
perimeter 9322572 6658980 + 10560 = 6669540 28.5 %
health 847584 762348 + 320 = 762668 10.0 %
mst 13643780 9453572 + 320 = 9453892 30.7 %
average 25.2 %

(b) Reduction in heap storage for medium input.

Storage (bytes)
Program Original Compressed nodes + Space

Extra locations = Total savings

treeadd 50331636 33554424 + 51260 = 33605684 33.2 %
bisort 3145716 2097144 + 204160 = 2301304 26.8 %
tsp 20971480 16777184 + 23040 = 16800224 19.9 %
perimeter 20332620 14523300 + 23680 = 14546980 28.5 %
health 1128240 1014804 + 320 = 1015124 10.0 %
mst 54550532 37781508 + 320 = 37781828 30.7 %
average 24.9 %

(c) Reduction in heap storage for large input.

Figure 14: Impact on storage.
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Code Size (bytes)
Program Original Transformed Increase

treeadd 5480 6376 16.4%
bisort 11944 16720 40.0%
tsp 18280 19172 4.9%
perimeter 14976 18160 21.3%
health 15952 21324 33.7%
mst 12768 14136 10.7%
average 21.1%

(a) Code size before linking.

Code Size (bytes)
Program Original Transformed Increase

treeadd 228360 228444 0.04%
bisort 257552 257572 0.01%
tsp 238004 238448 0.18%
perimeter 233736 238340 1.97%
health 256608 257200 0.23%
mst 232296 232440 0.06%
average 0.41%

(b) Code size after linking.

Figure 15: Impact on object code size.
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in Figure 16. Let us examine the results in Figure 17(a) – these results are for L2 cache latency of 100 cycles.

The reduction in execution times in comparison to the original programs which use malloc range from 3%

to 64% while on an average the reduction in execution time is around 30%. The reductions in execution

times increase gradually with the input size.

The execution times are compared with versions of the programs that use ccmalloc. The new approach

outperforms ccmalloc in five out of the six benchmarks (our version of mst runs slightly slower than the

ccmalloc version). On an average it outperforms ccmalloc by nearly 10%. Our approach outperforms

ccmalloc because once the node sizes are reduced, typically greater number of nodes fit into a single cache

line leading to a low number of cache misses. Additional runtime overhead is incurred in form of extra

instructions needed to carry out compression and extraction of compressed values. However, this additional

execution time is more than offset by the time savings resulting from reduced cache misses; thus leading to

overall reduction in execution time.

The experiments of Figure 17(a) were also repeated for higher L2 cache latencies. The results are

presented in Figures 17(b-c). As the latency of L2 cache is increased, compression outperforms ccmalloc by

a greater extent. The graph in Figure 17(d) plots the average reduction in execution time that compression

provides over ccmalloc for the different cache latencies. As it can be seen, on an average, compression

reduces the execution times by 10%, 15%, and 20% over ccmalloc for L2 cache latencies of 100, 200, and

400 cycles respectively. These numbers also improve gradually with input size. In summary our approach

provides large storage savings and significant execution time reductions over ccmalloc.

Memory Latency
Program Input Size 100 cycles 200 cycles 400 cycles

small 187104548 213446048 266129161
treeadd medium 374255422 426980319 532430305

large 748581997 854125025 1065211532

small 88018305 110354193 155027555
bisort medium 220326074 267876903 362982855

large 1086856767 1403106753 2035623908

small 1009746602 1068975750 1187436916
tsp medium 2058288126 2196364134 2472525949

large 4187156823 4502658588 5133680969

small 63872531 76008631 100280831
perimeter medium 136728007 161660850 211523707

large 310945412 365539012 474726218

small 480405345 810592426 1471076555
health medium 1626046228 2940667674 5570065464

large 3482298578 6435455814 12341950613

small 224191291 365504051 648130202
mst medium 957099915 1580381682 2826953231

large 3980486935 6501985456 11545026712

Figure 16: Execution time in cycle counts for different configurations.
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4.4 Impact on power consumption

Experiments have also been done to compare the power consumption for the compression based programs

with that of the original programs and ccmalloc based programs (see Figures 18(a-d)). These measurements

are based upon the Wattch [9] system which is built on top of the simplescalar simulator. These results

track the execution time results quite closely. The average reduction in power consumption over the original

programs is around 30% which increases gradually with the size of the input. The graph in Figure 17(d)

plots the average reduction in power dissipation that compression provides over ccmalloc for the different

cache latencies. As we can see, on an average, compression reduces the power dissipation by 5%, 10%, and

15% over ccmalloc for L2 cache latencies of 100, 200, and 400 cycles respectively. These numbers further

improve gradually as the input size is increased.

4.5 Impact on cache performance

Figure 19 presents the impact of compression on cache behavior, including I-cache, D-cache and unified L2

cache behaviors. As expected, the I-cache performance is degraded due to increase in code size caused by our

current implementation of compression. Due to the change of code layout, in some case, the modified code

reflects smaller number of I-cache misses e.g. TSP. This is consistent with that from ccmalloc. However,

the performances of D-cache and unified cache are significantly improved. This improvement in data cache

performance is a direct consequence of compression.

4.6 Impact on performance without DCX ISA support

Figure 20 presents the impact on performance if DCX ISA support is not provided. As expected the

performance improvment is eroded by the overhead that we have to pay for checking, compacting and

extracing data items at the runtime. For example, with small input and memory latency 100 cycles we

observed an average of 18% improvement over the orignal malloc scheme and 3% slowdown over ccmalloc.

Luckily this overhead is offset by the performance gains from larger inputs and long memory latencies (which

represents the trend). With medium input and memory latency 200 cycles, we have an improvment of 5.5%

over ccmalloc compared to 14.7% improvemntment over ccmalloc if DCX instructions are provided.

4.7 Comparison with more cache configurations

Experiments have also been conducted to study the performance cahnges with different cache sizes and

associativity. Figure 21 presents the results for medium input when repectively the L2 cache size is doubled,

or the L1/L2 cache associativity is doubled, or L2 hit latency is doubled. From the figure we see comparable

results as that in Figure 19. This is because all programs require much large space than the L2 cache size

and the reduction in heap storage requirement has a consistent impact on performance. Similar results have
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Memory Latency
Program Input Size 100 cycles 200 cycles 400 cycles

Comp.

Orig.

Comp.

ccmalloc

Comp.

Orig.

Comp.

ccmalloc

Comp.

Orig.

Comp.

ccmalloc

small 58.8 % 81.0 % 62.1 % 73.2 % 66.6 % 65.4 %
treeadd medium 58.8 % 81.0 % 62.0 % 73.2 % 66.6 % 65.4 %

large 58.7 % 81.0 % 62.0 % 73.2 % 66.5 % 65.4 %

small 75.3 % 73.9 % 62.8 % 58.6 % 48.6 % 42.9 %
bisort medium 69.3 % 69.5 % 54.8 % 53.4 % 40.7 % 38.7 %

large 67.7 % 64.9 % 51.9 % 48.1 % 36.5 % 32.8 %

small 97.3 % 99.7 % 96.5 % 99.7 % 95.3 % 99.8 %
tsp medium 97.0 % 99.7 % 96.2 % 99.7 % 94.9 % 99.8 %

large 96.8 % 99.5 % 95.9 % 99.6 % 94.5 % 99.6 %

small 75.1 % 91.8 % 73.8 % 87.1 % 72.2 % 81.6 %
perimeter medium 76.3 % 92.3 % 74.8 % 87.7 % 72.9 % 82.1 %

large 77.6 % 93.1 % 76.0 % 88.5 % 73.9 % 82.9 %

small 83.4 % 94.6 % 83.6 % 91.3 % 83.7 % 89.3 %
health medium 68.1 % 95.5 % 66.3 % 93.1 % 65.3 % 91.8 %

large 62.1 % 95.8 % 60.0 % 93.8 % 58.8 % 92.6 %

small 35.7 % 102.2 % 28.3 % 101.7 % 23.2 % 101.2 %
mst medium 37.8 % 102.1 % 31.2 % 101.6 % 26.8 % 101.0 %

large 36.6 % 102.2 % 30.7 % 101.6 % 26.6 % 101.0 %

small 70.9 % 90.5 % 67.9 % 85.3 % 64.9 % 80.0 %
average medium 67.9 % 90.0 % 64.2 % 84.8 % 61.2 % 79.8 %

large 66.6 % 89.4 % 62.7 % 84.1 % 59.5 % 79.0 %

(a) Change in cycle counts
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(b) Compression vs ccmalloc.

Figure 17: Change in execution time due to data compression.
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Memory Latency
Program Input Size 100 cycles 200 cycles 400 cycles

Comp.

Orig.

Comp.

ccmalloc

Comp.

Orig.

Comp.

ccmalloc

Comp.

Orig.

Comp.

ccmalloc

small 60.9 % 89.7 % 62.5 % 83.4 % 65.0 % 75.5 %
treeadd medium 60.9 % 89.7 % 62.5 % 83.4 % 65.0 % 75.5 %

large 60.9 % 89.7 % 62.5 % 83.4 % 65.0 % 75.5 %

small 77.9 % 79.2 % 67.6 % 66.0 % 54.9 % 51.1 %
bisort medium 73.7 % 75.9 % 61.3 % 61.6 % 47.9 % 46.8 %

large 73.3 % 72.1 % 59.5 % 56.9 % 44.5 % 41.3 %

small 97.1 % 99.8 % 96.5 % 99.9 % 95.6 % 99.9 %
tsp medium 96.7 % 99.8 % 96.1 % 99.8 % 95.1 % 99.9 %

large 96.7 % 99.7 % 96.0 % 99.7 % 94.9 % 99.7 %

small 75.9 % 95.1 % 74.7 % 91.6 % 73.1 % 86.8 %
perimeter medium 77.1 % 95.6 % 75.8 % 92.2 % 74.1 % 87.4 %

large 78.6 % 96.4 % 77.2 % 93.1 % 75.2 % 88.2 %

small 90.0 % 101.4 % 87.8 % 95.9 % 86.2 % 92.1 %
health medium 73.5 % 101.1 % 69.5 % 96.6 % 67.1 % 93.8 %

large 66.8 % 100.9 % 62.7 % 96.8 % 60.2 % 94.3 %

small 38.9 % 104.5 % 31.5 % 103.8 % 25.7 % 102.9 %
mst medium 40.5 % 104.2 % 33.9 % 103.4 % 28.9 % 102.5 %

large 39.7 % 104.2 % 33.5 % 103.4 % 28.7 % 102.5 %

small 73.4 % 95.0 % 70.1 % 90.1 % 66.7 % 84.7 %
average medium 70.4 % 94.4 % 66.5 % 89.5 % 63.0 % 84.3 %

large 69.3 % 93.8 % 65.2 % 88.9 % 61.4 % 83.6 %

(a) Change in power consumption.
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Figure 18: Impact on power consumption.
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I-cache D-cache Unified-cache

Program Input Size Comp.

Orig.

Comp.

ccmalloc

Comp.

Orig.

Comp.

ccmalloc

Comp.

Orig.

Comp.

ccmalloc

small 105.2 % 104.8 % 62.2 % 60.4 % 85.1 % 49.7 %
treeadd medium 106.4 % 105.5 % 61.5 % 59.7 % 85.0 % 49.7 %

large 107.3 % 104.7 % 60.0 % 59.8 % 84.9 % 49.7 %

small 153.3 % 155.9 % 65.0 % 58.7 % 16.2 % 16.8 %
bisort medium 228.2 % 234.1 % 68.7 % 63.1 % 15.5 % 16.6 %

large 228.2 % 234.1 % 47.3 % 38.3 % 7.4 % 7.0 %

small 5.0 % 120.5 % 70.1 % 90.3 % 84.1 % 100.1 %
tsp medium 4.0 % 122.1 % 66.0 % 94.0 % 84.4 % 100.1 %

large 3.6 % 124.9 % 62.4 % 84.3 % 84.4 % 100.1 %

small 145.1 % 86.0 % 69.1 % 71.3 % 67.1 % 67.0 %
perimeter medium 205.1 % 83.5 % 68.9 % 70.9 % 67.0 % 66.8 %

large 321.8 % 78.0 % 69.1 % 70.3 % 67.0 % 66.8 %

small 122.2 % 112.1 % 82.2 % 96.2 % 41.6 % 62.3 %
health medium 133.8 % 116.6 % 82.2 % 97.8 % 46.4 % 67.3 %

large 144.8 % 120.7 % 82.1 % 98.6 % 51.9 % 71.1 %

small 26.6 % 61.6 % 41.0 % 100.9 % 16.2 % 100.0 %
mst medium 16.8 % 48.2 % 49.0 % 96.3 % 21.3 % 100.0 %

large 13.8 % 42.7 % 33.2 % 94.8 % 21.5 % 100.0 %

small 92.9 % 106.8 % 64.9 % 79.6 % 51.7 % 66.0 %
average medium 115.7 % 118.3 % 66.0 % 80.3 % 53.3 % 66.8 %

large 136.6 % 117.5 % 59.0 % 74.3 % 52.8 % 65.8 %

Figure 19: Change in cache misses (memory latency = 100 cycles).

been observed for small and large inputs.

5 Related work

Recently there has been a lot of interests in exploiting narrow width values to improve program performance

[9, 10, 11]. However, our work focuses on pointer intensive applications for which it is important to also handle

pointer data. A lot of research has been conducted on development of locality improving transformations for

dynamically allocated data structures. These transformations alter object layout and placement to improve

cache performance [5, 4, 7]. However, none of these transformations result in space savings.

Existing compression transformations [12, 13] rely upon compile time analysis to prove that certain data

items do not require a complete word of memory. They are applicable only when the compiler can determine

that the data being compressed is fully compressible and they only apply to narrow width non-pointer data.

In contrast, our compression transformations apply to partially compressible data and, in addition to handling

narrow width non-pointer data, they also apply to pointer data. The approach introduced in this section is

not only more general but also simpler in one respect. It does not require compile-time analysis to prove

that the data is always compressible. Instead simple compile-time heuristics are sufficient to determine that

the data is likely to be compressible. Data width has also been exploited in the hardware for reducing the
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Memory Latency
Program Input Size 100 cycles 200 cycles 400 cycles

Comp.

Orig.

Comp.

ccmalloc

Comp.

Orig.

Comp.

ccmalloc

Comp.

Orig.

Comp.

ccmalloc

small 69.3 % 95.4 % 71.2 % 84.0 % 74.0 % 72.6 %
treeadd medium 69.2 % 95.4 % 71.2 % 84.0 % 73.9 % 72.6 %

large 68.8 % 94.8 % 70.8 % 83.6 % 73.6 % 72.3 %

small 112.9 % 110.8 % 92.8 % 86.6 % 69.9 % 61.8 %
bisort medium 85.0 % 85.2 % 66.4 % 64.7 % 48.4 % 45.9 %

large 91.3 % 87.6 % 69.3 % 64.3 % 48.0 % 43.1 %

small 97.6 % 100.1 % 96.9 % 100.1 % 95.6 % 100.1 %
tsp medium 97.3 % 100.0 % 96.5 % 100.0 % 95.1 % 100.1 %

large 97.1 % 99.9 % 96.2 % 99.9 % 94.8 % 99.9 %

small 84.5 % 103.3 % 81.7 % 96.4 % 78.2 % 88.3 %
perimeter medium 85.8 % 103.8 % 82.9 % 97.1 % 79.1 % 89.0 %

large 87.5 % 104.9 % 84.4 % 98.3 % 80.4 % 90.1 %

small 91.8 % 104.1 % 88.6 % 96.8 % 86.4 % 92.3 %
health medium 73.7 % 103.2 % 69.4 % 97.4 % 66.9 % 94.0 %

large 66.7 % 103.0 % 62.5 % 97.7 % 60.1 % 94.6 %

small 36.2 % 103.6 % 28.6 % 102.8 % 23.4 % 101.9 %
mst medium 38.2 % 103.3 % 31.5 % 102.4 % 26.9 % 101.6 %

large 37.0 % 103.4 % 30.9 % 102.5 % 26.7 % 101.6 %

small 82.0 % 102.9 % 76.6 % 94.4 % 71.2 % 86.2 %
average medium 74.9 % 98.5 % 69.6 % 91.0 % 65.1 % 83.9 %

large 74.7 % 98.9 % 69.0 % 91.0 % 63.9 % 83.6 %

Figure 20: Performance impact without DCX support.

Large L2 cache High associativity Long L2 hit latency
Program (512K) (2-way L1/4-way L2) (18 cycles)

Comp.

Orig.

Comp.

ccmalloc

Comp.

Orig.

Comp.

ccmalloc

Comp.

Orig.

Comp.

ccmalloc

treeadd 58.8 % 81.0 % 58.8 % 81.0 % 58.3 % 81.9 %

bisort 82.2 % 75.8 % 77.5 % 74.4 % 76.1 % 73.9 %

tsp 97.1 % 99.7 % 97.0 % 99.7 % 95.8 % 99.4 %

perimeter 76.2 % 92.3 % 76.3 % 92.3 % 74.5 % 91.5 %

health 103.4 % 98.8 % 67.5 % 95.5 % 68.1 % 96.4 %

mst 37.4 % 102.2 % 37.8 % 102.1 % 38.6 % 102.0 %

average 75.8 % 91.6 % 69.1 % 90.8 % 68.6 % 90.8 %

Figure 21: Performance changes with more cache configurations.
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power consumption [14, 15].

ISA extensions have been developed to efficiently process narrow width data including Intel’s MMX [16]

and Motorola’s AltiVec [18]. Compiler techniques are also being developed to exploit such instruction sets

[17]. However, the instructions introduced in this section are quite different from MMX instructions because

both partially compressible data structures and pointer data must be handled.

Compression techniques have also been proposed in reducing the memory footprint in object-oriented

systems. New garbage collectors are proposed in [19, 20] which target for environments with severe memory

constraints and reduce heap space footprint through object compaction and compression. Our technique is

orthogonal to these techniques and can be combined with them for achieving further footprint reduction.

6 Conclusion

In this paper, two types of data compression transformations are introduced to apply data compression

techniques to compact the sizes of dynamically allocated data structures. These transformations result in

large space savings and also result in significant reductions in program execution times and power dissipation

due to improved memory performance.

An attractive property of these transformations is that they are applicable to partially compressible data

structures. This is extremely important because according to our experiments, while the data structures in

all of the benchmarks studied in this section are very highly compressible, they always contain small amounts

of incompressible data.

This approach is applicable to a more general class of programs than existing compression techniques: it

can compress pointers as well as non-pointer data; and it can compress partially compressible data structures.

Finally the DCX ISA extensions have been designed to enable efficient manipulation of compressed data.

The same task cannot be carried using MMX type instructions. The main contribution of this work is that

data compression techniques can now be used to improve performance of general purpose programs and

therefore it takes the utility of compression beyond the realm of multimedia applications.
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