
Executing Loops on a Fine-Grained MIMD Architecture

Sunah Lee Rajiv Gupta 1

slee@cs.pitt.edu gupt.a@cs.pitt.edu

Department of Computer Science

University of Pittsburgh

Pittsburgh, PA 15260

Abstract - We present techniques for exploiting parallelism

extracted from loops on an MIMD system. Parallelism is

exploited through parallel execution of instructions on multiple

processors as well as pipelined nature of individual processors.

The processors based upon the load/store architecture

read/write operands frotn/to private registers, shared registers,

and channel queues. If the communication of a vahte from one

processor to another requires synchronization then a channel is

used otherwise a shared register is used to communicate the

vahte. The reeeiving processor reads the values from a channel

queue in the order they are written to the channel by the send-

ing processor. The scheduling of operations is carried out in a

manner that reduces interprocessor communication. Such

schedules reduce the likelihood of one processor impeding the

progress of other processors.

1. Introduction

Implicit parallelism present in loops is an important

source of fine-grained parallelism. In d-is paper we present a

tightly coupled tine-grained MIMD architecture whose proces-

sors can execute relatively independent streams of ittshuctions

as well as tightly synchronized instruction streams. The sys-

tem is designed using a traditional RISC processor augmented

with multiprocessor support. Fine-grained parallelism is

exploited by executing multiple instructions in parallel on dif-

ferent processors as well as overlapped execution of instrttc-

tions on pipelined processors. Globally shared registers and

dedicated chanrtel queues are provided which allow the proces-

sors to exchange data at high speed are provided. If no syn-

chronization is required during the emnrnunication of a data

value from one processor to another, then a globally shared

register is used to communicate a data value, or else the chan-

nel queue from the sending processor to the r~eiving proces-

sor is used to cmrunttnicate the data value. An MIMD system

is tolerant of delays caused by unpre&ctable events as such

memory access conflicts.

1 Partialty supported by an NSF Presidential Young Investigator

Award CCR-9157371 to the University of Pittsburgh.

Permission to copy without fee atf or part of this material is granted prO-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copyiug is by permission of the

Association for Computing Machhery. To copy otherwise, or to

repubhsh.require-s a fee and/or specific petilon.

01991 ACM 0-89791-460-0/91/0011/0199 $1.50

The Very Long Instruction Word (VLIW) architectures

are a family of architectures that can effectively exploit fine-

grairted parallelism.3, 5 The processors in a VLIW machine

operate in lockstep. The synchronization of the processors is

guaranteed by the hardware on a per instruction basis. A vahte

eompttted by a processor in one instruction is accessible to the

other processors in the next instruction. The data vahses are

emnrmtnicated among the processors through shared registers.

A VLIW machine is unsuitable for the execution of indepen-

dent irtstntction streams. In addition, the lockstep operation of

multiple processors makes the machine intolerant to run-time

delays caused by unpredictable events. The delay in the com-

pletion of any one of the operations in a long instruction delays

the completion of the entire instruction. Unlike a VLIW

machine, the MIMD system is suitable for executing indepen-

dent instruction streams and it is also tolerant of delays caused

by unpredictable events. Also the MIMD system can be

&signed using an existing RISC design thus providing binary

compatibility with existing machines. On the other hand the

instruction set of a VLIW machine is not compatible with

existing RISC processors.

The compilation techniques developed for VLIW

machines, such as trace schedttling,4 region scheduling,g per-

colation scheduling,l software pipelining, 12 and optimal loop

parallelization2 can also be used to generate code for the fme-

grained architecture. However, the above tectilques must be

adapted to take advantage of the MIMD nature of the system.

During the distribution of instructions among the processors an

attempt should be made to minimize the synchronization of

processors. This is beeattse frequent proe-essor synchronization

cars potentially result in run-time delays as well as reduce the

effectiveness of a processor’s pipeliie. In additiou we present

compilation tectilques that are required to take advarttage of

channel queues to enforce data dependencies within loop itera-

tions as well as data dependencies across loop iterations.

Several values being sent from one processor to another can

simultaneously reside in a channel queue. Thus, in the pres-

ence of an interprocessor loop carried dependency the values

being communicated from one processor to another are written

to the same channel. l’htts, parallelism across loop iterations is

exploited without unrolling the loop.

In the next section a brief description of the firte-grairuxf

MIMD architecture is presented. In subsequent sections tech-

niques are presented for distingttishmg between situations in

which shared registers can be used for communicating data

vahtes among processors and situations in which channel

queues must be used for the eommttnication of data vahtes.

Results of some experiments that demonstrate the feasibility of

199

a channel based architecture are presented.

2. The Architecture

The pipelined RISC processors in the MIMD system are

augmented with multiprocessor support. An operand involved

in the execution of an instruction is read/written fiomho the

executing processor’s private register, a register globally

shared among all of the proceaso rs, or a channel queue to/tire

the executing processor and some otheJ processor in the sys-

tem. The operand specification m an instruction mnsists of a

couple of bits to dWrtguish between the three types of operand

sources/&stinations. The remainder of the bits specify a partic-

ular private register, shared registex, or a channel queue.

Figure 1: MIMD System based upon Channel Queues.

From each processor to every other processor a channel

queue is provided. A receiving processor can read a chamtel

queue only after the sending pr ocessor has written a value to

the channel. A hardware counter asscxiated with each queue

indicates whether the queue is empty or not. The hardware

stalls a processor if it is either attempting to read an empty

queue or write to a full channel. The channels are organized as

queues because through appropriate compilation techniques we

ensure that the order in which the values are read by a receiv-

ing processor is the same as the ordex m which they are written

to the channel by the sending processor.

The processors can communicate with each other

through the shared registers and channel queues. When a value

is communicated through a shared register, the synchronization

of processors is not guaranteed by the hardware. l%erefor~ it

is possible for a processor to incorrectly read a value from a

shared register before it has been written to the register. On

the other hand the hardware guarantees synchronization if a

data value is communicated through a channel queue. The

compiler, through its analysis of the parallel instruction

schedules, distinguishes the situations in which channel queues

must be used from the situations m which shared registers

should be used. Since the synchronization of processors dur-

ing the communication of values among processors is ensured

by channel queues, unlike VLIW systems, the processors are

no longer required to operate in strict lockstep fashion. Thus,

the MIMD system is tolerant of delays that otherwise would be
introduced by unpredictable events. In addition to channel

queues the fuzzy bamier mechanism6 can be provided for

efficient synchronization of all processors and the collective

branching mechanisrng can be provided for efficient implemen-

tation of branches dtrough sharing of condhion cde.

The channel queuea can be used to enforce all types of

interprocessor data dependencies. Theze are three types of

&ta dependencies jknv, unt~ and ou@t.ll As shown below a

flow dependency represents a true data dependency and art

antidependemx as well as an output dependence are storage

related dependencies. In the case of a flow dependence the

value is comrmmicated through the channel queue. In the case

of the other two types of dependencies the channel queue is

simply used to synchronize the processors and no useful data

value is communicated through the channel.

flow onti @P~
x=.. ..=X x=..
..=X x=.. x=..

k some situations the presence of a dependency may

not be predictable at compile-time. For examplq consider the

situation in which a definition of Afi] is followed by the use

Au] and the corresponding store and load operations are

scheduled on different processors. The presence of a depen-

dency depends upon whether the values of i and j are the same.

The channel is used to synchronize the processors so that the

store operation is performed before the load opration. How-

ever, no useful data value is communicated through the chan-

nel.

3. Compiler Support for Utilizing Charnel Queues

Completely parallel doall loops can be executed on an

MIMD system by distributing loop iterations among the pro-

cessors. However, if the loop iterations can be simultaneously

executed the tine-grained parallelism present within each loop

iteration and across loop iterations can be exploited. A tech-

nique developed by Aiken and Nicolau2 can be used to

transform loops to expose parallelism present across loop itera-

tions. After applying Aiken and Nkxdau’s transformation

fine-grained parallelism can be detected by constructing a

dir=ted acyclic graph (DAG) representing the data depen&n-

cies among the statements in the loop body. Each processor is

provided with a private copy of the loop variable. The branch

corresponding to the loop back edge is executed independently

by each processor and hence the loop predicate is tested by

each processor.

After the detection of fme-grained parallelism the com-

piler must perform the following steps to generate code for the

fine-pined MIMD architecture.

(i) A parallel execution schedule is generated. The schedule

should exploit the MIMD nature of the system. By

scheduling parallelism such that there are fewer inter-

processor data dependencies we improve the perfor-

mance of the processor pipeline.

(ii) The interprocessor data depen&ncies, including depen&n-

cies across loop iterations, must be resolved through the

shared registers and channel queues. We assume that

the iteration distances of all dependencies are constants

which are known at compile-time.

200

(iii) The size of each channel queue is fixed. Thus, delays can

be caused if art attempt is made to write to a chartnel

that is full. Techniques are required to anticipate and

avoid such delays.

3.1. Instruction Scheduling

The topdown instruction scheduling algorithm that
generates schedules for exploiting parallelism with low irtter-
processor communication was developed in previous worlc.7

Consider an operation in a DAG that receives its two operands
born two other operations in the same DAG. The operation
requiring the two operands can be assigned to one of the pr-
ocessorsassigned to the operations that compute the operands.
This will reduce interprocessor dependencies. For a computa-
tion containing more parallelism than the processors in dte sys-
tem are able to exploi~ schedules involving fewer irtterproces-
sor data dependencies can be generated by cartying out
scheduling in a top down fashion. If the number of operations
ready to be scheduled is greater than or equal to the number of

processors, then several nodes km the subgraphs rooted at
these nodes are scheduled on each of the processors. The
number of nodes scheduled on each pmwsor equals the
number of nodea in the smallest subgraphs. By attempting to
schedule the same number of operations on each processor
good load balancing and hence better speedups can be
expected. Thus, this scheduling algorithm tries to minimize
the number of channels needed without sacrificing the degree
of parallelism exploited. By reducing interprocessor depen-
dencies, opportunities for reordering the code scheduled tm a
processd to reduce pipeline delays are created. Instruction
reordering techniques developed by Gross and Hermessy10 can

be used for reordering the group of statemerm that are simul-

taneously assigned to a given processor at the same time.

In Figure 2 we show a loop which is first transformed

using Aiken and Nlcolau’s algorithm to expose parallelism.

The schedule SchedI is generated using topdown scheduling
for the execution of the loop on two processors. If we examine
the schedule Schedf we cart see that there is no interprocessor
data dependency with iteration d~tance zero. This will avoid

the processor pipelines from being underutilized due to irtter-
processor communication. In addition we can transform SchedZ
to Sched2 which separates intraprocessor dependencies apart
which furdter reduces the likelihood of pipeline delays.

3.2. Selecting the Mode of Interprocessor Communication

After a schedule has been generated the compiler must

identify all situations requiring interprocessor communication

and then generate code to e@ablish communication through

either channel queues or shared registers. In this section we

present compile-time techniques that enable us to make the

appropriate choice. If the processor receiving the value is

guaranteed to read the value after the value has been com-

puted, then a shared register is used. If this is not the case and

synchronization is required then the appropriate channel

queue is used since it guamntees read s!br write. Next we

derive results that enable us to ascertain the need for synchron-

ization. These results essentially identify conditions under

which one synchronization subsumes another synchronization,

(i) Grigina.1 loop

Do 1=1, N

/9

G
00

G~: Al~ =BII’J

Cm: A2~ = Al[I’1

m

c

B~:A3~=Al~+A2~
00

D~: A4~ = A2~ + A6~-1] B D
FM: A5~ =A2~ +B~ +A4(l_j 00
Em: A6~ = A3~ +A4~ “,—

Enddo

(ii) After transformation n

1 N.
1, N-Z

A6[l_l = A3~ + A4~
‘i “

lb
Fm:Asp3=A2m +Bm+A4(q “ c

6<

1 \2
B~+l]: A3~+l] = AI~+l] +A2fI+l]

Gfl+2]: Al~+2] = B~+2] B1

D~+lJ: A4fl+l] = A2~+l] + A6~ 1#
J l\

CD+2]: A2[I+2] = A1[I+2]
.

Enddo V$
EOF

Postloop

Figure 2: Inrtructwn Reorakring.

i.e., makes the latter unnecessary. We assume that the iteration

distances of all interproce.ssor depcndenciea are constants that

are known at compile-time.

Lemma 1: Given two flow dependence edges e I and ez horn

proce.wor p 1 to processor pZ with the ss2ne iteration distances.

The synchronization for the flow dependence el subsumes the

dependence ez if and only if tm(el)>tm (ez) and

t- (el)<t& (eJ.

Proof: There are only two possibilities to considez here. Either

the tsvo dependence edges el and e2 intersect or they do not

intersect.
cure k [m (el)>t= (ez)A t~, (el)<tti(ez)

If the edges intersect (see Figure 3(i)) dten it is clear that

enforcing the dependence el guarantees that ez is also

enforced. Therefore, e2 is subsumed bye ~.

Cure IL t- (e l)<t~. (e2) A ta,, (el)<tti (e~

If the two edges do not intersect (see Figure 3(ii)) then the syn-

chronization is clearly required to enforce the two dependen-

cies. Consequently the result stated above follows. O

Lemma A Given a flow dependence edge e 1 with iteration

distance d and another flow dependence edge e2 with iteration

distance d+l horn processor p 1 to processor Z. The synchron-

ization for flow dependence @1subsumes the synchronization

requirement for the dependence e2 unless the condhion

(t= (eJ<f= (e21Af&,t (ed>k,t (e2)) is true.

Proof: In order to derive the above result we consider follow-

ing casea which arise horn the relationships between t= and

201

J J J I

Figure 3: (i) Non-intersecting Dependence Edges;

(ii) Intersecting Depemknce Edges.

tti values for edges e 1 and e2.

Cuse Z: tm (e I)<tm (ez) A tti (el)eb(ez) (Figure 4).

Cure IL t= (el)>t~. (ed A b, (el)>~ (ed (Figure 5).

Cose ZII tm (el)>tm (ez) A t&, (e1@ti(e2) (F@re 6).

Cose IV t= (el)<tm (e2) A tA,(el)>t~(eJ (Figure 7).

By considering two successive loop iterations we can view ez
originally with iteration distance of d+l, as a dependency

between the loop iterations with iteration distance d (see Fig-

ures 4(ii)-7(ii)). Now the dependencies e 1 and ez both have the

same iteration distance and therefore lemma 1 can be used to

determine the condition under which el subsumes ez. This

analysis yields us to the conclusion that in the first three cases
e 1 subsumes e2. Thus, e 1 does not subsume e2 if the condition

t-. (el)et~. (e2) A rA~ (e l)>t~.t (ez) is true. ❑

Lemma 3: Given a flow dependency from processor pl to p2

with iteration distance d. The synchronization that enforces the

given dependency also enforces (i.e., subsumes) any synchron-

ization from p 1 top z with iteration distance greater than d+l.

PIWOE In order to prove this result we consider two dependert-

ciea e 1 and ez of iteration distance d and d+2. There are four

possible relationships between the two dependencies as men-

tioned in lemma 2. By considering two successive iterations

we can view ez as a dependence with iteration d~tance d+l.

Next by applying lemma 2 we can easily show that in all four

cases e 1 subsumes e z •l

Theorem 1: A synchronization introduced for enforcing a
flow dependency ei with iteration d~tance d from processor p I

to p 2 subsumes the synchronization required for enforcing a
flow dependency ej of iteration distance d’, also from p I top z

if and only if one of the following conditions is true:

● d’=d A te. (ei)>t~ (ej) A 1A,,(ei)<l~w (ej)

. d’=d+IAnot (tr. (ei)ct~. (ej!Atti (ei)x&. (ej))

● d’>d+l
Proofi This theorem follows duectly from lemmas 1,2, artd 3.

❑

So far we have only considered dependencies betwea

pairs of processors. Introduction of synchronizations between

pairs of processors creates additional synchronizations

between other pairs of processors. Such a synchronization is

PI P2

(i)

E

d

+

-’+

P* P2
(ii)

R
d

d

PI P2

(ii)

“E

d+

Figure 4: Non-intersecting Dependence Edges
of Itemtwn Distances di-1 and d.

1 I..................
Figure 5: Non-intersecting Dependence IMges

of Iteratwn Distances d and d+l.

(i)’1 ‘2

B

d+l

.,,.

(ii)

+

PI P2

[

d

d

P* P2
(iii)

H

d+l

+

J— I

Figure 6: Intersecting Dependence Edges
of Iteration Distances d and d+l.

B
(i)R~i)> ‘2~~

d

Figure 7: Intersecting Dependence Edges
of Iterutwn Distances d+l and d,

calkd srs implied synchronizatwn since it is not explicitly

introduced in the code. For example, introduction of synchron-

ization from pl to pz rmd pz to pq implies a synchronization

lxtween p ~ and p3. The computation of implied synchrortiza-

tions is necessary to determine all interprocessor data depen-

dence edges which do not require explicit synchronization. The

following result specifies the computation of implied syn-

202

Theorem 2: Given a sequence of flow dependence edges el,

e% e“ with iteration distances of dl, dZ d. respectively.

An edge ei represents a flow &pratdency born processor pi.l

to processor Pi and taj (ei)<tm (ei+l). The introduction of syn-

chronization instnictions to enforce tie sequence of dependen-

cies e 1, e2, en creates an implied synchro?u”zatwn e between

processors pO and p“. This synchronization has an iteration

distance of dl+dz+dm and t=(e)=t=(el) and

k (e)=kt (en).
Prod This result ia obvious from Figure 8. Cl

Po PI P2 P3 %-1 1%
................

4

dl+d ~-@+. ... @

-. —.-.. — —

Figure 8: Implied Synchroru”zations.

Based upon the above results we develop an algorithm

for distinguishing situations in which shared registers should

be used from situations in which channels must be used for

communicating values between processors, There are three

major steps in this algorithm. In the first step we construct a

graph representing the parallel schedule and interprocessor

data dependencies. The dependencies also include loop carried

dependencies if the code segment represents a loop body.

Associated with each dependency is the iteration dntance

which is zero for non-loop carried dependencies and non-zero

for loop-carried dependencies. Next we compute all implied

synchronizations using theorem 2. In the tlnal step we classi@

each real dependence edge as either requiring a shared register

or a channel using theorem 1. The algorithm gttazazttees that

the or&r in which a receiving pr ocessor reads data vahtes from

a channel queue is exactly the same as the or&r in which the

data values are written to the channel queue by the sending

processor. Thus, the implementation of channels as queues is

an appropriate choice.

Step 1: Construction of a Graph Representing the Correct

Execution Order

We construct a directed graph G=(V,E), from the paral-

lel schedule and data dependency information, representing the

constraints on the execution order of the ststernenLs as

described below.

p(s) - the processor on which the statement s has been

scheduled for execution.

t,@t(s p (s)) - the expected time elapsed from the beginning of

a loop iteration to the beginning of s‘s execution on

processor (s).

tt~ (s # (s)) - the expected time elapsed from the beginning of

a loop iteration to the end of the execution of statement

s on processor (s).

V - set of statements in the computatio~ and

E - set of edges in the graph which are determined as follows.

An edge is introduced from statement Si to statement Sj if:

(i) P (Si)=P (sj) Snd sj is executed immediately aftez sj; oz
@l)P (si~ (Sj) and there is a data dependency from Si to Sj.

An edge from statement Si to statement Sj is dCrlOted SS

[t.ti(-$i # (si)). tz (sj# (sj)). d], where d is the iteration dw-
tance of the depen&ncy known at compile-time.

Step 2 Computation of Implied Synchronizations

In this step we compute the set of implied synchroniz-

ations bemwett pairs of processors in accordance with theorem

2. The computation requires a single bottom up traversal of the

graph cxm.strutted in step 1. In the algorithm in Figure 9 the set

1 ia the set of implied synchronization edges.

Step Y Identify the Mode of Communication for Interpro-

ceaaor Data Dependencies

The set of flow dependence edges E is partitioned into

the s= of edges E= which will make use of shared registers

and the set of edges E* which will make use of channel

queues using the algorithm in Flguze 10.

3.3. Reducing Delays due to Bounded Channels

If an interprocesaor data dependence with iteration dis-

tance of d is enforced using a channel queue, d values are

accumulated in the channel queue since a value produced is

cmsurned d iterations later. If the size of the channel queue is

less than d, the writesto be performed by the sending proces-
sors will be delayed till the receiving processor reads the

values horn the channel queue. Code can be generated so that

the delays that can be anticipated at compile-time are reduced.

“IN
i j

V1-Klj

v2-Xij

Clj->vJ

Cij->v~

Figure 11: Delays due to Bounded Queues.

Consider the communication of values VI and vz from

processor Pi to processor Pj ss shown in Figure 11. If we

assume that the channel Cij can hold a single data vahtei then a

delay can be expected during the execution of code assigned to

processor Pi. This delay can be avoided either by modifying

d2e code so that ~ocessor Pj reads the value vl fim tie chan-
nel Cij early and saves it in a private register R or by delaying

the write performed by processor Pi tochannel Cij by comput-

ing the vatue V2 into a private register R. The delay can also

be avoi&d by the combination of the two approaches. wh~

the shift in the channel read/write operation is more than a sin-

gle iteratio~ then the value will be held in a private register for

203

ComputeImplieoXynchronizations {

F MAXd - maximum iteration distance of a data dependency”/

p I - set of implied synchronizations *I

1=$

mark all nodes in G as unvisited

For each processor p Do

find the eariiest unvisited node n in processor p‘s schedule and

If one is found Then Traverse(n)

End for

}
Traverse(n) (

mark n as visited

For each child c of n Do

If c is unvisited Then Traverse(c) Endif

Ifp (c)@ (n) Then

Generate implied synchronizations involving edge e = [t.ti (n z (n)),LW, (c p (c)),d] as follows:

For each edge e’ = [t.ti(c’ p (c)),t,mti (n’ ,p (n’)),d’] E EuZ stp (n’ ~p (n) and c’ is after c Do

If d+~ WAXd Then -- compute implied synchronization using theorem 2

I = I u { [t=ti(n,p (n)),t,@, (n’ p (n’)),d+d’])

-- impiied synchronization with iteration distance> MAXd cannot

subsume a synchronization required for a true data dependency.

Endif

End for

Endif

Endfor

)

Figure 9. Computing Implied Synchronizations.

For each ordered processor pair @i #j) DO

d= QEm=E&=@

Whiie ds MAXd Loop

For each edge e+t.ti(si ,Pi), t.ti, (Sj,pj). d] E EWI DO

Identify edges from pi to pj that we subsumed by e as follows:

For each edge e’ =[t.ti(S’i.Pi)),tin,,(ij.pj),d’] E E such that d’ >d DO

If -- conditions from theorem 1

((d’=d) A (t.mj(si.pi)>ten,i(s’i~i)) A (t*r, (sjPj)<t*r/(s’jPj)))

V ((d’ =d+l) A not (ted (si~i)<teti(s’i~i) A tsm,(sj,pj)>tsti, (s’j~j)))

V (d’>d+l)

Titen E~ =Em u {e’); E =E - {e’)

Else EC’ =E” U{e”]; E =E - (e’]

Endif

End for

End for

d=d+l

Endwhile

Endfor

Figure 10. Identifying theMode of Communication.

204

more than one iteration. References

4. Implementation and Experimental Results

The techniques described in this paper have been imple-

mented and they were applied to some of the Livermore loops.

The results of the experiments conducted demonstrate the

effectiveness of top-down scheduling. The results indicate that

in most cases the top-down scheduling approach results in

almost half the number of interprocessor dependencies as com-

pared to the schedules generated using list scheduling. The

length of schedules generated by the two scheduling algo-

rithms is almost the same in most cases. The schedules were

also examined to determine the queue length that would

guarantee no &lays upon writes to channel queues. It was

found that a queue length of less than four was sufficient for

this purpose. This leads us to conclude that channel queues

with small lengths form an effective mechanism for achieving

interprocessor communication in a fine-grained MIMD system

provided that appropriate compilation techniques are used.

5. Related Work

An alternative approach for implementing channels is to

provide globally shared channels each with a full/empty syn-

chronization bit. This approach has been studied in earlier

work.7, g The channels must be addressable as registers to

achieve high execution speeds which limi~ the number of glo-

bally shared channels that can be provided. On the other hand

the number of bits needed to address dedicated channel queues

is limited by the number of processors. An increase in the

channel queue length does not increase the number of bits

required to address the channel queues. The channel queues

are also easier to implement in hardware. The compilation

techniques for the allocation of global channels are also quite

complicated.7 In order to enforce a loop carried dependency

multiple global channels are required. Thus, the loop must be

sufficiently unrolled so that different global channels can be

used during different iterations of the loop. On the other hand

this can be achieved without umolling if channel queues are

used.

6. Conclusion

This paper demonstrated the use of channel queues to

exploit fine-grained padlelism present in sequential programs.

Compilation techniques for the exploitation of such a resource

were presented. The experimental results demonstrate that a

small queue length (four) is sufficient to exploit parallelism in

several applications.

The compilation techniques &veloped in this paper are

also applicable to other parallel architectures. The top-down

scheduling algorithm can be used to schedule tasks on

shared-memory machines as well as distributed memory

machines since the reduction of interprocessor communication

and processor synchronization is essential for obtaining good

performance. Elimination of redundant synchronizations on a

shared-memory machine can also reduce synchronization over-

head.

1.

2.

3.

4,

5.

6.

7.

8.

9.

10.

11.

12.

A. Aiken and A. Nkolau, “A Development Environ-

ment for Horizontal Microcode,” IEEE Trans. on

Soflware Eng., vol. 14, no. 5, pp. 584-594, 1988.

A. Aiken and A. Nicolau, “Optimal LQOp Paralleliza-

tion,” Proc. of the SIGPLAN Conf on Prog. Lung.

Design and Implementation, Atlanta, Georgi4 pp. 308-
317, 1988.

R.P. Colwell, R.P. Nix, J.J. O’Donnell, D.B. Papworth,

and P.K. Rodman, “A VLIW Architecture for a Trace

Scheduling Compiler, ” IEEE Transactions on Comput-

ers, vol. 37, pp. 967-979, August, 1988.

J.A. Fisher, “Trace Scheduling: A Technique for Glo-

bal Microcode Compaction,” IEEE Trans. on Comput-

ers, vol. 7, no. C-30, pp. 478-490, July, 1981.

R. Gupta and M.L. Soffa, “Compilation Techniques for

a Reconfigurable LIW Archhecture,” The Jourmd of

Supercomputing, vol. 3, pp. 271-304, 1989.

R. Gupt~ “The Fuzzy Barrie~ A Mechanism for High

Speed Synchronization of Processors,” Proceedings of

the Third International Corf on Architectural Support

for Programming Languages and Operating Systems,

pp. 54-64, April, 1989.

R. @Pta, “Employing Register Channels for the

Exploitation of Instruction Level Parallelism, ” Proc.

2nd ACM Sigplan Symp. on Principles and Practice of

Parallel Programming, pp. 118-127, 1990.

R. Gupta and M.L. Soffa, “Region Scheduling: An

Approach for Detecting and RedMributing Parallel-

ism, ” IEEE Transactions on Sof~are Engineering, vol.

16, no. 4, pp. 421-431, April 1990.

R. Gupt% “A Fine-Grained MIMD Architecture Based

Upon Register Channels,” Proceedings of the 23rd

Annual Workshop on Microprogramming and Microar-

chitecture, pp. 28-37, Nov., 1990.

J. Hennessy and T. Gross, ‘ ‘Postpass Code Optimiza-

tion of Pipeline Constraints,” ACM Trans. on Program-

ming Languages and Systems, vol. 3, no. 5, pp. 422-

448, 1983.

D.J Kuck, R.H. Kuhn, D.A. Padua, B. Leasure, and M.

Wolfe, “Dependence Graphs and Compiler Optimiia-

tions,” Proc. of the 8th Annual ACM Symp. on Princi-

ples of Progr amming Languages, pp. 207-218,1981.

M. Lam, ‘ ‘Softwtwe Pipelining: An Effective Schedul-

ing Technique for VLIW Machines,” Proc. of the SIG-

PLAN’88 Conf. on Prog. Lang. Design and Implemen-

tatio~ pp. 318-328, 1988.

205

