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Abstract: This paper discussw the use of shared regis- 
ter channels as a data exchange mechanism among pro- 
cessors in a fine-grained MIMD system with a load/store 
architecture. A register channel is provided with a syn- 
chronization bit that is used to ensure that a processor 
succeeds in reading a channel only after a value has 
been written to the channel. The instructions supported 
by this load/store architecture allow both registers and 
register channels to be used as operand sources and 
result destinations. Conditional load, store, and move 
instructions are provided to allow processors to 
exchange values through channels in presence of alias- 
ing caused by array references. Compiler support 
required to take proper advantage of channels is briefly 
discussed. In contrast to a VLIW machine a system 
with channels does not require strict lockstep operation 
of its processors. This reduces the delays caused by 
unpredictable events such as memory bank conflicts. 

Keywor&: Parallelizing Compilers, Fine-granted Paral- 
lelism, Instruction Scheduling, Aliasing, Channels, Mul- 
tiprocessor System. 

1. Introduction 

Compiler detected parallelism present in sequen- 
tial programs is an important source of fine-grained 
parallelism. This parallelism can be divided into two 
broad categories, namely loop level parallelism and 
non-loop parallelism. Shared memory multiprocessor 
systems, such as the Encore, can exploit loop level 
parallelism effectively. However, they cannot exploit 
non-loop parallelism present in the sequential parts of a 
Program. The Very Long Instruction Word 
(VLIW)[2,3,5] architectures are a family of architec- 
tures that can effectively exploit fine-granted parallelism 
present in sequential parts of a program. Compilers for 
VLIW machines can detect and schedule non-loop 
parallelism in sequential parts of the program and also 
exploit loop level parallelism through loop unrolling and 
software pipelining. A VLIW machine consists of mul- 
tiple processors that operate in lockstep executing 
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instructions fetched from a single stream of long instruc- 
tions. The synchronization of the processors is 
guaranteed by the hardware on a per instruction basis. 
The long instruction word allows initiation of several 
fine-granted operations in each instruction. A value 
computed by a processor in one instruction is accessible 
to the other processors in the next instruction. The data 
values are communicated among the processors through 
shared registers. 

A VLIW machine has two main disadvantages. 
First it cannot be used as a multiprocessor as there is a 
single stream of instructions. The second disadvantage 
arises due to events unpredictable at compile-time. For 
example bank access conflicts cannot always be avoided 
since the operands required for an operation may not be 
known at compile-time due to the use of arrays and 
pointers. The lockstep operation of multiple processors 
makes the machine intolerant to delays caused by 
unpredictable run-time events. The delay in the comple- 
tion of any one of the operations in a long instruction 
delays the completion of the entire instruction. 

The Briarcliff Multiprocessor Project is develop- 
ing a RISC based multiprocessor chip with a small 
number of processors[8]. The processors on this chip 
can execute relatively independent streams of instruc- 
tions for exploiting loop level parallelism and also 
exploit non-loop parallelism efficiently. The intetcon- 
nection potential of a multiprocessor chip is being 
exploited to provide highly efficient register channels. 
A combination of a mechanism for collective branch- 
ing@] of processors and data passing mechanism based 
upon register channels is being used to exploit non- 
loop parallelism. A register channel is provided with a 
synchronization bit which enforces proper synchroniza- 
tion during the sending of a value from one processor to 
another processor. The collective branching mechanism 
enables a single processor to control the execution paths 
taken by all the processors. The combination of register 
channels and collective branching allows exploitation of 
instruction level parallelism without strict lockstep 
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operation of processors. Thus, delays caused by 
unpredictable operations in a VLlW machine can be 
potentially reduced. ‘The MIMD nature of the architec- 
ture also allows loop level parallelism to be exploited 
effectively. The fuzzy barrier mechanism is suported in 
hardware to allow synchronization of processors during 
the execution of parallel loops. This mechanism prc~ 
vides tolerance to unpredictable delays in the progress of 
different streams. Compile-time techniques are used to 
End useful instructions that a processor can execute 
while it is waiting for other processors to arrive at the 
barrier. 

Techniques such as trace scheduling[4], region 
scheduling[9], and software pipelining[l] developed for 
LIW architectures will be used to generate code for the 
Briarcliff architecture. However, additional compile- 
time techniques to determine when channels should be 
used must also be developed. The channels are a set of 
registers that are shared by all the processors. In absence 
of aliasing the compiler can precisely determine when a 
value computed by one processor will be required by 
another processor. Thus, it can use a register channel for 
the communication of the value. This avoids memory 
load/store instructions that would have been introduced 
if the values were communicated through shared 
memory. In presence of aliasing due to array accesses 
memory load/store operations can still be avoided using 
conditional channel load/store operations. Since the 
channels are addressed as registers only a Exed number 
of channels can be provided. This work demonstrates 
the use of a Exed number of channels for exploiting 
Ene-grained parallelism. 

The HEP[ 10,l I] multiprocessor provides poten- 
tially infinite number of channels by adding a synchroni- 
zation bit to every location in the shared memory and 
the register set. This is highly desirable in HEP as the 
channels are visible to the user at language level. The 
channels implemented in memory do not allow high 
speed communication among parallel stxeams. However, 
this is not a drawback in HEP as it achieves high 
throughput by creating a large number of streams and 
issuing instructions from streams that are ready to exe- 
cute. The HEP approach is not effective for the Briar- 
cliff architecture. The channels will be used to exploit 
tine-grained parallelism in a manner similar to VLlW 
machines: thus the number of streams will equal the 
number of processors in the system. In such a system it 
is essential to provide fast channels as memory latency 
cannot be hidden by switching among different streams. 
Register channels are much more efficient than memory 
channels, e-specially in a load-store architecture. 
Another desirable result of using register channels, 
instead of memory channels. is that contention for 
shared memory is reduced instead of being increased. 

Although only a limited number of channels can be pn>- 
vided this is not a drawback for the Briarcliff architec- 
ture as the channels are allocated by a pamllelizing com- 
piler and are not visible at the language level. 

In subsequent sections the overview of the chan- 
nel based architecture and the instructions supported by 
the processors to allow the use of register channels are 
discussed. We demonstrate the usefulness of these 
instructions in reducing memory load/store operations 
even in the presence of aliasing. Fiiy, a brief over- 
view of instruction scheduling and channel allocation 
process is provided. 

2. Overview of the Architecture 

The multiprocessor chip being developed at Briar- 
cliff contains a small number of RISC processors[8]. 
The interconnection potential of a multiprocessor chip is 
being exploited to provide highly efficient hardware 
synchronization mechanisms. The multiprocessor sup- 
port provided preserves the load/store nature of the pro- 
cessor architecture. The system is tolerant of unpredict- 
able delays in the progress of individual instruction 
streams. The combination of data passing mechanism 
based upon register channels and a mechanism for col- 
lective hranching[8] of processors is being used to 
exploit non-loop parallelism without strict lockstep 
operation of processors. Thus, delays caused by 
unpredictable operations in a VLlW machine can be 
potentially reduced. 

Figure 1: VLIW Architecture 

Each processor is provided with a local set of 
registers and is also allowed access to a set of register 
channels that it shares with all the processors in the sys- 
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tern. In Fig. 1 it is shown how processing elements in a 
VLIW architecture communicate through a shared set of 
registers. In Fig. 2 a MIMD architecture based upon 
register channels is shown. The shared set of registers 
in Fig. 1 have been replaced by a shared set of register 
channels. The processors in Fig. 2 tammunicate through 
the register channels but they no longer have to operate 
in strict lockstep fashion. A register channel is provided 
with a synchronization bit that is used to ensure that a 
processor reading a channel does so only after another 
processor has written to the channel. The register chan- 
nels are addressed and accessed in the same manner as 
local registers available to each processor. Thus, using 
register channels the processors can communicate at 
high speed. The communication of values through 
channels enforces synchronization. 

Channel 1 FuWEmptv 1 V&e 1 

multiple 
instruction 
streams 

Figure 2: MIMD Architecture with 
Register Channels 

By examining the data dependency graph for a 
trace, which is a sequence of basic blocks along an exe- 
cution path in a program, the compiler determines which 
operations can be executed in parallel and then 
schedules them for execution on different processors. If 
an operand needed for an operation scheduled on pro- 
cessor pi is computed by another processor pj , a channel 
is used to send this operand from pj to p;. In addition, 
the channels can also be used to signal the occurrence of 
events. Onsider the situation in which an access 
through a pointer p must not precede an assignment 
through pointer q because p and q may be aliases for the 
same data element A channel can be used to signal the 
completion of the assignment as opposed to sending a 
data value. A processor can read a value that it itself 
wrote to a channel because the hardware does not keep 

track as to who is reading or writing to a channel. Thus, 
the channels can also be used as a substitute for local 
registers in situations where a processor requires more 
registers than the number of local registers and channels 
are not being used. The channels are also useful for 
executing loop iterations in parallel. Across processor 
loop carried dependencies can also be enforced through 
channels although this is not discussed in this paper. 

+ to other processors 

Figure 3: Collective Branching Mechanism 

The collective branching mechanism allows a sin- 
gle processor to control the branching of all the proces- 
sors through a global condition code that is replicated at 
each processor. Modification of this global condition 
code by any one processor causes the broadcast of the 
global condition code which changes the condition code 
at all the processors. The compiler schedules the 
evaluation and testing of the condition on any one pro- 
cessor. The result of this test is then broadcast to the 
remaining processors in the system through the 
m-cation of the global condition code. Hardware 
support is provided to broadcast the branch bit. New 
instructions for setting this global condition code bit and 
performing the collective branch are added to the pro- 
cessor insuuction set. 

Corresponding to every regular instruction that 
modifies the condition code, another special instruction, 
test and broadcart (t&d), is provided. Execution of 
tstbd not only sets the appropriate bits of the condition 
code belonging to the executing processor, but also 
broadcasts it to all other processors in the system. The 
processor that tests the condition then executes the 
instruction branch on local condition code (blcc). The 
remaining processors that receive the branch bits then 
branch based upon the broadcast bit by executing the 
instruction branch on special condition code (bscc). 
Synchronization is needed to ensure that a new branch 
bit is not sent to a processor until the previous branch bit 
has been used. This synchronization is enforced using 
the fuzzy barrier[6]. The fuzzy barrier synchronization 
ensures that no processor can execute any instruction 
following a barrier region till all processors have com- 
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The shaded regions represent fuzzy barriers. 

ME bscc E bscc 

Figure 4: Achieving Collective Branching 
with Fuzzy Barriers 

pleted the execution of instructions preceding their 
respective barrier regions. The presence of barriers is 
indicated by a special bit in each instruction. If this bit 
is one the instruction falls in the barrier region and if it 
is zero it is outside the barrier region. 

In the example shown in Fig. 4, processor Pr com- 
putes the branch condition, by executing the instruction 
t&d, and all processors are using the same bit to branch 
together. Synchronization is needed to ensure that a 
new branch bit is not sent to a processor until the previ- 
ous branch bit has been used. This is achieved tbrough a 
fuzzy barrier represented by shaded regions in Fig. 4. 
The first barrier separates the rsrbd instruction and the 
corresponding bscc instructions to ensure that processors 
PZ, P 3r and P4 execute the branch instruction after the 
condition has been tested by PI. The second barrier 
ensures that the branch bit is not overwritten by the next 
execution of fstbd by PI until processors P2, P3, and PI 
have executed the branch instruction. By using the 
fuzzy barrier the streams are still allowed to drift as the 
processors may execute their respective branch instruc- 
tions at different times. In this case, the compiler should 
schedule operations in such a manner that the branch 
condition is evaluated as early as possible. This will 
reduce the likelihood of processors stalling at the bar- 
rier. The fuzzy barriers are also used to enforce across 
processor data dependencies arising from parallel execu- 
tion of loops with loop carried dependencies. A value 
computed by a processor and written to memory prior to 
barrier synchronization is available to the remaining 

processors after barrier synchronization. 

The above approach maintains the desirable 
characteristic of allowing the streams to drift relative to 
one another. The drift is allowed because the processors 
are not forced to execute their respective branch instruc- 
tions simultaneously. On the other hand, in VLIW 
machines the processors operate in strict lockstep mode. 
Thus, if any one of the processors takes longer to com- 
plete its operation all processors are delayed. Unex- 
pected delays are caused in VLIW machines if the 
memory bank containing the data value required for an 
operation cannot be predicted at compile-time. After the 
global condition code has been set, the processors exe- 
cute their respective branch instructions in the order they 
arrive at the branch instruction. 

3. Channel Operations 

The instruction set for the processors has been 
extended not only to allow for collective branching but 
also to perform channel operations. The new instruc- 
tions added to the RISC processors maintains the 
load/store nature of the architecture. Channels am read 
and written by instructions in the same manner as ordi- 
nary registers. Fig. 5 shows a typical RISC instruction 
which reads operands from sotucer and so(uce2 and after 
performing an operation specified by the opcode writes 
the result to the destination desr . The source and destina- 
tion fields refer to registers in uniprocessor RISC archi- 
tectures. In our architecture they refer to either a register 
or a register channel. As indicated in Fig. 5 the bit 
REGICHL indicates whether the field refers to a register 
or a channel and the field REGKHLID provides the 
specific register or channel id. The bit DESINDES 
specifies whether the read or write to a channel is a des- 
tructive operation or a non-destructive operation. These 
operations are later discussed in greater detail. 
Although the channels are globally shared among all the 
processors in the system, typically at any given point in 
time a single pair of processors communicate using a 
channel. This restriction is enforced by the compiler 
which is responsible for the allocation of the channels. 
The read and write operations that can be performed on 
the channels are as follows: 

CLEAR - The channel is cleared by setting the syn- 
chronization bit to zero which indicates that the channel 
is empty. This instruction is used to initialize channels 
to empty at the beginning of the program. 

NON-DESTRUCTIVE READ - If the channel is 
empty the reader is blocked till another processor writes 
to the channel. Once the channel is full the read can take 
place. The synchronization bit is left unchanged: thus 
the value can be read again from the channel. 
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Figure 5: Register Channel Read/Write Instructions 

DESTRUCTIVE READ - If the channel is full the 
value is read and the synchronization bit is set to zero 
indicating that the channel is empty. If the channel is 
empty the reader blocks till another processor writes to 
the channel. 

NON-DESTRUCTIVE WRITE - If the channel is 
empty the value is written and the synchronization bit is 
set to one indicating that the channel is full. If the chan- 
nel is full the writer blocks till the channel becomes 
empty. 

DESTRUCTIVE WRITE - The value is written and 
the synchronization bit is set to one indicating that the 
channel is full. Thus, if the channel was full prior to a 
destructive write the old value is destroyed. 

Some conditional instructions are provided to 
allow generation of efficient code in the presence of 
potential aliasing. In uniprocessor architectures correct 
execution of code is achieved by not assigning a register 
to potential aliases. Thus, every time an alias is 
used/computed its value is read/written horn/to memory 
using a load/store instruction. Load/store instructions 
create memory traffic and the code takes longer to exe- 
cute as compared to the code generated when registers 
are assigned to the variables. In a multiprocessor system 
the problem of memory traffic is even more severe and 
therefore it would be desirable to reduce memory traffic 
by avoiding loads/stores even in the presence of alias- 
ing. Although a data element can have an arbitrary 
number of aliases, in practice most data elements have 
only two aliases. If there is a potential aliasing problem 
due to two array accesses then conditional load, store, 
and move instructions can be used to generate efficient 
code. These new instructions are described next and 
later in this section their use is illustrated through an 
example. 

Conditional Load (LDCND) - If the specified bit in the 

Figure 6: Conditional LOAD, STORE, 
and MOVE Instructions 

condition code is one, i.e., the condition is true, then the 
load is not issued. On the other hand if the condition is 
false the value from the specified memory address 
(MEMADDRS) is loaded into the specitied channel 
(CHANNEL). 

Conditional Store (STCND) - If the specified condi- 
tion is true the store is not carried out. If the condition is 
false the value from the specified channel or register 
(CHLIREG) is stored into the specified memory address 
(MEMADDRS ). 

Conditional Move (MVCND) - If the specified condi- 
tion code bit is one, i.e., the condition is true, then the 
contents of (REGICHL 1) are moved to REGICHL2, oth- 
erwise the move is ignored. 

3.1. Read and Write Operations 

At the beginning of a program all channels are 
empty. To send an one word message from one proces- 
sor to another the sender uses a nondestructive write 
and the reader uses a destructive read. However, if the 
value is to be used more than once non-destructive reads 
are used in all but the last use and a destructive read is 
used during the last use of the value. In the example 
shown in Fig. 7(i) processor PI computes the value of A 
and send it to Pz through a channel. This value is read 
using a nondestructive read by Pt because it is required 
by PI later on. In the example shown in Fig. 7(ii) pro- 
cessor PI computes the value of A which is used by pro- 
cessor P2 twice. Processor P2 performs a non- 
destructive read during the first use and a destructive 
read during the last use. 

If a value written to a channel is no lOnger useful 
it can be overwritten using a destructive write. In the 
example shown in Fig. 8(i) the value of A computed by 
PI is used by P2 is the true branch is taken. Thus it is 
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Figure 7: Channel Read Operations 

written to a channel. However, if the false branch is 
taken the value of A is not live. In this branch the same 
channel can be used in the false branch. However, a 
destructive write to the channel must be used so that the 
old value of A can be discarded in the process. In the 
example shown in Fig. 8(ii) the first value of A com- 
puted by P 1 may or may not be used by Ps. When Pr 
computes A the second time the channel C1 may or may 
not be empty. Thus, P2 performs a destructive write oxi 
channel C1 to pass the second value of A to Pz. These 
examples demonstmte that if appropriate choice of chan- 
nel operations is made the channels can be used as 
efficiently as local registers. 

The decisions to use destructive or non- 
destructive read and write informations can only be 
made if global data flow information is available. The 
defuse and use-def chains, which provide us with a list 
of uses for a definition and list of definitions that reach a 
particular use, are computed. Based upon this informa- 
tion it can be determined whether a use of a definition is 
the last use or additional uses may follow. 

Figure 8: Channel Write Operations 

3.2. Conditional Operations 

Consider the fragment of sequential code shown 
below in Fig. 9. If the compiler cannot determine that i 
and j always have different values then a[i] and a(i] 
can be potential aliases for the same atray element. 
Thus. the assignment to a [i] must be carried out prior to 
an access to u [i] to ensure correct results. Traditionally 
in such cases the store for statement Sr is generated and 
a load for statement S2 is generated (see Fig. 9(i)). 
However, it would be preferable if in situations where i 
and j have the same value the value of u[i] is kept in a 
register and used during execution of statement SZ. In 
context of the fine-grained architecture if statement St 
and statement S2 are being executed on different ptoces- 
sors then we would like to pass the value of u [i I from 
one processor to another through a channel if i and j 
have the same value. The conditional load and move 
instructions allow us to achieve this effect. 

In the code shown in Fig. 9(h) P1 computes u[i] 
into a channel so that it is available to processor Pz. A 
conditional load is used by processor PZ to avoid issuing 
a load instruction if i and j have the same value. To 
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St: 3[i] = . 
s2: . . = iqj] St: a[i] = ,._ 

&: au] = . . 

0) P, 

store a[i] into mem 

..I.... . . . . . 

p2 

I......“. 
LOAD au] from memory 

(ii) PI p2 

compute a[i] into channel C 

store 3[il into memory- 
. . . . . . . . . . . 

LOAD if i==j C c- au] 
from memory 

(iii) PI p2 

compute a[il into channel C LOAD au ] from memory 
store a[il into memory 

\u into register R 
.MOVE if ix] C ->R 

Figure 9: Conditional Load and Move Operations 

further hide the latency of memory access due to the 
load performed by processor P2 the approach shown in 
Fig. 9(Z) can be taken. The value of u b] is loaded by 
P2 into a local register R . A conditional move is used to 
overwrite this value by the value of a [i] computed by P 1 
if i and J’ have the same value. The comparison of i and 
i can be scheduled early in the schedule by the com- 
piler. Thus, if aliasing is absent processor PZ can execute 
the conditional MOVE instruction even before the value 
of a[i] has been computed by PI. Using the conditional 
load and move instructions we have successfully 
replaced an unconditional synchronization in the 
schedule of Fig. 9(i) by a conditional synchronization 
in the solutions described in Fig. 9(ii) and 9(iii). This 
not only improves the quality of the schedules because it 
avoids unnecessary delays due to synchronization of the 
processors but also reduces memory traffic. However, 
there is some additional cost associated with conditional 
synchronizations. In Fig. 9(ii) anf 9(iii) a test to check 
whether i was equal to j had to be performed. How- 
ever, the test need not be a part of the conditional 
load/move instruction. The test (i=j) could have been 
performed prior to the conditional load/move instruction 
and during the conditional load/move instruction the 
appropriate bit in the condition code could have been 
examined. 

The example in Fig. 10 illustrates the use of a con- 
ditional store instruction. Again we assume that a[i] 
and alj] could be potential aliases for the same array 
element. In the traditional approach the stores for SI and 
St will be performed in the correct order to ensure 

compute value of a[i] into a register R 
store value of au] into memory 
store if i=j R->a(i] in memory 

Figure 10: Conditional Store Operation 

correct results. Using a conditional store instruction the 
fmt store to memory can be eliminated as follows. The 
value of D [i] is computed into a local register R . The 
vahe of a [i] is stored into memory. The value a [i] in R 
is now stored into memory using a conditional store. 
Thus, if i and j have the same value the store will not be 
issued and memory traffic will be reduced. Thus, using 
conditional instructions the memory traffic can be 
reduced in presence of aliasing. Furthermore, the values 
are communicated between processors using channels 
whenever possible. 

4. Compiler Support for Utilizing Channels 

Code generation for the fine-grained MIMD archi- 
tecture described in this paper is based upon trace 
scheduling and it involves three major steps[4]. In the 
first step the compiler constructs traces, which are 
sequences of basic blocks that lie along an execution 
path in the program and they do not cross loop boun- 
daries. A data dependency graph for the trace is con- 
structed and an instruction schedule is generated 
exploiting the parallelism available in the data depen- 
dency graph. The compiler repeatedly traces out paths 
and generates instruction schedules till the entire pro- 
gram has been processed. By examining traces, instead 
of individual basic blocks, the compiler can exploit 
parallelism across basic blocks. Every time two ptoces- 
sors exchange a data value synchronization may not be 
required. Through analysis the compiler identifies and 
eliminates redundanr synchronimfions. Finally the 
compiler carries out channel assignment to all non- 
mdundant synchronizations. Next the three steps men- 
tioned above are briefly described. Further details can be 
found in[7]. 

4.1. Instruction Scheduling 

An instruction scheduling algorithm that generates 
schedules for exploiting parahelism has been developed. 
The schedules that require less communication among 
the processors are chosen. This is because a fixed 
number of channels are available in the system and we 
would like to enforce maximum number of cross- 
processor dependencies using these channels. Some of 
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the key features of the scheduling algorithm are dis- 
cussed next. 

Consider an operation in a DAG that receives its 
two operands from two other operations in the same 
DAG. If all three operations are assigned different pro- 
cessors two channels will be required to enforce the data 
dependencies due to the two operands. Without 
sacrificing any parallelism the operation requiring the 
two operands can be assigned to one of the processors 
assigned to the operations that compute the operands. 
This will reduce the number of channels required to one 
channel. 

For a computation containing more parallelism 
than the processors in the system are able to exploit 
schedules requiring a larger number of channels may 
exist. However, equally fast processor assignments 
requiring fewer channels may exist. To generate assign- 
ments of this type the following approach is taken. First 
of all the scheduling is carried out in a top down fashion 
instead of the bottom up fashion used by list scheduling. 
As a result this strategy will generate the last instruction 
to be executed first and the first instruction to be exe- 
cuted last. Preference is given to nodes with maximum 
height, where the height of a node is the length of the 
longest path from the node to the bottom of the DAG. 
Next, if the number of operations ready to be scheduled 
is greater than or equal to the number of processors, then 
several nodes from the subgraphs rooted at these nodes 
are scheduled on each of the processors. When an entire 
subgraph is scheduled the operations are scheduled by 
traversing the graph in a top down and breadth first 
fashion. By scheduling the operations in the above 
fashion the number of channels needed is reduced. 

We would like the scheduler to generate schedules 
that distribute the work equally among the processors 
and hence provide earlier finish times. This feature is 
easily encoiporated into the scheduling algorithm by 
ensuring that when entire subgraphs of nodes are being 
scheduled on the processors, the number of nodes 
scheduled on each processor equals the number of nodes 
in the smallest subgraphs. Thus, this scheduling algo- 
rithm tries to minimize the number of channels needed 
without sacrificing the degree of parallelism exploited. 

After the generation of an instruction schedule 
some bookkeeping tasks must be performed. At the 
points in the control flow graph where two traces meet, 
compensation code must be inserted to ensure that the 
channels are in proper state. This is analogous to intro- 
duction of code to carry out data movements at the 
beginning of a trace for a VLlW machine and is handled 
in a similar fashion[3]. 

4.2. Eliminating Redundant Synchronizations 

Every time a processor generates a value for 
another processor a channel may not be needed. If the 
processor using the value is guaranteed to read the value 
after it has been generated by the other processor then 
the value can be transmitted through shared memory 
without explicitly synchronizing the two processors. 
Before channels are actually assigned, the instruction 
schedules can be examined to eliminate those cross- 
processor dependencies that are automatically ensured if 
the remaining dependencies are enforced using chan- 
nels. The redundant synchronizations are arcs that can 
be eliminated by examining those arcs that result from 
conputing the transitive closure of other arcs. The elimi- 
nation of the redundant synchronizations can be carried 
out in any order. This is due to the following result. Let 
(Wi,Ri)->(WjJtj) denote that guaranteeing the write 
before read order for (WiRi) automatically guarantees 
the write before read order for (WjJ?j). The relation -> 
is transitive. Thus, the order in which the redundant 
synchronizations are eliminated has no bearing on the 
final outcome. 

The algorithm for the removal of redundant syn- 
chronizations consists of three steps. In the first step a 
graph is constructed, the nodes of which are the nodes 
from the DAG. The edges in the graph represent the 
order in which the operations must be performed to 
ensure cross-processor dependencies. In addition the 
nodes scheduled on the same processor are also con- 
nected by edges to indicate the order in which they will 
be executed. In the second step the graph constructed is 
traversed to determine for each operation node n 
scheduled on a processor, the earliest instructions in the 
schedules for the other processors that must wait for the 
completion of n. This information essentially represents 
additional synchronizations referred to as implied syn- 
chronizations, that are guaranteed if the cross-processor 
dependencies are enforced. Finally the above informa- 
tion is used to eliminate the redundant synchronizations. 
This is achieved by inspecting a cross-processor depen- 
dency and determining if it is automatically enforced by 
another dependency in which case it can be eliminated. 

4.3. Channel Assignment 

The algorithm described here tries to minimize the 
number of channels used by reusing the channels. Initial 
discussion will assume that unlimited number of chan- 
nels are available. However, later a modification to the 
algorithm so that it functions for a fixed number of chan- 
nels is described. The use of a channel can be denoted 
as a pair of operations consisting of a write followed by 
a read (WiJ?i), where the write and read operations are 
performed by different processors. The goal of the chan- 
nel allocation algorithms is to assign a channel for each 
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such pair of operations and minimize the number of 
channels used in the process. To minimize the number 
of channels used, several pairs of write-read’s are 
mapped to the same channel. 

The channels can be safely reused only if certain 
conditions are true. In particular the same channel is 
allocated for (Wi,f&) and (WjPj) if and only if, the pre- 
cise orderings for the reads and writes are known at 
compile-time and the writes are not performed by the 
same processor. The algorithm presented here allocates 
channels in such a way that a channel is reused only if it 
can be guaranteed that at the point of reuse the channel 
will be free. Thus, it is guaranteed that at run-time a pro- 
cessor writing to a channel never blocks due to the chan- 
nel being full. A channel is used for writing by a pro- 
cessor only if The algorithm takes one channel at a time 
and tries to resolve as many non-redundant cross- 
processor dependencies as possible. This process is 
repeatedly employed using additional channels till all 
dependencies have been enforced. 

The technique described above assumed that there 
is an unlimited number of channels available. However, 
in practice the number of channels will be fixed by a 
specific hardware implementation. Next it is shown how 
the above algorithms can be applied even if the number 
of channels is fixed. As long as there is a single channel 
dedicated from each processor to every other processor, 
any schedule can be correctly executed. This observa- 
tion is used to ensure that all dependencies can be 
enforced using a fixed number of channels. 

The total number of channels is divided into two 
groups Unconstrained and Constrained. The number of 
channels in the Constrained set is the number of ordered 
pairs of processors that require the use of a channel due 
to cross-processor dependencies. This is the minimum 
number of channels needed to enforce all dependencies. 
The remaining channels are put in the Unconstrained 
set. The channel assignment algorithm allocates chan- 
nels from the Unconstrained set and attempts to resolve 
as many dependencies as possible. During this process, 
if all dependencies for an ordered processor pair get 
resolved then the channel reserved for this pair in the 
Constrained set can be moved to the Unconstrained set. 
The channels are allocated until either all dependencies 
have been resolved or the Unconstrained set is empty. In 
the latter case it is guaranteed that the Const,rained set 
will have enough channels to resolve the remaining 
dependencies. Assignment of the same channel to 
enforce all remaining dependencies from one processor 
to another in the final step of the algorithm will result in 
schedules that may execute slower as a processor may 
have to wait between performing successive writes to 
the channel. 

5. Summary and Conclusion 

In this paper a MIMD architecture based upon 
register channels was described. This architecture 
exploits finegrained parallelism in sequential programs 
in a manner similar to VLIW machines. The use of 
channels should provide improvement in performance 
over VLIW machines as the multiple processors are no 
longer constrained to execute in lockstep. The use of 
register channels in straightline code allows prczessors 
to drift and thus provides tolerance to delays caused by 
events unpredictable at compile-time. The collective 
branching mechanism together with the fuzzy barrier 
allows processors to drift across branch instructions. 
Compile-time techniques for allocation of register chan- 
nels were presented. 

An alternative approach for implementing chan- 
nels is to provide dedicated channels from each proces- 
sor to every other processor. This is easier to implement 
in hardware because a channel is no longer globally 
accessible to all processors. By introducing a queue of 
fixed length, effectively multiple channels can be pro- 
vided between a pair of processors. The allocation of 
such channels is a trivial task. 
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