
A Fine-Grained MIMD Architecture based upon Register Channels

Rajiv Gupta

Department of Computer Science
University of Pittsburgh

220 Alumni Hall
Pittsburgh, PA 15260

E-mail: gupta@cs.pitt.edu

Abstract: This paper discussw the use of shared regis-
ter channels as a data exchange mechanism among pro-
cessors in a fine-grained MIMD system with a load/store
architecture. A register channel is provided with a syn-
chronization bit that is used to ensure that a processor
succeeds in reading a channel only after a value has
been written to the channel. The instructions supported
by this load/store architecture allow both registers and
register channels to be used as operand sources and
result destinations. Conditional load, store, and move
instructions are provided to allow processors to
exchange values through channels in presence of alias-
ing caused by array references. Compiler support
required to take proper advantage of channels is briefly
discussed. In contrast to a VLIW machine a system
with channels does not require strict lockstep operation
of its processors. This reduces the delays caused by
unpredictable events such as memory bank conflicts.

Keywor&: Parallelizing Compilers, Fine-granted Paral-
lelism, Instruction Scheduling, Aliasing, Channels, Mul-
tiprocessor System.

1. Introduction

Compiler detected parallelism present in sequen-
tial programs is an important source of fine-grained
parallelism. This parallelism can be divided into two
broad categories, namely loop level parallelism and
non-loop parallelism. Shared memory multiprocessor
systems, such as the Encore, can exploit loop level
parallelism effectively. However, they cannot exploit
non-loop parallelism present in the sequential parts of a
Program. The Very Long Instruction Word
(VLIW)[2,3,5] architectures are a family of architec-
tures that can effectively exploit fine-granted parallelism
present in sequential parts of a program. Compilers for
VLIW machines can detect and schedule non-loop
parallelism in sequential parts of the program and also
exploit loop level parallelism through loop unrolling and
software pipelining. A VLIW machine consists of mul-
tiple processors that operate in lockstep executing

0194-l 895/90/0000/0028/!$01 .OO Q IEEE

instructions fetched from a single stream of long instruc-
tions. The synchronization of the processors is
guaranteed by the hardware on a per instruction basis.
The long instruction word allows initiation of several
fine-granted operations in each instruction. A value
computed by a processor in one instruction is accessible
to the other processors in the next instruction. The data
values are communicated among the processors through
shared registers.

A VLIW machine has two main disadvantages.
First it cannot be used as a multiprocessor as there is a
single stream of instructions. The second disadvantage
arises due to events unpredictable at compile-time. For
example bank access conflicts cannot always be avoided
since the operands required for an operation may not be
known at compile-time due to the use of arrays and
pointers. The lockstep operation of multiple processors
makes the machine intolerant to delays caused by
unpredictable run-time events. The delay in the comple-
tion of any one of the operations in a long instruction
delays the completion of the entire instruction.

The Briarcliff Multiprocessor Project is develop-
ing a RISC based multiprocessor chip with a small
number of processors[8]. The processors on this chip
can execute relatively independent streams of instruc-
tions for exploiting loop level parallelism and also
exploit non-loop parallelism efficiently. The intetcon-
nection potential of a multiprocessor chip is being
exploited to provide highly efficient register channels.
A combination of a mechanism for collective branch-
ing@] of processors and data passing mechanism based
upon register channels is being used to exploit non-
loop parallelism. A register channel is provided with a
synchronization bit which enforces proper synchroniza-
tion during the sending of a value from one processor to
another processor. The collective branching mechanism
enables a single processor to control the execution paths
taken by all the processors. The combination of register
channels and collective branching allows exploitation of
instruction level parallelism without strict lockstep

28

operation of processors. Thus, delays caused by
unpredictable operations in a VLlW machine can be
potentially reduced. ‘The MIMD nature of the architec-
ture also allows loop level parallelism to be exploited
effectively. The fuzzy barrier mechanism is suported in
hardware to allow synchronization of processors during
the execution of parallel loops. This mechanism prc~
vides tolerance to unpredictable delays in the progress of
different streams. Compile-time techniques are used to
End useful instructions that a processor can execute
while it is waiting for other processors to arrive at the
barrier.

Techniques such as trace scheduling[4], region
scheduling[9], and software pipelining[l] developed for
LIW architectures will be used to generate code for the
Briarcliff architecture. However, additional compile-
time techniques to determine when channels should be
used must also be developed. The channels are a set of
registers that are shared by all the processors. In absence
of aliasing the compiler can precisely determine when a
value computed by one processor will be required by
another processor. Thus, it can use a register channel for
the communication of the value. This avoids memory
load/store instructions that would have been introduced
if the values were communicated through shared
memory. In presence of aliasing due to array accesses
memory load/store operations can still be avoided using
conditional channel load/store operations. Since the
channels are addressed as registers only a Exed number
of channels can be provided. This work demonstrates
the use of a Exed number of channels for exploiting
Ene-grained parallelism.

The HEP[10,l I] multiprocessor provides poten-
tially infinite number of channels by adding a synchroni-
zation bit to every location in the shared memory and
the register set. This is highly desirable in HEP as the
channels are visible to the user at language level. The
channels implemented in memory do not allow high
speed communication among parallel stxeams. However,
this is not a drawback in HEP as it achieves high
throughput by creating a large number of streams and
issuing instructions from streams that are ready to exe-
cute. The HEP approach is not effective for the Briar-
cliff architecture. The channels will be used to exploit
tine-grained parallelism in a manner similar to VLlW
machines: thus the number of streams will equal the
number of processors in the system. In such a system it
is essential to provide fast channels as memory latency
cannot be hidden by switching among different streams.
Register channels are much more efficient than memory
channels, e-specially in a load-store architecture.
Another desirable result of using register channels,
instead of memory channels. is that contention for
shared memory is reduced instead of being increased.

Although only a limited number of channels can be pn>-
vided this is not a drawback for the Briarcliff architec-
ture as the channels are allocated by a pamllelizing com-
piler and are not visible at the language level.

In subsequent sections the overview of the chan-
nel based architecture and the instructions supported by
the processors to allow the use of register channels are
discussed. We demonstrate the usefulness of these
instructions in reducing memory load/store operations
even in the presence of aliasing. Fiiy, a brief over-
view of instruction scheduling and channel allocation
process is provided.

2. Overview of the Architecture

The multiprocessor chip being developed at Briar-
cliff contains a small number of RISC processors[8].
The interconnection potential of a multiprocessor chip is
being exploited to provide highly efficient hardware
synchronization mechanisms. The multiprocessor sup-
port provided preserves the load/store nature of the pro-
cessor architecture. The system is tolerant of unpredict-
able delays in the progress of individual instruction
streams. The combination of data passing mechanism
based upon register channels and a mechanism for col-
lective hranching[8] of processors is being used to
exploit non-loop parallelism without strict lockstep
operation of processors. Thus, delays caused by
unpredictable operations in a VLlW machine can be
potentially reduced.

Figure 1: VLIW Architecture

Each processor is provided with a local set of
registers and is also allowed access to a set of register
channels that it shares with all the processors in the sys-

29

tern. In Fig. 1 it is shown how processing elements in a
VLIW architecture communicate through a shared set of
registers. In Fig. 2 a MIMD architecture based upon
register channels is shown. The shared set of registers
in Fig. 1 have been replaced by a shared set of register
channels. The processors in Fig. 2 tammunicate through
the register channels but they no longer have to operate
in strict lockstep fashion. A register channel is provided
with a synchronization bit that is used to ensure that a
processor reading a channel does so only after another
processor has written to the channel. The register chan-
nels are addressed and accessed in the same manner as
local registers available to each processor. Thus, using
register channels the processors can communicate at
high speed. The communication of values through
channels enforces synchronization.

Channel 1 FuWEmptv 1 V&e 1

multiple
instruction
streams

Figure 2: MIMD Architecture with
Register Channels

By examining the data dependency graph for a
trace, which is a sequence of basic blocks along an exe-
cution path in a program, the compiler determines which
operations can be executed in parallel and then
schedules them for execution on different processors. If
an operand needed for an operation scheduled on pro-
cessor pi is computed by another processor pj , a channel
is used to send this operand from pj to p;. In addition,
the channels can also be used to signal the occurrence of
events. Onsider the situation in which an access
through a pointer p must not precede an assignment
through pointer q because p and q may be aliases for the
same data element A channel can be used to signal the
completion of the assignment as opposed to sending a
data value. A processor can read a value that it itself
wrote to a channel because the hardware does not keep

track as to who is reading or writing to a channel. Thus,
the channels can also be used as a substitute for local
registers in situations where a processor requires more
registers than the number of local registers and channels
are not being used. The channels are also useful for
executing loop iterations in parallel. Across processor
loop carried dependencies can also be enforced through
channels although this is not discussed in this paper.

+ to other processors

Figure 3: Collective Branching Mechanism

The collective branching mechanism allows a sin-
gle processor to control the branching of all the proces-
sors through a global condition code that is replicated at
each processor. Modification of this global condition
code by any one processor causes the broadcast of the
global condition code which changes the condition code
at all the processors. The compiler schedules the
evaluation and testing of the condition on any one pro-
cessor. The result of this test is then broadcast to the
remaining processors in the system through the
m-cation of the global condition code. Hardware
support is provided to broadcast the branch bit. New
instructions for setting this global condition code bit and
performing the collective branch are added to the pro-
cessor insuuction set.

Corresponding to every regular instruction that
modifies the condition code, another special instruction,
test and broadcart (t&d), is provided. Execution of
tstbd not only sets the appropriate bits of the condition
code belonging to the executing processor, but also
broadcasts it to all other processors in the system. The
processor that tests the condition then executes the
instruction branch on local condition code (blcc). The
remaining processors that receive the branch bits then
branch based upon the broadcast bit by executing the
instruction branch on special condition code (bscc).
Synchronization is needed to ensure that a new branch
bit is not sent to a processor until the previous branch bit
has been used. This synchronization is enforced using
the fuzzy barrier[6]. The fuzzy barrier synchronization
ensures that no processor can execute any instruction
following a barrier region till all processors have com-

30

The shaded regions represent fuzzy barriers.

ME bscc E bscc

Figure 4: Achieving Collective Branching
with Fuzzy Barriers

pleted the execution of instructions preceding their
respective barrier regions. The presence of barriers is
indicated by a special bit in each instruction. If this bit
is one the instruction falls in the barrier region and if it
is zero it is outside the barrier region.

In the example shown in Fig. 4, processor Pr com-
putes the branch condition, by executing the instruction
t&d, and all processors are using the same bit to branch
together. Synchronization is needed to ensure that a
new branch bit is not sent to a processor until the previ-
ous branch bit has been used. This is achieved tbrough a
fuzzy barrier represented by shaded regions in Fig. 4.
The first barrier separates the rsrbd instruction and the
corresponding bscc instructions to ensure that processors
PZ, P 3r and P4 execute the branch instruction after the
condition has been tested by PI. The second barrier
ensures that the branch bit is not overwritten by the next
execution of fstbd by PI until processors P2, P3, and PI
have executed the branch instruction. By using the
fuzzy barrier the streams are still allowed to drift as the
processors may execute their respective branch instruc-
tions at different times. In this case, the compiler should
schedule operations in such a manner that the branch
condition is evaluated as early as possible. This will
reduce the likelihood of processors stalling at the bar-
rier. The fuzzy barriers are also used to enforce across
processor data dependencies arising from parallel execu-
tion of loops with loop carried dependencies. A value
computed by a processor and written to memory prior to
barrier synchronization is available to the remaining

processors after barrier synchronization.

The above approach maintains the desirable
characteristic of allowing the streams to drift relative to
one another. The drift is allowed because the processors
are not forced to execute their respective branch instruc-
tions simultaneously. On the other hand, in VLIW
machines the processors operate in strict lockstep mode.
Thus, if any one of the processors takes longer to com-
plete its operation all processors are delayed. Unex-
pected delays are caused in VLIW machines if the
memory bank containing the data value required for an
operation cannot be predicted at compile-time. After the
global condition code has been set, the processors exe-
cute their respective branch instructions in the order they
arrive at the branch instruction.

3. Channel Operations

The instruction set for the processors has been
extended not only to allow for collective branching but
also to perform channel operations. The new instruc-
tions added to the RISC processors maintains the
load/store nature of the architecture. Channels am read
and written by instructions in the same manner as ordi-
nary registers. Fig. 5 shows a typical RISC instruction
which reads operands from sotucer and so(uce2 and after
performing an operation specified by the opcode writes
the result to the destination desr . The source and destina-
tion fields refer to registers in uniprocessor RISC archi-
tectures. In our architecture they refer to either a register
or a register channel. As indicated in Fig. 5 the bit
REGICHL indicates whether the field refers to a register
or a channel and the field REGKHLID provides the
specific register or channel id. The bit DESINDES
specifies whether the read or write to a channel is a des-
tructive operation or a non-destructive operation. These
operations are later discussed in greater detail.
Although the channels are globally shared among all the
processors in the system, typically at any given point in
time a single pair of processors communicate using a
channel. This restriction is enforced by the compiler
which is responsible for the allocation of the channels.
The read and write operations that can be performed on
the channels are as follows:

CLEAR - The channel is cleared by setting the syn-
chronization bit to zero which indicates that the channel
is empty. This instruction is used to initialize channels
to empty at the beginning of the program.

NON-DESTRUCTIVE READ - If the channel is
empty the reader is blocked till another processor writes
to the channel. Once the channel is full the read can take
place. The synchronization bit is left unchanged: thus
the value can be read again from the channel.

31

OPCODE 1 SOURCEA~ SOURCE4 DEST
I I I

Figure 5: Register Channel Read/Write Instructions

DESTRUCTIVE READ - If the channel is full the
value is read and the synchronization bit is set to zero
indicating that the channel is empty. If the channel is
empty the reader blocks till another processor writes to
the channel.

NON-DESTRUCTIVE WRITE - If the channel is
empty the value is written and the synchronization bit is
set to one indicating that the channel is full. If the chan-
nel is full the writer blocks till the channel becomes
empty.

DESTRUCTIVE WRITE - The value is written and
the synchronization bit is set to one indicating that the
channel is full. Thus, if the channel was full prior to a
destructive write the old value is destroyed.

Some conditional instructions are provided to
allow generation of efficient code in the presence of
potential aliasing. In uniprocessor architectures correct
execution of code is achieved by not assigning a register
to potential aliases. Thus, every time an alias is
used/computed its value is read/written horn/to memory
using a load/store instruction. Load/store instructions
create memory traffic and the code takes longer to exe-
cute as compared to the code generated when registers
are assigned to the variables. In a multiprocessor system
the problem of memory traffic is even more severe and
therefore it would be desirable to reduce memory traffic
by avoiding loads/stores even in the presence of alias-
ing. Although a data element can have an arbitrary
number of aliases, in practice most data elements have
only two aliases. If there is a potential aliasing problem
due to two array accesses then conditional load, store,
and move instructions can be used to generate efficient
code. These new instructions are described next and
later in this section their use is illustrated through an
example.

Conditional Load (LDCND) - If the specified bit in the

Figure 6: Conditional LOAD, STORE,
and MOVE Instructions

condition code is one, i.e., the condition is true, then the
load is not issued. On the other hand if the condition is
false the value from the specified memory address
(MEMADDRS) is loaded into the specitied channel
(CHANNEL).

Conditional Store (STCND) - If the specified condi-
tion is true the store is not carried out. If the condition is
false the value from the specified channel or register
(CHLIREG) is stored into the specified memory address
(MEMADDRS).

Conditional Move (MVCND) - If the specified condi-
tion code bit is one, i.e., the condition is true, then the
contents of (REGICHL 1) are moved to REGICHL2, oth-
erwise the move is ignored.

3.1. Read and Write Operations

At the beginning of a program all channels are
empty. To send an one word message from one proces-
sor to another the sender uses a nondestructive write
and the reader uses a destructive read. However, if the
value is to be used more than once non-destructive reads
are used in all but the last use and a destructive read is
used during the last use of the value. In the example
shown in Fig. 7(i) processor PI computes the value of A
and send it to Pz through a channel. This value is read
using a nondestructive read by Pt because it is required
by PI later on. In the example shown in Fig. 7(ii) pro-
cessor PI computes the value of A which is used by pro-
cessor P2 twice. Processor P2 performs a non-
destructive read during the first use and a destructive
read during the last use.

If a value written to a channel is no lOnger useful
it can be overwritten using a destructive write. In the
example shown in Fig. 8(i) the value of A computed by
PI is used by P2 is the true branch is taken. Thus it is

32

= Q Read Cl ’

(ii)

(9 Pl

Non-destructiv
channel write

Channel Cl can be used on the
false branch using a destructive
write

Pl

Non-destructive
channel read

Destructive
channel read

Figure 7: Channel Read Operations

written to a channel. However, if the false branch is
taken the value of A is not live. In this branch the same
channel can be used in the false branch. However, a
destructive write to the channel must be used so that the
old value of A can be discarded in the process. In the
example shown in Fig. 8(ii) the first value of A com-
puted by P 1 may or may not be used by Ps. When Pr
computes A the second time the channel C1 may or may
not be empty. Thus, P2 performs a destructive write oxi
channel C1 to pass the second value of A to Pz. These
examples demonstmte that if appropriate choice of chan-
nel operations is made the channels can be used as
efficiently as local registers.

The decisions to use destructive or non-
destructive read and write informations can only be
made if global data flow information is available. The
defuse and use-def chains, which provide us with a list
of uses for a definition and list of definitions that reach a
particular use, are computed. Based upon this informa-
tion it can be determined whether a use of a definition is
the last use or additional uses may follow.

Figure 8: Channel Write Operations

3.2. Conditional Operations

Consider the fragment of sequential code shown
below in Fig. 9. If the compiler cannot determine that i
and j always have different values then a[i] and a(i]
can be potential aliases for the same atray element.
Thus. the assignment to a [i] must be carried out prior to
an access to u [i] to ensure correct results. Traditionally
in such cases the store for statement Sr is generated and
a load for statement S2 is generated (see Fig. 9(i)).
However, it would be preferable if in situations where i
and j have the same value the value of u[i] is kept in a
register and used during execution of statement SZ. In
context of the fine-grained architecture if statement St
and statement S2 are being executed on different ptoces-
sors then we would like to pass the value of u [i I from
one processor to another through a channel if i and j
have the same value. The conditional load and move
instructions allow us to achieve this effect.

In the code shown in Fig. 9(h) P1 computes u[i]
into a channel so that it is available to processor Pz. A
conditional load is used by processor PZ to avoid issuing
a load instruction if i and j have the same value. To

33

St: 3[i] = .
s2: . . = iqj] St: a[i] = ,._

&: au] = . .

0) P,

store a[i] into mem

..I....

p2

I......“.
LOAD au] from memory

(ii) PI p2

compute a[i] into channel C

store 3[il into memory-
.

LOAD if i==j C c- au]
from memory

(iii) PI p2

compute a[il into channel C LOAD au] from memory
store a[il into memory

\u into register R
.MOVE if ix] C ->R

Figure 9: Conditional Load and Move Operations

further hide the latency of memory access due to the
load performed by processor P2 the approach shown in
Fig. 9(Z) can be taken. The value of u b] is loaded by
P2 into a local register R . A conditional move is used to
overwrite this value by the value of a [i] computed by P 1
if i and J’ have the same value. The comparison of i and
i can be scheduled early in the schedule by the com-
piler. Thus, if aliasing is absent processor PZ can execute
the conditional MOVE instruction even before the value
of a[i] has been computed by PI. Using the conditional
load and move instructions we have successfully
replaced an unconditional synchronization in the
schedule of Fig. 9(i) by a conditional synchronization
in the solutions described in Fig. 9(ii) and 9(iii). This
not only improves the quality of the schedules because it
avoids unnecessary delays due to synchronization of the
processors but also reduces memory traffic. However,
there is some additional cost associated with conditional
synchronizations. In Fig. 9(ii) anf 9(iii) a test to check
whether i was equal to j had to be performed. How-
ever, the test need not be a part of the conditional
load/move instruction. The test (i=j) could have been
performed prior to the conditional load/move instruction
and during the conditional load/move instruction the
appropriate bit in the condition code could have been
examined.

The example in Fig. 10 illustrates the use of a con-
ditional store instruction. Again we assume that a[i]
and alj] could be potential aliases for the same array
element. In the traditional approach the stores for SI and
St will be performed in the correct order to ensure

compute value of a[i] into a register R
store value of au] into memory
store if i=j R->a(i] in memory

Figure 10: Conditional Store Operation

correct results. Using a conditional store instruction the
fmt store to memory can be eliminated as follows. The
value of D [i] is computed into a local register R . The
vahe of a [i] is stored into memory. The value a [i] in R
is now stored into memory using a conditional store.
Thus, if i and j have the same value the store will not be
issued and memory traffic will be reduced. Thus, using
conditional instructions the memory traffic can be
reduced in presence of aliasing. Furthermore, the values
are communicated between processors using channels
whenever possible.

4. Compiler Support for Utilizing Channels

Code generation for the fine-grained MIMD archi-
tecture described in this paper is based upon trace
scheduling and it involves three major steps[4]. In the
first step the compiler constructs traces, which are
sequences of basic blocks that lie along an execution
path in the program and they do not cross loop boun-
daries. A data dependency graph for the trace is con-
structed and an instruction schedule is generated
exploiting the parallelism available in the data depen-
dency graph. The compiler repeatedly traces out paths
and generates instruction schedules till the entire pro-
gram has been processed. By examining traces, instead
of individual basic blocks, the compiler can exploit
parallelism across basic blocks. Every time two ptoces-
sors exchange a data value synchronization may not be
required. Through analysis the compiler identifies and
eliminates redundanr synchronimfions. Finally the
compiler carries out channel assignment to all non-
mdundant synchronizations. Next the three steps men-
tioned above are briefly described. Further details can be
found in[7].

4.1. Instruction Scheduling

An instruction scheduling algorithm that generates
schedules for exploiting parahelism has been developed.
The schedules that require less communication among
the processors are chosen. This is because a fixed
number of channels are available in the system and we
would like to enforce maximum number of cross-
processor dependencies using these channels. Some of

34

the key features of the scheduling algorithm are dis-
cussed next.

Consider an operation in a DAG that receives its
two operands from two other operations in the same
DAG. If all three operations are assigned different pro-
cessors two channels will be required to enforce the data
dependencies due to the two operands. Without
sacrificing any parallelism the operation requiring the
two operands can be assigned to one of the processors
assigned to the operations that compute the operands.
This will reduce the number of channels required to one
channel.

For a computation containing more parallelism
than the processors in the system are able to exploit
schedules requiring a larger number of channels may
exist. However, equally fast processor assignments
requiring fewer channels may exist. To generate assign-
ments of this type the following approach is taken. First
of all the scheduling is carried out in a top down fashion
instead of the bottom up fashion used by list scheduling.
As a result this strategy will generate the last instruction
to be executed first and the first instruction to be exe-
cuted last. Preference is given to nodes with maximum
height, where the height of a node is the length of the
longest path from the node to the bottom of the DAG.
Next, if the number of operations ready to be scheduled
is greater than or equal to the number of processors, then
several nodes from the subgraphs rooted at these nodes
are scheduled on each of the processors. When an entire
subgraph is scheduled the operations are scheduled by
traversing the graph in a top down and breadth first
fashion. By scheduling the operations in the above
fashion the number of channels needed is reduced.

We would like the scheduler to generate schedules
that distribute the work equally among the processors
and hence provide earlier finish times. This feature is
easily encoiporated into the scheduling algorithm by
ensuring that when entire subgraphs of nodes are being
scheduled on the processors, the number of nodes
scheduled on each processor equals the number of nodes
in the smallest subgraphs. Thus, this scheduling algo-
rithm tries to minimize the number of channels needed
without sacrificing the degree of parallelism exploited.

After the generation of an instruction schedule
some bookkeeping tasks must be performed. At the
points in the control flow graph where two traces meet,
compensation code must be inserted to ensure that the
channels are in proper state. This is analogous to intro-
duction of code to carry out data movements at the
beginning of a trace for a VLlW machine and is handled
in a similar fashion[3].

4.2. Eliminating Redundant Synchronizations

Every time a processor generates a value for
another processor a channel may not be needed. If the
processor using the value is guaranteed to read the value
after it has been generated by the other processor then
the value can be transmitted through shared memory
without explicitly synchronizing the two processors.
Before channels are actually assigned, the instruction
schedules can be examined to eliminate those cross-
processor dependencies that are automatically ensured if
the remaining dependencies are enforced using chan-
nels. The redundant synchronizations are arcs that can
be eliminated by examining those arcs that result from
conputing the transitive closure of other arcs. The elimi-
nation of the redundant synchronizations can be carried
out in any order. This is due to the following result. Let
(Wi,Ri)->(WjJtj) denote that guaranteeing the write
before read order for (WiRi) automatically guarantees
the write before read order for (WjJ?j). The relation ->
is transitive. Thus, the order in which the redundant
synchronizations are eliminated has no bearing on the
final outcome.

The algorithm for the removal of redundant syn-
chronizations consists of three steps. In the first step a
graph is constructed, the nodes of which are the nodes
from the DAG. The edges in the graph represent the
order in which the operations must be performed to
ensure cross-processor dependencies. In addition the
nodes scheduled on the same processor are also con-
nected by edges to indicate the order in which they will
be executed. In the second step the graph constructed is
traversed to determine for each operation node n
scheduled on a processor, the earliest instructions in the
schedules for the other processors that must wait for the
completion of n. This information essentially represents
additional synchronizations referred to as implied syn-
chronizations, that are guaranteed if the cross-processor
dependencies are enforced. Finally the above informa-
tion is used to eliminate the redundant synchronizations.
This is achieved by inspecting a cross-processor depen-
dency and determining if it is automatically enforced by
another dependency in which case it can be eliminated.

4.3. Channel Assignment

The algorithm described here tries to minimize the
number of channels used by reusing the channels. Initial
discussion will assume that unlimited number of chan-
nels are available. However, later a modification to the
algorithm so that it functions for a fixed number of chan-
nels is described. The use of a channel can be denoted
as a pair of operations consisting of a write followed by
a read (WiJ?i), where the write and read operations are
performed by different processors. The goal of the chan-
nel allocation algorithms is to assign a channel for each

35

such pair of operations and minimize the number of
channels used in the process. To minimize the number
of channels used, several pairs of write-read’s are
mapped to the same channel.

The channels can be safely reused only if certain
conditions are true. In particular the same channel is
allocated for (Wi,f&) and (WjPj) if and only if, the pre-
cise orderings for the reads and writes are known at
compile-time and the writes are not performed by the
same processor. The algorithm presented here allocates
channels in such a way that a channel is reused only if it
can be guaranteed that at the point of reuse the channel
will be free. Thus, it is guaranteed that at run-time a pro-
cessor writing to a channel never blocks due to the chan-
nel being full. A channel is used for writing by a pro-
cessor only if The algorithm takes one channel at a time
and tries to resolve as many non-redundant cross-
processor dependencies as possible. This process is
repeatedly employed using additional channels till all
dependencies have been enforced.

The technique described above assumed that there
is an unlimited number of channels available. However,
in practice the number of channels will be fixed by a
specific hardware implementation. Next it is shown how
the above algorithms can be applied even if the number
of channels is fixed. As long as there is a single channel
dedicated from each processor to every other processor,
any schedule can be correctly executed. This observa-
tion is used to ensure that all dependencies can be
enforced using a fixed number of channels.

The total number of channels is divided into two
groups Unconstrained and Constrained. The number of
channels in the Constrained set is the number of ordered
pairs of processors that require the use of a channel due
to cross-processor dependencies. This is the minimum
number of channels needed to enforce all dependencies.
The remaining channels are put in the Unconstrained
set. The channel assignment algorithm allocates chan-
nels from the Unconstrained set and attempts to resolve
as many dependencies as possible. During this process,
if all dependencies for an ordered processor pair get
resolved then the channel reserved for this pair in the
Constrained set can be moved to the Unconstrained set.
The channels are allocated until either all dependencies
have been resolved or the Unconstrained set is empty. In
the latter case it is guaranteed that the Const,rained set
will have enough channels to resolve the remaining
dependencies. Assignment of the same channel to
enforce all remaining dependencies from one processor
to another in the final step of the algorithm will result in
schedules that may execute slower as a processor may
have to wait between performing successive writes to
the channel.

5. Summary and Conclusion

In this paper a MIMD architecture based upon
register channels was described. This architecture
exploits finegrained parallelism in sequential programs
in a manner similar to VLIW machines. The use of
channels should provide improvement in performance
over VLIW machines as the multiple processors are no
longer constrained to execute in lockstep. The use of
register channels in straightline code allows prczessors
to drift and thus provides tolerance to delays caused by
events unpredictable at compile-time. The collective
branching mechanism together with the fuzzy barrier
allows processors to drift across branch instructions.
Compile-time techniques for allocation of register chan-
nels were presented.

An alternative approach for implementing chan-
nels is to provide dedicated channels from each proces-
sor to every other processor. This is easier to implement
in hardware because a channel is no longer globally
accessible to all processors. By introducing a queue of
fixed length, effectively multiple channels can be pro-
vided between a pair of processors. The allocation of
such channels is a trivial task.

References

1.

2.

3.

4.

5.

6.

A. Aiken and A. Nicolau, “Optimal Loop Paral-
lelization,” Proceedings SlGPLAN’88 Co@. on
Programming Language Design and Implementa-
tion, ACM SIGPLAN Notices, vol. 23, no. 7, pp.
308317, June, 1988.

R.P. Colwell, R.P. Nix, J.J. O’Donnell, D.B. Pap-
worth, and P.K. Rodman, “A VLIW Architecture
for a Trace Scheduling Compiler,” IEEE Tran-
sactions on Computers, vol. 37, pp. 967-979,
August, 1988.

J.R. Ellis, Bulldog: A Compiler for VWW Archi-
tectures, MIT Press, 1986.
J.A. Fisher, “Trace Scheduling: A Technique for
Global Microcode Compaction,” IEEE Trans. on
Computers, vol. 7, no. C-30, pp. 478-490, July,
1981.

R. Gupta and M.L. Soffa, “A Reconfigurable
LIW Architecture,” Proc. of the International
Conf on Parallel Processing, pp. 893-900,
August, 1987.
R. Gupta, “The Fuzzy Barrier: A Mechanism for
High Speed Synchronization of Processors,”
Proceedings of the Third International Conf on
Architectural Support for Programming
Languages and Operating Systems, pp. 54-64,
April, 1989.

36

7. R. Gupta, “Employing Register Channels for the
Exploitation of Instruction Level Parallelism,”
Proceedings of the Second ACM Sigplan Sympo-
sium on Principles and Practice of Parallel Pro-
gramming, pp. 118-127, March, 1990.

8. R. Gupta, M. Epstein, and M. Whelan, “The
Design of a RISC based Multiprocessor Chip,”
Proceedings of Supercomputing’90. New York,
November, 1990.

9. R. Gupta and M.L. Soffa. “Region Scheduling:
An Approach for Detecting and Redistributing
Parallelism,” IEEE Transactions on Sofnvare
Engineering, vol. 16, no. 4, pp. 421-431, April
1990.

10. BJ. Smith, “Architecture and Applications of the
HBP Multiprocessor Computer System,” Real-
Time Signal Processing, vol. 298, pp. 241248,
August, 1981.

11. J.A. Solworth, “The Microflow Architecture,”
Proc. of the International Conference on Parallel
Processing, vol. I, pp. 113-l 17, August, 1988.

37

