
Efficient Use of Invisible Registers in Thumb Code∗

Arvind Krishnaswamy Rajiv Gupta
The University of Arizona

Department of Computer Science
Tucson, Arizona 85721

Abstract

The ARM processor is a dual width ISA processor that
provides a 16-bit Thumb instruction set in addition to the
32-bit ARM instruction set. The compromises made in de-
signing the Thumb instruction set leads to significantly in-
creased instruction counts. This increase is in part due to
the fact that only half of the register file is visible to most
instructions in Thumb code. In this paper we address this
inefficiency by providing a new instruction, theSetMask
instruction, using which the compiler can change the visi-
ble subset of registers at any program point. Thus, through
the use of this instruction the compiler can make use of all
registers in all instructions. We present compiler techniques
for allocating invisible registers and introducingSetMask
instructions in a manner that the number of introduced in-
structions is minimized so that the increase in code size is
insignificant. We implement this new instruction using the
Dynamic Instruction Coalescing Framework which enables
theSetMask instruction to have zero execution time cost.
Our techniques eliminated 11.7% of MOV instructions from
Thumb code while causing negligible code size increase.

1 Introduction

More than 98% of all microprocessors are used in em-
bedded products, the most popular 32-bit processors among
them being the ARM family of embedded processors [22].
The ARM processor core is used both as a macrocell in
building application specific system chips and standard pro-
cessor chips [21, 18, 3]. In the embedded domain, in ad-
dition to having good performance, applications must exe-
cute under constraints of limited memory. ARM supports
dual width ISAs that are simple to implement and provide
a tradeoff between code size and performance. In prior
work [7] we studied the characteristics of ARM and Thumb
code and showed that for some embedded applications the

∗Supported by grants from Intel, Microsoft, IBM, and NSF grants
CCR-0324969, CCR-0220262, CCR-0208756, and EIA-0080123 to the
Univ. of Arizona.

Thumb code size was 29.8% to 32.5% smaller than the cor-
responding ARM code size. However, it was also observed
that there was an increase in instruction counts for Thumb
code which was typically around 30% [7]. We studied the
instruction sets and then compared the Thumb and ARM
code versions to identify the causes of performance loss.
The reasons we identified fall into two categories:Global
inefficiency- Global inefficiency arises due to the fact that
only half of the register file isvisibleto most instructions in
Thumb code.Peephole inefficiency- Peephole inefficiency
arises because pairs of Thumb instructions are required to
perform the same task that can be performed by individual
ARM instructions.

The peephole inefficiency problem has been addressed
by developing adynamic instruction coalescingframework
that consists of instruction set, microarchitecture, and com-
piler support that enables pairs of instructions in Thumb
code to be replaced by single ARM instructions [6] . The
compiler enables coalescing by generating AXThumb code
which is Thumb instructions extended withAugmenting eX-
tensions(AX). The coalescing is performed in a manner that
no bubbles in the pipeline are introduced. One could gen-
erate a mixed binary using both ARM and Thumb instruc-
tions; however, the overhead of explicit switching between
16-bit mode and 32-bit mode for short sequences negates
the benefit of mixed code [6].

In this paper we address theglobal inefficiencyproblem
by providing architectural support for exposing theinvisible
registers to the compiler in Thumb mode. The registers in
the register file are viewed as pairs of corresponding reg-
isters in lower and upper half of the register file. At any
program point, one register from each pair is visible to the
compiler. However, by executing a specialSetMask in-
struction the set of registers that are visible to the compiler
can be changed. Thus, the compiler can use all registers
as long as it makes appropriate use ofSetMask instruc-
tions. The key challenges for the compiler are to allocate
and assign registers and then generate minimal number of
SetMask instructions. The reason for careful generation
of SetMask instructions is the increase in code size that



it may cause thus negating the benefit of Thumb code over
ARM code. Another significant feature of our solution is
that it makes use of the same microarchitectural extensions
that were used to address peephole inefficiencies. Thus not
only can both peephole and global inefficiencies be handled
together by this architecture, but the cost of executing the
augmenting instructions such asSetMask is zero. Thus,
the impact of using theSetMask instructions is only a de-
crease in instruction count by avoiding spill code. By effec-
tive use ofSetMask instructions we can maintain compact
code size and improve execution time performance.

2 Dynamic Instruction Coalescing

2.1 Peephole Optimization
Our prior work [6] introduced a dynamic instruction co-

alescing framework which enabled removal of peephole in-
efficiencies from Thumb code. The impact of coalescing
was to enable translation of a pair of Thumb instructions
into a single ARM equivalent at runtime. To achieve this
goal the Thumb instruction set was enhanced by incorporat-
ing Augmenting eXtensions(AX). Augmenting instructions
are a new class of instructions which are entirely handled
in the decode stage of the processor and do not go through
the remaining stages of the pipeline. Each AX instruction
is coalesced with the following non-AX instruction in the
program, in the decode stage of the processor where the
translation of Thumb instructions into ARM instructions
takes place. Thecompilerreplaces patterns of Thumb in-
structions by equivalent sequences of AXThumb instruc-
tions. Thedecode stageis redesigned to detect augmenting
instructions and perform coalescing to generate more effi-
cient ARM instructions for execution. When coalescing is
performed, no additional pipeline bubbles are introduced as
instruction fetching does not fall behind. When two instruc-
tions are coalesced during execution of AXThumb code,
two additional Thumb instructions are available for decod-
ing in the very next cycle. By placing the responsibility
of identifying instruction coalescing opportunities on the
compiler, AX enables us to achieve coalescing using sim-
ple modifications to the decode stage. While a compiler can
easily recognize coalescing opportunities, and appropriately
mark them using AX instructions, the hardware cannot do
so either easily or safely.

ARM: sub reg1, reg2, lsl #2
Thumb: lsl rtmp, reg2, #2

sub reg1, rtmp
AXThumb: setshift lsl #2

sub reg1, reg2

To illustrate the key concepts of the above approach lets
consider an example. In the code above we show an ARM

instruction which shifts the value inreg2 before subtract-
ing it fromreg1. Since the shift cannot be specified as part
of another Thumb ALU instruction, two Thumb instructions
are required to achieve the effect of one ARM instruction.
We would like to coalesce the two 16-bit instructions into
one 32-bit instruction. While coalescing is relatively easy
to carry out, detecting a legal opportunity for coalescing by
examining the two Thumb instructions is in general impos-
sible to carry out at run-time with simple hardware. In our
example, the Thumb code uses a temporary registerrtmp.
If instruction coalescing is performed,rtmp is no longer
needed; therefore its contents will not be changed. Hence,
at the time of coalescing, the hardware must also determine
that the contents of registerrtmp will not be used after the
Thumb sequence. Clearly this is in general impossible to
determine since the next read or write reference to regis-
ter rtmp can be arbitrarily far away. Since the coalescing
opportunity cannot be detected in hardware we rely on the
compiler to recognize such opportunities and communicate
them to the hardware through the use ofAugmenting eXten-
sions(AX). In the AXThumb code shown above, the first
instruction is an augmenting instruction which is not exe-
cuted; it is always coalesced in the decode stage with the
instruction that immediately follows it, to generate a single
ARM instruction for execution. In the above example, the
augmenting instructionsetshift merely carries the shift
type and shift amount, which is incorporated in the subse-
quent instruction to create the required ARM instruction.

It should be noted that the code size of all three instruc-
tion sequences is the same (i.e., 32 bits). However, only the
AXThumb sequence satisfies the desired criteria as it results
in the execution of a single equivalent ARM instruction and
is made up of 16-bit instructions. Thus, the AXThumb code
is 16-bit code that runs like the ARM code. The execution
of Thumb code and AXThumb code are shown in Figure 1.
The AX instruction is processed in parallel with the pre-
ceding Thumb instruction and thus it does not introduce an
extra cycle of execution time. The detailed design of the
dynamic coalescing microarchitecture can be found in [6].

1. Thumb

6. Thumb

4. Thumb

3. Thumb

2. Thumb

5. Thumb

F

W

D

D

D

E

E

E

E

F

F

F

M

M

M

M

M

W

W

W

W

W

F D E

D

F

M

E

D

1. Thumb

3. Thumb

5. Thumb

6. Thumb

F

F

E M W

F

F

F

F

E

E

E

M

M

M

W

W

W

Thumb−D

Thumb−D

Thumb−D

Thumb−D

2. AX

4. AX

AX−D

AX−D

Figure 1. Thumb vs. AXThumb.



2.2 Global Optimization

In Thumb instructions the register specifier field is typi-
cally 3 bits while it is 4 bits in all ARM instructions. Thus,
in Thumb mode the lower half of the register file (i.e.,
R0 · · ·R7) can be freely accessed while the upper half (i.e.,
R8 · · ·R15) of the register file is accessible only by very
few instructions (e.g., MOVs).

The dynamic coalescing framework can be used to en-
able the higher order registers visible to all Thumb instruc-
tions. To achieve this goal we take the following approach.
We view the register file containing 16 registers as consist-
ing of 8 register pairs –(r0, r8), (r1, r9), · · · (r7, r15).
Only 8 registers are visible at a time such that exactly one
register is visible from each pair at any point in time. For
each register pair, the register from the pair that is visible at
any point in time needs to be set. For this purpose we pro-
vide theSetMask instruction. This instruction has an 8 bit
operand where each bit in the operand specifies the leading
bit of the register specifier. If the leading bit for a pair is 0
then the lower order register is visible while if the leading
bit is 1 then the higher order register from the pair is visible.
Each time in the program when the set of visible registers
needs to be changed, a singleSetMask instruction is exe-
cuted to achieve this goal.

The execution of theSetMask instruction is achieved
without adding additional execution cycles using the dy-
namic coalescing framework. ASetMask instruction is
processed in the decode stage in parallel with the preceding
Thumb instruction in the same manner as other AX instruc-
tions are accessed as described in the preceding section.
The decode stage saves the bits specified in theSetMask
and uses these bits to interpret the register specifier bits in
future Thumb instructions till the nextSetMask instruc-
tion is encountered. While the above approach greatly re-
duces the constraints on use of registers by Thumb instruc-
tions, one minor constraint still remains – a Thumb instruc-
tion cannot simultaneously reference both registers from a
register pair. The register allocator must take this constraint
into account during register assignment.

Figure 2 shows how register operands use the bitmask
set by theSetMask instruction. The register file needs to
be modified to accommodate register operand access with-
out delays. The register file is organized such that each row
contains the high and low registers. The lower 3 bits of the
register specifier are used to index the register file as well as
the bitmask. In 16-bit state the bit selected from the bitmask
is used to select the low or high register contents of the se-
lected row. In 32-bit ARM state the MSB of the register
specifier selects the low or high register. Both the bitmask
and register file are indexed in parallel to avoid introducing
delays during register file access.

Let us consider a simple example of Figure 3 that illus-
trates the advantage of usingSetMask instruction. In this

Figure 2. Register Operand Access

[a in R0; c in R5;] [t - temporary]

MOV R10, R0
ADD R0, R5, #5

t = c + 5 ST R5, < c > ADD R10, R5, #5 SetMask 0x04
a = a + t MOV R5, R10 ADD R0, R0, R10 ADD R2, R5, #5

ADD R0, R0, R5 ADD R0, R0, R2
LD R5, < c >

(a) IR (b) Thumb (c) ARM (d) AX Thumb

Figure 3. Use of SetMask.

example, we assume that registersR0 andR5 are available
to hold the values of variablesa andc respectively imme-
diately preceding and following the code fragment. The
variablet is a temporary which is computed and consumed
within the code fragment. Let us assume that other thanR0
andR5 the only register available isR10 while all other
lower and higher order registers are already occupied by
other variables. Under these assumptions we show the gen-
erated code sequences for ARM, Thumb, and AXThumb.
As we can see, in case of ARM only two instructions are
generated whereR10 is used for the temporaryt. When
SetMask instruction is used, AXThumb code generated is
similar to the ARM code except that theSetMask is used
so that makeR10 visible. The number of cycles it takes to
execute the ARM and AXThumb codes is the same as the
SetMask instruction does not cost extra cycles. Now we
finally look at Thumb code in which caseR10 is used to
spill the value inR0 sinceR10 cannot be directly accessed
by the ADD. As we can see, spill code must be generated
that causes extra load and store instructions to be generated
– we have observed these effects in the Thumb code gener-
ated by thegcc compiler.

3 Exploiting Exposed Registers
It is clear that by usingSetMask instructions, the ex-

ecution time of code can be improved in comparison to
Thumb code. However, there is another important issue
that we must deal with. We would like to ensure that the
code size of AXThumb code is also small. While extra
SetMask instructions are needed, by using higher order



registers some of the spill code is eliminated. Anaive ap-
proach for introducingSetMask instructions may be to
add aSetMask instruction before and after each reference
to a higher order register. However, this approach adds
too many instructions causing a significant increase in the
code size as shown in Figure 4. Therefore in this section
we develop compiler algorithms for carefully introducing
SetMask instructions.

rtr

adpcm.ra
wcaudio

adpcm.ra
wdaudio

pegwit.g
en

pegwit.e
nc

pegwit.d
ec

fra
g

reed.encode

reed.decode
0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 C
od

e 
S

iz
e

ARM
Thumb
Naive SetMask

Figure 4. Normalized Code Size

In the rest of the paper we will use the following nota-
tion. (R, R̄) refers to a register pair. While aSetMask
instruction selects a register to make visible from each pair,
when we use the notationSetMask R we will be refer-
ring to aSetMask instruction which makesR visible while
keeping the visible registers from remaining pairs the same.

We assume that the Thumb register allocation is per-
formed so that it uses all registers. After register alloca-
tion has been performed, the resulting code is examined and
SetMask instructions are appropriately introduced. The
algorithm forSetMask placement consists of three main
steps. The first step separately determinesinitial placement
pointsfor SetMaskR andSetMask R̄ instructions corre-
sponding to each register pair(R, R̄). The second step finds
theplacement rangesfor eachSetMask R andSetMask
R̄ instruction which represent all points where an instruc-
tion can be placed. The third and final stepcoalescesmul-
tiple SetMask instructions referring to different register
pairs into a singleSetMask instruction that simultaneously
changes the visibility of multiple registers and determines
thefinal placement of SetMask instructions. The
placement ranges identified in the second step are used to
identify final placement points which enable maximal coa-
lescing so that fewerSetMask instructions are introduced.
Next we discuss these steps in detail.

Initial Placement Points

Given a register pair(R, R̄), a simple way of introduc-
ing aSetMask instructions for this register pair is as fol-

lows. Immediately preceding an instruction that refers toR
we can introduce aSetMask R instruction which makes
R visible while immediately preceding an instruction that
refers toR̄ we introduce aSetMask R̄ instruction which
makesR̄ visible. Clearly this approach will introduce a lot
of SetMask instructions – preceding each instruction as
manySetMask instructions will be introduced as the num-
ber of registers referenced by the instruction. The goal of
our algorithm (all three steps) is to reduce this number.

In this first step we separately consider each register pair
(R, R̄) and simply try to eliminate unnecessarySetMask
R andSetMask R̄ instructions that are introduced by the
above simple strategy. The basic idea of this step is illus-
trated in Figure 5. The first figure shows all references toR
andR̄ which are marked by ovals. The second figure shows
the initial placement points ofSetMask R andSetMask
R̄ instructions which are marked by squares. As we can see,
there is noSetMask R̄ introduced preceding the secondR̄
reference. This is because once we introduceSetMask R̄
before the firstR̄ reference, the one before the secondR̄
becomes redundant.

R

R

R R R

R

R

R

R

R R R

R

R R R

R

Setmask Register

Register Reference

Figure 5. Initial Placement Points.

The determination of initial placement points for a given
(R, R̄) pair is made using the analysis shown in Figure 6.
Forward must availabilityanalysis is used to determine
whether or not there is a need to introduce aSetMaskR/R̄
instruction preceding aR/R̄ reference. IfSetMask R/R̄
instruction has been executed along all paths prior to reach
a referenceR/R̄ such thatR/R̄ is already visible, there is
no need to introduce aSetMask R/R̄ instruction before
this reference. The(R, R̄)Avail sets are computed for all
program points as shown in Figure 6 and then using this
information the initial placement points are determined in
form of (R, R̄)Initial sets.

Placement Ranges
The previous step determined the latest points at which

SetMask R/R̄ instructions can be placed as they are
placed just immediately beforeR/R̄ references. However,
we do not simply place them at the initial placement points.



Forward Availability

Initialize:
(R, R̄)Availn(s) := (R, R̄)Availx(s) := φ

Solve:
(R, R̄)Availn(s) :=

⋂

p∈Pred(s)

(R, R̄)Availx(p)

(R, R̄)Availx(s) :=

{

(R, R̄)Availn(s) R 6∈ Ref(s) ∧ R̄ 6∈ Ref(s)
{R} R ∈ Ref(s)
{R̄} R̄ ∈ Ref(s)

Initial Placement Points

(R, R̄)Initialn(s) :=

{

{SetMask R} R ∈ Ref(s) ∧ R 6∈ (R, R̄)Availn(s)
{SetMask R̄} R̄ ∈ Ref(s) ∧ R̄ 6∈ (R, R̄)Availn(s)
φ otherwise

(R, R̄)Initialx(s) := φ

Figure 6. Step 1: Initial Placement Points Determination.

This is because we would like to combine instructions cor-
responding to different register pairs and place them as part
of a singleSetMask instruction – after all, theSetMask
instruction being supported allows us to simultaneously af-
fect the visibility of registers within each register pair.We
would like to identify program points where multiple ini-
tial instructions can be coalesced and placed. Thus, start-
ing from the initial point placements, we perform analysis
that determines all the places where the instructions can be
placed, i.e. we expand initial placement points intoplace-
ment ranges.

The placement range corresponding to aSetMask
R/R̄ instruction is a contiguous portion of the control flow
graph such that the instruction can be placed at any point
in the range. Each range has distinguishingearliest points
and latest points. An earliest (latest) point belonging to a
placement range is a point such that none of its predecessor
(successor) points belong to the placement range.

R

R

R

R

R R R

R

R R R

3

R

R

R

R R R

R

R R R

R

1

2

Figure 7. Placement Ranges.

Before we present the detailed analysis for identifying
placement ranges, we illustrate this process by continuing
with the example we used to illustrate initial placement
point identification. In Figure 7, placement ranges corre-
sponding to the initial placement points are shown. Lets
look at the three ranges marked 1, 2, and 3 in detail as they
demonstrate the various cases that we must take into ac-
count in designing the analysis:

• The range marked 1 indicates that while the latest point
for placement ofSetMask R instruction was imme-
diately prior to the reference toR, its earliest place-
ment point is the point that immediately follows the
reference toR̄. In fact, this instruction can be safely
placed at any point along the range that extends from
the earliest point to the latest point. There is no need
to place this instruction along the paths that merge into
this range becauseSetMask R is already available
along those paths.

• The range marked 2 extends to the point just below the
split point. The earliest point cannot extend above the
split point because ifSetMask R is placed above the
split point, the availability ofSetMask R̄ preceding
the firstR̄ at the second̄R will be disrupted.

• The range marked 3 is interesting in that it includes two
distinct initial (latest) placement points ofSetMask
R. However, it results in a single earliest point. In
other words, if we place the instruction at the earliest
point we need one instruction but if we place it at the
latest points we need two instructions. Note that in
ranges marked 1 and 2 there was a single latest point
and single earliest point.



Placement Ranges

Initialize:
(R, R̄)Rangen/x(s) := (R, R̄)Initialn/x(s)

Solve:
(R, R̄)Rangex(s) :=

⋂

q∈Succ(s)

(R, R̄)Rangen(q)

(R, R̄)Rangen(s) := (R, R̄)Rangex(s) − (R, R̄)Kill(s)
where,
(R, R̄)Kill(s) := Kill(s, R) ∪ (Kill(s, R̄)

Kill(s, R) :=

{

{SetMask R} R̄ ∈ Ref(s) ∨ R ∈ (R, R̄)Availn(s)
φ otherwise

Kill(s, R̄) :=

{

{SetMask R̄} R ∈ Ref(s) ∨ R̄ ∈ (R, R̄)Availn(s)
φ otherwise

Figure 8. Propagating Initial Placement Points Backwards t o Build Placement Ranges.

Based upon the illustration above, we are now ready
to state the conditions under which a placement point of
SetMask R can continue to expand into a live range
through backward propagation. We can continue to extend
the range ofSetMask R backwards along program points
as long as a reference tōR is not encountered and a point
is not reached whereSetMask R is already available ac-
cording to the analysis carried out in Step 1 of our algo-
rithm. Based upon these conditions we define theKill sets
used to stop propagation. When a split point is reached, we
use the intersection operator to decide whether to continue
propagation. As we can see, the intersection operation will
correctly prevent and allow propagation above split points
for formations of ranges 2 and 3 respectively in our exam-
ple. The detailed analysis equations are given in Figure 8.
The results of this analysis are interpreted as follows – for
each program point that belongs to a range forSetMask
R/R̄, the set(R, R̄)Range is set to{SetMask R/R̄};
otherwise it is set to empty. As we can see, the results of
analysis of Step 1 play a crucial role in Step 2. First, the
initialization of (R, R̄)Range values at program points is
based upon the initial points identified in Step 1. Second,
theKill sets needed during propagation require the use of
(R, R̄)Avail information also computed during Step 1. The
backward propagation conditions identified above are used
by theKill sets and intersection operator is used at split
points.

Coalescing and Final Placement

Now we know the placement ranges of allSetMask in-
structions for each register pair. The goal of this step is
to choose final placement points ofSetMask instructions
in a way that enables coalescing ofSetMask instructions
belonging to different register pairs. Such coalescing will
reduce the number of instructions introduced. The continu-
ation of our example illustrates the choices. In Figure 9, the

figure on the left considers the situation in whichSetMask
instructions are only needed for(R, R̄). Therefore no coa-
lescing opportunities exist and the choice as shown is made.
Now let us assume that there are points at whichSetMask
instructions forR1, R2 andR3 are definitely needed at the
points shown in the figure on the right. TheSetMask in-
structions forR can be coalesced with them resulting in the
placement shown.

In order to develop an algorithm for this final step we
make the following observation. Given a placement range
for say R, depending upon the selection of placements
points the number ofSetMask R instructions needed to
handle this range can vary (e.g., for range marked 3 of Fig-
ure 7, we may need one or two instructions depending upon
the placement points). Moreover, when all register pairs are
considered the best overall choice forR need not be the
one which requires minimum number ofSetMask R in-
structions. This is because the cost of placingSetMask R
instructions depends upon whether or not they can be coa-
lesced with similar instructions for other registers.

R

R

R

R R R

R

R

R

R

R

R

R

R R R

R

RR,R1 R,R2

R,R3

Figure 9. Final Placement Points.

To explore coalescing opportunities, we develop a for-



mulation of placement point selection where the placement
point decisions for all register pairs can be made simultane-
ously. The key first step in this formulation is the decompo-
sition of placement ranges intoplacement paths.

We define aplacement path as a contiguous section of
the placement range extending from a single earliest point
to a single latest point.

Following the decomposition we construct anover-
lap graphwhich captures all the overlapping relationships
amongst the placement paths of all register pairs – the nodes
in the graph represent individual placement paths and edges
connect pairs of nodes that overlap with each other. This
graph is then used to guide the placement decisions. A
clique in the graph represents a group of placement paths
that can be all covered by a singleSetMask instruction.
We iteratively select cliques from the graph and introduce
SetMask instructions till all placement paths have been
covered. The number of instructions introduced equals the
number of cliques selected to cover the entire graph.

Next we illustrate the above steps of the algorithm using
an example. In Figure 10, aplacement rangefor SetMask
R is shown. This placement range has three earliest points
and one latest point. Upon decomposition, this placement
range gives rise to three placement paths (P0, P1 andP2).
Now let us see how theoverlap graphis constructed. Three
nodes corresponding to the three paths are created and con-
nected to each other as the three paths overlap. Let us con-
sider presence of additional placement paths corresponding
to registersR1, R2, andR3 giving rise to the overlap graphs
shown in Figure 11. Now let see how theSetMask instruc-
tions are introduced. Cliques are used to cover the overlap
graph and each clique corresponds to aSetMask instruc-
tion whose form is determined by the placement paths con-
tained in the clique. This step is illustrated in Figure 12.
The cliques chosen and the corresponding instructions in-
troduced are shown. Note that in each case we have chosen
the minimum number of cliques needed to cover the over-
lap graph. Minimum number of cliques correspond to min-
imum number ofSetMask instructions.

Next we discuss how the cliques are selected. A greedy
algorithm may be used that selects themaximal cliqueat
each step. However, if there are multiple cliques of the same
size that share nodes, then we need to decide which clique
to pick as the choice will effect the total number of instruc-
tions introduced. For example, in the first overlap graph of
Figure 13, there are two maximal cliques with three nodes
– (P1, P2, R2) and(P0, P1, P2). If we select the first clique
the graph is covered by two cliques while if we choose the
second clique we need three cliques to cover the graph. We
can further refine the greedy heuristic to choose between
multiple maximal cliques. We can determine the minimum
degree across nodes neighboring a maximal clique after the
clique has been removed. The higher the degree the better

P0
P1 P2

R

R R
R
R

R R

R

R

Figure 10. Splitting Placement Ranges into
Placement Paths.

P0
P1 P2

R1

R1

P0

P1 P2

R1

P1 P2

R2

P0
P0

P1 P2

R1

R2

P1 P2
P1 P2

P0

R1 R3R2
P0

R1

R2 R3

Figure 11. Overlap Graph.

P0

P1 P2

R1

R1

P1 P2

R2

P0
P0

P1 P2

R1

R2 R3

R
R,R1

R

R,R1

R,R2

R

R,R1

R,R2 R,R3

Figure 12. Clique Selection and Final Place-
ment.



it is because higher degree is likely to translate into larger
future cliques being available. This approach will have the
desired result of selecting(P1, P2, R2) in the first example
shown below. While we use the above approach, it is im-
portant to point out that this is a heuristic and thus it will
not guarantee optimal results. Even if there is a unique
maximal clique, always picking maximal clique does not
necessarily result in fewest instructions. In the second ex-
ample shown in Figure 13, if the do not choose the maxi-
mal clique(P0, P1, P2) we can cover the graph using three
cliques while if we choose the maximal clique(P0, P1, P2)
we need four cliques to cover the graph.

OR

R1

P1 P2

R2

P0

P0

P1 P2

R1

R2 R3

R1

P1 P2

R2

P0

P0

P1 P2

R1

R2 R3

OR

Figure 13. Clique Selection.

We would also like to mention that finding the maxi-
mal cliques is quite straightforward. We can examine each
program point and count the number of placement paths to
which that point belongs. This approach will identify all
cliques and thus we can identify all maximal sized cliques.
The cliques can then be prioritized by going back to the
overlap graph and accessing the impact of selecting each of
these cliques on degrees of neighboring nodes.

Finally we summarize the details of Step 3 in Figure 14.
As we can see, first placement ranges are decomposed into
placement paths. Next the overlap graph is constructed and
then one by one cliques and selected and removed from the
overlap graph and correspondingSetMask instructions are
inserted in the program.

4 Experimental Evaluation
The goal of our experiments is two fold. First we would

like to determine the benefit in performance that results
from making use ofSetMask instructions. Second we
would like to determine the effectiveness of our presented
algorithms in limiting the increase in code size. To carry

Final Placement Points

Decompose allPlacement Rangesinto Placement Paths.
ConstructOverlap Graph:

Nodes correspond to placement paths; and an Edge between a
pair of nodes indicates that the corresponding paths overlap.

While Overlap Graphis not emptydo
FindMaximal Cliques.
Select highest priorityMaximal Clique.
Remove selected clique from theOverlap Graph

and insertcoalescedSetMask instruction.
endwhile

Figure 14. Coalescing and Final Placement.

out this experimentation we implemented the described
techniques in our simulation and compilation environment.
Then we ran the ARM, Thumb, and SetMask (Thumb code
with SetMask instructions) versions of the programs and
compared their performance and code size. We describe our
implementation, experimental setup, followed by a discus-
sion of the results.

Implementation. The xscale-elf gcc version
3.04 compiler used was built to create a version that sup-
ports generation of ARM and Thumb code. The above com-
piler already makes use of higher order registers as spill lo-
cations. In other words when no lower order registers are
available, one is freed by spilling its contents into a higher
order register that is free. Only if no registers are available
values are spilled to memory. Therefore the consequence
of limited access to higher order registers is generation of
MOV instructions. We identify the points at which values are
spilled into higher order registers and modify the code gen-
erated at these points so that theMOV instructions are elimi-
nated.SetMask instructions are introduced instead. Then
we apply the techniques described in this paper to minimize
theSetMask instructions introduced. By making the reg-
ister allocator aware of the extra registers made available, it
is likely that spill code generated will be reduced. We are
currently investigating this, the results shown here provide
a lower bound on the performance improvement one can get
using our approach. We evaluate the impact on performance
by studying the effectiveness of our algorithms in eliminat-
ing MOV instructions as well as total instruction and cycle
counts.

Simulation Environment and Benchmarks. A modi-
fied version of the Simplescalar-ARM [1]simulator, was
used for experiments. It simulates the five stage Intel’s SA-
1 StrongARM pipeline [21]. The I-Cache configuration for
this processor are: 16Kb cache size, 32b line size, and 32-
way associativity, and miss penalty of 64 cycles (a miss re-
quires going off-chip). The simulator was extended to sup-
port both 16-bit and 32-bit modes, the Thumb instruction set
and the system call conventions followed in thenewlib



c library. This is a lightweight C library used on embed-
ded platforms that does not provide explicit network, I/O
and other functionality typically found in libraries such as
glibc.

Thebenchmarksused are taken from theMediabench
[9] andCommbench [13] suites as they are representative
of a class of applications important for the embedded do-
main. The benchmark programs used do not require func-
tionality not present innewlib. A brief description of the
benchmarks is given in Table 1. Code size being a criti-
cal constraint, all programs were compiled at -O2 level of
optimization, since at higher levels code size increasing op-
timizations such as function inlining and loop unrolling are
enabled.

Table 1. Benchmark Description
Name Description

rtr Routing Lookup Algorithm
adpcm Adaptive Differential pulse code modulation
pegwit Elliptical Curve Public key Encryption
frag IP packet header fragmentation
reed Reed Solomon Forward Error Correction

Increase in Code Size. Code size is a critical constraint
and we show here how our algorithms result in extremely
small increases, if at all any, in code size. Figure 15 shows
the code size for ARM, Thumb along with the code size
by usingSetMask instructions in the naive way described
earlier (NaiveSetMask) and after applying our optimiza-
tion algorithms (SetMask). The increase in code size seen
in the naive case has been cut back so dramatically that the
SetMask instructions have a negligible cost in terms of
code size increase.

rtr

adpcm.ra
wcaudio

adpcm.ra
wdaudio

pegwit.g
en

pegwit.e
nc

pegwit.d
ec

fra
g

reed.encode

reed.decode
0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 C
od

e 
S

iz
e

ARM
Thumb
Naive SetMask
SetMask

Figure 15. Normalized Code Size

Elimination of MOV Instructions. By using the
SetMask instruction we effectively cut down the number
of MOV instructions executed at runtime. Recall that while
MOV instructions have a single cycle execution cost, the

SetMask instruction is coalesced with the preceding
Thumb instruction using the Dynamic Coalescing Frame-
work, hence having an execution cost of zero cycles. We
measured the percentage of executedMOV instructions
eliminated by making use of our techniques. The results are
given in Table 2. As we can see, a significant percentage
of MOVs (11.7%) introduced by thegcc compiler are
eliminated by usingSetMask instructions.

Table 2. Percentage of Executed MOVs Elimi-
nated.

Program MOVs Eliminated

rtr 21.1%
adpcm.rawcaudio 26.8%
adpcm.rawdaudio 0%

pegwit.gen 6.5%
pegwit.enc 27.6%
pegwit.dec 4.9%

frag 2.2%

reed.encode 10.1%
reed.decode 6.2%

Average 11.7%

rtr

adpcm.ra
wcaudio

adpcm.ra
wdaudio

pegwit.g
en

pegwit.e
nc

pegwit.d
ec

fra
g

reed.encode

reed.decode
0.6

0.8

1

1.2

1.4

1.6

N
or

m
al

iz
ed

 In
st

ru
ct

io
n 

C
ou

nt

ARM
Thumb
SetMask

Figure 16. Normalized Instruction Counts.

We also measured the impact of eliminatingMOVs on
total instruction and cycle counts for the programs. Fig-
ure 16 shows the dynamic instruction count for ARM,
Thumb and SetMask code. We achieve reduction of 0-
19% in dynamic instruction count compared to Thumb
code.rtr gives the the best result of improvement of 19%
with other benchmarks giving moderate improvements and
adpcm.rawdaudio giving no improvement over Thumb
code. Figure 17 gives the cycle counts for ARM, Thumb
and SetMask code. We achieve between 0-20% speedup
in execution time in comparison to Thumb code. In some
cases Thumb code is very close, sometimes faster, than the
ARM code. This is due to the good cache behavior of
Thumb code.rtr is a case where although the Thumb code



rtr

adpcm.ra
wcaudio

adpcm.ra
wdaudio

pegwit.g
en

pegwit.e
nc

pegwit.d
ec

fra
g

reed.encode

reed.decode
0.6

0.8

1

1.2

1.4

1.6
N

or
m

al
iz

ed
 C

yc
le

 C
ou

nt

ARM
Thumb
SetMask

Figure 17. Normalized Cycle Counts.

is not faster than the ARM code, the SetMask code is much
faster. Overall, the execution characteristics of SetMaskare
better than Thumb and comparable to ARM.

In summary, we have shown how with the effective use
of SetMask instructions one can maintain the code size
offered by Thumb code and achieve performance improve-
ments at the same time.

5 Discussion
We have shown our approach on the ARM/Thumb plat-

form with 16/8 registers respectively. Does this approach
work for a larger register file? Our algorithms are applied
post register allocation and register assignment. How does
register assignment affect theSetMask instruction inser-
tion? We address these questions here.

Scalability The SetMask mechanism relies on a bitmask
which is indexed during the register file access and a mech-
anism to set this bitmask. When there is a notion of pairs
of registers, like in our case, we can use a bitmask to ac-
tivate different subsets of registers by toggling one bit for
each pair. We had 8 addressable registers and 8 correspond-
ing high registers and 8 bits of state corresponding to the
8 pairs. When we scale to a larger register file, we end up
with many more non-addressable registers. In this case, we
can no longer use one bit of state. We employ multiple bits
of state. For instance, if we scaled to 32 registers with 8
addressable registers, we now have sets of 4 registers rather
than pairs. Hence we use 2 bits of state rather than 1. We
would need 2SetMask instructions to set the 2 bitmasks.
Hence the approach scales as long as we have 16-bit instruc-
tion encodings for theSetMask instructions.

Register Assignment The need forSetMask instruc-
tions arises when a register which is not in the current ac-
tive subset is used. A different register assignment clearly
changes the placement points forSetMask instructions.

Hence one could decrease the number ofSetMask in-
structions introduced by changing the register assignmentto
minimize the number of switches between pairs of registers.
This could precede our algorithms to minimize the number
of SetMask instructions. However, as we have seen from
our experiments, even without this preceding phase, our al-
gorithms are able to keep the increased code size to a neg-
ligible amount. Hence while a different register assignment
could precede our algorithms, we did not find the need for
it in our experiments.

6 Related Work

Prior work has studied the use of extra registers for high
performance processors in various contexts. A 2-level hier-
archical register file has been proposed in [14]. This design
provides a small first level register file and larger second
level register file enabling a larger register file with a larger
number of ports. The first level register file has lower ac-
cess latency compared to the second level register file al-
lowing software pipelined loops to be executed more effi-
ciently. Register Connection [5] has been proposed for su-
perscalars to make more registers accessible to the compiler.
A level of indirection is used to connect logical registers to
the physical registers. Special register connect instructions
are provided that can make changes to this mapping. The
ILP available on superscalars allows the performance cost
of the register connect instructions to be small. The addi-
tional code size introduced by these instructions is signifi-
cant. While this it not much of a constraint on high perfor-
mance machines, it is an important concern for embedded
processors. Compiler Controlled Memory (CCM) [2] is an-
other technique which tries to reduce the register pressure
on the register file. It does so by incorporating a small mem-
ory close to the register file. The contents of this memory
are managed by the compiler and used to handle spill code.
Register windows have been used in the Tensilica Xtensa
[19] and SPARC [20] architectures to avoid the saving and
restoring of context during procedure calls. In all of the
above techniques, the size of the extended register file pro-
hibits their use in embedded processors where power and
cost are one of the main constraints.

Recently there have been proposals for the use of extra
registers in embedded processors WIMS [12] proposes hav-
ing several register windows and provides window manage-
ment instructions which the compiler can use to swap regis-
ter windows. During register allocation the virtual registers
are partitioned into windows using a graph based partition-
ing algorithm. Code size increase due to window manage-
ment instructions has not been considered in [12]. Our ap-
proach is also more flexible than register windows because
it allows various subsets of 8 registers to be active. Differ-
ential Register Allocation [15] proposes encoding the regis-
ter specifier using the difference between consecutive reg-



ister accesses, allowing the compiler to allocate more reg-
isters than can be specified using a regular encoding. This
scheme, unlike ours, does not provide backward compati-
bility of binaries. Moreover, it can be used in conjuction
with ours – while differential encoding enables more reg-
isters to be directly addressed, setmask enables encoding
to be changed to address additional registers that cannot be
otherwise directly addressed. In [16] a small extended reg-
ister file is used which is allocated at runtime. The aim is to
reduce spill cost by dynamically choosing the extended reg-
ister file over memory using compiler generated priorities.
Offset fields in memory instructions are used to communi-
cate these priorities to the hardware. This approach cannot
be used to access existing high registers in Thumb state like
our approach.

Prior work has also studied ISA design to allow access
to higher registers. [8] proposes shrinking the destination
register field of certain instructions and using this extra en-
coding space for other fields, partitioning the register file
based on instruction type. They also describe a register al-
location scheme for such an ISA. Mixed width ISAs can be
exploited to allow access to both high and low registers by
generating binaries with instructions from both the 32-bit
and 16-bit instruction sets [7, 4]. There have been several
extensions to the ARM architecture [11, 17] that seek to im-
prove performance by allowing access the higher registers.
Thumb-2 [11] provides new 16-bit and 32-bit instructions in
Thumb state. NEON [17] is a SIMD extension to the ARM
architecture that allows access to a special registers file for
SIMD instructions. While our goal in this paper was to at-
tack the global inefficiency of Thumb code, the SetMask
mechanism can be implemented along with these proposals
as it is orthogonal to these techniques.

7 Conclusions
Dual instruction width processors such as the ARM pro-

vide two instructions sets - a 16-bit ISA and a 32-bit ISA
- with a tradeoff between code size and performance. We
have shown how one need not sacrifice code size in order to
achieve better performance. In this paper, we have showed
how one can address the global inefficiency in Thumb code
due to a lack of visibility of high registers. We showed how
one can expose the high registers with the help of a new AX
instruction -SetMask. We also described how one can ef-
fectively use theseSetMask instructions to retain the code
size of the original Thumb code and simultaneously achieve
performance improvement.

References
[1] Burger, D. and Austin, T., “The simplescalar toolset,”Technical Re-

port CS-TR-96-1308, University of Wisconsin-Madison, 1996.

[2] Cooper, K. and Harvey, T., “Compiler-controlled memory,” Proc. of
the Eighth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 2-11, 1998.

[3] Furber, S.,ARM System Architecture, Addison-Wesley, 1996.

[4] Halambi, A., Shrivastava, A., Biswas, P., Dutt, N., and Nicolau, A.,
“An Efficient Compiler Technique for Code Size Reduction Using Re-
duced Bit-Width ISAs,”Proc. of the Conference on Design, Automa-
tion and Test in Europe, IEEE CS, Washington, DC, 2002.

[5] Kiyohara, T., Mahlke, S., Chen, W., Bringmann, R., Hank,R., Anik,
S., and Hwu, W-M., “Register connection: a new approach to adding
registers into instruction set architectures,”Proc. of the 20th Interna-
tional Symposium on Computer Architecture, pages 247-256, 1993.

[6] Krishnaswamy, A. and Gupta, R., “Dynamic coalescing for16-bit in-
structions,”ACM Transactions on Embedded Computing Systems, Vol.
4. No. 1, pages 3-37, 2005.

[7] Krishnaswamy, A. and Gupta, R., “Profile guided selection of arm
and thumb instructions,”Proc. of the ACM SIGPLAN Joint Conference
on Languages Compilers and Tools for Embedded Systems & Software
and Compilers for Embedded Systems, pages 55-64, 2002.

[8] Kwon, Y-J., Ma, X., and Lee, H.J., “PARE: instruction setarchitec-
ture for efficient code size reduction,”Electronics Letters, pages 2098-
2099, 1999.

[9] Lee, C., Potkonjak, M., and Mangione-Smith, W., “Mediabench: A
tool for evaluating and synthesizing multimedia and communications
systems,”Proc. of the 30th Annual International Symposium on Mi-
croarchitecture, pages 330-335, 1997.

[10] Lee, S., Lee, J., Min, S. L., Hiser, J., and Davidson, J. W., “Code
generation for a dual instruction set processor based on selective code
transformation,”Proc. of the 7th International Workshop on Software
and Compilers for Embedded Systems. Vienna, Austria, LNCS 2826,
pages 33-48, 2003.

[11] Phelan, R. “Improving ARM Code Density And Performance,” 2003.

[12] Ravindran, R.A., Senger, R., Marsman, E.D., Dasika, G.S., Guthaus,
M.R., Mahlke, S.A., and Brown, R.B., “Partitioning Variables across
Multiple Register Windows to Reduce Spill Code in a Low-power Pro-
cessor”,IEEE Transactions on Computers, Vol. 54, No. 8, Aug. 2005,
pp. 998-1012.

[13] Wolf, T. and Franklin, M., “Commbench - a telecommunications
benchmark for network processors,”Proc. of the International Sympo-
sium on Performance Analysis of Systems and Software. IEEE, pages
154-162, 2000.

[14] Zalamea, J., Llosa, J., Ayguad, E., and Valero, M., “Two-level hier-
archical register file organization for VLIW processors”Proc. of the
33rd annual ACM/IEEE international symposium on Microarchitec-
ture, pages 137-146. ACM Press, 2000.

[15] Zhuang, X. and Pande, S., “Differential register allocation,” Proc.
of the ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 168-179, Chicago, IL, USA,2005.

[16] Zhuang, X., Zhang, T., and Pande., S., “Hardware-managed reg-
ister allocation for embedded processors,”Proc. of the ACM SIG-
PLAN/SIGBED Conference on Languages, Compilers, and Toolsfor
Embedded Systems, pages 192-201. ACM Press, 2004.

[17] ARM Inc, ARM NEON Technical Data Sheet, 2004.

[18] Intel, The intel xscale microarchitecture technical summary,
ftp://download.intel.com/design/intelxscale/XScaleDatasheet4.pdf.

[19] Tensilica Inc., Xtensa Architecture and Performance, Sep 2002.
http://www.tensilica.com/xtensaarch white paper.pdf.

[20] SPARC International Inc.,The SPARC Architecture Manual, Version
8, 1992. http://www.sparc.com/standards/V8.pdf.

[21] Intel, Sa-110 microprocessor technical reference manual,
ftp://download.intel.com/design/strong/applnots/27819401.pdf, 2000.

[22] Intel, “The intel pxa250 applications processor,” 2002.


