Efficient Use of Invisible Registers in Thumb Code

Arvind Krishnaswamy Rajiv Gupta
The University of Arizona
Department of Computer Science
Tucson, Arizona 85721

Abstract Thumb code size was 29.8% to 32.5% smaller than the cor-
responding ARM code size. However, it was also observed
The ARM processor is a dual width ISA processor that that there was an increase in instruction counts for Thumb
provides a 16-bit Thumb instruction set in addition to the code which was typically around 30% [7]. We studied the
32-bit ARM instruction set. The compromises made in de-instruction sets and then compared the Thumb and ARM
signing the Thumb instruction set leads to significantly in- code versions to identify the causes of performance loss.
creased instruction counts. This increase is in part due to The reasons we identified fall into two categori€ipbal
the fact that only half of the register file is visible to most inefficiency- Global inefficiency arises due to the fact that
instructions in Thumb code. In this paper we address this only half of the register file igisibleto most instructions in
inefficiency by providing a new instruction, tiSet Mask Thumb code Peephole inefficiencyPeephole inefficiency
instruction, using which the compiler can change the visi- arises because pairs of Thumb instructions are required to
ble subset of registers at any program point. Thus, through perform the same task that can be performed by individual
the use of this instruction the compiler can make use of all ARM instructions.

registers in all instructions. We present compiler tecluais The peephole inefficiency problem has been addressed
for aIIocating invisible registers and introducir@t Mask by deve|oping ajynamic instruction Coa]escirfmmework
instructions in a manner that the number of introduced in- that consists of instruction set, microarchitecture, am-c
structions is minimized so that the increase in code size ispjler support that enables pairs of instructions in Thumb
insignificant. We implement this new instruction using the code to be replaced by single ARM instructions [6] . The
Dynamic Instruction CoaIESCing Framework which enables Comp"er enables Coa|escing by genera’[ing AXThumb code
the Set Mask instruction to have zero execution time cost. which is Thumb instructions extended wiugmenting eX-
Our teChniqueS eliminated 11.7% of MOV instructions from tensionqAx)_ The C0a|escing is performed in amanner that
Thumb code while causing negligible code size increase. no bubbles in the pipeline are introduced. One could gen-
erate a mixed binary using both ARM and Thumb instruc-
tions; however, the overhead of explicit switching between
16-bit mode and 32-bit mode for short sequences negates
More than 98% of all microprocessors are used in em- the benefit of mixed code [6].
bedded products, the mos_t popular 32-bit processors among |, this paper we address tigéobal inefficiencyproblem
them being the ARM family of embedded processors [22]. ,y, ,r6viding architectural support for exposing theisible
The ARM processor core is used both as a macrocell inaqisters to the compiler in Thumb mode. The registers in
building application specific system chips and standarel pro y,q register file are viewed as pairs of corresponding reg-
cessor chips [21, 18, 3]. In the embedded domain, in ad-jsters in lower and upper half of the register file. At any
dition to having good performance, applications must exe- ,.o4ram point, one register from each pair is visible to the
cute under constraints of !lmlted memory. ARM suppqrts compiler. However, by executing a specgdt Mask in-
dual width ISAs that are simple to implement and provide g,ction the set of registers that are visible to the coenpil

a tradeoff between code size and performance. In priorcan pe changed. Thus, the compiler can use all registers
work [7] we studied the characteristics of ARM and Thumb ;¢ long as it makes appropriate useSeft Mask instruc-

code and showed that for some embedded applications thgjons The key challenges for the compiler are to allocate
*Supported by grants from Intel, Microsoft, IBM, and NSF dgsan and aSSIQr.] rengt.erS and then generate minimal numb.er of

CCR-0324969, CCR-0220262, CCR-0208756, and EIA-0080b2Bet Set Mask instructions. The reason for careful generatlon

Univ. of Arizona. of Set Mask instructions is the increase in code size that

1 Introduction

it may cause thus negating the benefit of Thumb code overinstruction which shifts the value ineg2 before subtract-
ARM code. Another significant feature of our solution is ingitfromr egl. Since the shift cannot be specified as part
that it makes use of the same microarchitectural extensionf another Thumb ALU instruction, two Thumb instructions
that were used to address peephole inefficiencies. Thus noare required to achieve the effect of one ARM instruction.
only can both peephole and global inefficiencies be handledwe would like to coalesce the two 16-bit instructions into
together by this architecture, but the cost of executing theone 32-bit instruction. While coalescing is relatively yas
augmenting instructions such 8st Mask is zero. Thus, to carry out, detecting a legal opportunity for coalescigg b
the impact of using th8et Mask instructions is only ade- examining the two Thumb instructions is in general impos-
crease in instruction count by avoiding spill code. By effec sible to carry out at run-time with simple hardware. In our
tive use ofSet Mask instructions we can maintain compact example, the Thumb code uses a temporary regigtep.

code size and improve execution time performance. If instruction coalescing is performedt np is no longer
.) . needed; therefore its contents will not be changed. Hence,
2 Dynamic Instruction Coalescing at the time of coalescing, the hardware must also determine

that the contents of registet nmp will not be used after the

o : K 161 introduced a d . , Thumb sequence. Clearly this is in general impossible to
ur prior work [6] introduced a dynamic instruction €0- - yetermine since the next read or write reference to regis-

alescing framework which enabled removal of peephole in- terr t np can be arbitrarily far away. Since the coalescing

efﬂmenuesljlrom Thllmb co<f:ie. The lfmTphact gf_coalespmg opportunity cannot be detected in hardware we rely on the
was to enable translation of a pair o umb instructions compiler to recognize such opportunities and communicate

into a single AR_M equiyalent at runtime. To achieve this them to the hardware through the uséafmenting eXten-
goal the Thumb instruction set was enhanced by mcorporat-sions(AX). In the AXThumb code shown above, the first

ing Augmenting eXtensiori8X). Augmenting instructions i ction is an augmenting instruction which is not exe-

are a new class of instructions which are entirely handled cuted; it is always coalesced in the decode stage with the

in the de(_:o_de stage of the processor and do no'F 90 thr(_)UQ'?nstruction that immediately follows it, to generate a $ing
the remaining stages of the pipeline. Each AX instruction ARM instruction for execution. In the above example, the

is coalesced with the following non-AX instruction in the augmenting instructioset shi ft merely carries the shift

progrlam, n]Ehehdecl:CJ)Qe stagt_—:‘ of t_he processor whgre th(:‘Iype and shift amount, which is incorporated in the subse-
translation of Thumb instructions into ARM InStructions ¢,an¢ instruction to create the required ARM instruction.

takes place. Theompilerreplaces patterns of Thumb in-] _
structions by equivalent sequences of AXThumb instruc- It should be noted that the code size of all three instruc-

tions. Thedecode stagis redesigned to detect augmenting tion sequences is the same (i.e., 32 bits). However, only the
instructions and perform coalescing to generate more effi-AXThumb sequence satisfies the desired criteria as it eesult

cient ARM instructions for execution. When coalescing is 1" the éxecution of a single equivalent ARM instruction and

performed, no additional pipeline bubbles are introduced a 'S Made up of 16-bitinstructions. Thus, the AXThumb code

instruction fetching does not fall behind. When two instruc IS 16-bit code that runs like the ARM code. The execution
tions are coalesced during execution of AXThumb code, ©f Thumb code and AXThumb code are shown in Figure 1.

two additional Thumb instructions are available for decod- 1he AX instruction is processed in parallel with the pre-
ing in the very next cycle. By placing the responsibility ceding Thumb instruction and thus it does not introduce an

of identifying instruction coalescing opportunities oreth €Xtra cycle of execution time. The detailed design of the
compiler, AX enables us to achieve coalescing using sim- dynamic coalescing microarchitecture can be found in [6].
ple modifications to the decode stage. While a compiler can
easily recognize coalescing opportunities, and apprtglyia

2.1 Peephole Optimization

1.Thumb‘ F ‘ D

mark them using AX instructions, the hardware cannot do zmm| = | S T I
so either easily or safely. o Pl fe fw w L
5.T:umb F D E M ‘
ARM: sub regl, reg2, Isl #2 o - P e Lo [w]
Thumb: I'sl rtnp, reg2, #2 1 Thumb z me-g € | w [w |
SUb r egl’ r t rrp [2 i;:umb AX;D Thumb-0 E ‘ M ‘ w ‘
AXThumb: setshift Isl #2 4 AX | axo
sub regl, reg2 L—,.Thumb F | mhumo-o] E M
6. Thumb F Thumb-D| E M w
To illustrate the key concepts of the above approach lets Figure 1. Thumb vs. AXThumb.

consider an example. In the code above we show an ARM

2.2 Global Optimization

In Thumb instructions the register specifier field is typi-
cally 3 bits while it is 4 bits in all ARM instructions. Thus,
in Thumb mode the lower half of the register file (i.e.,
RO --- R7) can be freely accessed while the upper half (i.e.,

RS8--- R15) of the register file is accessible only by very 7 L.
few instructions (e.g., MOVSs). wse || [T

The dynamic coalescing framework can be used to en- Register
able the higher order registers visible to all Thumb instruc e }
tions. To achieve this goal we take the following approach. I8
We view the register file containing 16 registers as consist-
ing of 8 register pairs «r0,78), (rl,r9), --- (r7,r15).
Only 8 registers are visible at a time such that exactly one
register is visible from each pair at any point in time. For
each register pair, the register from the pair that is véséil
any point in time needs to be set. For this purpose we pro-| [ain RO; cin RSi] [t - temporary] |
vide theSet Mask instruction. This instruction has an 8 bit MOV R10, RO

ADD RO, R5, #5
operand where each bit in the operand specifies the leading t=c+5 | STR5, < ¢ > ADD R10, R5, #5 | SetMask 0x04

select row

Figure 2. Register Operand Access

bit of the register specifier. If the leading bit for a pairis 0 | *~* A S Bl A qara i
then the lower order register is visible while if the leading LDRS, < ¢ >

bitis 1 then the higher order register from the pair is visibl L @&R__[(0) Thumb (c) ARM () AX Thumb
Each time in the program when the s_et of V|§|blg registers Figure 3. Use of Set Mask.

needs to be changed, a sin§et Mask instruction is exe-

cuted to achieve this goal. example, we assume that regist®&and R5 are available

The execution of th&et Mask instruction is achieved g hold the values of variablesandc respectively imme-

without adding additional execution cycles using the dy- diately preceding and following the code fragment. The
namic coalescing framework. et Mask instruction is variablet is a temporary which is computed and consumed
processed in the decode stage in parallel with the precedingyithin the code fragment. Let us assume that other fR@an
Thumb instruction in the same manner as other AX instruc- and R5 the only register available i®10 while all other

tions are accessed as described in the preceding sectiongwer and higher order registers are already occupied by

The decode stage saves the bits specified irS#teMask other variables. Under these assumptions we show the gen-
and uses these bits to interpret the register specifierrbits i erated code sequences for ARM, Thumb, and AXThumb.

tion is encountered. While the above approach greatly re-generated wher&10 is used for the temporary When

duces the constraints on use of registers by Thumb instruc-get Mask instruction is used, AXThumb code generated is

tions, one minor constraint still remains — a Thumb instruc- gimilar to the ARM code except that tiSet Mask is used

tion cannot simultaneously reference both registers from agg that makez10 visible. The number of cycles it takes to

register pair. The register allocator must take this caiistr execute the ARM and AXThumb codes is the same as the

into account during register assignment. Set Mask instruction does not cost extra cycles. Now we
Figure 2 shows how register operands use the bitmaskfinally look at Thumb code in which casg10 is used to

set by theSet Mask instruction. The register file needs to spijll the value inR0 since R10 cannot be directly accessed

be modified to accommodate register operand access withpy the ADD. As we can see, spill code must be generated

out delays. The register file is organized such that each rowthat causes extra load and store instructions to be gederate

contains the high and low registers. The lower 3 bits of the _ e have observed these effects in the Thumb code gener-
register specifier are used to index the register file as well a ated by theycc compiler.

the bitmask. In 16-bit state the bit selected from the biknas o)

is used to select the low or high register contents of the se-3 EXploiting Exposed Registers

lected row. In 32-bit ARM state the MSB of the register It is clear that by usinget Mask instructions, the ex-

specifier selects the low or high register. Both the bitmask ecution time of code can be improved in comparison to

and register file are indexed in parallel to avoid introdgcin - Thumb code. However, there is another important issue

delays during register file access. that we must deal with. We would like to ensure that the
Let us consider a simple example of Figure 3 that illus- code size of AXThumb code is also small. While extra

trates the advantage of usifgt Mask instruction. In this Set Mask instructions are needed, by using higher order

registers some of the spill code is eliminatednaive ap- lows. Immediately preceding an instruction that refer&to
proach for introducing Set Mask instructions may be to we can introduce &et Mask R instruction which makes
add aSet Mask instruction before and after each reference R visible while immediately preceding an instruction that
to a higher order register. However, this approach addsrefers toR we introduce &et Mask R instruction which
too many instructions causing a significant increase in themakesR visible. Clearly this approach will introduce a lot
code size as shown in Figure 4. Therefore in this sectionof Set Mask instructions — preceding each instruction as
we develop compiler algorithms for carefully introducing manySet Mask instructions will be introduced as the num-

Set Mask instructions. ber of registers referenced by the instruction. The goal of
our algorithm (all three steps) is to reduce this number.
12} ; A In this first. step we sepa!ra.tely consider each register pair
B N Setviask (R, R) and simply try to eliminate unnecess®8gt Mask
1y R andSet Mask R instructions that are introduced by the

above simple strategy. The basic idea of this step is illus-
trated in Figure 5. The first figure shows all referenceB to
andR which are marked by ovals. The second figure shows
the initial placement points &et Mask R andSet Mask

o
3

Normalized Code Size
o
o

04 R instructions which are marked by squares. As we can see,
there is ndSet Mask R introduced preceding the secofid
o2 reference. This is because once we introdbeeNVask R
. before the firstR reference, the one before the secapd
S R I becomes redundant.
690«\.‘0"“:; _@«aa\’ Q@*‘“Q \,eq*“"e QeQ“"\\SX “@ea.‘&“w&ec&"o
Figure 4. Normalized Code Size R

In the rest of the paper we will use the following nota-
tion. (R, R) refers to a register pair. While et Mask
instruction selects a register to make visible from each pai R
when we use the notatioBet Mask R we will be refer- R R
ring to aSet Mask instruction which makeg visible while
keeping the visible registers from remaining pairs the same

We assume that the Thumb register allocation is per-
formed so that it uses all registers. After register alloca- R
tion has been performed, the resulting code is examined and
Set Mask instructions are appropriately introduced. The
algorithm forSet Mask placement consists of three main
steps. The first step separately determinggl placement
pointsfor Set Mask R andSet Mask R instructions corre-
sponding to each register p&R, R). The second step finds
theplacement rangefor eachSet Mask R andSet Mask
R instruction which represent all points where an instruc-
tion can be placed. The third and final stegalescesnul-
tiple Set Mask instructions referring to different register
pairs into a singl&et Mask instruction that simultaneously
changes the visibility of multiple registers and deterrsine
thefinal placement of Set Mask instructions. The
placement ranges identified in the second step are used t
identify final placement points which enable maximal coa-
lescing so that feweBet Mask instructions are introduced.

@ Register Reference

=S
&2

[0 Setmask Register

Figure 5. Initial Placement Points.

The determination of initial placement points for a given
(R, R) pair is made using the analysis shown in Figure 6.
Forward must availability analysis is used to determine
whether or not there is a need to introduc®ea Mask R/R
instruction preceding &/R reference. IfSet Mask R/R
instruction has been executed along all paths prior to reach
a referenceR /R such thatR/ R is already visible, there is
no need to introduce Set Mask R/R instruction before
this reference. ThéR, R) Avail sets are computed for all
grogram points as shown in Figure 6 and then using this
information the initial placement points are determined in
form of (R, R)Initial sets.

Next we discuss these steps in detail. Placement Ranges
N) The previous step determined the latest points at which
Initial Placement Points Set Mask R/R instructions can be placed as they are

Given a register paiR, R), a simple way of introduc- placed just immediately befot/ R references. However,
ing aSet Mask instructions for this register pair is as fol- we do not simply place them at the initial placement points.

Forward Availability

Initialize:

(R, R) Availn(s) := (R, R) Avail,(s) :=

(R, R) Avail,(p)

Solve:
(R, R) Availn(s) :=
pEPred(s)
(R, R) Avail,(s)
(R, R)Availz(s) := { {R}
{r}

Y

R ¢ Ref(s) A R¢& Ref(s)
R € Ref(s)
R € Ref(s)

Initial Placement Points

(R, R)Initialn(s) == {
)= ¢

(R, R)Initial, (s

{SetMask R} R € Ref(s) N R¢ (
{SetMask R} R € Ref(s)
1) otherwise

YAvaily,(s)

R
R)Avail,(s)

R
A R & (R,

Figure 6. Step 1: Initial Placement Points Determination.

This is because we would like to combine instructions cor-

Before we present the detailed analysis for identifying

responding to different register pairs and place them as parplacement ranges, we illustrate this process by continuing

of a singleSet Mask instruction — after all, th&et Mask

with the example we used to illustrate initial placement

instruction being supported allows us to simultaneously af point identification. In Figure 7, placement ranges corre-

fect the visibility of registers within each register paive
would like to identify program points where multiple ini-

sponding to the initial placement points are shown. Lets
look at the three ranges marked 1, 2, and 3 in detail as they

tial instructions can be coalesced and placed. Thus, startdemonstrate the various cases that we must take into ac-
ing from the initial point placements, we perform analysis countin designing the analysis:

that determines all the places where the instructions can be
placed, i.e. we expand initial placement points iptace-
ment ranges

The placement range corresponding to aSet Mask
R/ R instruction is a contiguous portion of the control flow
graph such that the instruction can be placed at any point
in the range. Each range has distinguishieayliest points
andlatest points. An earliest (latest) point belonging to a
placementrange is a point such that none of its predecessor
(successor) points belong to the placement range

Figure 7. Placement Ranges.

e Therange marked 1 indicates that while the latest point
for placement ofSet Mask R instruction was imme-
diately prior to the reference t®, its earliest place-
ment point is the point that immediately follows the
reference taR. In fact, this instruction can be safely
placed at any point along the range that extends from
the earliest point to the latest point. There is no need
to place this instruction along the paths that merge into
this range becausBet Mask R is already available
along those paths.

e The range marked 2 extends to the point just below the
split point. The earliest point cannot extend above the
split point because iBet Mask R is placed above the
split point, the availability ofSet Mask R preceding
the firstR at the second will be disrupted.

e Therange marked 3 is interesting in that it includes two
distinct initial (latest) placement points &t Mask
R. However, it results in a single earliest point. In
other words, if we place the instruction at the earliest
point we need one instruction but if we place it at the
latest points we need two instructions. Note that in
ranges marked 1 and 2 there was a single latest point
and single earliest point.

Placement Ranges

Initialize: -
(R, R)Range, - (s) := (R, R)Initial,,/,(s)

Solve: -
(R, R)Rangez(s) := (] (R, R)Rangen(q)

qE€Succ(s)

(R, R)Rangen(s) := (R, R)Range,(s) — (R, R)Kill(s)
where,
(R, R)Kill(s) := Kill(s, R) U (Kill(s, R)

Kill(s.) o | (SetMask R} R € Ref(s) V R € (R, R)Availy(s)

¢ otherwise
Kill(s, R) .= | {SetMask R} R€ Ref(s) V R & (R, R)Availy(s)
7 o ¢ otherwise

Figure 8. Propagating Initial Placement Points Backwards t 0 Build Placement Ranges.

Based upon the illustration above, we are now ready figure on the left considers the situation in whigét Mask
to state the conditions under which a placement point of instructions are only needed f6R, R). Therefore no coa-
Set Mask R can continue to expand into a live range lescing opportunities exist and the choice as shown is made.
through backward propagation. We can continue to extendNow let us assume that there are points at wideh Mask
the range oBet Mask R backwards along program points instructions forR1, R2 and R3 are definitely needed at the
as long as a reference @ is not encountered and a point points shown in the figure on the right. TBet Mask in-
is not reached wher8et Mask R is already available ac- structions forR can be coalesced with them resulting in the
cording to the analysis carried out in Step 1 of our algo- placement shown.
rithm. Based upon these conditions we defineAhél sets In order to develop an algorithm for this final step we
used to stop propagation. When a split point is reached, wemake the following observation. Given a placement range
use the intersection operator to decide whether to continuefor say R, depending upon the selection of placements
propagation. As we can see, the intersection operation will points the number o$et Mask R instructions needed to
correctly prevent and allow propagation above split points handle this range can vary (e.g., for range marked 3 of Fig-
for formations of ranges 2 and 3 respectively in our exam- ure 7, we may need one or two instructions depending upon
ple. The detailed analysis equations are given in Figure 8.the placement points). Moreover, when all register pags ar
The results of this analysis are interpreted as follows — for considered the best overall choice fBrneed not be the
each program point that belongs to a rangeSet Mask one which requires minimum number 8ét Mask R in-
R/R, the set(R, R)Range is set to{Set Mask R/R}; structions. This is because the cost of placieg Mask R
otherwise it is set to empty. As we can see, the results ofinstructions depends upon whether or not they can be coa-
analysis of Step 1 play a crucial role in Step 2. First, the lesced with similar instructions for other registers.
initialization of (R, R) Range values at program points is
based upon the initial points identified in Step 1. Second,
the Kill sets needed during propagation require the use of
(R, R) Avail information also computed during Step 1. The
backward propagation conditions identified above are used
by the K'ill sets and intersection operator is used at split
points.

Coalescing and Final Placement

Now we know the placement ranges of &it Mask in-
structions for each register pair. The goal of this step is
to choose final placement points &t Mask instructions
in a way that enables coalescing®dt Mask instructions
belonging to different register pairs. Such coalescind wil
reduce the number of instructions introduced. The continu-
ation of our example illustrates the choices. In Figure 8, th To explore coalescing opportunities, we develop a for-

't

Figure 9. Final Placement Points.

mulation of placement point selection where the placement
point decisions for all register pairs can be made simuitane

ously. The key first step in this formulation is the decompo-

sition of placement ranges inpfacement paths

We define gplacement path as a contiguous section of
the placement range extending from a single earliest point
to a single latest point

Following the decomposition we construct aver-
lap graphwhich captures all the overlapping relationships
amongst the placement paths of all register pairs — the nodes
in the graph represent individual placement paths and edges
connect pairs of nodes that overlap with each other. This Figure 10. Splitting Placement Ranges into
graph is then used to guide the placement decisions. A pjacement Paths.
cl i que inthe graph represents a group of placement paths P

that can be all covered by a singbet Mask instruction. PL P, @

We iteratively select cliques from the graph and introduce

Set Mask instructions till all placement paths have been - @ @
covered. The number of instructions introduced equals the D '

number of cliques selected to cover the entire graph.

R

'

Next we illustrate the above steps of the algorithm using R1
an example. In Figure 10,@acement rangéor Set Mask
R is shown. This placement range has three earliest points R1
and one latest point. Upon decomposition, this placement @

Py .
range gives rise to three placement pathg (P, and). Pljj E
Now let us see how theverlap graphis constructed. Three %% @
nodes corresponding to the three paths are created and con-
nected to each other as the three paths overlap. Let us con- @

sider presence of additional placement paths correspgndin

to registersk1, R2, andR3 giving rise to the overlap graphs
shown in Figure 11. Now let see how tBet Mask instruc- R1 R2 R3
tions are introduced. Cliques are used to cover the overlap
Figure 11. Overlap Graph.

E £
graph and each clique corresponds t8ed Mask instruc- PL

tion whose form is determined by the placement paths con-

tained in the clique. This step is illustrated in Figure 12.

The cliqgues chosen and the corresponding instructions in-
troduced are shown. Note that in each case we have chosen
the minimum number of cliques needed to cover the over-
lap graph. Minimum number of cliques correspond to min-
imum number ofSet Mask instructions.

Next we discuss how the cliques are selected. A greedy
algorithm may be used that selects theximal cliqueat
each step. However, if there are multiple cliques of the same
size that share nodes, then we need to decide which clique
to pick as the choice will effect the total number of instruc-

—
Py

tions introduced. For example, in the first overlap graph of

) - . . R,R R,R
Figure 13, there are two maximal cliques with three nodes
—(P1, Py, Ry) and(Py, Py, P»). If we select the first clique RR1 RR1

the graph is covered by two cliques while if we choose the \/ \/
second clique we need three cliques to cover the graph. We RR2
R

can further refine the greedy heuristic to choose between R; RR1
multiple maximal cliques. We can determine the minimum

degree across nodes neighboring a maximal clique after the Figyre 12. Clique Selection and Final Place-
clique has been removed. The higher the degree the better ent.

it is because higher degree is likely to translate into large Final Placement Points
future cliques being available. This approach will have the

desired result of selecting”, P>, R2) in the first example Decompose alPlacement Rangénto Placement Paths
shown below. While we use the above approach, it is im-| ConstructOverlap Graph
portant to point out that this is a heuristic and thus it will Nodes correspond to placement paths; and an Edge betwgen a

not guarantee optimal results. Even if there is a unique pair of nodes indicgtes that the corresponding paths querla
maximal clique, always picking maximal clique does not Wh",eé)"e”f"‘p ?g?hs not emptydo
necessarily result in fewest instructions. In the second ex FindMaximal Cliques .

le sh in Fi 13 if the d t ch th . Select highest prioritivlaximal Clique
amp e_ shown in Figure s, 11the do not oose. € maxi- Remove selected clique from terlap Graph
mal clique(Fy, P1, P») we can cover the graph using three and insercoalescedSet Mask instruction.
cliqgues while if we choose the maximal cliqug,, P;, P») endwhile

we need four cliques to cover the graph.

Figure 14. Coalescing and Final Placement.

@ @ out this experimentation we implemented the described
@A oR @ techniques in our simulation and compilation environment.
L— > “ Then we ran the ARM, Thumb, and SetMask (Thumb code
@ @ @!@ with Set Mask instructions) versions of the programs and
@ (e

compared their performance and code size. We describe our
implementation, experimental setup, followed by a discus-
sion of the results.

Implementation. The xscal e-el f gcc version
@ @ 3. 04 compiler used was built to create a version that sup-
ports generation of ARM and Thumb code. The above com-
@ @ piler already makes use of higher order registers as spill lo
A cations. In other words when no lower order registers are

@ @ w available, one is freed by spilling its contents into a highe
order register that is free. Only if no registers are avédlab
@ @ @ @ values are spilled to memory. Therefore the consequence
of limited access to higher order registers is generation of
Figure 13. Clique Selection. MOV instructions. We identify the points at which values are
spilled into higher order registers and modify the code gen-
We would also like to mention that finding the maxi- erated at these points so that M@V instructions are elimi-
mal cliques is quite straightforward. We can examine eachnated.Set Mask instructions are introduced instead. Then
program point and count the number of placement paths towe apply the techniques described in this paper to minimize
which that point belongs. This approach will identify all the Set Mask instructions introduced. By making the reg-
cliques and thus we can identify all maximal sized cliques. ister allocator aware of the extra registers made availéble
The cliques can then be prioritized by going back to the is likely that spill code generated will be reduced. We are
overlap graph and accessing the impact of selecting each oturrently investigating this, the results shown here gievi
these cliques on degrees of neighboring nodes. alower bound on the performance improvement one can get
Finally we summarize the details of Step 3 in Figure 14. using our approach. We evaluate the impact on performance
As we can see, first placement ranges are decomposed intby studying the effectiveness of our algorithms in eliminat
placement paths. Next the overlap graph is constructed andng MOV instructions as well as total instruction and cycle
then one by one cliques and selected and removed from theounts.
pverlap graph and correspondiBgt Mask instructionsare gjmulation Environment and Benchmarks. A modi-
inserted in the program. fied version of the Simplescalar-ARM [Eimulator, was
4 E . | luati used for experiments. It simulates the five stage Intel’'s SA-
xperimental Evaluation 1 StrongARM pipeline [21]. The I-Cache configuration for
The goal of our experiments is two fold. First we would this processor are: 16Kb cache size, 32b line size, and 32-
like to determine the benefit in performance that results way associativity, and miss penalty of 64 cycles (a miss re-
from making use ofSet Mask instructions. Second we quires going off-chip). The simulator was extended to sup-
would like to determine the effectiveness of our presented port both 16-bit and 32-bit modes, the Thumb instruction set
algorithms in limiting the increase in code size. To carry and the system call conventions followed in thewl i b

OR

c library. This is a lightweight C library used on embed-
ded platforms that does not provide explicit network, 1/0
and other functionality typically found in libraries such a
glibc.

Set Mask instruction is coalesced with the preceding
Thumb instruction using the Dynamic Coalescing Frame-
work, hence having an execution cost of zero cycles. We
measured the percentage of execuMdV instructions
Thebenchmarksised are taken from théedi abench eliminated by making use of our techniques. The results are
[9] and Cormbench [13] suites as they are representative given in Table 2. As we can see, a significant percentage
of a class of applications important for the embedded do-of MOVs (11.7%) introduced by thgcc compiler are
main. The benchmark programs used do not require func-eliminated by usinget Mask instructions.
tionality not presentimew i b. A brief description of the
benchmarks is given in Table 1. Code size being a criti-
cal constraint, all programs were compiled at -O2 level of
optimization, since at higher levels code size increaspig o

Table 2. Percentage of Executed MOVs Elimi-
nated.

timizations such as function inlining and loop unrollingar

Program

| MOVs Eliminated |

enabled. rtr 21.1%
adpcm.rawcaudio 26.8%
Taple 1. Benchmark Description adpcm.rawdaud|o 0%
[Name Description | pegwit.gen 6-5?’
rer Routing Lookup Algorithm E:gngg ZZ:SO//E
adpcm | Adaptive Differential pulse code modulation [rag i 2.2% |
pegwi t Elliptical Curve Public key Encryption —od oncode 10 1%
frag IP packet header fragmentation reed.decode 5%
reed Reed Solomon Forward Error Correction [Average | 11.7%

Increase in Code Size.

Code size is a critical constraint

1.6

and we show here how our algorithms result in extremely
small increases, if at all any, in code size. Figure 15 shows
the code size for ARM, Thumb along with the code size Lar
by usingSet Mask instructions in the naive way described
earlier (NaiveSet Mask) and after applying our optimiza-
tion algorithms Set Mask). The increase in code size seen

in the naive case has been cut back so dramatically that the
Set Mask instructions have a negligible cost in terms of
code size increase.

ARM
Thumb

Bl setviask

12

Normalized Instruction Count

0.8

12 ARM
Thumb 0.6

Naive SetMask o 3O §©
N N
A &
1K . SetMask & @

@ o

QL

&
6-6?'00(\
@

@

e 0 &
A
Qe@s\ es® Qz@“

o
3

Figure 16. Normalized Instruction Counts.

o
>

We also measured the impact of eliminatingVs on
total instruction and cycle counts for the programs. Fig-
ure 16 shows the dynamic instruction count for ARM,
02 Thumb and SetMask code. We achieve reduction of O-
19% in dynamic instruction count compared to Thumb
code.rtr gives the the best result of improvement of 19%
with other benchmarks giving moderate improvements and
adpcm rawdaudi o giving no improvement over Thumb
code. Figure 17 gives the cycle counts for ARM, Thumb
and SetMask code. We achieve between 0-20% speedup
Elimination of MOV Instructions. By using the in execution time in comparison to Thumb code. In some
Set Mask instruction we effectively cut down the number cases Thumb code is very close, sometimes faster, than the
of MOV instructions executed at runtime. Recall that while ARM code. This is due to the good cache behavior of
MOV instructions have a single cycle execution cost, the Thumb codert r is a case where although the Thumb code

Normalized Code Size

o
IS

Figure 15. Normalized Code Size

1.6

Hence one could decrease the numbeiSef Mask in-
structions introduced by changing the register assignioent
; ARM minimize the number of switches between pairs of registers.
B setvask This could precede our algorithms to minimize the number
of Set Mask instructions. However, as we have seen from
our experiments, even without this preceding phase, our al-
gorithms are able to keep the increased code size to a neg-
ligible amount. Hence while a different register assigntmen
could precede our algorithms, we did not find the need for

it in our experiments.

14

I
)
T

Normalized Cycle Count
N

0.8

0.6

6 Related Work

Prior work has studied the use of extra registers for high
performance processors in various contexts. A 2-levet hier
archical register file has been proposed in [14]. This design
provides a small first level register file and larger second
is not faster than the ARM code, the SetMask code is muchlevel register file enabling a larger register file with a &rg
faster. Overall, the execution characteristics of SetMask ~ number of ports. The first level register file has lower ac-
better than Thumb and comparable to ARM. cess latency compared to the second level register file al-

In summary, we have shown how with the effective use lowing software pipelined loops to be executed more effi-
of Set Mask instructions one can maintain the code size ciently. Register Connection [5] has been proposed for su-
offered by Thumb code and achieve performance improve-perscalars to make more registers accessible to the campile

« ©

8O
O WOt
‘a“‘db o
o
O
3

@

Qo © o
S & N
R i R
» & & & «°
O
(S

g Qe
.e‘\go N &oo

N e

@

Figure 17. Normalized Cycle Counts.

ments at the same time. A level of indirection is used to connect logical registers t
the physical registers. Special register connect insonst
5 Discussion are provided that can make changes to this mapping. The

We have shown our approach on the ARM/Thumb plat- ILP available on superscalars allows the performance cost

form with 16/8 registers respectively. Does this approach ‘?f th? reglste_r cqnnegt ms(;rgctur)]ns tq be sm_all. The.ad.(:."
work for a larger register file? Our algorithms are applied tional code size Introduced by these instructions Is signifi

post register allocation and register assignment. How doesant. While this it not much of a constraint on high perfor-

register assignment affect ti8et Mask instruction inser- mance machines, _it is an important concern for eml_)edded
tion? We address these questions here. processors. Compll_er antrolled Memory (CC_M) [2] is an-
other technique which tries to reduce the register pressure
Scalability The SetMask mechanism relies on a bitmask On the registerfile. Itdoes so by incorporating a small mem-
which is indexed during the register file access and a mech-0Y close to the register file. The contents of this memory
anism to set this bitmask. When there is a notion of pairs aré managed by the compiler and used to handle spill code.
of registers, like in our case, we can use a bitmask to ac-Register windows have been used in the Tensilica Xtensa
tivate different subsets of registers by toggling one bit fo [19] and SPARC [20] architectures to avoid the saving and
each pair. We had 8 addressable registers and 8 correspondestoring of context during procedure calls. In all of the
ing high registers and 8 bits of state corresponding to the@P0ve techniques, the size of the extended register file pro-
8 pairs. When we scale to a larger register file, we end UIOh|b|ts their use in empedded processors where power and
with many more non-addressable registers. In this case, wee0st are one of the main constraints.
can no longer use one bit of state. We employ multiple bits ~ Recently there have been proposals for the use of extra
of state. For instance, if we scaled to 32 registers with 8 registers in embedded processors WIMS [12] proposes hav-
addressable registers, we now have sets of 4 registers rathdng several register windows and provides window manage-
than pairs. Hence we use 2 bits of state rather than 1. Wement instructions which the compiler can use to swap regis-
would need 2Set Mask instructions to set the 2 bitmasks. ter windows. During register allocation the virtual regist
Hence the approach scales as long as we have 16-bit instrucare partitioned into windows using a graph based partition-

tion encodings for th&et Mask instructions. ing algorithm. Code size increase due to window manage-
ment instructions has not been considered in [12]. Our ap-
Register Assignment The need forSet Mask instruc- proach is also more flexible than register windows because

tions arises when a register which is not in the current ac-it allows various subsets of 8 registers to be active. Differ
tive subset is used. A different register assignment glearl ential Register Allocation [15] proposes encoding thegegi
changes the placement points f8et Mask instructions. ter specifier using the difference between consecutive reg-

ister accesses, allowing the compiler to allocate more reg-[3] Furber, S.ARM System Architecturdddison-Wesley, 1996.

isters than can be specified using a regular encoding. Thig4] Halambi, A., Shrivastava, A., Biswas, P., Dutt, N., anitdlau, A.,

scheme, unlike ours, does not provide backward compati- “An Efficient Compiler Technique for Code Size Reduction ngsRe-

bility of binaries. Moreover. it can be used in conjuction duced Bit-Width ISAs,"Proc. of the Conference on Design, Automa-
. N . . tion and Test in EuropdEEE CS, Washington, DC, 2002.

with ours — while differential encoding enables more reg- | Kiyohara, T., Mahike, S., Chen, W, B 5. Hafk Anik

H . . lyohara, I., vlanike, S., en, ., bringmann, K., HaRrk, AniK,

isters to be directly addresseq., setmas_k enables encodlnbr’ S., and Hwu, W-M., “Register connection: a new approach thragl

to be changed to address additional registers that cannot be registers into instruction set architectureBjoc. of the 20th Interna-

otherwise directly addressed. In [16] a small extended reg- tional Symposium on Computer Architectuypages 247-256, 1993.

ister file is used which is allocated at runtime. The aim is to [6] Krishnaswamy, A. and Gupta, R., “Dynamic coalescing ¥6¢bit in-

reduce spill cost by dynamically choosing the extended reg- structions,"ACM Transactions on Embedded Computing Systeis

ister file over memory using compiler generated priorities. 4 NO- 1. pages 3-37, 2005. - _

Offset fields in memory instructions are used to communi- [7] Krishnaswamy, A. and Gupta, R., "Profile guided selectaf arm

cate these priorities to the hardware. This approach cannot and thumb instructionsProc. of the ACM SIGPLAN Joint Conference

o) . : . on Languages Compilers and Tools for Embedded Systems RzBeft
be used to access existing high registers in Thumb state like and Compilers for Embedded Systepeges 55-64, 2002.

our approach. . _ [8] Kwon, Y-J., Ma, X., and Lee, H.J., “PARE: instruction sethitec-

Prior work has also studied ISA design to allow access ture for efficient code size reductiorElectronics Letterspages 2098-
to higher registers. [8] proposes shrinking the destimatio 2099, 1999.
register field of certain instructions and using this extra e [9] Lee, C., Potkonjak, M., and Mangione-Smith, W., “Medtaish: A
coding space for other fields, partitioning the register file ~ ©0©! for evaluating and synthesizing multimedia and comizatons
b d on instruction tvoe. Thev also describe a register al- systems,”Proc. of the 30th Annual International Symposium on Mi-

ase_ ype. Yy) ’ 9 croarchitecturg pages 330-335, 1997.
Iocatpn scheme for such an ISA. Mlxed width ISA; can be [10] Lee, S.. Lee, J., Min, S. L., Hiser, J.. and Davidson, J, \0ode
exploited to allow access to both high and low registers by = generation for a dual instruction set processor based eotise code
generating binaries with instructions from both the 32-bit transformation,’Proc. of the 7th International Workshop on Software
and 16-bit instruction sets [7, 4]. There have been several ~2and Compilers for Embedded Systenienna, Austria, LNCS 2826,
extensions to the ARM architecture [11, 17] that seek toim- P29°° 33-48, 2003. _ _
prove performance by allowing access the higher registers1% Phe_'a”' R.“Improving ARM Code Density And Per.formahaﬂo&
Thumb-2[11] provides new 16-bit and 32-bit instructions in ﬂz]ﬁﬂ?"'&"ﬁ? Ré’*; Se”geé R., Mf;r Sé“f{f‘F; Eﬁ_-v E_’as"\‘/&,?bluthaus'
. . K., Manlke, S.A., an rown, R.b., arttoning vari across

Thumb state. NEON [17] is a SIMD eXten_Slon tc_) the ARM Multiple Register Windows to Reduce Spill Code in a Low-po®eo-
architecture that allows access to a special registersofile f cessor’|EEE Transactions on Computengol. 54, No. 8, Aug. 2005,
SIMD instructions. While our goal in this paper was to at- pp. 998-1012.
tack the global inefficiency of Thumb code, the SetMask [13] Wolf, T. and Franklin, M., “Commbench - a telecommurticas

mechanism can be implemented along with these proposals benchmark for network processor®foc. of the International Sympo-
. . sium on Performance Analysis of Systems and SoftiaEeE, pages

as itis orthogonal to these techniques. 154-162, 2000.

7 Conclusions [14] zalamea, J., Llosa, J., Ayguad, E., and Valero, M., “Texel hier-

. . . archical register file organization for VLIW processoffoc. of the
Dual instruction width processors such as the ARM pro- 33rd annual ACM/IEEE international symposium on Microateb-

vide two instructions sets - a 16-bit ISA and a 32-bit ISA ture, pages 137-146. ACM Press, 2000.

- with a tradeoff between code size and performance. We(15) zhuang, x. and Pande, S., “Differential register aitan,” Proc.
have shown how one need not sacrifice code size in orderto of the ACM SIGPLAN Conference on Programming Language Besig
achieve better performance. In this paper, we have showed and Implementatiarpages 168-179, Chicago, IL, USA,2005.

how one can address the global inefficiency in Thumb code[16] Zhuang, X., Zhang, T., and Pande., S., “Hardware-medagg-

due to a lack of visibility of high registers. We showed how ister allocation for embedded processorBjoc. of the ACM SIG-
he high . ith the helo of AX PLAN/SIGBED Conference on Languages, Compilers, and Topls
one can expose the high registers with the help of a new Embedded Systeppages 192-201. ACM Press, 2004.

mstructlon -Set Mask. We a_lso despnbed how.one can ef- [17] ARM Inc, ARM NEON Technical Data She@004.
fectively use thes8et Mask instructions to retain the code

. fth iginal Th b cod dsi | | hi [18] Intel, The intel xscale microarchitecture technical summary
size of the original Thumb code and simultaneously achieve ftp://download.intel.com/design/intelxscale/XScade@sheet4.pdf.

performance Improvement. [19] Tensilica Inc., Xtensa Architecture and Performanc&ep 2002.

http://www.tensilica.com/xtensarchwhite_paper.pdf.

References [20] SPARC International IncThe SPARC Architecture Manual, Version

[1] Burger, D. and Austin, T., “The simplescalar tools€egchnical Re- 8, 1992. http://www.sparc.com/standards/V8.pdf.

port CS-TR-96-1308, University of Wisconsin-Madisb®96. [21] Intel, Sa-110 microprocessor technical reference manual

[2] Cooper, K. and Harvey, T., “Compiler-controlled mempriroc. of ftp://download.intel.com/design/strong/applinots/29801.pdf, 2000.

the Eighth International Conference on Architectural Segpfor Pro- [22] Intel, “The intel pxa250 applications processor,” 200
gramming Languages and Operating Systepages 2-11, 1998.

