
Enhancing the Performance of 16-bit Code Using
Augmenting Instructions ∗

Arvind Krishnaswamy Rajiv Gupta

Department of Computer Science
The University of Arizona

Tucson, AZ 85721

ABSTRACT
In the embedded domain, memory usage and energy consumption
are critical constraints. Dual width instruction set embedded pro-
cessors such as the ARM provide a 16-bit instruction set in addition
to the 32-bit instruction set to address these concerns. Using 16-bit
instructions one can achieve code size reduction and I-cache en-
ergy savings at the cost of performance. We have observed that
throughout 16-bit Thumb code there exist Thumb instruction pairs
that are equivalent to a single ARM instruction. We have developed
an approach which uses combination of compiler and architectural
support to exploit the above property for improving performance
of 16-bit code. We enhance the Thumb instruction set by incorpo-
rating Augmenting eXtensions (AX). The task of the compiler is to
identify pairs of Thumb instructions that can be safely combined
and executed as single ARM instructions. The compiler replaces
such pairs of Thumb instructions by AX+Thumb instruction pairs.
The AX instruction is coalesced with the immediately following
Thumb instruction to generate a single ARM instruction at decode
time. Thus, using AX instructions, the compiler can both gener-
ate compact 16-bit code and provide hardware with information
needed to produce better performing 32-bit code.

Categories and Subject Descriptors
C.1 [Computer Systems Organization]: Processor Architectures;
D.3.4 [Programming Languages]: Processors—compilers

General Terms
Algorithms, Measurement, Performance

Keywords
embedded processor, 32-bit ARM ISA, 16-bit Thumb ISA, code
size, performance, AX instructions, instruction coalescing

∗Supported by NSF grants CCR-0220334, CCR-0208756, CCR-
0105355, and EIA-0080123 to the University of Arizona.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LCTES’03, June 11–13, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-647-1/03/0006 ...$5.00.

1. INTRODUCTION
More than 98% of all microprocessors are used in embedded

products, the most popular 32-bit processor among them being the
ARM family of embedded processors [5]. The ARM processor core
is used both as a macrocell in building application specific system
chips and standard CPU chips.[2] (e.g., ARM810, StrongARM SA-
110 [3], XScale [4]). In the embedded domain, applications must
execute under constraints of limited memory and low energy con-
sumption. As complex applications, such as image processing and
graphics intensive games, are being ported to embedded platforms,
performance or speed of execution is becoming equally important.
Dual instruction set processors, such as the ARM, MIPS16 [9],
SuperH-5 [13], address the limited memory/energy constraint by
supporting a 16 bit instruction set along with the 32-bit instruction
set. The 16-bit instruction provides a subset of the functionality
provided by the 32-bit instruction set. While the 16-bit code ex-
pends lesser energy and has a smaller memory footprint, it spends
many more cycles in execution time.

Traditionally, ISAs have been fixed width (e.g., 32-bit SPARC,
64-bit Alpha) or variable width (e.g., x86). Fixed width ISAs give
good performance at the cost of code size and variable width ISAs
give good performance at the cost of added decode complexity.
Neither of the above are good choices for embedded processors
where code size and power are critical. Dual width ISAs are simple
to implement and provide a tradeoff between code size and perfor-
mance, making them a good choice for embedded processors. We
propose an extension to the 16-bit ISA that serves as a bridging
ISA in dual width processors. We call this extension Augment-
ing eXtensions or AX.

AX instructions are non-executing instructions that do not con-
tribute to execution time. An AX instruction is coalesced with the
following 16-bit Thumb instruction at decode time. Since AX in-
structions are also 16-bit instructions, they have the energy saving
and small code size properties of Thumb code. AX instructions, un-
like prefix instructions found in architectures such as the MIPS16
[9] and SuperH-5 [13], do not merely improve the expressibility of
16-bit code; they do so without adding any cycles to the execution
time via instruction coalescing. Instruction Coalescing is a scalable
technique that improves the performance of 16-bit code making it
possible to bridge the performance gap between 32-bit ARM and
16-bit Thumb code. While the AX extensions described in this
paper are for the ARM architecture, the idea of Instruction Coa-
lescing and Augmenting instructions can be applied to other dual
width processors. In previous work [6] we showed how one could
achieve good code size, low energy and high performance using
profile guided heuristics at compile time. The techniques described
here are orthogonal to the previous techniques and more scalable.

In this paper we describe the microarchitecture and compiler sup-
port used to take advantage of AX instructions.

The remainder of the paper is organized as follows. Section 2
gives an overview of the ARM architecture with a comparison be-
tween 32-bit ARM code and 16-bit Thumb code. Section 3 gives an
overview of Instruction Coalescing, including a description of the
enhanced microarchitecture, a description of predication support
and a brief description of the AX extensions. Section 4 describes
in detail the 3 phases used by the compiler postpass to transform
Thumb code into AXThumb code. We present the results in Sec-
tion 5 and conclude in Section 6.

2. BACKGROUND
The ARM architecture is a dual width RISC architecture sup-

porting a 16-bit and 32-bit ISA. The processor is said to be in the
ARM state when executing 32-bit instructions and Thumb state
when executing 16-bit instructions. The 16-bit ISA in any dual
width processor can only capture part of expressibility and func-
tionality of the 32-bit ISA. The goal of Augmenting Instructions
is to make up for this lost expressibility and functionality without
paying the price of execution cycles. Some of the important differ-
ences between the ARM and Thumb instruction sets are as follows.
Most Thumb instructions cannot be predicated while ARM sup-
ports full predication. Most Thumb instructions use a 2-address
format (destination register is the same as the first source) while
ARM supports 3-address format for manipulating 32 bit data. Visi-
ble registers in Thumb state are r0 through r7; only some instruc-
tions, mainly MOV and ADD instructions, can directly address reg-
isters r8 through r15. In ARM state all sixteen registers from r0
through r15 are visible across various instructions. The Branch
and Exchange Instruction (BX) instruction can be used to switch
between ARM and Thumb states.

Figure 1 ARM vs Thumb Code

rtr crc

adpcm.ra
wcaudio

adpcm.ra
wdaudio

pegwit.g
en

pegwit.e
nc

pegwit.d
ec

fra
g

reed.encode

reed.decode drr
0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
R

M
 v

s
T

hu
m

b
C

od
e

(N
or

m
al

iz
ed

)

Instruction Count
Code Size
Fetch Count

Here we illustrate the tradeoffs present in the 32-bit ARM and
16-bit Thumb instruction sets to motivate our approach. The data
in Figure 1 compares the ARM and Thumb codes along three met-
rics: Instruction Count, Code size and I-cache fetches. As we can
see, the number of instructions executed by Thumb code is sig-
nificantly higher even though the Thumb code size is significantly
smaller. The increase in instruction counts ranges from 3% to 98%
while code size reduction ranges from 29.83% to 32.45%. In prior
work [6] we have shown that this substantial increase in the num-
ber of instructions executed by the Thumb code more than offsets
the improved I-cache behavior of the Thumb code. Therefore the
net result is higher cycle counts for the Thumb code in comparison
to the ARM code. While we observe that by using Thumb code

we nearly always save I-cache energy as a result of fewer fetches,
the increase in instruction counts increases the energy consumed in
other parts of the processor.

On further analysis we were able to determine that the dynamic
instruction count increase is mainly due to increase in three cat-
egories of instructions: Branches, ALU operations, and MOVs.
The reasons for increase in these categories are elaborated in our
discussion of the AX instructions in Section 4. In the above situa-
tions we are able to find short sequences of Thumb instructions that
can be easily replaced by shorter sequences of ARM instructions.
One could generate a mixed binary using both ARM and Thumb
instructions, however, the overhead of explicit switching between
16-bit state and 32-bit state for short sequences negates the benefit
of mixed code, as is shown in Appendix A.

3. INSTRUCTION COALESCING
Instruction Coalescing is first introduced using an example. The

idea of AX extensions and a description of the microarchitecural
extensions required for AX processing is given. The support of
predication using AX instructions is explained next.

3.1 Basic Idea

ARM: sub reg1, reg2, lsl #2
Thumb: lsl rtmp, reg2, #2

sub reg1, rtmp
AXThumb: setshift lsl #2

sub reg1, reg2

To illustrate the key concepts of Instruction Coalescing we use a
simple example. In the code above we show an ARM instruction
which shifts the value in reg2 before subtracting it from reg1.
Since the shift cannot be specified as part of another Thumb ALU
instruction, as shown above, two Thumb instructions are required
to achieve the effect of one ARM instruction. We would like to co-
alesce the two 16-bit instructions into one 32-bit instruction. While
coalescing is relatively easy to carry out, detecting a legal oppor-
tunity for coalescing by examining the two Thumb instructions is
in general impossible to carry out. In our example the Thumb code
uses a temporary register rtmp. If instruction coalescing is per-
formed, rtmp is no longer needed and therefore its contents will
not be changed. Therefore, at the time of coalescing, the hardware
must also determine that the contents of register rtmp will not be
used after the Thumb sequence. Clearly this is in general impos-
sible to determine since the next read or write reference to register
rtmp can be arbitrarily far away.

Since the coalescing opportunity cannot be detected in hardware
we rely on the compiler to recognize such opportunities and com-
municate them to the hardware through the use of the Augmenting
eXtensions (AX). In the AXThumb code the first instruction is an
augmenting instruction which is not executed but rather always co-
alesced in the decode stage with the instruction that immediately
follows it to generate a single ARM instruction for execution. In
the above example the augmenting instruction setshift merely
carries the shift type and amount which is incorporated in the sub-
sequent instruction to create the required ARM instruction for exe-
cution.

It should be noted that the code size of all three instruction se-
quences is the same (i.e., 32 bits); however, only the AXThumb
sequence satisfies the desired criteria as it results in execution of
a single equivalent ARM instruction and is made up of 16 bit in-
structions. Thus, the AXThumb code is 16 bit code that runs like
the ARM code.

We have introduced the basic idea behind our approach. Next
we describe in detail the realization of this idea. First we describe
the modified microarchitecture that is capable of executing the AX-
Thumb code in a manner such that coalescing does not introduce
additional pipeline delays. Second we describe the complete set
of AX instructions and the rationale behind the design of these in-
structions.

3.2 Microarchitecture
Our work is based upon the StrongARM SA-110 pipeline which

consists of five stages: (F) instruction fetch; (D) instruction de-
code and register read; branch target calculation and execution; (E)
Shift and ALU operation, including data transfer memory address
calculation; (M) data cache access; and (W) result write-back to
register file. It performs in-order execution and does not employ
branch prediction. The changes described here are entirely in the
decode stage. Most dual width embedded processors are simple
pipelined machines, making instruction coalescing easily imple-
mentable. Thus, the techniques described here are not restricted
to the ARM family of processors.

3.2.1 Instruction Coalescing
Before we describe our design of the decode stage, let us first re-

view the original design of the decode stage which allows the ARM
processor to execute both ARM and Thumb instructions. As shown
in Figure 2, the fetch capacity of the processor is designed to be 32
bits per cycle so that it can execute one ARM instruction per cycle.
In the ARM state a 32 bit instruction is directly fed to the ARM
decoder. However, in the Thumb state the 32 bits are held in an
instruction buffer and the two Thumb instructions that it contains
are selected in consecutive cycles and fed into the Thumb decom-
pressor, which converts the Thumb instruction into an equivalent
ARM instruction and feeds it to the ARM decoder. Since every
time a word is fetched we get two Thumb instructions, typically
fetch needs to be carried out in alternate cycles.

Figure 2 Thumb Implementation.

A
R
M

D
e
c
o
d
e
r

F

E

T

C

H

M

U

X

T
H
U
M
B

D
e
c
o
m
p
r
e
s
s
o
rib1

ib2

Select and
Fetch Logic

select

fetch

D E C O D E

Instrn.
buffer

1. Thumb

6. Thumb

4. Thumb

3. Thumb

2. Thumb

5. Thumb

F

W

D

D

D

E

E

E

E

F

F

F

M

M

M

M

M

W

W

W

W

W

F D E

D

F

M

E

D

The key idea of our approach is to process an AX instruction
simultaneously with the processing of the immediately preceding
Thumb instruction. What makes this achievable is the extra fetch
capacity already present in the processor.

The overall operation of the hardware design shown in Figure 3
is as follows. The instruction buffer in the decode stage is modified
to exploit the extra fetch bandwidth to keep at least two instructions

in the buffer at all times. Two consecutive instructions, one Thumb
instruction and a following AX instruction, can be simultaneously
processed by the decode stage in each cycle. The AXThumb in-
struction is processed by the AX processor which updates the sta-
tus field to hold the information carried by the AX instruction for
augmenting the next instruction in the following cycle. The Thumb
instruction is processed by the AXThumb decompressor and then
the ARM decoder. The decompressor is enhanced to use both the
current Thumb instruction and the status field contents modified by
the immediately preceding AX instruction in the previous cycle, if
any, to generate the coalesced ARM instruction. The status field is
read at the beginning of the cycle for use in generation of the co-
alesced ARM instruction and overwritten at the end of the cycle if
an AX instruction is processed in the current cycle. The status field
can be implemented as a 32-bit register. During a thread switch it
is sufficient to save the state of the status register along with other
state to ensure correct execution when thread resumes execution.

Figure 3 AXThumb Implementation.

ib1

ib2

ib3

F

E

T

C

H

s
t
a
t
u
s

T
H
U
M
B

16

32

32

Shift and
Fetch Logic

Shift

Fetch
buffer
Instrn.

Processor

A
R
M

D
E
C
O
D
E
R

D
E
C
O

R
O
S
S
E
R
P
M

A

16

16

16

AX

A X D E C O D E

X

1. Thumb

3. Thumb

5. Thumb

6. Thumb

F

F

E M W

F

F

F

F

E

E

E

M

M

M

W

W

W

Thumb−D

Thumb−D

Thumb−D

Thumb−D

2. AX

4. AX

AX−D

AX−D

There are three important points to note about the above opera-
tion. First, as shown by the pipeline timing diagram in Figure 3,
in the above operation no extra cycles are needed to handle the AX
instructions. Each sequence (pair) of AX and Thumb instructions
complete their execution one cycle after the completion of the pre-
ceding Thumb instruction. Second the above design ensures that
there is no increase in the processor cycle time. The AX proces-
sor’s handling of the AX instruction is entirely independent of han-
dling of the Thumb instruction by the decode stage. In the pipeline
diagram Thumb-D and AX-D denote handling of Thumb and AX
instructions by the decode stage respectively. In addition, the path
taken by the Thumb instruction is essentially the same as the orig-
inal design - the Thumb instruction is first decompressed and then
decoded by the ARM decoder. The only difference is the modi-
fication made to the decompressor to make use of the status field
information and carry out instruction coalescing. However, this
modification does not increase the complexity of the decompres-
sor as the generation of an ARM instruction through coalescing of
AX and Thumb instructions is straightforward. An AX instruc-
tion essentially predetermines some of the bits of the ARM instruc-
tion generated from the following Thumb instruction. This should
be obvious for the setshift example already shown. The other
AX instructions that are described in detail in the next section are
equally simple. Third, it should be clear why we do not allow two
AX instructions to augment a Thumb instruction. Only a single AX

instruction can be executed for free. If two consecutive AX instruc-
tions are allowed, their execution will add a cycle to the program’s
execution.

The instruction buffer and the filling of this buffer by the in-
struction fetch mechanism are designed such that, in the absence of
taken branches, the instruction buffer always contains at least two
instructions. The buffer can hold up to three consecutive instruc-
tions. Thus, it is expanded in size from 32 bits (ib1 and ib2) in the
original design to 48 bits (ib1, ib2, and ib3). As shown later, this
increase in size is needed to ensure that at least two instructions
are present in the instruction buffer. Of the three consecutive pro-
gram instructions held in ib1, ib2 and ib3, the first instruction is in
ib1, second is in ib2 and third one is in ib3. The instruction in ib1

is always a Thumb instruction which is processed by the Thumb
decompressor and the ARM decoder. The instruction in ib2 can
be an AX or a Thumb instruction and it is processed by the AX
processor. If this instruction is an AX instruction then it is com-
pletely processed, and therefore at the end of the cycle, instructions
in both ib1 and ib2 are consumed; otherwise only the instruction in
ib1 is consumed. The remaining instructions in the buffer, if any,
are shifted by 1 or 2 entries so that the first unprocessed instruction
is now in ib1. The fetch deposits the next two instructions from the
instruction fetch queue into the buffer at the beginning of the next
cycle if at least two entries in the buffer are empty. Therefore essen-
tially there are two cases: either the two instructions are deposited
in (ib1, ib2) or in (ib2, ib3).

Now we illustrate the need to expand the instruction buffer to
hold up to three instructions. In Figure 4(a) we show a sequence
in which the AX instruction(s) cannot be processed in parallel with
the preceding Thumb instruction(s) as only after the preceding Thu-
mb instruction(s) are processed can the instruction fetch deposit an
additional pair of instructions into the buffer. Therefore the ad-
vantage of providing AX instructions is lost. On the other hand,
in Figure 4(b) when we expand the buffer to 48 bits, the instruc-
tions are deposited by the fetch sooner and thereby causing the AX
instruction(s) and the preceding Thumb instruction(s) to be simul-
taneously present in the buffer. Therefore the AX instructions are
now handled for free.

Figure 4 Delivering Instructions to Decode Ahead for Overlapped
Execution.

ib1

ib2 ib1

ib2

ib3 ib1

ib2

ib3 ib1

ib1

ib2

ib1

ib2

ib1

ib2

(b) 48 bit Instruction Buffer.

1. Thumb

6. Thumb

2. Thumb

4. Thumb

F

F

ARM−D E M W

ARM−D E M W

F

F

F

F

WMEARM−D

WMEARM−D

3. AX

5. AX

AX−D

AX−D

(a) 32 bit Instruction Buffer.

1. Thumb

6. Thumb

2. Thumb

4. Thumb

F

ARM−D E M W

ARM−D E M W

F

F ARM−D E M W

F

F WMEARM−D

F

AX−D

AX−D5. AX

3. AX

Next we show how it is ensured that whenever an instruction is
found in ib1 it is always a Thumb instruction. If the instruction was
shifted from ib2 it must be a Thumb instruction as the AX processor
has concluded that it is not an AX instruction. If the instruction was
shifted from ib3, it must be a Thumb instruction. This is because
in the preceding cycle the instruction in ib2 must have been suc-
cessfully processed meaning that it was an AX instruction which
implies the next instruction (i.e., the one in ib3) must be a Thumb
instruction. The final case is when the fetch directly deposits the

next two instructions into (ib1, ib2). Clearly the instruction in ib1

is not examined by the AX processor in this case. Therefore it must
be guaranteed that whenever the instruction buffer is empty at the
end of the decode cycle, the next instruction that is fetched is a
Thumb instruction.

In absence of branches the above condition is satisfied because
at the beginning of the decode cycle the buffer definitely contains
two instructions and for it to be empty the two instructions must be
simultaneously processed. This can only happen if the instruction
in ib2 was an AX instruction which implies that the next instruction
must be a Thumb instruction.

In the presence of branches, following a taken branch, the first
fetched instruction is also directly deposited into ib1. We assume
that the instruction at a branch target is a Thumb instruction and
therefore it can be directly deposited into ib1 as examination of the
instruction by the AX processor is of no use. The compiler is re-
sponsible for generating code that always satisfies this condition.
The reason for making this assumption is that there is no advan-
tage of introducing an AX instruction at a branch target. Only
an AX instruction that is preceded by another Thumb instruction
can be executed for free. If the instruction at a branch target is
an AX instruction, and the control arrives at the target through a
taken branch, then the processing of the AX instruction by the AX
processor can no longer be overlapped with the immediately pre-
ceding instruction that is executed, that is, the branch instruction.
This is because the AX instruction is fetched after the outcome of
the branch is known.1 Therefore, the execution of AX instruction
actually adds a cycle to the execution. In other words the bene-
fit of introducing the AX instruction is lost. When an AXThumb
pair replaces a Thumb pair, the second Thumb instruction in the
AXThumb pair need not be the same as the second Thumb in-
struction in the Thumb instruction pair. Hence one cannot allow
an AX instruction in ib1 by issuing a nop when an AX instruction
is found in ib1. We rely on the compiler to schedule code in a man-
ner that avoids placement of an AX instruction at a branch target.
If this cannot be achieved through instruction reordering, the com-
piler uses a sequence of two Thumb instructions instead of using a
sequence of an AX and Thumb instructions at the branch target.

3.2.2 Predicated Execution in AXThumb
While the original Thumb instruction set does not support pred-

icated execution, we have developed a very effective approach to
carry out predicated execution using AXThumb code which re-
quires only a minor modification to the decode stage design just
presented. Like instruction coalescing, this method also takes ad-
vantage of the extra fetch bandwidth already present in the proces-
sor. We rely on the compiler to place the instructions from the true
and false branches in an interleaved manner as shown in Figure 5.
Since the execution of a pair of instructions is mutually exclusive,
i.e. only one of them will be executed, in the decode stage we se-
lect the appropriate instruction and pass it on to the decompressor
while the other instruction is discarded.

A special AX instruction precedes the sequence of interleaved
instructions. This instruction communicates the predicate in form
of a condition flag which is used to perform instruction selection
from an interleaved instruction pair. If the condition flag is set
the first instruction belonging to each interleaved pair is executed;
otherwise the second instruction from the interleaved pair is exe-
cuted. Therefore the compiler must always interleave the instruc-
tions from the true path in the first position and instructions from

1Note that the ARM processor does not support delayed branching
and therefore an AX instruction cannot be moved up and placed in
the branch delay slot.

the false path in the second position. The special AX instruction
also specifies the count of interleaved instructions pairs that fol-
low it. The AX processor uses this count to continue to stay in the
predication mode as long as necessary and then switches back to
the normal selection mode. The selection of an instruction from
each instruction pair is carried out by using a minor modification to
the original design as shown in Figure 5. Instead of directly feeding
the instruction in ib1 to the decompressor, the multiplexer selects
either the instruction from ib1 or ib2 depending upon the predicate
as shown in Figure 5. The select signal is generated by the AX pro-
cessor. For correct operation, when not in predication mode, the
select signal always selects the instruction in ib1.

Figure 5 Predication in AXThumb.

Predicate
T F

3t

4t

1f

2f

3f

2t

1t

Conditionally
Executed Code

1t

2t

3t

4t

Predicate

1f

2f

3f

nop

Interleaved
Instructions

AX

ib1

ib2

s
t
a
t
u
s

T
H
U
M
B

16
M

X
U

Select

Processor

D
E
C
O

R
O
S
S
E
R
P
M16

16

AX

X
A

For this approach to work, each interleaved instruction pair should
be completely present in the instruction buffer so that the appropri-
ate instruction can be selected. This condition is guaranteed to be
always true as the interleaved sequence is preceded by an AX in-
struction. Following the execution of the AX instruction there will
be at least two empty positions in the instruction buffer which will
be immediately filled by the fetch.

The above approach for executing predicated code is more ef-
fective than doing so in the ARM state. In ARM state the 32 bit
instructions from the true and false paths are examined one by one.
Depending on the outcome of the predicate test, instructions from
one of the branches are executed while the instructions from the
other branch are essentially converted into nops. Therefore the
number of cycles needed to execute the instructions is at least equal
to the sum of the instructions on the true and false paths. In contrast
the number of cycles taken to execute the AXThumb code is equal
to the number of interleaved instruction pairs. Note that this advan-
tage is only achievable because in Thumb state instructions arrive
in the decode stage early while the same is not true for ARM.

3.3 Augmenting eXtensions
The AX extension to Thumb consists of eight new instructions.

These instructions were chosen by studying ARM and Thumb codes
of benchmarks and identifying commonly occurring sequences of
Thumb instructions which were found to correspond to shorter ARM
sequences. We show how we use exactly one free instruction in the
free opcode space of the Thumb instruction set to implement AX
instructions.

Not surprisingly there are very few unused opcodes available in
Thumb. We have chosen one of these available opcodes to incor-
porate the AX instructions. Bits 10..15 are taken up by this unused
opcode 101110 which now refers to AX. The remaining bits 0..9
are available for encoding the various AX instructions. Since there
are eight AX instructions, three bits are needed to differentiate be-
tween them - we use bits 7..9 for this purpose. The operands are
encoded in the remaining bits 0..6.

Unimplemented Thumb Instruction
101110 xxxxxxxxxx
[10..15] [0..9]

AX Instructions
101110 AX opcode AX operands
[10..15] [7..9] [0..6]

Table 1: AX Instructions

AX Instruction Description

setpred support for predication in 16-bit code
setsbit sets the ’S’ bit to avoid explicit cmp instructions

setsource sets the source register for the next instruction
setdest sets the destination register for the next instruction
setthird sets the third operand (support 3-address format)
setimm sets the immediate value for the next instruction

setshift sets the shift type and amount for the next instruction
setallhigh indicates next instruction uses all high registers

A short description of the AX extensions can be found in Ta-
ble 1. The details of how operands are encoded for the various
instructions are given below. Depending upon the number of bits
available, the constant fields in various instructions are limited in
size. The immediate constant in setimm is 7 bits, shift amount
in setshift is 4 bits, and count in setpred is 3 bits. Finally,
registers are encoded using 4 bits so we can refer to both higher and
lower order registers in AX instructions.

Encodings
101110 setimm #constant
[10..15] [7..9] [0..6]

101110 setshift shifttype shiftamount
[10..15] [7..9] [4..6] [0..3]

101110 setsbit -
[10..15] [7..9] [0..6]

101110 setpred condition count
[10..15] [7..9] [3..6] [0..2]

101110 setsource Hreg -
[10..15] [7..9] [3..6] [0..2]

101110 setdest Hreg -
[10..15] [7..9] [3..6] [0..2]

101110 setallhigh -
[10..15] [7..9] [0..6]

101110 setthird reg -
[10..15] [7..9] [3..6] [0..2]

4. COMPILER ALGORITHMS
AXThumb transformations are performed as a postpass, after the

compiler has generated object code. The transformation which in-
volves detecting and replacing sequences of Thumb code with cor-
responding AXThumb code consists of three phases. Each of the

three phases deals with a particular kind of AXThumb transforma-
tion. The first phase handles predication of Thumb code using the
setpred AX instruction. The second phase handles the generic
case for AX transformations like the example used to describe in-
struction coalescing. The third phase handles the setallhigh
AX instruction used to eliminate unnecessary moves at function
prologues and epilogues. The algorithms for each of the three
phases along with code examples are described in detail next.

Figure 6 Predication.

cmp r3, #0

setpred eq, #2

add r6, r1

sub r6, r1

add r5, r2

sub r5, r2

mov r3, r9

AX Thumb

cmp r3, #0

beq (6)

add r6, r1

add r5, r2

sub r6, r1

sub r5, r2

b(8)

mov r3, r9

EQ
 NE

Thumb

4.1 Phase 1
The code segment shown below illustrates how Thumb code can

be predicated using the setpred instruction. The original Thumb
code has to execute explicit branch instructions to achieve condi-
tional execution, choosing between the subtract and add operations.
Using the setpred instruction we can avoid this explicit branch-
ing. This instruction specifies two things. First it specifies the
condition involved in predication (e.g., eq, ne etc.). Second it
specifies the count of predicated instruction pairs that follow. Fol-
lowing the setpred instruction are pairs of Thumb instructions –
the number of such pairs is equal to count. If the condition is true,
the first instruction in each pair is executed; otherwise the second
instruction in each pair is executed.

Original ARM
cmp r3, #0
addeq r6, r6, r1
addeq r5, r5, r2
rsbne r6, r6, r1
rsbne r5, r5, r2
mov r3, r9

Corresponding Thumb Code
(1) cmp r3, #0
(2) beq (6)
(3) sub r6, r1
(4) sub r5, r2
(5) b (8)
(6) add r6, r1
(7) add r5, r2
(8) mov r3, r9

AXThumb Code
(1) cmp r3, #0
(2) setpred EQ, #2
(3) add r6, r1
(4) sub r6, r1
(5) add r5, r2
(6) sub r5, r2
(7) mov r3, r9

Coalesced ARM
cmp r3, #0
sub r6, r6, r1
sub r5, r5, r2
mov r3, r9
OR
cmp r3, #0
add r6, r6, r1
add r5, r5, r2
mov r3, r9

In our example, when we examine the AXThumb code, we ob-
serve that the condition in this case is eq and count is 2 since

there are two pairs of instructions that are conditionally executed.
If eq is true the first instruction in each pair (i.e., the add instruc-
tion) is executed; otherwise the second instruction in each pair (i.e.,
the sub instruction) are executed. Therefore after the AXThumb
instructions are processed by the decode stage the corresponding
ARM instruction sequence generated consists of three instructions.
The sequence contains either the add instructions or the sub in-
structions depending upon the eq flag.

This form of predication could also reduce the number of fetches
from the I-cache. The example shown below illustrates one such
case. In the case of Thumb code, the instructions immediately
following the branch instructions will be fetched even on taken
branches, resulting in wasted fetches. In the AXThumb case, for
every pair of instructions that is fetched at least one instruction is
executed, making all fetched pairs useful. Also note that the use of
predication reduces the size by one instruction in this case.

Thumb Code
L0: I0
beq L1
I1
b L2
L1: I2
L2: beq L0

AXThumb
L0: I0
setpred EQ 1
I1
I2
beq L0

Figure 7: SetPredicate
input : A CFG for a function
output : A modified CFG with ’set’predicated code

for all siblings (n1, n2) in the BFS Traversal of the CFG do
/* Check for a hammock in the CFG */
PredEQ = SuccEQ = FALSE;
if numPreds (n1) == numPreds (n2) == 1 then

if Pred (n1) == Pred (n2) then
PredEQ = TRUE;

end
end
if numSuccs (n1) == numSuccs (n2) == 1 then

if Succ (n1) == Succ (n2) then
SuccEQ = TRUE;

end
end
/* SetPredicate if hammock found */
if SuccEQ and PredEQ then

DeleteLastIns(Pred(n1));
InsertIns(Pred(n1), setpred, cond);
for each pair of instructions in1 , in2 from n1 and n2

do
InsertIns(Pred(n1), in1);
InsertIns(Pred(n1), in2);

end
MergeBB(Pred(n1), Succ(n1));
DeleteBB(n1);
DeleteBB(n2);

end
end

This method of predication is more effective than ARM predica-
tion because, in the case of ARM, nops are issued for predicated
instructions whose condition is not satisfied. However this form of
predication can be applied only to small branch hammocks corre-
sponding to a simple if-then-else construct. Hence the al-
gorithm described in Figure 7, first detects such branch hammocks
in the CFG for the function, then interleaves the instructions from
the two branches, merging them with the parent basic block. We
consider pairs of sibling nodes during a Breadth-First Traversal of

the CFG for hammock detection. A hammock is detected when (i)
the predecessor of both siblings is the same, (ii) there is exactly one
predecessor (iii) and both siblings have the same successor. Once
a hammock is detected, it is predicated by inserting a setpred
instead of the branch instruction and interleaving the code from the
two branches as shown in Figure 7. The CFGs for the code exam-
ple described above, before and after the transformation are shown
in Figure 6.

4.2 Phase 2
The code segment shown below illustrates the general case for

AX Transformations which captures the majority of AX instruc-
tions. This example uses the setshift and setsource AX
instructions. The setshift instruction specifies the type and
amount of the shift needed by the following instruction. The set-
source instruction specifies the high register needed as the source
for the following instruction. While the Thumb code requires the
execution of five instructions, the AXThumb code only executes
three instructions.

Original ARM
mov r2, r5
sub r1, r2, lsl #5
ldr r5, [r9, #100]

Corresponding Thumb Code
(1) mov r2, r5
(2) lsl r4, r2, #2
(3) mov r3, r9
(4) sub r1, r4
(5) ldr r5, [r3, #100]

AXThumb Code
(1) mov r2, r5
(2,4) setshift lsl #2

sub r1, r2
(3,5) setsource high r9

ldr r5, [-,#100]

Coalesced ARM
mov r2, r5
sub r1, r2, lsl #5
ldr r5, [r9, #100]

Figure 8: DAG Coalescing for generic AX instructions

input : Basic Block DAG D with nodes numbered accord-
ing to the topological order and register liveness in-
formation

output : Basic Block DAG D with Coalesced Nodes to indi-
cate AXThumb instruction pairs

for each n ε nodes in BFS order of D do
for each p ε Pred(n) do

Let dependence between n and p be due to register r.
if r is not live following instructions (n,p) then

/* Check if nodes n and p are coalescable */
if CandidateAXPair(n,p) then

G← ∅
G← Coalesce(n,p)
/* Check if coalesced Graph is a DAG */
isDAG = TRUE
for each e ε edges in G do

if Source(e) > Destination(e)
then

isDAG = FALSE
end

end
if isDAG then

D← G
end

end
end

end
end

The algorithm shown in Figure 8 uses the Basic Block depen-
dence DAG and global register liveness information as its input.
Since AXThumb pairs replace dependent Thumb instructions, it is

sufficient to examine adjacent nodes along a path in the DAG. We
traverse the DAG in Breadth-First Order and examine each node
and its predecessor. AXThumb pairs have to be instructions ad-
jacent to each other in the instruction schedule. While replacing
Thumb pairs with equivalent AXThumb pairs, to ensure that this
property is maintained, we coalesce the nodes of the candidate
Thumb pairs into one node representing the AXThumb pair. How-
ever to maintain the acyclic property of the DAG, we have to ensure
that this coalescing of candidate Thumb instructions does not intro-
duce a cycle. The nodes in the DAG are numbered according to the
topological sort order of the instruction schedule. By checking for
back edges from higher numbered nodes to lower numbered nodes,
during coalescing, we make sure that the acyclic property is main-
tained. The final instruction schedule is the ordering of nodes ac-
cording to increasing node id where for coalesced nodes, the node
id is the id of the first instruction in the node.

The DAG for our example, before and after the transformation
is shown in Figure 9. For this example, instructions 3 and 5 are
candidates and instructions 2 and 4 are candidates. The Candi-
dateAXPair function takes in 2 Thumb instructions and checks
to see if they are candidates for replacement. This involves a live-
ness check. Using liveness information, in our example one can say
that register r4, in instruction 2, is a temporary register. Since the
two dependent instructions (subtract and shift) can be replaced us-
ing a setshift instruction and register r4 is not live after instruc-
tion 3, the CandidateAXPair function returns the AXThumb
pair that could replace instructions 2 and 4. Since coalescing nodes
2 and 4 does not introduce a cycle, the replacement is legal.

Figure 9 Phase 2

1
 5
2
 3
 4

1
 2,4
 3,5

(a) Thumb

(b) AX Thumb

We describe some more examples of AXThumb transformations
that use this algorithm below.

Avoiding Compare Instructions. In the ARM instruction set MOV
and ALU instructions contain an s-bit. If the s-bit is set, follow-
ing the MOV or ALU operation, the destination register contents
are compared with the constant value zero and certain flags are set
which can later be tested. Thus, in ARM certain types of compares
can be folded into other MOV and ALU instructions. As illustrated
below, since Thumb does not support the s-bit, it must perform
the comparison in a separate instruction. To overcome the above
drawback we use the setsbit instruction which indicates that
the s-bit of the instruction that immediately follows should be set
when translation of Thumb into ARM takes place.

Original ARM
movs reg1, reg2

Corresponding Thumb
mov reg1, reg2
cmp reg1, #0

AXThumb
setsbit
mov reg1, reg2

Coalesced ARM
movs reg1, reg2

Immediate Operands. The Thumb ADD/MOV instructions can
directly reference higher order registers. However, in these cases
if the operand cannot be an immediate constant, an extra move is
required as shown below.

Original ARM
add Hreg1, Hreg1, #imm

Corresponding Thumb
mov rtmp, #imm
add Hreg1, rtmp

AXThumb
setimm #imm
add Hreg1,
OR
setdest Hreg1
add , #imm

Coalesced ARM
add Hreg1, Hreg1, #imm

We can use the setimm instruction to avoid the move instruc-
tion as shown above. The immediate operand is incorporated into
the Thumb instruction that follows the setimm instruction by the
coalescing actions of the decode stage resulting in a single ARM
instruction. Alternatively the setdest instruction can be used as
shown above. In either case the coalesced ARM instruction is the
same.

Original ARM
and reg1, reg1, #imm

Corresponding Thumb
mov rtmp, #imm
and reg1, rtmp

AXThumb
setimm #imm
and reg1,

Coalesced ARM
and reg1, reg1, #imm

Another situation where extra move instructions are generated
due to the presence of immediate operands is when bitwise boolean
operations are used. Instructions for these operations cannot have
immediate operands generating an extra move as shown above.

We describe one more scenario where the setshift instruction can
be used. A shift operation folded with a MOV instruction is often
used in ARM code to generate large immediate constants. An im-
mediate operand of a MOV instruction is a 12 bit entity which is
divided into an 8 bit immediate constant and a 4 bit rotate constant.
The eight bit entity is rotated by the rotate amount to generate a 32
bit constant. In Thumb state the immediate operand is only 8 bits
and therefore the rotate amount cannot be specified. An additional
ALU instruction is used to generate the large constant as shown
below. In the AXThumb code setshift is used to eliminate the
extra shift instruction through coalescing.

Original ARM
mov reg1, #imm8.rotate4

Corresponding Thumb
mov reg1, #imm8
lsl reg1, #rotate4’, where
rotate4’ = 32 - 2 * rotate4.
AXThumb
setshift #rotate4
mov reg1, #imm8

Coalesced ARM
mov reg1, #imm8.rotate4

High Register Operands. Analogous to the setsource Hreg
instruction that was introduced earlier, setdest Hreg instruc-
tion causes the Thumb instruction following the setdest Hreg
instruction to use Hreg as its destination register. The instruction
following coalescing of AXThumb instructions is identical to the
corresponding ARM instruction.

Original ARM
ldr Hreg, [reg, #offset]

Corresponding Thumb
ldr Lreg, [reg, #offset]
mov Hreg, Lreg

AXThumb
setdest Hreg
ldr , [reg, #offset]

Coalesced ARM
ldr Hreg, [reg, #offset]

Third Operand. Additional move instructions are required to com-
pensate for the lack of three address instruction format in Thumb.
We introduce the setthird reg AX instruction to avoid the ex-
tra move instruction. When a Thumb instruction is a preceded by
a setthird reg instruction, then reg is treated as the third ad-
dress for the Thumb instruction as shown below. Following coa-
lescing the impact of extra move instruction is entirely eliminated.

Original ARM
add reg1, reg2, reg3

Corresponding Thumb
mov reg1, reg2
add reg1, reg3

AXThumb
setthird reg3
add reg1, reg2

Coalesced ARM
add reg1, reg2, reg3

4.3 Phase 3
The third phase handles the specific case of the setallhigh

instruction, where a whole sequence of Thumb instructions is con-
verted to an AXThumb pair. The code segment shown below il-
lustrates the need for a setallhigh instruction. Since only low
registers can be accessed in Thumb state, the saving and restoring
of context at function boundaries results in the use of extra move in-
structions. In the example above, first the low registers are pushed
onto the stack, the high registers are then moved to the low reg-
isters before they are pushed onto the stack. Using the setallhigh
instruction we can avoid the extra moves, indicating that the next
instruction accesses high registers.

Original ARM
push {r4,.., r11}

Corresponding Thumb
(1) push [r4, r5, r6, r7]
(2) mov r4, r8
(3) mov r5, r9
(4) mov r6, r10
(5) mov r7, r11
(6) push [r4, r5, r6, r7]

AXThumb Code
(1) push [r4, r5, r6, r7]
(2,3) setallhigh

push [r0, r1, r2, r3]

Coalesced ARM
push {r4, r5, r6, r7}
push {r8, r9, r10, r11}

This transformation, like phase 2, is local to a basic block and
uses the basic block DAG as its input. The algorithm detects such
sequences during a Breadth-First traversal of the DAG. The depen-
dence in the DAG is between the push instructions and the move
instructions as shown in Figure 10. The move instructions are sib-
lings with predecessor and successors as the push instructions in
the DAG. This condition is checked for as shown in Figure 11. The
PushorPopList functions find instructions that push/pop a list
of registers. The movLoHi function makes sure the register being
used in the mov instruction is in the list of registers in the push/pop
instruction encountered before. Once such a pattern is detected all

the sibling nodes are replaced with one single node containing the
setallhigh instruction. This node is then coalesced with the
successor node which is the push/pop instruction to ensure that the
two instructions are adjacent to each other in the instruction sched-
ule.

Figure 10 SetAllHigh AX transformation

1
 6
2
 4
3
 5

1
 2,3

(a) Thumb

(b) AX Thumb

Figure 11: DAG Coalescing for setallhigh AX instructions
input : Basic Block DAGs (with nodes in the topological

sorted order of the instruction schedule) for the basic
block predecessors of the exit node and successors
of the entry node in the CFG and register liveness
information

output : Reduced Basic Blocks with setallhigh AX instruc-
tions

for each DAG D ε set of basic blocks B do
for each n ε BFS order of nodes in D do

if PushOrPopListLo(n) then
/* Check for the replaceable mov instructions */
isReplacable = TRUE
for each m ε Succ(n) do

Let r be the destination register in m.
if r is not live following Succ(m) then

if not movLoHi(m) |
not PushOrPopListHi(Succ(m)) |
numSuccs(m) 6= 1 then

isReplacable = FALSE
end

end
end
/* Remove MOVs and insert a setallhigh */
if isReplacable then

for each m ε Succ(n) do
Save← Succ(m)
Remove(m)

end
Succ(n)← Save
SettoLo(Save)
Coalesce(setallhigh, Succ(n))

end
end

end
end

5. EXPERIMENTAL RESULTS

Methodology. The algorithms described above were used to de-
tect candidate Thumb instructions in the assembly level code of
the most frequently executed functions in the benchmark programs.
The xscale-elf gcc version 2.9 compiler used was built
to create a version that supports generation of ARM, Thumb as

well as mixed ARM and Thumb code. Code size being a critical
constraint, all programs were compiled at -O2 level of optimiza-
tion, since at higher levels code size increasing optimizations such
as function inlining and loop unrolling are enabled. The transfor-
mations were then carried by transforming the assembly code. The
modified assembly code was then linked in with the rest of the code.

A modified version of the Simplescalar-ARM [1] simulator, was
used for experiments. It simulates the five stage Intel’s SA-1 Stron-
gARM pipeline [3] with an 8-entry instruction fetch queue. The
I-Cache configuration for this processor are: 16Kb cache size, 32B
line size, and 32-way associativity, and miss penalty of 64 cycles
(a miss requires going off-chip). The simulator was extended to
support both 16-bit and 32-bit states, the Thumb instruction set and
the system call conventions followed in the newlib c library. This
is a lightweight C library used on embedded platforms that does
not provide explicit network, I/O and other functionality typically
found in libraries such as glibc. The benchmarks used are taken
from the Mediabench [7],Commbench [12] and NetBench [8]
suites as they are representative of a class of applications important
for the embedded domain. The benchmark programs used do not
require functionality not present in newlib.

Instruction Counts. The use of AX instructions reduces the dy-
namic instruction count of 16-bit code by 0.4% to 32%. Figure 12
shows this reduction normalized with the counts for 32-bit ARM
code. The difference in instruction count between ARM and Thumb
code is between 3% and 98%. Using AX instructions we reduce the
performance gap between 32-bit and 16-bit code. For cases such
as crc and adpcm where there is substantial difference between
ARM and Thumb code, we see improvements between 25% and
30% bridging the performance gap between ARM and Thumb by a
factor of one third in the case of crc and more than one half in the
case of adpcm. For cases such as drr where Thumb code is not
much worse than ARM code (3%), we see little improvement us-
ing AX instructions. In the other cases we see an improvement over
Thumb code of about 10% on an average. The difference in the in-
struction counts between ARM and Thumb code indicates the room
for possible improvement of 16-bit code due to constraints present
in 16-bit code. Using AX instructions we are able to considerably
bridge this gap between 32-bit and 16-bit code.

Figure 12 Normalized Instruction Counts

rtr crc

adpcm.ra
wcaudio

adpcm.ra
wdaudio

pegwit.g
en

pegwit.e
nc

pegwit.d
ec

fra
g

reed.encode

reed.decode drr
0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
or

m
al

iz
ed

 In
st

ru
ct

io
n

C
ou

nt

ARM
Thumb
AX

Cycle Counts. Figure 13 shows the cycle count data for Thumb
and AXThumb code relative to the ARM code. The use of AX
instructions gives varying cycle count changes between -0.2% and
20% compared to Thumb code. We see reduction of 15% to 20%
in cycle counts for crc and adpcm compared to the Thumb mak-
ing the reducing the difference between ARM and Thumb by half

in the case of crc and about 66% with the adpcm programs. In
the other 3 cases where Thumb cycle counts are higher than ARM,
viz. frag reed.encode,reed.decode, and rtr, we see that
there is a moderate reduction in cycle counts compared to Thumb.
However the difference between the ARM and Thumb codes itself
being moderate, in the cases of rtr and reed.encode, AX-
Thumb code gives a lower cycle count compared to even ARM
code. The improved I-cache behavior of the Thumb and AXThumb
codes compared to ARM code makes this possible. In the other
cases, where Thumb code already outperforms ARM code we see
little improvement as there is little scope for the use of AX instruc-
tions.

Figure 13 Normalized Cycle Counts

rtr crc

adpcm.ra
wcaudio

adpcm.ra
wdaudio

pegwit.g
en

pegwit.e
nc

pegwit.d
ec

fra
g

reed.encode

reed.decode drr
0.6

0.8

1

1.2

1.4

1.6

N
or

m
al

iz
ed

 C
yc

le
 C

ou
nt

ARM
Thumb
AX

Code Size and Fetch Data. The code sizes of Thumb and AX-
Thumb are almost identical. This is because in all cases where
AXThumb instruction replace Thumb instructions, the size is only
decreased if at all changed. The decrease occurs due to the intro-
duction of setallhigh or setpred instructions as mentioned
before. In all other cases the size does not change. The code sizes
relative to ARM are shown in Figure 14.

Figure 14 Code Size

rtr crc

adpcm.ra
wcaudio

adpcm.ra
wdaudio

pegwit.g
en

pegwit.e
nc

pegwit.d
ec

fra
g

reed.encode

reed.decode drr
0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 C
od

e
S

iz
e

ARM
Thumb
AX

Figure 15 shows the I-cache fetches for Thumb and AXThumb
codes relative to ARM code. In the three cases where Thumb has
more I-cache fetches viz. crc and the two adpcm programs, we
see that AXThumb reduces the fetches making them almost as lit-
tle as ARM. In the other cases we see AX always has fewer I-
cache fetches compared to Thumb, making it even better compared
to ARM. Fewer fetches could result from code size reducing AX
transformations. Additionally, the number of instructions fetched
into the instruction queue depends on the utilization of the queue.

AXThumb consumes instructions at a faster rate from the instruc-
tion queue compared to Thumb. Hence on taken branches when the
queue is flushed there are fewer instruction that are flushed, which
account for the extra fetches performed by Thumb. From an energy
perspective, we see that energy spent on the I-cache will be lesser
in AXThumb compared to Thumb. Additionally, since the instruc-
tion count is reduced, energy spent in other parts of the processor
is also reduced. The addition of the AX processor in the decode
stage is a very small increase in energy spent since the operations
of the AX processor are very simple involving detection of the AX
opcode and setting the status if the instruction is an AX instruction.
Hence we also save on overall energy using AX instructions.

Figure 15 Fetch Data

rtr crc

adpcm.ra
wcaudio

adpcm.ra
wdaudio

pegwit.g
en

pegwit.e
nc

pegwit.d
ec

fra
g

reed.encode

reed.decode drr
0.6

0.8

1

1.2

1.4

1.6

N
or

m
al

iz
ed

 F
et

ch
 D

at
a

ARM
Thumb
AX

Usage of AX instructions. In Table 2 we show a weighted distri-
bution of the AX instructions executed by each benchmark. Each
benchmark uses a different set of AX instructions and all AX in-
structions have been used by at least two benchmarks. Instructions
that made an impact in almost all benchmarks were setsbit,
setshift, setsource and setthird. Predication was found
to be useful only in adpcm as in other benchmarks small branch
hammocks capable of being predicated were not found. In crc,
a small set of setsbit instructions in the hotspots of the code
gave very good performance improvement. drr had little oppor-
tunity for insertion of AX instructions resulting in the use of a few
setsbit instructions which did not give much of an improve-
ment. The use of setallhigh in rtr resulted in smaller code as
a result of removing unnecessary moves, which was also the reason
for reduced instruction count.

6. CONCLUSIONS
We proposed the concept of Instruction Coalescing using a set

of Augmenting eXtensions to the existing 16-bit code. The AX in-
structions are a bridging ISA between the existing 16-bit and 32-bit
ISAs in dual width processors capable of making the performance
of 16-bit code close to that of 32-bit code. AX instructions improve
the expressibility of 16-bit code without adding to the cost in terms
of execution cycles. We presented algorithms used to generate such
16-bit AXThumb code from existing 16-bit Thumb code. The re-
sults show that using just 8 AX instructions we are able to consider-
ably improve performance of 16-bit code without negatively affect-
ing code size and I-cache fetches. While the techniques described
here were implemented in the context of the ARM Architecture
[11], they can be applied to other dual width embedded processors.
Using the compiler algorithms described here and devoting more
encoding space to AX type of bridging ISAs, one could further
bridge the performance gap between 32-bit and 16-bit code.

Table 2: Usage of Different AX Instructions.

Benchmark setallhigh setpred setsbit setshift

rtr 11.77% 0.00% 82.34% 5.88%

crc 0.00% 0.00% 0.27% 99.72%

adpcm.rawcaudio 0.00% 36.30% 36.30% 14.52%
adpcm.rawdaudio 0.00% 34.47% 34.47% 13.79%

pegwit.gen 0.17% 0.00% 74.47% 8.48%
pegwit.encrypt 0.19% 0.00% 80.22% 5.01%
pegwit.decrypt 0.17% 0.00% 74.47% 8.48%

frag 4.44% 0.00% 0.00% 6.66%

reed.encode 0.01% 0.00% 3.81% 0.00%
reed.decode 0.01% 0.00% 1.09% 0.63%

drr 0.00% 0.00% 100.00% 0.00%

Benchmark setsource setdest setthird setimm

rtr 0.00% 0.00% 0.00% 0.00%

crc 0.00% 0.00% 0.00% 0.00%

adpcm.rawcaudio 0.00% 7.26% 0.00% 5.59%
adpcm.rawdaudio 3.44% 10.34% 3.44% 0.00%

pegwit.gen 5.47% 0.00% 11.39% 0.00%
pegwit.encrypt 6.23% 0.00% 8.32% 0.00%
pegwit.decrypt 5.47% 0.00% 11.39% 0.00%

frag 13.33% 4.44% 66.66% 4.44%

reed.encode 68.45% 0.00% 27.71% 0.00%
reed.decode 88.29% 0.00% 9.95% 0.00%

drr 0.00% 0.00% 0.00% 0.00%

7. REFERENCES
[1] D. Burger and T.M. Austin, “The Simplescalar Tool Set,

Version 2.0,” Computer Architecture News, pages 13–25, June
1997.

[2] S. Furber, “ARM system Architecture,” Publisher: Addison
Wesley Longman, 1996.

[3] Intel Corporation, “SA-110 Microprocessor Technical
Reference Manual”

[4] Intel Corporation, “The Intel XScale Core Developer’s
Manual”

[5] Intel Corporation, “ The Intel PXA250 Applications Processor
- A White Paper,” February 2002.

[6] A. Krishnaswamy and R. Gupta, “Profile Guided Selection of
ARM and Thumb Instructions,” ACM SIGPLAN Joint
Conference on Languages Compilers and Tools for Embedded
Systems & Software and Compilers for Embedded Systems
(LCTES/SCOPES), Berlin, Germany, June 2002.

[7] C. Lee, M. Potkonjak, and W.H. Mangione-Smith,
“Mediabench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems,” IEEE/ACM
International Symposium on Microarchitecture (MICRO),
Research Triangle Park, North Carolina, December 1997.

[8] G. Memik, Mangione Smith and Hu, “NetBench: A
Benchmarking Suite for Network Processors,” IEEE
International Conference on Computer-Aided Design,
November 2001

[9] MIPS Technologies, “MIPS32 Architecture for Programmers
Volume IV-a: The MIPS16 Application Specific Extension to
the MIPS32 Architecture,” March 2001.

[10] J. Montanaro et al., “A 160-MHz, 32-b, 0.5-W CMOS RISC
Microprocessor,” IEEE Journal of Solid-State Circuits, Vol. 31,
No. 11, November 1996.

[11] D. Seal, Editor, “ARM Architecture Reference Manual,”
Second Addition, Addison-Wesley.

[12] T. Wolf and M. Franklin, “Commbench - A
Telecommunications Benchmark for Network Processors,”
IEEE International Symposium on Performance Analysis of
Systems and Software, April 2000.

[13] Kunio Uchiyama, “The SH-5/ST50: An Advanced
Microprocessor Core for Networking and Multimedia
Applications,” Cool Chips III, April 2000.

Appendix A
Illustration of switching states using Branch and eXchange.

When executing ARM instructions, the execution of BX Rm in-
struction can be used to begin executing Thumb instructions. Other
dual width processorss have a similar mechanism to switch execu-
tion states. BX Rm has the following semantics. If bit Rm[0] is
1, the processor switches to execute Thumb instructions. It begins
executing at the address in Rm aligned to a half-word boundary by
clearing the bottom bit. If bit Rm[0] is 0 then the processor con-
tinues to execute ARM instructions, that is, BX simply behaves as a
branch instruction in this case. The current state in which the pro-
cessor is executing is indicated by the T bit which is bit 5 of the
CPSR (Current Program Status Register). This bit is appropriately
changed when the processor state is switched. Similarly the BX
instruction can be used to switch from Thumb state to ARM state.

The use of BX instruction to generate a mixed binary is shown in
Figure 3. As we can see from the code transformation shown, when
the longer Thumb sequence is replaced by a shorter ARM sequence,
we introduce three additional instructions. Moreover, the alignment
of ARM code at word boundary may cause an additional nop to be
introduced preceding the first BX instruction. Therefore only if the
shorter ARM sequence contains greater than four fewer instructions
than the longer Thumb sequence, the generation of mixed binary is
beneficial.

Thumb
.code 16 ; Thumb instructions follow
...
<Longer Thumb Sequence>
...

ARM+Thumb
.code 16 ; Thumb instructions follow
...
.align 2 ; making bx word aligned
bx r15 ; switch to ARM as r15[0] not set
nop ; ensure ARM code is word aligned
.code 32 ; ARM code follows
<Shorter ARM Sequence> ;
orr r15, r15, #1 ; set r15[0]
bx r15 ; switch to Thumb as r15[0] is set
.code 16 ; Thumb instructions follow
...

Table 3: Replacing Thumb Sequence by ARM Sequence.

