
Speculative Optimizations for Parallel Programs

on Multicores

Vijay Nagarajan and Rajiv Gupta

University of California, Riverside, CSE Department, Riverside CA 92521
{vijay,gupta}@cs.ucr.edu

Abstract. The advent of multicores presents a promising opportunity
for exploiting fine grained parallelism present in programs. Programs
parallelized in the above fashion, typically involve threads that commu-
nicate via shared memory, and synchronize with each other frequently to
ensure that shared memory dependences between different threads are
correctly enforced. Such frequent synchronization operations, although
required, can greatly affect program performance. In addition to forcing
threads to wait for other threads and do no useful work, they also force
the compiler to make conservative assumptions in generating code.
We analyzed a set of parallel programs with fine grained barrier synchro-
nizations, and observed that the synchronizations used by these programs
enforce interprocessor dependences which arise relatively infrequently.
Motivated by this observation, our approach consists of creating two
versions of the section of code between consecutive synchronization op-
erations; one version is a highly optimized version created under the opti-
mistic assumption that no interprocessor dependences that are enforced
by the synchronization operation will actually arise. The other version
is unoptimized code created under the pessimistic assumption that in-
terprocessor dependences will arise. At runtime, we first speculatively
execute the optimistic code and if misspeculation occurs, the results of
this version will be discarded and the non-speculative version will be
executed. Since interprocessor dependences arise infrequently, misspec-
ulation rate remains low. To detect misspeculation efficiently, we mod-
ify existing architectural support for data speculation and adapt it for
multicores. We utilize this scheme to perform two speculative optimiza-
tions to improve parallel program performance. First, by speculatively
executing past barrier synchronizations, we reduce time spent idling on
barriers, translating into a 12% increase in performance. Second, by pro-
moting shared variables to registers in the presence of synchronization,
we reduce a significant amount of redundant loads, translating into an
additional performance increase of 2.5%.

1 Introduction

The advent of multicores presents a promising opportunity for exploiting fine
grained parallelism present in programs. Low latency and higher bandwidth
for inter-core communication afforded by multicores allows for parallelization
of codes that were previously hard to parallelize. Programs parallelized in the

above fashion typically involve threads that communicate via shared memory,
and synchronize with each other frequently to ensure that shared memory de-
pendences between different threads are correctly enforced. In such programs
threads often execute only hundreds of instructions independently before they
have to synchronize with other threads running on other cores.

Program. Time Redundant Enforced
at Barrier Loads (%) Dep. (%)

Jacobi 25 6.25 25
Cholesky 61 24.8 6

Recurrence 42 88.5 12.5
Equake 32 2.1 3.2
Swim 24 0 3.1
Bisort 18 3.2 9
MST 28 8.4 34

Fig. 1. Dependences enforced by synchronization and its characteristics

Fig. 1(a) shows a simple example of a sequential program with a doubly
nested loop. While the iterations of the innermost loop are independent (do all)
of each other, each iteration of the outermost loop (do serial) is dependent on
values computed in the previous iteration. This naturally gives rise to a parallel
implementation as shown in Fig. 1(b), where iterations of the innermost loop are
distributed and computed by parallel threads, after which the threads synchro-
nize at the barrier. Fig. 1(c) shows the loop-unrolled version of the parallel code,
in which the arrows show the inter-thread dependences that are enforced by the
barrier synchronization. As we can see from the above example, the purpose
of adding the synchronization is to enforce shared memory dependences across
threads.

(Effect of frequent synchronization) Such frequent synchronization operations,
although required, can greatly affect program performance. In addition to caus-
ing the program execution to spend significant time at synchronization points
waiting for other threads, synchronization operations also force the compiler to
make conservative assumptions in generating code; for instance, variables cannot
be allocated to registers across synchronization operations without precise anal-
yses [16, 17] that guarantees that those variables that were allocated to registers
cannot be modified by other threads. In other words, variables that are poten-
tially shared cannot be allocated to registers across synchronization operations.
To evaluate the importance of these factors, we analyzed the executions of a set
of parallel programs that exploit fine grained parallelism as shown in the table in
Fig. 1. As we can see from column 1, each program spends a significant portion of
its execution time (as high as 61%) waiting at barrier synchronizations. Further-
more, immediately following synchronization, each processor executes significant

number of redundant loads1 (as shown in Fig. 1), owing to the fact that shared
variables could not be allocated to registers because of synchronization.

(Infrequent Dependences) One interesting property which we observed in our
study is that barrier synchronizations used by these programs enforce interpro-
cessor dependences that arise relatively infrequently. For each load executed by
a processor following barrier synchronization, we determined if the value that it
read was generated by another processor prior to barrier synchronization. We
found that only 6% to 35% of loads executed at each processor involved in-
terprocessor dependences (column 3 in the table in Fig. 1). Motivated by this
observation, our approach consists of creating two versions of the section of
code between consecutive synchronization operations. One version is a highly
optimized version created under the optimistic assumption that none of the in-
terprocessor dependences that are enforced by the synchronization operation
will actually arise. The other version is unoptimized code created under the
pessimistic assumption that interprocessor dependences will arise. At runtime,
we first speculatively execute the optimistic code and if misspeculation occurs,
the results of this version will be discarded and the non-speculative version will
be executed. Clearly, the efficacy of this approach hinges on the misspeculation
rate. Since interprocessor dependences arise infrequently, as we saw in our study,
misspeculation rate remains low. This allows us to execute the optimized code
most of the times, leading to performance savings.

(Efficient misspeculation detection) Another important parameter that affects
the performance is the efficiency with which misspeculation is detected. It is
worth noting that there is a misspeculation when there is actually an interpro-
cessor dependence. To detect misspeculation, we utilize the support for data
speculation in the form of Advanced Load Address Table (ALAT) already present
in itanium processors [1, 6] and adapt it for performing speculative optimizations
for parallel programs. We expose this architectural support to the compiler via
two new instructions: the speculative read S.Rd and the jump on misspecula-
tion jflag instruction. The S.Rd instruction enables us to specify the range of
memory addresses that are speculatively read, which are efficiently remembered
in the ALAT. Once the speculative read S.Rd is executed, the hardware ensures
that remote writes to any of the addresses, from other processors, invalidate the
corresponding entry in the ALAT and set the misspeculation flag. The compiler
is given the ability to read this flag via the jflag instruction and hence can
react to misspeculation by jumping to the pessimistic non-speculative version.

We utilize this scheme to perform two speculative optimizations to improve
parallel program performance. First, by speculatively executing past barrier syn-
chronizations, we reduce time spent idling on barriers, translating into a 12%
increase in performance. Second, by promoting shared variables to registers in
the presence of synchronization operations, we show that we can reduce a sig-
nificant amount of redundant loads, translating into an additional performance
increase of 2.5%.

1 For this study, redundant loads refers to the variables that had to be re-loaded after
a barrier, expressed as a percentage of total number of loads in the program

2 Support for misspeculation detection

(ALAT for data speculation) The support for misspeculation detection is based
on data speculation support already present in itanium processors [1, 6]. This
hardware support is in the form of a hardware structure known as the Advanced
load address table (ALAT) and the special instructions associated with it. When
a data speculative load is issued with a special load instruction known as the
advanced load ld.a instruction, an entry is allocated in the ALAT, storing the
target register and the loaded address. Every store instruction then automati-
cally compares its address against all entries of the ALAT. If there is a match,
the corresponding entry in the ALAT is invalidated. Using the chk.a instruction,
a check is performed before the speculatively loaded value is used; while a valid
entry means that load speculation was successful, an invalid entry means that
the data has to be reloaded. Our observation that the above HW support can be
used for misspeculation detection in our scheme stems from the fact that entries
in the ALAT are also invalidated by remote writes to the same address from
other processors [1]. Thus, in our optimistic speculative version, if we load all
values using advance load ld.a instructions, each load will create an entry in the
ALAT. A subsequent remote write in another processor to any of the addresses
loaded will precisely indicate an interprocessor dependency that we failed to en-
force through our speculation. Such remote writes invalidate the ALAT entries
and thus serve as a mechanism for misspeculation detection.

(Modified ALAT for misspeculation detection) However, there are some signifi-
cant differences between data speculation, which is primarily meant for scalars in
sequential code, and speculative optimization for parallel programs. First, spec-
ulatively loading all values in the optimized optimistic version, via the ld.a in-
struction would very likely exhaust all possible entries in the ALAT. To deal with
this size limitation, we propose the speculative read S.Rd instruction, through
which the compiler can specify ranges of addresses that are to be read specu-
latively. In our design, each processor’s ALAT can hold 4 such address ranges.
We provide this capability so that vectors that are read speculatively can be
specified succinctly by the compiler. If the compiler is unable to determine the
range, it then can generate code with the S.Rd accompanying the loads in pro-
gram without specifying the range. The hardware then takes the responsibility of
inserting the address into any of the ranges maintained. The hardware does this
conservatively – at any time the range of addresses maintained by the hardware
is guaranteed to contain all the addresses read speculatively.

Another important semantic difference is that, while data speculation re-
quires that local stores invalidate ALAT entries, speculation for parallel pro-
grams does not require this. Accordingly, the ALAT entries created by S.Rd

instruction are not invalidated by local stores. It is worth noting that in the
modified ALAT, there is still support for conventional data speculation. Thus
local stores are made to invalidate ALAT entries for the advanced load instruc-
tion ld.a instruction, like before. Finally, we add a flag to the ALAT which is
used to indicate misspeculation. This flag can be reset by the compiler using
the rflag instruction. Whenever a remote write to one of the ALAT (ranges)

is detected, the flag is set. The compiler can access this flag via the jump on
misspeculation instruction, jflag, using which the compiler can jump to the
pessimistic non-speculative version on detecting a misspeculation.

Fig. 2 shows how the instruc-

Fig. 2. Interaction of instructions on ALAT

tions interact with the ALAT.
Following a synchronization op-
eration, we first execute the op-
timistic version which assumes
the absence of interprocessor de-
pendences. The compiler spec-
ifies the range of addresses that
the speculative code reads, via
the S.Rd instruction. Accord-
ingly, the ranges of addresses
are remembered in the ALAT
(step 1). The rflag instruction

is then used to clear the misspeculation flag (step 2). While the optimistic ver-
sion is executing, if there are any remote writes to any of the address ranges in
the ALAT, the misspeculation flag is set (step 3). Finally at the end of specu-
lative version, the compiler checks for misspeculation via the jflag instruction,
and jumps to the non-speculative version, if there is a misspeculation.

3 Speculation Past Barriers

Fig. 3. Speculative execution past barrier

Barrier synchronization is commonly used in programs that exploit fine grained
parallelism – threads often execute only hundreds of instructions before they
have to wait for other threads to arrive at the barrier. A thread that arrives at
a barrier first, does no useful work until other threads arrive at the barrier and
this amounts to the time lost due to the barrier synchronization. In order to
reduce the time lost due to the barrier synchronization, compilers typically try
to distribute equal amounts of work to the different threads. However, threads
often do not execute the same code and this in turn causes a variation in the ar-
rival times. Moreover, even if each thread executes the same code, they can each
take different paths leading to a variation in number of instructions executed.
From our experiments, we found that the time spent on barrier synchroniza-
tion can be as high as 61% of the total execution time for the set of programs
considered. To reduce the time spent idling on synchronization, we propose a
compiler-assisted technique for speculating past barrier synchronizations. Our
technique is based on the observation that inter-thread shared memory depen-
dences that the barriers strive to enforce can be infrequent. By speculatively
executing past a barrier, we in turn are speculating that the inter-thread depen-
dences do not manifest during speculation. When the inter-thread dependences
are infrequent, more often than not our speculation succeeds and we are able to
achieve significant performance improvements. We illustrate our approach using

Fig. 4. Dependences exercised

an example (Fig. 3) which shows the original sequential code, the unoptimized
parallelized version and our optimized version which shows the compiler trans-
formation for speculatively executing past barriers. The sequential code shows
a doubly nested loop: each iteration of the inner loop can be done in parallel
(do all), while the outer loop has to be performed sequentially since there is a
loop-carried dependence. While each iteration of the inner loop could be given to
different thread, this is not done typically [19]. To increase the computation-to-
communication ratio and to preserve locality, each thread is given a part of the
vector as illustrated in Fig. 4, where each thread is given a chunk consisting of
four elements. Consequently in every iteration, each thread computes the values
in its chunk, reading values computed from the previous iteration, after which it
synchronizes with other threads by entering the barrier. We enable speculation
past the barrier by generating code as illustrated in Fig. 3. Once a thread arrives

at a barrier, we announce that the current thread has arrived at the barrier as
shown in the function enter-barrier. Then we check if all threads have reached
the barrier; if so, then there is no need to speculate and we move on to the next
iteration. However, if not all threads have reached the barrier, we proceed to
execute speculatively past the barrier.

(Thread Isolation) We create a safe

Fig. 5. Code transformation

address partition for the speculative
thread to work on. The primary ben-
efit of this isolation is that name de-
pendences that manifest between the
speculative and the non-speculative
threads can be safely ignored, and do
not cause a misspeculation. Moreover,
we do not require heavy-weight roll-
back in case of a misspeculation; we
merely discard the newly created ad-
dress space as in our prior work [21].
If the speculation is successful, then
the speculative state is merged with
the non-speculative state. It is impor-
tant to note that the above tasks viz.
thread isolation, recovery from mis-
speculation and committing the re-
sults of a successful speculation are
performed in software by the compiler. The compiler ensures thread isolation by
writing to a separate address space during speculation. In other words, stores
are transformed to store into the separate speculative address space. However,
this creates a potential problem for reads; reads need to be able to read from
original or new address space, depending on whether the read address has al-
ready been written into. To deal with this, each word of the new address space is
associated with meta data which is initialized to 0. Whenever there is a store to
a word, the meta-data for the corresponding word is set to 1 as shown in Fig. 5.
Depending on the value of the meta-data, loads then read from the speculative
(new) or non-speculative address space. However, for the programs considered,
which essentially deals with loops working on vectors, the compiler is able to
statically determine whether the reads have to read from the original or new
address space, and this obviates the need for maintaining meta data for most
loads and stores.

(Misspeculation Detection) We use the modified ALAT to detect misspecu-
lation. Upon entering speculative execution, we use the rflag instruction to
reset the misspeculation flag. Then we set the range of addresses that are read
using the S.Rd instruction. If the compiler is not able to statically determine
the range of addresses read, then S.Rd instructions are made to accompany the
loads as shown in Fig. 5 – the hardware will ensure that all the addresses that
are read from, are remembered in the ALAT. Whenever there is a remote write

to any of the addresses remembered in the ALAT, it would then invalidate the
ALAT entry and set the misspeculation flag. Recall that a remote write to any
of the addresses read speculatively, signals an interprocessor dependency which
the barrier was attempting to enforce. However, it is also the dependency that
was not enforced due to the speculation and hence such a dependency flags a
misspeculation. In Fig. 4, the interprocessor dependences are indicated with solid
arrows. Consequently, at the end of the speculation, we check for misspecula-
tion flag and if it is not set, we commit the speculative state. Committing the
state involves copying the contents of the newly allocated space into the original
non-speculative address space.

(Reducing Misspeculation rate) Although the dependences enforced by the
barriers are infrequent, they can still cause misspeculation if they manifest after
the speculative code starts executing. As we can see from Fig. 6, thread B has
reached the barrier and has started executing past it in speculative mode. When

Fig. 6. Reducing Misspeculation rate.

it encounters the load instruction, St2 (thread A) has not yet been executed. In
other words, the dependence between the St2 and Ld has not yet been enforced.
Thus, when St2 eventually executes in thread A, a misspeculation will be flagged.
On the contrary, let us assume St2 does not exist (or writes a different address)
and so the only interprocessor dependence is between St1 and Ld. In this case,
note that by the time Ld instruction is executed in the (speculative) thread B,
St1 from thread A has already executed. In other words, the dependence between
St1 and Ld has already been enforced, and so this interprocessor dependency
will not cause a misspeculation. Thus, to reduce the chance of misspeculation, it
would be beneficial to advance writes to shared data (like St1 and St2), which is
the focus of this optimization. To perform this optimization, we first identify the
iterations that write to shared data as shown in the profiling step of Fig. 6. We
then perform those iterations earlier than others. It is worth noting that we can
perform this reordering only if the iterations in the inner loop can be performed
in any order (do all).

4 Speculative Register Promotion

Recall that the purpose of synchronization operations are to enforce shared mem-
ory dependences across threads. However, lack of precise information about the

Fig. 7. (a) Redundant loads due to barriers (b) Data partitioning

dependences can lead to the execution of a significant number of redundant
loads. In our study we found that a significant number of loads executed around
synchronization operations were redundant loads. Fig. 7(a) illustrates the reason
for these redundant loads. When a barrier is reached, there is a need to dump
all the variables that have been allocated registers to memory. Likewise, when
a thread leaves a barrier, all the dumped variables have to be reloaded into
registers. This is because, without information that guarantees that a variable
is local to the thread, the compiler can not allocate the variable to a register
across synchronization operations. Let us consider the same example of the dou-
bly nested loop, whose inner loop can be parallelized. Recall that each thread is
given a part of the vector to work on, to increase locality. Since each thread ac-
cesses and updates parts of the vector, the vector as a whole is shared. As shown
in Fig. 7(b), thread 2, for example, reads in L[4] through L[8] and writes L[5]
through L[8], every iteration. Since the vector is shared, the compiler cannot
allocate individual elements across synchronizations. Thus, it cannot allocate
L[4] to a register in thread 2, because each iteration it is written by thread1.
However, note that elements L[5] through L[7] are actually exclusive to thread
2 and could be allocated to registers across synchronizations. Without this fine
grained partitioning information, it is hard for the compiler [16, 17] to figure out
which of the variables are local to threads. On the other hand, it is relatively
easier to estimate which of the variables are shared or local, by using profiling.
Thus, during profiling run, for each variable accessed by a thread, we determine
if that variable is indeed modified non-locally by a different thread. If not, such
variables are identified to be variables suitable for register promotion. We can
then speculatively promote such (probably) local variables to registers, provided
we can detect the case when our speculation is wrong. In this optimization, we
use the S.Rd instruction to speculatively allocate the variable to a register, at
the same time, remembering the address in the ALAT. Whenever there is a re-
mote write to the same address, hardware sets the misspeculation flag, which
helps us detect the situation when our speculation is wrong. As we can see in
the transformed version in Fig. 7, by promoting the variable to the register, we
are able to remove the redundant loads every iteration. It is worth noting that
while the redundant load can be removed, we still have to store the value to
the memory every iteration before the barrier. This would serve as a means to

detect misspeculation in case the same variable had been promoted to a register
in some other thread.

However, speculatively promoting registers is not as simple as removing the
loads during speculation (past the barrier) and remembering the addresses in
the ALAT. To see why, let us consider the Fig. 8.

As we can see by executing S.Rd we

Fig. 8. Promoting registers during
speculation

are remembering the addresses that have
been speculatively promoted to registers.
This will mean that, if there is a store in
thread A (St2), this will invalidate the
ALAT entry in thread B and notify us
of our misspeculation. However, let us
consider the case of St1, from thread A,
which we assume to write to the same
address. Since St1 has already been ex-
ecuted in thread A, before the thread
B has arrived at the barrier, we have
no way of detecting this dependency; in
other words, we cannot detect the mis-

speculation in this scenario.

To handle this situation, we spec-

Fig. 9. Code transformation

ulatively load the variables into regis-
ters once, initially (outside the loop)
as shown in Fig. 9. This enables us to
remember the addresses of the loaded
variables in the ALAT. We also reset
the misspeculation flag via the rflag

instruction. Whenever a thread reaches
a barrier, before speculatively execut-
ing past it, we check if the flag is set. If
no flag is set, this means that there has
been no stores to the speculatively pro-
moted addresses. This in turn means
that we can safely continue to use the
promoted registers without loading. How-
ever, flag that has been set at this point
means that there has been a store to
one of the ALAT entries. This, in turn,
means that we have to reload the vari-
ables into registers and this is precisely
what we do. While reloading the vari-
ables to registers, we again use corre-
sponding S.Rd to remember the loaded

values in the ALAT. Having taken care of registers, we now proceed with the
speculative execution. Likewise, before we exit the speculation, we again check

if the misspeculation flag has been set. It is important to note that this could
mean one of two things: either the values that have been speculatively loaded
have been written into, or the values that have been speculatively promoted have
been written into. To take care of the latter, we again load the variables into
registers, at the same time, remembering the loaded addresses in the ALAT. If
the misspeculation flag has not been set at this point, we commit the speculative
state as usual.

5 Experimental Evaluation

Processor 8 processor, inorder

L1 Cache 32 KB 4 way

L1 hit latency 1 cycle

L2 Cache 512 KB 8 way

L2 hit latency 9 cycle

Memory latency 200 cycle

Coherence MOSI bus based

Program. Source

Jacobi Iterative solver

Cholesky Cholesky gradient

Recurrence Linear recurrence

Equake Earthquake simulation

Swim Weather prediction

Bisort Bitonic sort

MST Minimum spanning tree

Fig. 10. (a) Architectural parameters used for simulation (b) Programs used

In this section, we present the results of an experimental evaluation of our
scheme for speculation past barriers and speculative register promotion. First
and foremost, we wanted to measure the performance increase we obtained by
speculatively executing past barrier synchronizations. Since key to a good per-
formance is low misspeculation rate, we also wanted to study the misspeculation
rate and see how it is affected by our compiler transformation for reordering
the loops. We also wanted to measure the additional performance increase we
obtained by speculatively promoting variables into registers in the presence of
synchronizations. But before we present our experimental results we briefly de-
scribe our implementation and the benchmarks used. We implemented the ar-
chitectural support in the SESC [15] simulator, which is a cycle accurate CMP
simulator targeting the MIPS architecture. This is because the proposed archi-
tectural support with the modified ALAT is not available in current processors
and hence had to be simulated. For our simulation, we used the architectural
parameters listed in table in Fig. 10. The benchmarks we used are a set of seven
parallel programs listed in Fig. 10. Each of the programs frequently synchronize
using barrier synchronizations, which makes them interesting subject programs
for our study. Cholesky (kernel 2) and Recurrence (kernel 6) are parallelized ver-
sions of Livermore loops, whose implementations are described in [18]. Equake
and Swim are from the SPEC Openmp benchmark suite, while Bitonic sort and
MST are from the Olden benchmarks suite. Finally, we also used the parallelized
version of the Jacobi iteration. We rewrote each program to make use of synchro-
nization constructs associated with the simulator and compiled each program to

run on the simulator using the simulator’s cross compiler. It is important to
note that since the above programs synchronize frequently using barriers, they
are interesting subject programs for the evaluation of our technique.

(Execution Time Reduction) First, we measured the execution time reduction
using the architectural and compiler support described. For this experiment, we
used an ALAT of size 4 and allowed the hardware support to automatically
maintain the ranges within the 4 entries. We generated code to remember the
addresses in the ALAT (by using the S.Rd instruction) for the heap and global
data, since stack addresses are local to the thread. We then used profiling to
identify the part of shared data that is local to each thread and promoted such
variables to registers. To keep misspeculation at a minimum we use the compiler
technique described and reorder the iterations of loop, so that shared data is
updated as early as possible. As we can see from Fig. 11(a), we are able to

 register promotion
speculation past barrier

 0

 5

 10

 15

 20

 25

 30

av
er

ag
e

M
S

T

B
is

or
t

S
w

im

E
qu

ak
e

R
ec

ur
re

nc
e

C
ho

le
sk

y

Ja
co

bi P
er

ce
nt

ag
e

E
xe

cu
tio

n
T

im
e

R
ed

uc
tio

n

Copy Overhead
Miss−speculation
Useful Work

 0

 20

 40

 60

 80

 100

 120

 140

av
er

ag
e

M
S

T

B
is

or
t

S
w

im

E
qu

ak
e

R
ec

ur
re

nc
e

C
ho

le
sk

y

Ja
co

bi

 E
xe

cu
tin

g
tim

e
br

ea
ku

p

Fig. 11. Execution time reduction and break up

reduce the execution time significantly. The percentage reduction in execution
times ranges between 6% (Bitonic sort) and 24% (Livermore loop 2). On an
average we could achieve a 12% reduction in execution time by speculatively
executing past barriers. By performing speculative promotion of variables into
registers, we could achieve further reduction in execution times. Recurrence and
Cholesky, have a significant number of redundant loads around synchronizations
and for these programs we could reduce the execution times significantly – 8%
and 4% respectively. On an average, execution time was reduced by a further
2.5% across all benchmarks, due to speculative register promotion.

To gain further insight as to why we were getting the speedup, we measured
how the original time spent in synchronization (without speculation) was now
being spent with speculation. As we can see from Fig. 11(b), about 37% of the
original time spent in barrier is now channeled into performing useful work. We
can also see that the time spent inside the handler recovering from misspeculation
is relatively low (about 5%), owing to small number of misspeculations. However,
significant time (about 58%) was spent performing copies for maintaining and
committing speculative state.

 Without Reordering
 With Reordering

 0

 10

 20

 30

 40

 50

 60

 70

av
er

ag
e

M
S

T

B
is

or
t

S
w

im

E
qu

ak
e

R
ec

ur
re

nc
e

C
ho

le
sk

y

Ja
co

bi

 M
is

s−
sp

ec
ul

at
io

n
ra

te

Fig. 12. Efficacy of reordering

(Efficacy of loop reordering) Recall that to reduce misspeculation we reordered
the loops so that updates to shared data take place earlier. To determine the
efficacy of this optimization we measured the misspeculation rates before and
after application of this transformation. As we can see from Fig. 12, this opti-
mization significantly reduces the misspeculation rates for Jacobi (44% to 5%),
Equake(54% to 2.3%) and Swim (51% to 6%) programs. In the above three pro-
grams, there was a shared update in the end of each thread’s execution which
was causing misspeculation. Once we moved this earlier, the misspeculation rate
significantly dropped.

6 Related Work

(Speculation past barriers) The Fuzzy Barrier [3] is a compile time approach
to reduce time spent idling on barriers, by specifying a range of instructions
over which the synchronization can take place instead of a specific point where
the threads must synchronize. However, this approach relies on the compiler
to find instructions that can be safely executed while a thread is waiting for
others to reach the barrier. Speculative lock Elision [14] and Speculative Syn-
chronization[9] are hardware techniques to speculatively execute threads past
synchronization operations. While the former dynamically converts lock-based
codes into lock-free codes, the latter also applies to flag synchronizations and
barriers. The thread that has reached the barrier, speculatively executes past
the barrier. Hardware support (addition of per block tags to the cache, modi-
fications to the cache coherence, support for register checkpointing) is used to
monitor dependence violations between the speculate thread(s) that are execut-
ing past the barrier and other non-speculative threads that are yet to reach the
barrier. If such a violation is detected, the speculative thread is rollbacked to
the synchronization point. Our approach, on the contrary, augments the rela-
tively lightweight HW support in the form of ALAT, that is already available in
processors[1, 6], to perform misspeculation detection.

(Speculative Parallelization) There has been recent research on software tech-
niques for speculatively parallelizing sequential codes [2, 21, 5]. However, while

the above work focusses on exposing coarse-grained parallelism in sequential
codes, the focus of this work is on exposing fine-grained parallelism present in
parallel codes.

(Transactional Memory) The problem of detecting cross-thread dependence
violations at run time is known as conflict detection under Transactional memory
(TM) [4] parlance. STM systems [8] instruments loads and stores with read/write
barriers to detect conflicts. On the contrary, HTM systems [4] rely on hardware
support (modifications to caches/cache coherence) to detect conflicts. Hybrid
TMs[10, 20] use hardware to perform the simple and common case and rely on
software support to handle the uncommon case. Recent proposals on hybrid
TM have proposed hardware support for conflict detection. While SigTM[10]
uses hardware signatures for conflict detection, RTM proposed the Alert-on-
Update [20] mechanism which triggers a software handler when specified lines
are modified remotely. In the current work, we modify existing HW support in
the form of ALAT to provide conflict detection. By storing the addresses in the
ALAT as ranges, we take advantage of program properties to efficiently store the
read set in the ALAT. Furthermore, we use the cross thread dependence detection
capability to implement speculative optimizations for parallel programs.

(Data Speculation) There has been significant work on hardware structures to
enable data speculative optimizations [13, 6, 7]. While [13] proposes the store-load
address table (SLAT) to enable speculative register promotion, [6] and [7] use
the ALAT available in Itanium processors [1] to enable sophisticated compiler
optimizations such as speculative partial redundancy elimination (PRE) etc. In
this work, we utilize a modified ALAT to perform data speculative optimizations
in the context of parallel programs running on multicores.

(Other Related Work) Neelakantam et al. [12] use hardware atomicity to imple-
ment speculative compiler optimizations. However, while they primarily imple-
ment compiler optimizations such as partial inlining and unrolling for increasing
single threaded performance, we are concerned with compiler optimizations for
increasing parallel program performance on multicores. We used exposed cache
events [11] to perform a variety of monitoring tasks, including detecting mis-
speculation when speculating past barriers. In our current work, in addition to
using the ALAT for detecting misspeculation detection, we also propose com-
piler optimizations to reduce misspeculation and a technique for speculatively
promoting registers in the presence of synchronization.

7 Conclusion

In this work, we adapt existing architectural support for data speculation in
the form of ALAT, to make it applicable for parallel programs running on multi-
cores. We utilize this scheme to perform two speculative optimizations to improve
parallel program performance. First, by speculatively executing past barrier syn-
chronizations, we reduce time spent idling on barriers, translating into a 12%
increase in performance. Second, by promoting shared variables to registers in
the presence of synchronization, we reduce a significant amount of redundant
loads, translating into an additional performance increase of 2.5%.

References

1. Itanium software developers manual. In: http://www.intel.com/design/itanium
/manuals/iiasdmanual.htm

2. Ding, C., Shen, X., Kelsey, K., Tice, C., Huang, R., Zhang, C.: Software behavior
oriented parallelization. In: PLDI. pp. 223–234 (2007)

3. Gupta, R.: The fuzzy barrier: A mechanism for high speed synchronization of
processors. In: ASPLOS. pp. 54–63 (1989)

4. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-
free data structures. In: ISCA (1993)

5. Kelsey, K., Bai, T., Ding, C., Zhang, C.: Fast track: A software system for specu-
lative program optimization. In: CGO. pp. 157–168 (2009)

6. Lin, J., Chen, T., Hsu, W.C., Yew, P.C.: Speculative register promotion using
advanced load address table (alat). In: CGO. pp. 125–134 (2003)

7. Lin, J., Chen, T., Hsu, W.C., Yew, P.C., Ju, R.D.C., Ngai, T.F., Chan, S.: A
compiler framework for speculative analysis and optimizations. In: PLDI. pp. 289–
299 (2003)

8. Marathe, V.J., III, W.N.S., Scott, M.L.: Adaptive software transactional memory.
In: DISC. pp. 354–368 (2005)

9. Mart́ınez, J.F., Torrellas, J.: Speculative synchronization: applying thread-level
speculation to explicitly parallel applications. In: ASPLOS. pp. 18–29 (2002)

10. Minh, C.C., Trautmann, M., Chung, J., McDonald, A., Bronson, N., Casper, J.,
Kozyrakis, C., Olukotun, K.: An effective hybrid transactional memory system
with strong isolation guarantees. In: ISCA. pp. 69–80 (2007)

11. Nagarajan, V., Gupta, R.: Ecmon: Exposing cache events for monitoring. In: ISCA
(2009)

12. Neelakantam, N., Rajwar, R., Srinivas, S., Srinivasan, U., Zilles, C.: Hardware
atomicity for reliable software speculation. In: ISCA. pp. 174–185 (2007)

13. Postiff, M., Greene, D., Mudge, T.N.: The store-load address table and speculative
register promotion. In: MICRO. pp. 235–244 (2000)

14. Rajwar, R., Goodman, J.R.: Speculative lock elision: enabling highly concurrent
multithreaded execution. In: MICRO. pp. 294–305 (2001)

15. Renau, J., Fraguela, B., Tuck, J., Liu, W., Prvulovic, M., Ceze, L., Sarangi,
S., Sack, P., Strauss, K., Montesinos, P.: SESC simulator (January 2005),
http://sesc.sourceforge.net

16. Rinard, M.C.: Analysis of multithreaded programs. In: SAS. pp. 1–19 (2001)
17. Salcianu, A., Rinard, M.C.: Pointer and escape analysis for multithreaded pro-

grams. In: PPOPP. pp. 12–23 (2001)
18. Sampson, J., González, R., Collard, J.F., Jouppi, N.P., Schlansker, M., Calder, B.:

Exploiting fine-grained data parallelism with chip multiprocessors and fast barriers.
In: MICRO. pp. 235–246 (2006)

19. Shirako, J., Zhao, J.M., Nandivada, V.K., Sarkar, V.: Chunking parallel loops in
the presence of synchronization. In: ICS. pp. 181–192 (2009)

20. Shriraman, A., Spear, M.F., Hossain, H., Marathe, V.J., Dwarkadas, S., Scott,
M.L.: An integrated hardware-software approach to flexible transactional memory.
In: ISCA. pp. 104–115 (2007)

21. Tian, C., Feng, M., Nagarajan, V., Gupta, R.: Copy or discard execution model
for speculative parallelization on multicores. In: MICRO. pp. 330–341 (2008)

