
Speculative Subword Register Allocation in

Embedded Processors?

Bengu Li1, Youtao Zhang2, and Rajiv Gupta1

The Univ. of Arizona, Dept. of Computer Science, Tucson, Arizona1

The Univ. of Texas at Dallas, Dept. of Computer Science, Richardson, Texas2

Abstract. Multimedia and network processing applications make ex-
tensive use of subword data. Since registers are capable of holding a full
data word, when a subword variable is assigned a register only part of
the register is used. We propose an instruction set extension to the ARM
embedded processor which allows two data items to reside in a register
as long as each of them can be stored in 16 bits. The instructions are
used by the register allocator to speculatively move the value of an oth-
erwise spilled variable into a register which has already been assigned
to another variable. The move is speculative because it only succeeds if
the two values (value already present in the register and the value being
moved into the register) can be simultaneously held in the register using
16 bits each. When this value is reloaded for further use, an attempt is
first made to retrieve the value from its speculatively assigned register.
If this attempt succeeds, load from memory is avoided. On an average
our technique avoids 47% of dynamic reloads caused by spills.

1 Introduction

Recent research has shown that embedded applications, including network and
media processing applications, contain significant amounts of narrow width data
[4, 13]. Network processing applications usually pack the data before transmis-
sion and unpack it before processing. The unpacked data is composed of sub-
word data. Media applications typically process byte streams. Since subword
data requires fewer bits to store than the machine word size, its presence can
be exploited by many optimizations that can help satisfy the tight area, per-
formance and power constraints of embedded systems. Recent work has focused
on exploiting narrow width data to carry out memory related optimizations [5,
14–16]. In this paper we show how narrow width data can be exploited to make
effective use of small number of registers provided by embedded processors. We
address this problem in context of the ARM processor [10].

The main objective of this work is to develop the architectural and compiler
support through which the registers can be used more effectively in presence of
subword data. In particular, our goal is to allow two variables to be simultane-
ously assigned to the same register such that if their values can be represented

? Supported by Microsoft, Intel, and NSF grants CCR-0324969, CCR-0220334, CCR-
0208756, CCR-0105355, and EIA-0080123 to the Univ. of Arizona.



using 16 bits, they can be simultaneously held in a register. To demonstrate
that this objective is worth pursuing we collected some data by executing a set
of embedded applications. We found that the average bitwidth across all vari-
ables over entire program execution ranges from 15.87 to 20.74 bits across the
benchmarks. We also found that the percentage of variables whose average width
for the entire execution does not exceed 16 bits ranges from 33% to 61% across
the benchmarks. Thus, it is quite clear that many variables can be stored using
16 bits for significant periods of time during execution.

Table 1. Dynamically observed narrow width data.

Benchmark Dynamic Bitwidth Variables ≤ 16 Bits
g721.decode 17.43 49%
g721.encode 18.99 44%
epic 16.35 61%
unepic 19.52 45%
mpeg2.decode 17.59 45%
mpeg2.encode 15.87 59%
adpcm.dec 17.07 50%
adpcm.enc 16.87 54%
drr 18.81 35%
frag 20.52 33%
reed 20.74 38%
rtr 19.03 38%

Generally the observed subword data can be divided into two categories:
(static) a variable is declared as a word but in reality the values assigned to the
variable can never exceed 16 bits; and (dynamic) a variable is declared as a word
but in practice the values assigned to it do not exceed 16 bits most of the time
during a program run. In our prior work on bitwidth aware register allocation,
the compiler is responsible for identifying the upperbound on the bitwidth of
variables and then multiple subword variables are packed into individual registers
during register allocation [11, 6]. This approach exploits only the opportunities
due to static subword data.

In this paper, we propose a speculative subword register allocation (SSRA)
scheme. A speculative allocation pass is introduced after the normal register al-
location pass. In the speculative pass, an additional variable may be allocated
to a register which was assigned to another variable in the normal pass. A de-
cision to assign another variable to an already allocated register is made only if
the value profile data indicates that most of the time the two variables can fit
into a single register. While the value of variable assigned to the register in the
normal pass is guaranteed to be present in the register, the value of the variable
assigned to the same register in the speculative pass may or may not be present
in the register depending upon whether the two values can fit into a single reg-
ister or not. Code is generated in a way that while loads are generated to reload
the value of the variable assigned a register during the speculative pass, these
loads are only executed if the value cannot be saved in the register. While the
benefit of this approach is the reduction in the number of dynamically executed
loads, in case the value cannot be kept in the register we pay an extra cost.
This extra cost is due to additional instructions introduced to save and retrieve



speculatively stored values in registers. The main advantage of this approach
is that both categories of subword data (static and dynamic) can be exploited.
Moreover, static bitwidth analysis [9, 11, 3] that is otherwise used to compute
bitwidths of variables in no longer needed. Instead, speculative register alloca-
tion is driven by value profiles. It should be noted that our work is orthogonal to
speculative register promotion technique of [7]. While speculative register pro-
motion allows allocation of registers to variables in presence of aliasing, our work
assigns already allocated registers to additional variables when no free registers
are available.

The rest of the paper is organized as follows. In section 2 we discuss bitwidth
aware register allocation and identify the challenges in developing a speculative
register allocation scheme. The architectural support is introduced in section 3.
Section 4 discusses the speculative register allocation algorithm. The implemen-
tation and experimental results are presented in section 5. Related work and
conclusions are given in sections 6 and 7.

2 Bitwidth Aware Register Allocation: Static vs.

Dynamic Narrow Width Data
The discussion of register allocation in this paper targets embedded processors
where small modifications can be made to effectively manipulate subword data.
Each register R can contain up to two entities that are of same size, i.e. it can
hold a whole word R1..32 or two half-words R1..16 and R17..32.

Let us consider the existing approach to bitwidth aware register allocation
[11]. Figure 1(a) contains a code fragment in which variables b and c are assigned
to registers R1 and R2 respectively. Moreover there is no free register for variable
a. Thus, spill code is generated to store new value of a back to memory after
computation and a load is introduced to bring the value from memory before
a is used (Figure 1(b)). The approach in [11] determines the bitwidths of the
variables using data flow analysis. Let us assume that the resulting bitwidths
indicate that all three variables can be stored in 16 bits. Thus, the variables
can each be assigned to use half of a register as shown in Figure 1(c). In the
transformed code, instead of being spilled to memory, variable a is assigned to
use half of a register R117..32 while the other half of the same register is used to
hold the value of variable b.

�����������	�
����

������������������

�������

����������

�

�����������

���� ���
�����

���� ���
�����

������
���� �

�!���
�����
�!��

�

������
�����
�!���

���� �
�!��

"�#�$�������%��$�� "�#��&������	���'��	����(

���� ���

���� ���

����� !���!��

�	�� !�������

�

�	��)!�������

������!��)!���

"�#�	��'��������$��

���� ���
���� �

Fig. 1. Bitwidth aware register allocation.

While the above approach is effective, there are situations under which op-
portunities for subword register allocation cannot be detected and/or exploited.
It is possible that the compiler is unable to establish that variables a, b and



c occupy only half a word or that they occupy half a word most of the time
and only rarely take up more space. In particular, the three situations under
which the above approach fails are as follows: (a) The program does not contain
enough information to enable discovery of true bitwidths. For example, an input
variable may be declared as a full word variable although the valid inputs do not
exceed 16 bits. The compiler will fail to realize that the input variable represents
subword data; in addition, bitwidths of variables that depend upon this input
will also be likely overestimated; (b) Even if the program contains information
to infer the true bitwidths of variables, the imprecision in static analysis may
lead us to conclude that the bitwidths exceed 16 bits; and (c) We miss the op-
portunity to optimize variables that represent subword data most of the time
but only sometimes exceed 16 bits. For example, for the code in Figure 3(a) the
value profiles may show that for most executions or for most of the time dur-
ing a single execution variables a, b, and c take values that can be represented
in 16 bits. However, existing register allocation techniques cannot exploit this
information and will introduce spill code as in Figure 1(b).

In summary we can say that while the existing method for bitwidth aware
register allocation can take advantage of statically known subword data, it can-
not take advantage of dynamically observed subword data. In this paper we
address this issue by proposing a speculative mechanism for packing two vari-
ables into a single register. Profiling information is used to identify variables
which when packed together are highly likely to always have their values fit into
a single register. If the values do fit into the same register, loads associated with
reloading of values are avoided; otherwise they are executed. While the basic
idea of our approach is clear, there are architectural and compiler challenges to
achieving such a solution which are as follows:

Architectural support. The key challenge here is to design instruction set
extensions through which the mechanism for speculative packing of two variables
into one register can be exposed to the compiler. Compiler should be able to
control which variable is guaranteed to be found in a register and which variable
is expected to be present. Instruction for speculatively storing a value into a
register and checking whether it is present are needed. Finally once two values
are present in a register we need to be able to address them.

Compiler support. We need to develop an algorithm for global register allo-
cation such that it leads to performance improvements when speculative register
assignments are made. This requires that we carefully choose the pair of variables
that are assigned to the same register. The compiler must choose the variable
whose value is guaranteed to be found in the register and one whose value is
expected to be found in the register. Since there is extra cost due to checking
whether a speculatively stored value is present in a register, the compiler must
use profile data to pair variables such that it is highly likely that the values of
both variables will be able to reside simultaneously in the same register. Finally
speculative register assignment should be carefully integrated into conventional
global register allocation algorithm.



3 Architectural Support
In this section, we discuss the necessary architectural support to enable specu-
lative subword register allocation. To support subword accesses, we attach one
bit with each register, allocate a global bit in status word register and add four
new instructions. These extensions are described in greater detail next.

3.1 Register File Enhancement

The register file in ARM processors includes 16 user visible 32-bit registers. We
add one extra bit B to each register which is used to indicate whether the register
currently holds subword data. As shown in Figure 2, when the bit is cleared, the
register stores one 32-bit value. When the bit B is set, the two halves of the
register store two 16-bit values. The upper half of the register is used to store
the speculatively saved value and it can be separately accessed by the four new
instructions we add (discussed later). When accessing the value that is definitely
present, i.e. when register is accessed by normal instructions, the lower half is
accessed.

�

�

��
��������	
��

���	������

���������

���	������

Fig. 2. Accessing registers.

3.2 Instruction Set Support

To speculatively store a value in the upper half of the register and to access it
later on, we propose four new instructions. We also add an additional G bit to
the status word register which is set and examined by these new instructions.
These instructions are described in detail below. The first two instructions are
used together to speculatively assign a value to an already occupied register
while the last two are used to access a speculatively saved value.

Speculative store: Ssw Rs, addr. This instruction stores the value of Rs into
the memory address addr. In addition, it checks the value for compressibility. In
particular, it sets the G bit in the status register if the higher order 16 bits are
the same as its 16th bit, i.e. they are sign extensions.

Store move: Smv Rd, Rs. This instruction checks the global condition bit G

and the non-speculative value residing in Rd for compressibility. If G is set, and
the higher order 16 bits of Rd are the same as its 16th bit, the lower order 16
bits of Rs are moved into upper half of Rd. The B bit of Rd is set to indicate
that it now contains two values.

Extract move: Emv Rd, Rs. This instruction checks the B bit of Rs. If the
bit is set, the higher order 16 bits of Rs are sign extended and then moved to
Rd. In addition, the global condition G is set to indicate that the instruction
was successful in finding the speculatively stored value in Rs. If the B bit of Rs

is not set, G is cleared to indicate that the value was not found.



Speculative load: Sld Rd, addr. This instruction checks the G bit in the
status word. If it is clear, the value stored in memory address addr is loaded
into Rd; otherwise, the instruction acts as a null instruction. In the latter case
the load is not issued to memory because the preceding instruction must have
located the speculatively saved value in the specified register.

Let us reconsider the example in Figure 3(a) where value of a is being spilled
because no register is free. Let us assume that we would like to speculatively
save the spilled value of a in register which holds the value of c (say register
R2). The code in Figure 3(b) shows how instructions Ssw and Smv are used to
speculatively save the value in R2 and then later instructions Emv and Sld are
used to reload the value of a from R2 into R4. If the speculative save of a is
successful, the Sld instruction turns into a null operation; otherwise the value
of a is reloaded from memory.

���� ���
������

	
����
�����

���� ���
������

�	
���
�����

������������

��������������

�

��������������

��������������

�������
�����

��� ���� � 	
!�	
���
�"����

� #�������

$ #�������

%&��������������	��

��������
�'
�������

����(���������&%

�)���*���

�

��)��+����

���	
�(����,��	��

Fig. 3. Example illustrating the use of new instructions.

From the above discussion it is clear that we pay a cost for speculatively
saving and reloading a compressed value. While traditional code would have
included a store and a load, in our case we also introduce two extra move in-
structions (Smov and Emov). However, the benefits of eliminating loads are much
greater as not only loads have longer latency, they can also cause cache misses
which leads to even greater delays. Moreover our compiler will only perform
speculative register assignment when it is highly likely that it would lead to
elimination of loads.

3.3 Hardware Implementation

Other modifications must be made to the processor pipeline when the above
mentioned instructions are introduced. Normal instructions must always check
the B bit of a register that it reads or writes to. This is needed so that it knows
how to interpret and update the contents of the register. Changes are needed
when results are being written or operands are being read. For modern embedded
processors such as ARM SA-110 (see Figure 4(a)) changes affect the second and
fourth stage of the pipeline.

ALU instructions compute the result in execute stage while the register is
updated at write back stage. A small component can thus be added in the in-
tervening buffer stage to ensure that the higher order bits are sign extensions.
If not, the entire register is used to hold the result and the corresponding B bit
of the register is cleared. For memory access instructions that use a register as



the destination, i.e. load instructions, register is ready at the end of buffer stage
and thus we do not have time to perform validation. We simply clear its B bit
and use all the bits in this case.

�����

�����

	��
��

�����

������

�����

������

������

���������

������

��������

��������

������

���

����� ���

�

�

	
�����������
����������

�����������

���

�

�����

	������������
�������

�����
�����
��������������

Fig. 4. (a) ARM processor pipeline; and (b) Accessing registers with subword support.

Since the flag bit B of a register determines whether a 16-bit or a 32-bit value
is involved in a computation, we need a multiplexer for the higher order 16 bits.
Therefore in comparison to a machine without subword support, we introduce
extra delay due to the multiplexer shown in Figure 4(b). However, this delay
is smaller than the delays in processors that support accesses to arbitrary bit
sections such as the Infineon processor [8].

4 Speculative Subword Register Allocation
Given the hardware support designed in the preceding section, we now discuss
compiler support needed to carry out speculative subword register allocation
(SSRA). Since we have designed our algorithms so that they can be integrated
into the gcc compiler, we first briefly introduce the implementation of register
allocation in gcc compiler. Next we describe the details of the three passes that
implement SSRA. The profiling pass collects information about how likely it is
that the two variables can fit into one register and how long is the lifetime during
which they coexist. Based on this information, the new speculative allocation

pass determines a subset of physical registers and speculatively assigns other
variables to each of them. The variables picked up in this pass are those that
otherwise are spilled into memory. The decision is made to achieve speculatively
best performance in terms of reduction in the number of reload operations that
are executed. In the enhanced reload pass, the compiler generates transformed
code utilizing the newly designed instructions.

4.1 Register Allocation in the gcc compiler

The gcc compiler [2] performs register allocation in three passes: local register
allocation pass, global register allocation pass, and reload pass. These passes
operate on the intermediate representation – register transfer language (RTL).
Operands are mapped to virtual registers before register allocation. The local and
global register allocation passes do not actually modify the RTL representation.
Instead, the results of these passes is an assignment of physical registers to virtual
registers. It is the responsibility of reload pass to modify the RTL and insert spill
code if necessary.

The local register allocation pass allocates physical registers to virtual reg-
isters that are both generated and killed within one basic block, i.e. live ranges
that are completely local to a basic block are handled in this pass. The alloca-
tion is driven by live range priorities. Register coalescing is also performed in



this pass. Since local register allocation works on linear code, it is inexpensive.
Local allocation reduces the amount of work that must be performed by the
more expensive global allocation pass.

The global register allocation pass allocates physical registers to the remain-
ing virtual registers. This pass may change some of the allocation decisions made
during the local register allocation pass. This pass performs allocation by color-
ing the global interference graph [1]. Virtual registers are considered for coloring
in an order determined by weighted counts. If a physical register cannot be
found for a virtual register, none is assigned and the virtual register is handled
by generation of spill code in the reload pass.

The reload pass replaces the virtual registers references by physical register
names in the RTL according to the allocations determined by the previous two
passes. Stack slots are assigned to those virtual registers that were not allocated a
physical register in the preceding passes. Reload pass also generates spill code for
them. Unlike Chaitin-style [1] graph-coloring allocation, which spills a symbolic
register, a physical register is spilled. For each point where a virtual register must
be in a physical register, it is temporarily copied into a ”reload register” which
is a temporarily freed physical register. Reload registers are allocated locally for
every instruction that needs reloads.

4.2 The SSRA Algorithm

In this section we first discuss how SSRA is integrated into the gcc register
allocator described above. The details of SSRA are also discussed later. The
modified design of gcc register allocator after integration of SSRA into it is shown
in Figure 5. In integrating SSRA with the gcc allocator we keep the following
in mind. There are three types of accesses allowed in our architecture: register
accesses for values definitely present in registers – these accesses are the fastest;
memory accesses that are the slowest; and register accesses for speculatively
assigned values which have an intermediate access cost as an additional Sld
instruction is required.

��������	
���

�������
�������

���������	
���

�������
�������

�����������

��������	
���

�������
�������

���������	
���

�������
�������

��������
�����	
���

�������
�������

��������
���������

����

�����

����������

���
�
�	����� �����

Fig. 5. Framework for speculative register allocation.

In light of the above observation, we first carry out local register allocation
and global register allocation passes in exactly the same way. This is because
the variables that are referenced more frequently are assigned physical registers
in these passes. At run time, the variables that are assigned physical registers in



these phases occupy either the whole physical register or possibly just the lower
half. Following the above passes SSRA is used to speculatively assign physical
registers to virtual registers that are not colored by the first two passes. Finally,
the virtual registers that are still not colored are handled by generating memory
references by the reload pass. The reload pass is enhanced to generate the newly
designed instructions.

During the speculative allocation pass, the upper halves of the physical reg-
isters are made speculatively available for the variables that are not colored
by the preceding passes. However, it is important that the savings expected by
finding the speculatively assigned values in registers exceeds the additional cost
of executing Emv instructions when the values are not found in the registers
and must be loaded from memory. The savings depend on how frequently the
variables are able to be coalesced and how often the references to memory can
be avoided. We add a profiling pass which instruments the code and records
the information needed to estimate the savings. Since we can only coalesce one
variable which already has a register with one variable which does not have a
register, we only need to collect profile information for relevant pairs of values.
The SSRA pass makes its decisions to achieve speculatively best performance by
avoiding maximum number of reload operations. After the decisions are made,
a speculative reload pass generates the code according to the decisions made
in all of the previous passes. It inserts spill code and the code for speculatively
allocated virtual registers. When there are no spilled variables, the behavior of
our modified allocator is identical to the behavior of the original gcc allocator.

Next we describe the details of the SSRA algorithm. Three main parts of
our algorithm are discussed: priority based allocation algorithm; profiling pass
details; and the speculative reload pass.

Priority Based Speculative Allocation. The decision to speculatively al-
locate an occupied register to another variable is made based upon profile in-
formation consisting of the following: coexisting lifetime of variables v1 and v2
refers to the period of time during which v1 and v2 are both live during pro-
gram execution; and coalescing probability of variables v1 and v2 refers to the
percentage of the coexisting lifetime during which v1 and v2 can be coalesced.
The coalesce probability is undefined if two variables never coexist. Note that
during program execution one variable may be coalesced with different variables
at different program points.

The speculative allocation pass makes use of two interference graphs. One is
called the Annotated Interference Graph (AIG) which contains the information
needed to make coloring decisions while the coloring itself is performed on an-
other interference graph called the Residual Interference Graph (RIG). A more
detailed description of these graphs follows.

The Annotated Interference Graph (AIG) graph is built from the interference
graph after global allocation pass in which some nodes are not colored. For
each non-colored node, we annotate the edges between this node and its colored
neighbors with a 2-tuple (coalescing probability, coexisting lifetime). Figure 6(a)
shows a simple example with nine virtual registers and two physical registers.



After global register allocation pass, nodes 1-6 are colored with two colors and
nodes 7-9 are not colored. The edge labels are interpreted as follows. Label
(0.9, 800) on edge (7,1) indicates that during 90% of 800 units of the time that
variables 1 and 7 coexist, both of them are expected to require no more than 16
bits to represent and thus they can simultaneously reside in one register.

���������� ������	�����
�����

�������

�������� �������

��������

���
��	���

���
����

���������

Fig. 6. (a) Annotated interference graph; and (b) Residual interference graph.

The Residual Interference Graph (RIG) is a subgraph of AIG that consists
of non-colored nodes and edges between them. RIG is not annotated. The RIG
for the above example is shown in Figure 6(b). Note that two variables in RIG
may be speculatively allocated to the same register if they do not interfere with
each other.

The speculative allocation pass colors the nodes in RIG using the annotation
information in AIG. After coloring a node in RIG, it shares the same color as
at least one of its colored neighbors in AIG. While all colored nodes in AIG are
colored in the local or global allocation passes, the colored nodes in RIG are
colored in the speculative pass.

Next let us discuss in greater detail how nodes are chosen for coloring from
RIG and how colors are selected for them. This process is also priority driven be-
cause there are limited physical register resources to which additional variables
can be speculatively assigned. Our priority function is based net savings that
are expected to result by speculatively assigning a virtual register to a physical
register. The savings result from avoiding cost of reloads from memory; however,
a cost of one cycle is incurred for each reference due to an extra instruction re-
quired when values are speculatively accessed from registers. The savings are also
a function of coalescing probabilities. Priority of node n, which is the estimated
net savings by speculatively assigning a register to n, is given by:

Priority(n) = READ(n) × READCOST × MCP (n) − REF (n)

where READ(n) is the total number of reads of node n, REF (n) is the total
number of references (reads and writes) to node n, READCOST is the number
of cycles needed to finish a normal read from memory (i.e., it is the memory
latency), and MCP (n) is the maximum coalescing probability of n. Note that
the above Priority value can be negative for some nodes in which case they are
not considered for speculative register assignment. Nodes with higher priority
are considered before those with lower priority.

The maximum coalescing probability of n, i.e. MCP (n), is determined by
considering all available colors for n and finding which color is expected to result



in most savings. The best choice for a color depends upon the following factors.
The higher the coalescing probability of a pair of variables, the more beneficial
it is to allocate them to the same register. The longer two variables co-exist,
the more beneficial it is to allocate them to the same register. Based upon
these two factors we compute the maximum coalescing probability. Moreover
we should also note that the physical register being speculatively assigned to
a node n in RIG may have been allocated to several non-interfering virtual
registers in earlier passes. The coalescing probabilities and lengths of coexistence
of each of these virtual registers with n must be considered as long as a virtual
register interferes with n. The following equation computes the current maximum
coalescing probability MCP (n) for a node n in RIG:

MCP (n) = max
c∈C(n,RIG)

∑

n′∈Nb(n,AIG)∧Cl(n′)=c

CLt(n, n′) × CPb(n, n′)

∑

n′∈Nb(n,AIG)∧Cl(n′)=c

CLt(n, n′)

Where C(n, RIG) is the set of currently available colors for node n in RIG (i.e.,
these colors have not been assigned to neighbors of n in RIG), Nb(n, AIG) is
the set of neighboring nodes of n in AIG (i.e., these nodes were colored during
local or global allocation passes), CLt(n, n′) is the length of coexisting lifetime
of nodes n and n′, CPb(n, n′) is coalescing probability of nodes n and n′ and
Cl(n′) is the color assigned to node n′. The max function finds the maximum
coalescing probability across all potential colors in C(n, RIG).

Profiling Pass. The speculative allocation pass depends on the coalescing prob-
ability and coexisting lifetime profiling information. We implement the profiling
by instrumenting the intermediate representation of the code. Profiling is per-
formed after the global allocation pass when the objects of our optimization,
those variables which do not get a register, have been identified. At this time
the liveness information of the variables at each program points is available since
data flow analysis is done before register allocation. The intermediate representa-
tion used still contains virtual registers instead of physical register since register
reloading pass has not been done.

We are only interested in the relation between colored and non-colored nodes.
Whether two variables can be coalesced or not depends on the status of the
variables (i.e., whether they fit in 16 bits or not). A variable read will not change
the status of the variables and thus consecutive variable reads will share the same
coalescing probability. Variable definitions can change the status of variables and
thus change the coalescing probability between two variables. Therefore variable
definitions play an important role in the coexisting lifetime of two variables.
In the priority function described earlier, the number of references has already
been considered. Here, we use the length of the status history of two variables
to approximate the coexisting lifetime.

Two arrays, lifetime[i][j][k] and count[i][j][k], are used during profiling. Here
index i identifies the function, index j identifies the colored variable, and index



k identifies the non-colored variable. The lifetime array records the length of
overlap of live ranges of two variables while the count array records the duration
over which the two variables are likely coalescable. The coalescing probability is
computed by dividing latter by the former.

Speculative Reload Pass. Our speculative reload pass is an enhanced version
of the gcc reload pass. According to the decisions made in the previous passes,
we generate code to access physical registers, access upper halves of physical
registers and access memory. In summary, we have three categories of variables
to handle in this pass.

First, for variables that are assigned to physical registers in local and global
register allocation, the compiler replaces the virtual register names with physical
register names in the intermediate representation.

Second, for variables that remain in virtual registers after speculative alloca-
tion pass, the compiler allocates slots on the stack and generates spill code. For
each definition or use point, we identify a reload register and generate spill code
by placing the store after the definition and load before the use.

Finally, for variables that are assigned in the speculative pass, we still need
to allocate slots on the stack and generate spill code for them. Instead of using
ordinary load and store instructions, we generate speculative load and store
instructions. At a definition point, the compiler identifies a reload register and
temporarily stores the computed value into this register. A speculative store
instruction Ssw is generated to speculative store the value back to the stack slot.
It is followed by a speculative Smv instruction which speculatively moves the
value from the temporary register into the upper half of the assigned register.

At each use point, we identify a reload register and try to speculatively ex-
tract the value from the assigned upper half of the register using a speculative
Emv instructions. It is followed by a speculative load instruction Sld which ac-
tually loads the value from the stack slot if at runtime the required value is not
in the register.

5 Experimental Results

We have implemented and evaluated the proposed technique. The speculative
subword register allocation algorithms have been incorporated in the gcc Com-
plier for the ARM processor. All the phases have been implemented including
the profiling pass, speculative allocation pass, and enhanced register reloading
pass to generate spill code. While new instructions are generated, to avoid the
effort of modifying the assembler and the linker, we insert nop instructions in
their place in the code and generate an additional file in which the new instruc-
tions and the absolute addresses in the binary where these instructions must
replace the nop instructions are provided. The code generated by the compiler is
executed on the ARM version of the Simplescalar simulator. The simulator was
modified to implement the proposed architectural enhancements including the
newly incorporated instructions, registers with B bits, the G bit in the status
word, and the logic needed to access lower or upper half of the register.



We carried out experiments using some embedded benchmarks from the
Mediabench and Commbench suites. We also took a couple of SPEC2000 bench-
marks to see if the technique we have developed can be useful for general pur-
pose applications. We ran the programs with different memory latencies such
that when speculative reloads from registers are successful, the number of cycles

saved in comparison to reloading from memory is 1, 2, 3 and 4 cycles. Our eval-
uation is aimed at determining the percentage of dynamic reloads from memory
that are successfully transformed into speculative dynamic reloads from regis-
ters. We also considered the overall reduction in execution time of the program
as a result of avoiding these reloads.

In Table 2 we present the benchmark characteristics. The first six programs
are taken from embedded suite while the last two from SPEC2000. The table
presents the number of residual virtual registers present in the intermediate
code generated by the gcc compiler following the global register allocation pass,
the number of static reloads generated by the gcc reload pass, and the number
of dynamic reloads that can be attributed to these static reloads during the
execution of the benchmarks.

Table 2. Benchmark characteristics.

Benchmarks Res. Vir. Static Dynamic
Regs Reloads Reloads

Embedded
mpeg2.decode 114 483 952060
mpeg2.encode 278 1234 29738119
epic 109 527 6307287
unepic 48 225 107759
g721.encode 9 33 3543596
g721.decode 9 33 4046653
rtr 12 28 3855503

General Purpose
176.gcc 1755 10200 99248047
164.gzip 77 365 53069259

Table 3. Improvement in cycles.
Saving = Saving = Saving = Saving =
1 Cycle 2 Cycles 3 Cycles 4 Cycles

Embedded
0.38% 0.65% 0.97% 1.27%
2.53% 4.09% 5.70% 7.33%
0.38% 1.31% 3.06% 5.17%
0.10% 0.21% 0.32% 0.45%
0.95% 1.53% 2.11% 2.71%
1.13% 1.82% 2.53% 3.26%
0.79% 1.20% 1.61% 2.02%

General Purpose
5.06% 8.97% 13.04% 17.20%
1.08% 1.77% 2.59% 3.42%

The results of studying the effectiveness of our technique in avoiding dynamic
reloads are given in Figure 7. We present two numbers for each program: Specula-

tion percentage is the percentage of dynamic memory reloads that were changed
into speculative dynamic register reloads by our technique; and Avoidance per-

centage is the percentage of dynamic memory reloads for which the speculative
register reloads were successful, i.e. the value was found in the register. The
above values vary with the savings (1, 2, 3, or 4 cycles) that can be expected
from using speculative register reloads. This is because the savings effect the
priorities of nodes in RIG and therefore the code generated by by the SSRA
algorithm. For greater values of savings SSRA will perform speculative register
allocation more aggressively.

The results show that on average, the Speculation percentage is 57% when
the saving is one cycle and 82% when saving is four cycles. Furthermore, when
the saving is one cycle, SSRA achieved an average Avoidance percentage of 41%
(with upper bound of 91% and lower bound of 5%). When the saving is four
cycles, Avoidance percentage increases to 47% (with upper bound of 93% and



lower bound of 16%). From these results we notice that the minimal savings of
one cycle is enough to get most of the reduction in memory reloads.

Saving = 1 Cycle 

0
10
20
30
40
50
60
70
80
90

100

m
pe

g2
.d

ec
od

e

m
pe

g2
.e

nc
od

e
ep

ic

un
ep

ic

g7
21

.e
nc

od
e

g7
21

.d
ec

od
e rtr

17
6.

gc
c

16
4.

gz
ip

Benchmarks

P
er

ce
n

ta
g

e

Speculation%

Avoidance%

 

Saving = 2 Cycles 

0
10
20
30
40
50
60
70
80
90

100

m
pe

g2
.d

ec
od

e

m
pe

g2
.e

nc
od

e
ep

ic

un
ep

ic

g7
21

.e
nc

od
e

g7
21

.d
ec

od
e rtr

17
6.

gc
c

16
4.

gz
ip

Benchmarks

P
er

ce
n

ta
g

e

Speculation%

Avoidance%

 Saving = 3 Cycles 

0
10
20
30
40
50
60
70
80
90

100

m
pe

g2
.d

ec
od

e

m
pe

g2
.e

nc
od

e
ep

ic

un
ep

ic

g7
21

.e
nc

od
e

g7
21

.d
ec

od
e rtr

17
6.

gc
c

16
4.

gz
ip

Benchmarks

P
er

ce
n

ta
g

e

Speculation%

Avoidance%

 

Saving = 4 Cycles 

0
10
20
30
40
50
60
70
80
90

100

m
pe

g2
.d

ec
od

e

m
pe

g2
.e

nc
od

e
ep

ic

un
ep

ic

g7
21

.e
nc

od
e

g7
21

.d
ec

od
e rtr

17
6.

gc
c

16
4.

gz
ip

Benchmarks

P
er

ce
n

ta
g

e

Speculation%

Avoidance%

 Fig. 7. Effectiveness in avoiding memory reloads.

Table 3 shows the performance improvement in cycles. On average, our
method achieved performance improvement of 4.76% when the saving is four
cycles and 1.38% when the saving is one cycle. While we had originally designed
this technique for embedded applications, we notice that for a general purpose
application like 176.gcc the savings are much higher (5.05% to 17.20%). This is
because, due to extensive use of pointers, this benchmark contains a much larger
number of dynamic reloads. Moreover narrow width values appear in sufficient
abundance in this application for SSRA to be successful.

6 Conclusions

In this paper we presented a technique that exploits presence of narrow width
data in programs to more effectively make use of limited register resources in
embedded processors. Values otherwise spilled by a coloring allocator are spec-
ulatively saved in registers occupied by other variables. Speculative assignment
is made such that it is expected that the definitely assigned and speculatively
assigned values will be able to simultaneously reside in the same register. We
designed a small set of four new instructions through which the feature of spec-
ulative register assignment can be implemented without requiring significant
amounts of instruction encoding space. The coloring based register allocator
was extended by developing a new pass for speculative register allocation. The
results of our experiments show that SSRA avoided an average of 47% of dynamic
reloads leading to a significant savings in execution time. While our technique
was designed for embedded applications, it is also of value for general purpose
applications.



References

1. G.J. Chaitin, M.A. Auslander, A.K. Chandra, J. Cocke, M.E. Hopkins, P.W. Mark-
stein, “Register Allocation Via Coloring,” Computer Languages, 6(1):47-57, 1981.

2. C.E. Foster and H.C. Grossman, “An Empirical Investigation of the Haifa Register
Allocation in the GNU C Compiler,” IEEE Southeast Conference, pages 776-779,
vol.2 , April 1992.

3. R. Gupta, E. Mehofer, and Y. Zhang, “A Representation for Bit Section based Anal-
ysis and Optimization,” International Conference on Compiler Construction (CC),
pages 62-77, Grenoble, France, Apr 2002.

4. C. Lee, M. Potkonjak, and W.H. Mangione-Smith, “Mediabench: A Tool for Eval-
uating and Synthesizing Multimedia and Communication Systems,” IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO), December 1997.

5. B. Li and R. Gupta, “Simple Offset Assignment in Presence of Subword Data,” In-
ternational Conference on Compilers, Architecture, and Synthesis of Embedded Sys-
tems (CASES), San Jose, CA, October 2003.

6. B. Li and R. Gupta, “Bit Section Instruction Set Extension of ARM for Embedded
Applications,” International Conference on Compilers, Architecture, and Synthesis
of Embedded Systems (CASES), pages 69-78, Grenoble, France, October 2002.

7. J. Lin, T. Chen, W.C. Hsu, and P.C. Yew, “Speculative Register Promotion Using
Advanced Load Address Table (ALAT),” International Symposium on Code Gener-
ation and Optimization (CGO), 2003.

8. X. Nie, L. Gazsi, F. Engel, and G. Fettweis, “A New Network Processor Architecture
for High Speed Communications,” IEEE Workshop on Signal Processing Systems
(SiPS), pages 548-557, 1999.

9. M. Stephenson, J. Babb, and S. Amarasinghe, “Bitwidth Analysis with Application
to Silicon Compilation,” ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI), pages 108-120, 2000.

10. D. Seal, Editor, “ARM Architectural Reference Manual,” Second Edition, Addison-
Wesley.

11. S. Tallam and R. Gupta, “Bitwidth Aware Global Register Allocation,” 30th An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL), pages 85-96, New Orleans, LA, January 2003.

12. J. Wagner and R. Leupers, “C Compiler Design for an Industrial Network Proces-
sor,” ACM SIGPLAN Workshop on Languages, Compilers, and Tools for Embedded
Systems (LCTES), pages 155-164, June 2001.

13. T. Wolf and M. Franklin, “Commbench - A Telecommunications Benchmark for
Network Processor,” IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), April 2000.

14. J. Yang and R. Gupta, “Energy Efficient Frequent Value Data Cache Design,”
IEEE/ACM 35th International Symposium on Microarchitecture (MICRO), pages
197-207, Istanbul, Turkey, November 2002.

15. Y. Zhang and R. Gupta, “Data Compression Transformations for Dynamically Al-
located Data Structures,” International Conference on Compiler Construction (CC),
pages 14-28, Grenoble, France, Apr 2002.

16. Y. Zhang and R. Gupta, “Enabling Partial Cache Line Prefetching Through Data
Compression,” International Conference on Parallel Processing (ICPP), Kaohsiung,
Taiwan, October 2003.


