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Abstract

A control flow trace captures the complete sequence of dynamically executed basic blocks and function calls. It is usually of very large
size and therefore commonly stored in compressed format. On the other hand, control flow traces are frequently queried to assist program
analysis and optimization, e.g. finding frequently executed subpaths that may be optimized. In this paper, we identify path interruption and
path context problems in querying an intraprocedural path over control flow traces. While algorithms that perform pattern matching on
compressed strings have been proposed, solving new challenges requires the extension of traditional algorithms. We design and evaluate
four path matching schemes including those that match in the compressed data directly and those that match after decompression. In
addition, simple indices are also designed to improve matching performance. Our experimental results show that these schemes are practical
and can be adapted to environments with different hardware settings and path matching requests.
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1 Introduction

Data streams with large amounts of data are often stored
in compressed form using common compression algorithms
such as Lempel-Ziv family (Ziv and Lempel, 1977; Ziv and
Lempel, 1978) and SEQUITUR (Nevill-Manning and Wit-
ten, 1997). When the need to search for a pattern in the data
stream arises, it is highly desirable to avoid uncompressing
the data. Therefore researchers have been developing algo-
rithms for pattern matching that operate directly on com-
pressed data (Amir and Benson, 1992; Amir et al., 1996;
Kida et al., 1999; Mitarai, 2001; Navarro et al., 2001).

In the program analysis and optimization community, pro-
gram execution traces especially control flow traces are of-
ten collected to assist analysis, debugging and optimization
(Ball and Larus, 1996; Larus 1999; Zhang and Gupta, 2001).
Since a control flow trace captures the complete sequence of
all executed basic blocks and function calls, it is usually very
large ranging from hundreds of megabytes for a moderate
to several gigabytes for a long run. Recently Larus (Larus
1999) proposed to compress a control flow trace using SE-
QUITUR algorithm which is proven effective in reducing

∗ Corresponding author.
Email address: zhangyt@cs.pitt.edu (Youtao Zhang).

the size. The compressed form of a control flow trace pro-
duced by SEQUITUR is referred to as a whole program path
(WPP). In addition, control flow traces are frequently mined
for subpaths that are commonly followed by the program.
This information is useful for both program understanding
and optimization because it has been observed that while
large programs contain millions of paths, only a few thou-
sand are observed to be taken by the program in practice.

Searching for an occurrence of a path in the WPP poses
unique challenges. The applications of WPPs require search-
ing for an intraprocedural path. However, if an intraproce-
dural path contains procedure calls, it may be interrupted
by paths belonging to called procedures. Therefore a match
in the WPP may be separated by items from its nested func-
tion calls. Moreover, the same path may be generated in
different contexts, that is, during the execution of different
procedures. This is because each procedure reuses the same
basic blocks identifiers. As a result, a literal match may not
be counted if it is from a different function call. Due to the
path interruption and path context problems, existing pat-
tern matching algorithms, such as the one in (Mitarai, 2001),
are not directly applicable for finding a path in a WPP. In
this paper we develop a set of path matching algorithms that
operates on WPPs. We analyze their complexity and present
experimental data that shows that our algorithms are effi-
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(a) Sample Code and its CFG. (b) Control Flow Trace and WPP.

Fig. 1. An Example.

cient in practice.

For the rest of the paper, Section 2 discusses the related work.
Section 3 defines the problem. Section 4 presents the design
and analysis of four path matching algorithms. Experimental
results are collected and discussed in Section 5. Section 6
concludes the paper.

2 Related Work

The traditional string matching problem is to find the first or
all occurrence of a pattern P in some text string T. The widely
used Knuth-Morris-Pratt algorithm (Knuth et al., 1977) re-
quires O(n+m) operations in the worst case where m is the
length of P and n is the length of T. The Boyer-Moore algo-
rithm (Boyer and Moore, 1977) improves the performance
to O(n/m) in some cases while it shares the same worst case
performance. The Aho-Corasick algorithm can find any one
from a list of pattern strings in O(mx+n) where mx is the
sum of lengths of all pattern strings by constructing a failure
function similar to the KMP algorithm.

Data streams of large sizes are usually compressed using
different compression algorithms e.g. Lempel-ZIP family
(Ziv and Lempel, 1977; Ziv and Lempel, 1978) and Se-
quitur (Nevill-Manning and Witten, 1997). Matching in
the compressed text without decompression has been intro-
duced (Amir and Benson, 1992) and throughly studied later
on (Amir et al., 1996; Farach and Thorup, 1998; Navarro
and Raffinot, 1999; Kida et al., 1999; Mitarai, 2001). Sim-
ulating the KMP algorithm over LZ78 compressed text can
solve the occurrence problem in O(m2+n) (Amir et al.,
1996). A randomized algorithm proposed later on (Farach
and Thorup, 1998) solves the same problem over LZ77 in
O(m+nlog2(u/n)). It was then generalized to search over
Ziv-Lempel compressed texts for simple and extended
patterns (Navarro and Raffinot, 1999). By introducing a

collage system as a unifying framework, (Kida et al., 1999)
designed a generalized compressed pattern matching al-
gorithm on the collage system. Practical timing study of
compressed pattern matching algorithms was reported in
(Mitarai, 2001). The results show that matching directly
over Sequitur-compressed texts is 1.27 times faster than a
decompression followed by an ordinal search.

SEQUITUR algorithm was proposed to compress text
strings using context free grammars (Nevill-Manning and
Witten, 1997). It is proven effective in compressing strings
with small alphabet and usually achieves better compres-
sion ratio in these cases. Larus proposed whole program
path (WPP) (Larus 1999) which compresses a control flow
trace using SEQUITUR. While the algorithm to identify
most hot paths is given in (Larus 1999), the problem to find
if a given path appears in the WPP has not been solved.

String matching has been extended to other areas as well.
Quantified inexact matching approaches have been recently
proposed for model specification (Zhuge, 2003). The goal
is to achieve better repository-based model reuse.

3 Problem Definition

Of all different kinds of program traces that exist, a control
flow trace is the most commonly used form because of the
ease with which it can be collected and the variety of ways
in which it can be used. Therefore we consider the form of
the control flow trace in this paper.

Consider a program consisting of the main function and
several other functions. Each function is represented in the
form of a directed graph called the control flow graph (CFG).
Each node in a CFG represents a basic block which is a
straight line sequence of statements that can be entered only
from the beginning and exited only from the end. The edges
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in a CFG capture the flow of control among basic blocks.
The control flow trace consists of a sequence of basic block
ids that are executed during one program run from the start to
the end. In addition, it also contains indicators that identify
entry and exit to a function. An entry is indicated by the
appearance of the function name in the control flow trace
while the exit point is universally identified by E.

3.1 The SEQUITUR Algorithm

The SEQUITUR algorithm forms a grammar from a se-
quence based on the repeated phrases in that sequence
(Nevill-Manning and Witten, 1997). It creates grammar
rules for these repetitions and replaces the repetitions with
non-terminal symbols, producing a more concise represen-
tation of the overall sequence (Nevill-Manning and Witten,
1997). Using SEQUITUR a control flow trace is com-
pressed into a whole program path (WPP) (Larus 1999).
The grammar of the WPP generates a single string which is
the uncompressed control flow trace. Figure 1 shows an ex-
ample program, its CFGs, a sample uncompressed control
flow trace and the corresponding WPP.

The SEQUITUR algorithm constructs the grammar based
on the following two properties.

• Diagram uniqueness. A diagram is defined as a pair of ad-
jacent symbols. This property ensures that every diagram
in the grammar be unique. For example, the diagram of
B3 and E in Figure 1 appears once in the rule R2. If it oc-
curs elsewhere in the sequence, a new rule will be formed
and replace the diagram with its new left-hand-side non-
terminal symbol at both places.
• Rule utility. This property states that every rule is used

more than once in the grammar. In constructing the gram-
mar, it is possible that after creating a new rule, the ap-
pearance of another non-terminal symbol is reduced to
one. For example, if we have
S->AbA, A->aa
and the next symbol is b (where S, A are non-terminal

symbols, and a, b are terminal symbols), we create a
new rule B->Ab and get
S->BB, B->Ab, A->aa.
Since A is used only once, it is eliminated such that we

have
S->BB, B->aab.

3.2 New Problems

A WPP may be queried for different kinds of information
during program analysis. Here are some examples of typical
queries: Does the path B1B2B3 of F1 appear in this trace?;
and How many times does path B1B2B3 of F1 appear in
the trace?. In this paper we will present a path matching al-
gorithm which can serve as the basis for answering different
forms of queries. Specifically the algorithm that we present
solves the following path matching problem:

Find the first occurrence of path P generated by function F
in a given WPP.

The solution to the above path matching must tackle two
main problems that are discussed next. These problems dis-
tinguish path matching from other pattern matching algo-
rithms in the literature.

• Path Interruption Problem. Even if an intraprocedural
path is executed, the sequence of block ids on the path
may not appear in sequence in the control flow trace. In
particular, if the blocks contain function calls, then the
sequence will be interrupted by appearance of block ids
corresponding to the called functions. For example, the
path B1B2B3 of function F1 was executed 2 times, but
no such sequence appears in the control flow trace.
• Path Context Problem. While globally unique block ids

could be assigned to the basic blocks, this approach is
not taken because the total number of basic blocks is very
large and therefore globally unique ids will require a large
number of bits. Instead the same block ids are reused
within each function of the program. However, this also
means that the same sequence of block ids that form a
path can be generated by different functions. Therefore
in addition to find an appearance of the block ids in a
path we must also ensure that this sequence appears in
the context of the function of interest. For example, the
path B1B2B3 can be generated by main or function F1.

While it may appear that path interruption problem can be
avoided by unwinding the traces, this is not a practical solu-
tion. Since unwinding must be performed before compres-
sion, the full online nature of SEQUITUR is lost. Moreover,
we still must solve the path context problem. Therefore, in
this paper, we do not alter the form of the control flow trace;
but rather we develop solutions to the above problems.

4 Path Matching Algorithms

In this section, we design and analyze four different path
matching algorithms. We begin by considering path match-
ing in context of an uncompressed control flow trace and
show some insights in how to handle the path interruption
and path context problems. We then discuss path matching
directly in a compressed trace and path matching with ad-
ditional indices.

4.1 Scheme 1: Path Matching on Uncompressed Control
Flow Traces

While a trace is stored in compressed format, it is always
possible to uncompress the trace followed by a path match-
ing in the uncompressed format.

It is useful to view the complete control flow trace as being
composed of control flow subtraces corresponding to indi-
vidual function invocations. The complexity of path match-
ing arises from the fact that while we are searching for the
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appearance of a path belonging to a specific function in the
control flow subtrace corresponding to a function invocation,
the control flow subtraces corresponding to other invoca-
tions of the same or different function may be encountered.
In fact, at any given point in the complete control flow trace,
multiple function invocations can be active. We refer to the
control flow subtraces of these active invocations as active
subtraces. At any point in the complete control flow trace,
the trace preceding the point contains the prefixes of the ac-
tive subtraces and the trace following the point contains the
corresponding suffixes of these active subtraces.

To facilitate the discussion of active subtraces, we associate
a nesting level with each entry in the control flow trace. The
nesting levels of all members of a subtrace (i.e., the function
name, block ids, and the end marker) are the same. Moreover
this nesting level is the same as the nesting level of the
corresponding function invocation in the dynamic call graph
for the program run. Therefore while scanning a part of the
control flow trace we can compute the relative nesting levels
of the block ids encountered by incrementing the nesting
level when a function name is encountered and decrementing
it when an end marker is encountered. It should be noted
that at any given point in the complete control flow trace the
nesting levels of all active traces are distinct.

The Algorithm Based upon the above notion of nesting
level we can state that a control flow subtrace of a function
F in the complete control flow trace T has the following
properties:

• A subtrace begins with an F and ends at the first E ∈ T
that appears after F such that the nesting levels of F and
E are the same (say nl).
• A block id B between the above F and E belongs to the

subtrace iff its nesting level is also nl.
• All occurrences of function names, end markers, and

block ids that do not belong to the subtrace correspond-
ing to F and E and appear between F and E in T have
nesting levels greater than nl.

Traditional pattern matching algorithms (e.g., KMP algo-
rithm) are based upon finite state automatons whose states
indicate the matching status, that is, how much of the pat-
tern has been seen so far. Path matching will also be based
upon a finite state automaton. However, the form the au-
tomaton required is different since at each point we need to
track the matching status of multiple active subtraces. Next
we describe the form of the automaton appropriate for path
matching.

We will first discuss how the previous discussed problems
are solved in our automata. Instead of one integer value
in the KMP algorithm, each state is a vector consisting of
varying-numbered integer values. The number of entries in
the tuple corresponds to the number of active traces. Each
item in this tuple indicates the matching status of the cor-
responding active trace. If a function is called, we generate
a new state value for matching these nested items. We can

resume the matching after the function call as we remove
the corresponding state value at the end of function call. In
this way, nesting items may not disturb the matching of an
intraprocedural path. Thus we solve the path interruption
problem. We then introduce a special state value “-1” which
is used to indicate that the corresponding function invoca-
tion is not interested, i.e. its function name does not match
the one that we are searching for. Therefore the elements
of the subtraces need not be matched with P . Once a state
value is changed to “-1”, it never changes till the end of the
current invocation end. In this way we solve the path context
problem.

Formally, given an uncompressed control flow trace T , a
path P1..m, a function Fi, and the value of MNL which
is the maximum nesting level that a control flow trace can
reach, the path matching automaton for P1..m is a 5-tuple
(Q, q0, A, Σ, δ), where

• Q is a finite set of states such that

Q = {(s1, s2, ..., sl) | 0 ≤ l ≤ MNL and

∀i ∈ [1, l],−1 ≤ si ≤ m}.
• q0 ∈ Q is the start state and q0 = (ε)
• A ⊆ Q is a distinguished set of accepting states.
• Σ is a finite input alphabet, Σ = {B1, ..., Bmax,

F1, ..., Fmax, E} and Bj , Fj, E denote different basic
blocks, function entry points and function return points.
• δ is a function from Q × Σ → Q, called the transition

function of M . The state transition function has the fol-
lowing form:
δ((s1, s2, ..., sl), B) = (s1, s2, ..., δ((sl), B))
δ((s1, s2, ..., sl), Fi) = (s1, s2, ..., sl, 0)
δ((s1, s2, ..., sl), Fj) = (s1, s2, ..., sl,−1), where Fi 6= Fj

δ((s1, s2, ..., sl), E) = (s1, s2, ..., sl−1)
δ((−1), B) = (−1).
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Fig. 2. An Example for Scheme 1.

An Example In Figure 2 an example execution is shown
with the line to show items at the same level. The x axis
shows the execution over the time while the y axis indicates
the current nesting level, e.g. the execution starts with func-
tion main at level 0 and calls function F1 at time E1. It
changes to level 1 at E1. In the basic block B2, it calls F1

again and return to B3 when the second invocation finishes.
Assume we are searching for path B1B2B3 in F1. It is clear
that B3 at E3 can be combined with B1,B2 before E2 to
form an instance of path B1B2B3 in function F1. However,
it may not be combined with B1,B2 before E3 as they be-
long to different call instances. Similarly, B3 at E5 should
not be combined with B1,B2 either before E2 or E3.
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Fig. 3. Comparing with traditional compressed matching algorithms.

Let us use Q2i−1 and Q2i to indicate the state before and
after each Ei for 1 <= i <= 5. The state Q3 before E2 is (-
1, 2). “-1” at level 0 means that all basic blocks from “main”
are not interested as we are searching for a path in F1. “2”
at level 1 means that we have partially matched two items,
i.e. B1B2. After E2, the state is changed to Q4 = δ(Q3, F1)
= (-1, 2, 0). A new state value is added and initialized for
the new function invocation. It is initialized to “0” as the
function name matches F1.

The states at E3 before “E” is Qx = (-1, 2, 2). With E
indicating the end of the second invocation of F1, we have
Q5 = δ(Qx, E) = (-1, 2). With B3 after E3, we get Q6 = δ(Q5,
B3) = (-1, 3) which indicates a match. In addition, when we
reach E4, we have Q8 = (-1) such that B3 at E5 will not
match B1B2 at E3. In summary, by remembering multiple
active subtraces, we get the correct match as desired.

4.2 Scheme 2: Compressed Path Matching Algorithm

A WPP obtained by compressing the control flow trace us-
ing SEQUITUR (Nevill-Manning and Witten, 1997) can be
represented as a set of rules denoted by R with the following
form:

S ← Xi1Xi2 ...Xin

X1 ← a1; X2 ← a2; ..... Xk ← ak;
Xk+1 ← Xl(1)Xr(1); Xk+2 ← Xl(2)Xr(2); ......
Xk+s ← Xl(s)Xr(s);

where Σ = {ai|1 ≤ i ≤ k}, ai can be one of Bj (block id
j), Fj (entry to function Fj), and E (a function exit point).

In dictionary-based compressed matching algorithms
(e.g., (Amir et al., 1996; Kida et al., 1999)) each non-
terminal symbol in the dictionary has an associated prefix
flag, a suffix flag and an internal flag. When combining two
non-terminal symbols, their combination will decide the

internal, prefix, and suffix flags of the combined node. As-
sume we are to find the occurrence of a subsequence “bc” in
the compressed representation in Figure 3a. In the example,
the suffix flag “c” at node Z indicates that when matching
Z from the beginning with “bc” from the end, the longest
common subsequence is “c”. Similarly when matching Y1

from the end with “bc” from the beginning, the longest
common subsequence is “b” – the prefix flag of Y 1. When
these two nodes combine together to form X1, the prefix flag
“b” and the suffix flag “c” can determine one occurrence of
“bc” in X1. It is then recorded in the internal flag.

However, this is not sufficient for path matching. As Fig-
ure 3b shows we can find that both “c” of Z may or may not
be a part of a path occurrence. Since there are function calls
(Fi) and ending items (E) involved in each rule, the previous
nested calling context must be considered. Instead of a sin-
gle prefix flag, we therefore associate a list of prefix flags to
indicate the prefix at each different nesting level. Similarly
we also must provide lists of internal and suffix flags. The
size of the list is the nesting level of the associated node and
it can be at most equal to the maximum nesting level MNL.
Note that “nil” is different from the null string ε and they
represent “-1” and “0” in our state automaton respectively.

The Algorithm Our algorithm has two main steps: a pre-
processing step and a path matching step. The preprocessing
is done in two parts. First several data structures extended
from those defined in (Amir et al., 1996; Kida et al., 1999)
are created and second using these data structures certain
flags associated with the non-terminals are computed. The
path matching step searches through the right hand side of
the starting rule and continues the search till an occurrence
of the path is found.

Let us first discuss the preprocessing algorithm. As men-
tioned above, flags are associated with each non-terminal
whose values are computed during preprocessing based upon
the path P being considered. Consider a non-terminal X in

5



Preprocessing (P, WPP) {
Preprocess 2 P to enable flag updates
for each non-terminal X from R in bottom-up order do

case (X ← α) of
α == Bi:

if Bi ∈ P then
prefixx = (Bi); suffixx = (Bi); internalx = (Bi);
fentryx = 1; fexitx = 1; freturnx = -1;

else
prefixx = (0); suffixx = (0); internalx = (0);
fentryx = 1; fexitx = 1; freturnx = -1;

endif
if (Bi == P ) then foccurx = 1;
else foccurx = -1 endif

α == Fi:
prefixx = (ε,ε); suffixx = (ε,ε); internalx = (ε,ε);
fentryx = 1; fexitx = 2; freturnx = -1; foccurx = -1;

α == Fx, where x 6= i:
prefixx = (ε,nil); suffixx = (ε,nil); internalx = (ε,nil);
fentryx = 1; fexitx = 2; freturnx = -1; foccurx = -1;

α == E:
prefixx = (ε,ε); suffixx = (ε,ε); internalx = (ε,ε);
fentryx = 2; fexitx = 1; freturnx = 2; foccurx = -1;

α == Y Z :
Compute X’s level vector from Y and Z’s level vectors
Y ’s vector: (1, ..., yfexit, ..., ymax); Z’s vector: (1, ..., zfentry, ..., zmax)
Therefore X’s vector is: (1, ..., xfx, ..., xmax), where
xfx = max ( yfexit, zfentry ), xmax − xfx = max (ymax − yfexit, zmax − zfentry)
Create mapping functions fmapY/fmapZ which map levels of Y/Z to levels in X
xfentry = fmapY (yfentry); xfexit = fmapZ(zfexit);
if (fmapY (yfreturn) ≤ fmapZ(zfreturn) then

xfreturn = fmapY (yfreturn);
for each level l < xfreturn do

Update X’s level l flags from corresponding level flags of Y and Z
for each level l >= fmapY (yfreturn) and < fmapZ(zfreturn) do

Update X’s suffix flag using suffix flag of Y
Update X’s prefix flag suing prefix flag from Y and all flags from Z
Update X’s internal flag with internal flags from Y and Z

for each level l >= fmapZ(zfreturn) do
Update X’s prefix flag using prefix flag for Z
Update X’s suffix flag using suffix flag for Y
Update X’s internal flag to nil

if foccury > 0 then foccurx = foccury

else
Examine prefix/suffix flags of Y/Z to see if P is in Y Z .
if occurrence of P found in Y Z then set foccurx

elseif foccurz > 0 then foccurx = |Y |+ foccurz

else foccurx = -1 endif
else /* (fmapY (yfreturn) > fmapZ(zfreturn) */

processing is as above with minor modifications
endif

endcase
endfor

}

Fig. 4. Preprocessing Algorithm.
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Fig. 6. An Example for Scheme 2.

PathMatching 2 {
Let S ← Xi1Xir2...Xin

.
Initialize: Zold ← ε;
for (k = 1; k ≤ n; k + +) {

Consider the rule Znew ← ZoldXik

Compute the flags for Znew from flags of Zold and Xik

if foccur flag of Znew is 6= −1 then
PRINT(occurrence found at foccur); terminate;

Zold ← Znew ;
}
PRINT(no occurrence found);
}

Fig. 5. Compressed control flow trace matching algorithm

the rule set R. We denote the fully expanded string corre-
sponding to X by XStr. The following flags are maintained
for X .

• fnl flag: XStr may contain terminals corresponding to
multiple nesting levels. These nesting levels represented
in XStr are always consecutive and have the following
form: (nl + 1, nl + 2, · · · , nl + fnl). We associate a fnl
flag with X which remembers the value of fnl. When
X is being processed, we associate a nesting level vector
with it which is of the form (1, 2, · · · , nl). In other words,
the level vector only represents the relative nesting levels
of the terminals in XStr.
• Level flags: There are three level flags associated with X

– fentry, fexit, and freturn. fentry and fexit are the rel-
ative nesting levels of the first and last symbols of XStr.
freturn is the minimum relative nesting level of all E’s
in XStr. For example, if X represents aEbEcFdFgFh
then fentryX = 3, fexitX = 4, and freturnX = 2.
When the strings of two non-terminals are combined, the
fentry and fexit level flags of the non-terminals are used
to compute the relative nesting levels of symbols in the
combined string. The freturn flag is used to update the
internal, prefix, and suffix flags which are described
next.
• Prefix flags: This is a list of flags with fnl items. Let

XStr(nl) denote the sequence of terminals from XStr
that have the relative nesting level nl. The prefix flag for

level nl identifies the longest prefix of path P that is also
the suffix of XStr(nl).
• Suffix flags: This is also a list of flags. A suffix flag for

level nl identifies the longest suffix of path P that is also
the prefix of XStr(nl).
• Internal flags: This is also a list of flags. An internal flag

for level nl identifies the substring of path P from position
i to j that is identical to XStr(nl).
• Position flag: The position flag foccur gives the index in

XStr where the first occurrence of path P ends. If P does
not appear in XStr, then the value of foccurX is -1.

The preprocessing algorithm for a given R and P is pre-
sented in Figure 4. R can be represented by a directed acyclic
graph (DAG). By reversing the edges we obtain R-DAG.
The algorithm will update the flags of the nodes in the topo-
logical order generated from R-DAG. There are two types
of nodes: leaves which are of the form X ← a; and inter-
nal nodes of the form X ← Y Z . For leaf nodes the flags
are initialized based upon a which is Bj , Fj or E. For an
internal node X ← Y Z , we first match level vectors of Y
and Z , using fexit flag of Y and fentry flag of Z , and
generate a new level vector for X . The lists of internal, pre-
fix, and suffix flags of X are then updated using the flags
from corresponding levels of Y and Z . The foccur flag of
X takes the value of foccur flag of Y , if the latter is not -1.
Otherwise we check if the concatenation of flags of Y and
Z can form a new occurrence of P . If this is not the case,
then foccur flag of X is computed from foccur flag of Z .

The path matching algorithm is given in Figure 5. It searches
through the right hand side of the starting rule and contin-
ues the search till an occurrence of the path is found. The
previously computed flags of R are used as well as some
additional flag computations are performed as shown in Fig-
ure 5.

An Example Let us study the same example in discussing
scheme 1. Assume we compress part of the WPP to the
graph shown in Figure 6. X1-X5 represent non-terminal
nodes generated by Sequitur. For example, X4 represents a
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PathMatch 3 (P) {
for(i=1; i<=MAX CHUNK NUM; i++)
{

containFunc[i] = load from the index();
exitLevel[i] = load from the index();
smallesEndLevel[i] = load from the index();

}

for(i=1; i<=MAX CHUNK NUM; i++) {
/* current state is (s1, s2, ..., sn); */
if (containFunc[i] == 0)
{ /* this block doesn’t contain blocks from the given F */

if (smallestEndLevel[i] == 0) /* no end in this Chunk */
ni = entryLevel[i];

else
ni = smallestEndLevel[i]-1;

Change state to (s′

1, s′

2, ..., s′

exitLevel[i]) = (s1, ..., sni, nil, ..., nil);
} else {

decompress(Chunk[i]);
for each Fi/Bi/E in Chunki

... /* follow state transition algorithm in scheme 1 */
}

Fig. 7. Path Matching Algorithm with Partial Decompression.

substring containing of F1, B1, B2 and some other basic
block ids. We abstract their nesting levels in Figure 6(b). For
example, due to the function invocation (F1), basic blocks
in X4 are divided into two levels with a jump to indicate
this invocation.

In the control flow trace, only function calls and returns can
change the nesting level. While splitting two consecutive ba-
sic blocks into two different grammar rules does not change
their nesting levels, the relative level in each grammar rule
may be different. To seamlessly recover the level informa-
tion, when combining two symbols together, we match the
exit level of the first symbol with the entry level of the sec-
ond symbol. Depending on the entry and exit levels of each
symbol, the upper level non-terminal symbol (e.g X1 or X2)
may have different nesting levels. For example, X4 and X5

have 2 levels each while X1 (which is combined from X4

and X5) has 3 levels. This is because the relative exit level
of X4 is at level 1 and has to match the relative entry level
of X5 at level 0. Now the relative level 1 of X5 changes to
level 2 in X1. In general each node may have several levels
with prefix, suffix and internal flags at each level.

Complexity Analysis Lets first consider the complexity of
the preprocessing algorithm. First we perform the prepro-
cessing needed to answer the queries used in updating the
flags as described in (Amir et al., 1996; Kida et al., 1999;
Mitarai, 2001). As shown in prior work, the time complexity
of this step is O(m2) where m is the length of path P . The
preprocessing carried out to update the flags processes each
rule (or the corresponding node in the WPP DAG) once and
during the processing all the flags for the rule are updated.
The update of each flag takes constant time as that in (Kida
et al., 1999); however flags are associated with each relevant
nesting level. Since the number of entries in the level vector
is at most MNL and the number of rules is |R|, the total

time spent on updating the flags is O(|R| ×MNL). There-
fore the total preprocessing time is O(m2 + |R| ×MNL).

During path matching each symbol on the right hand side of
the start production is processed and during the processing
constant number of flag updates are performed. Thus the
time spent on path matching is O(|S|×MNL). Combining
the results of preprocessing step and path matching step
we obtain the overall time complexity as O((|R|+ |S|) ×
MNL + m2) where MNL is maximum nesting level, |S|
is the length of the right hand side of the start rule, |R| is the
number of non-terminal symbols in R, and m is the length
of path P . It is also quite straightforward to show that the
space complexity of the algorithm is also similar.

4.3 Scheme 3: Path Matching with Partial Decompression

In this scheme, we first divide the trace into chunks each
of which is then separately compressed. In performing the
path matching, a chunk is loaded and decompressed only
if it contains basic blocks from the desired function. This
information is kept in a small index which is attached to
head of the compressed file.

We still use gzip compression algorithm to compress the
trace. Except the last chunk, all chunks are of same prede-
fined sizes, e.g. 4M bytes. That is, in collecting the traces, a
buffer of 4M bytes is used, when the buffer is full, the gzip
algorithm is invoked to compress it and store the result to the
disk. For each function, we maintain a bit vector whose num-
ber of bits is the same as the number of total chunks. Each
bit is used to indicate if the corresponding chunk contains
basic blocks from that function. For a trace of 512M bytes
and 100 different functions, we divide it into 128 chunks
and therefore need 128 bits for each function. The total size
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Fig. 8. Path Matching after Partial Decompression.

of the bit vector is 1600 bytes (=128 bits/function × 100
functions). In addition, each block needs to identify the exit
level of its last basic block id, and the smallest level of ap-
peared E appeared in the chunk. The exit level is useful as it
helps to decide, after jumping several blocks, at which level
the matching should continue. The smallest E level helps
to terminate those partial subtraces. With 128 blocks and 2
bytes to identify a nesting level, this cost sums up to 128 ×
2 × 2 = 512 bytes. Both overheads are very modest and can
be stored in the head of the compressed trace.

The Algorithm The algorithm of performing partial path
matching over uncompressed control flow trace is shown in
Figure 7. The algorithm is divided into two phases. At the
initialization phase, the index is pre-loaded into the memory.
ContainFunc[i] indicates if Chunki contains basic blocks
from the corresponding function. exitLevel[i] indicates the
exit levels of Chunki while smallesEndLevel[i] indicates the
the smallest nesting level of “E” in Chunki.

We then decompress and match sequentially on the demand.
According to which function the path belongs, only a subset
of all compressed chunks are loaded and decompressed. If
a chunk contains interesting basic blocks, path matching
within the chunk is the same as that in scheme 1. Otherwise,
we directly update the current state vector without iterate
over each item in the chunk. There are two impacts. First the
largest level of the state vector is adjusted to the exit level of
the skipped chunk. Second all state value at the level bigger
than the smallest end level is set to “-1” indicating the start
of an irrelevant function invocation.

An Example In the example shown in Figure 8, the original
trace is divided into blocks B1, B2 , ... etc. They are com-
pressed to C1, C2, ... using GZIP algorithm. At the step to
match a path in function F (which appears only in chunk 1
to chunk 3), we just need to load C1-C3 and decompress
them accordingly. The matching is then performed in B1-B3

and reports the occurrences of this path if found. In skipping
the resting chunks, e.g. chunk 4, we update the state vec-
tor directly using the nesting level information. As we have
containFunc[4] = 0, exitLevel[4] = 2, smallestEndLevel = 0
(we assume the end item E at E4 is contained in chunk 3),
The state after skipping the chunk is Q10 = δ(Q7, Chunk4)
= δ((-1),Chunk4) = (-1, -1, -1).

4.4 Scheme 4: Compressed Path Matching with Partial
Matching

The property that only partial trace needs to be searched can
also be exploited by compressed matching algorithms. We
next illustrate how to design the index information for fast
processing without decompressing the trace first.

Using SEQUITUR algorithm, the trace is compressed into
a set of rules. It is possible to design a bit vector (index) for
each rule which records if the corresponding rule contains
basic blocks from each appeared function or not. However
it is not desirable in practice as the overhead in keeping
the index information per rule based for a large number
of rules is large and significantly worsen the performance
(compression ratio). On the other hand, we observed that
the rule base using the SEQUITUR algorithm exhibits the
following property. Its starting rule usually contains a large
of right hand side (RHS) items while other rules have small
number of RHS items. For example, in a typical compressed
trace – the compressed trace of gcc program, the former is
in range of the number of rules while the latter is less than
ten. We therefore propose to divide the RHS of the first rule
into chucks. Index information is kept for each chunk of the
first rule. In the experiments, we divide the first rule up to 128
segments. Similar to scheme 3, each function is associated
with a bit vector where each bit is used to represent if the
corresponding block in the first rule can derive basic blocks
from that particular function. In addition we also need to
remember the exit block level and the smallest end item level

9
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Fig. 9. Path Matching of Partial Compressed Trace.

PathMatch 4 (P) {
for(i=1; i<=MAX CHUNK NUM; i++)
{

containFunc[i] = load from the index();
exitLevel[i] = load from the index();
smallestEndLevel[i] = load from the index();

}

for(i=1; i<=MAX CHUNK NUM; i++) {
/* current state is (s1, s2, ..., sn); */
if (containFunc[i] == 0)
{ /* this block doesn’t contain blocks from the given F */

if (smallestEndLevel[i] == 0) /* no end in this Chunk */
ni = exitLevel[i-1]; /* exitLevel[0] is initialized to 0 */

else
ni = smallestEndLevel[i]-1;

Change state to (s′

1, s′

2, ..., s′

exitLevel[i]) = (s1, ..., sni, nil, ..., nil);
Update prefix, suffix, internal flags directly for CXi.

} else {
PreProcessing 2(P, CXi); /* Process the chunk using scheme 2 */

}
Update the current state using Znew ← ZoldCXi

Fig. 10. Path Matching Algorithm with Partial Matching.

in each chunk. The index size is therefore the same as that
in scheme 3.

An Example In the example shown in Figure 9, let us as-
sume only R3 can derive items from function F which results
in that only chunk 2 is marked. This speeds up matching
process as we just need to search rules in or derived from
this chunk. While some extra (and thus useless) rules such
as R4 may be processed as well, we still gain a lot as R1,
R2, and many other rules are skipped.

The Algorithm The algorithm of performing partial path
matching over compressed trace is shown in Figure 10. Con-
ceptually, the algorithm replace the first rule from

S ← Xi1Xi2 ...Xin

to
S ← CX1CX2...CXn

CX1 ← Xi1 ...Xi50 CX2 ← Xi51 ...Xi100

...

where we assume each chunk contain 50 RHS items of the
first rule in this case. In processing the rewritten first rule, if
a chunk does not contain basic block from the given func-
tion, using the index information we generate the prefix,
suffix, internal and nesting level flags without scanning the
items in the corresponding chunk. Otherwise, we follow the
algorithm given in scheme 2 to update these flags.

5 Experiments

To study the effectiveness of our proposed path matching
schemes, we implemented and evaluated them with sev-
eral programs from SPECint92, SPECint95 and SPECint2k
benchmark suites (SPEC, 1995). The control flow traces
are collected using Trimaran compiler infrastructure (Tri-
maran). As shown in Fig. 11, they cover a range of traces
with different characteristics – the trace for 126.gcc contains
a large number of different functions; the trace for 130.li has
deep nested function calls; the trace for 026.compress has
small numbers of functions and nesting levels; 197.parser
has a long trace. The experiments are done on a Pentium IV

10



Benchmark Gzip Gzip with Blocks (MB) Gzip Index Sequitur Sequitur

(MB) 80M Block 40M Block 4M Block (KB) (MB) Index (KB)

008.espresso 3.24 3.25 3.23 3.23 2.6 3.74 2.6

026.compress 1.02 1.06 1.03 1.02 0.1 1.72 0.1

126.gcc 35.67 35.68 35.78 36.32 17.4 11.43 17.4

130.li 1.96 1.97 1.97 1.99 1.9 0.59 1.9

164.gzip 16.41 16.35 16.35 16.33 0.83 17.74 0.83

175.vpr 17.24 17.26 17.27 17.25 2.55 18.31 2.55

197.parser 19.11 19.13 19.14 19.14 4.22 7.52 4.22

256.bzip2 4.71 4.77 4.73 4.73 0.44 3.34 0.44
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Fig. 12. The Size of Compressed Traces.

Benchmark Control Flow Max Nesting Function

Trace Size (MB) Level Number

008.espresso 170.3 32 164

026.compress 27.9 4 7

126.gcc 507.0 91 1085

130.li 80.9 424 121

164.gzip 504.4 9 49

175.vpr 463.6 9 150

197.parser 509.2 61 248

256.bzip2 492.7 7 26

Fig. 11. Benchmark Characteristics.

2.0GHz machine with 256MB memory with Linux Redhat
9.0 installed.

5.1 The Size of Compressed Traces

We first studied the compression sizes using different
schemes. In general, GZIP and SEQUITUR achieved sim-
ilar compression ratios in compressing control flow traces.
When the trace exhibits more regularity, such as 130.li and

197.parser, SEQUITUR performs better. This is due to the
fact that more rules can be reused and thus the size increase
is slow in SEQUITUR result.

We also collected the results for scheme 3 which divides the
trace into blocks and then individually compress each block
using GZIP. We can see that the total size is about the same
as the one without blocks.

Figure 12 also shows the index size stored in the compressed
traces. As discussed in section 3, the trace is divided up
to 128 chunks with a bit vector of a 16-byte vector stored
for each function in the benchmark. Each bit indicates if
the corresponding block contains basic blocks from the cor-
responding function. In addition, the exit and smallest end
levels of each chunk is also kept in the index. As shown in
the figure, compared to the total size, the index size is very
small and has a negligible increase in size. As discussed, the
indices for scheme 3 and 4 are the same.

5.2 Path Matching Performance

For all four schemes discussed in the paper, we evaluated
path matching performance with three types of paths. The
searching time results are summarized in Fig. 13 and com-
pared in Fig. 14. In the figure, Y axis is searching time in
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Benchmark Paths Scheme 1 Scheme 2 Block Scheme 3 Scheme 4

(sec) (sec) Coverage (sec) (sec)

Type 1 0.900 + 0.366 0.373 1/44 0.021 + 0.008 0.001

008.espresso Type 2 0.900 + 0.392 0.348 20/44 0.430 + 0.187 0.155

Type 3 0.900 + 0.336 0.360 41/44 0.839 + 0.313 0.312

Type 1 0.183 + 0.060 0.086 1/7 0.026 + 0.009 0.001

026.compress Type 2 0.183 + 0.055 0.083 4/7 0.105 + 0.039 0.056

Type 3 0.183 + 0.054 0.077 7/7 0.183 + 0.056 0.078

Type 1 4.134 + 1.141 1.305 1/127 0.033 + 0.009 0.003

126.gcc Type 2 4.134 + 1.149 1.432 63/127 2.051 + 0.570 0.937

Type 3 4.134 + 1.136 1.323 126/127 4.130 + 1.130 1.135

Type 1 0.497 + 0.194 0.347 1/21 0.024 + 0.009 0.001

130.li Type 2 0.497 + 0.205 0.352 4/21 0.095 + 0.039 0.155

Type 3 0.497 + 0.174 0.341 21/21 0.497 + 0.174 0.341

Type 1 4.112 + 0.917 1.397 1/127 0.032 + 0.007 0.013

164.gzip Type 2 4.112 + 1.610 1.395 68/127 2.202 + 0.862 0.952

Type 3 4.112 + 0.975 1.397 126/127 4.080 + 0.967 1.392

Type 1 3.778 + 0.922 1.867 1/116 0.032 + 0.008 0.014

175.vpr Type 2 3.778 + 0.855 1.680 80/116 2.606 + 0.590 1.501

Type 3 3.778 + 0.894 1.708 93/116 3.029 + 0.717 1.655

Type 1 4.152 + 1.295 2.363 1/128 0.032 + 0.010 0.062

197.parser Type 2 4.152 + 1.281 2.353 82/128 2.660 + 0.821 0.338

Type 3 4.152 + 1.348 2.351 116/128 3.763 + 1.221 1.826

Type 1 3.784 + 0.892 0.266 1/124 0.031 + 0.007 0.040

256.bzip2 Type 2 3.784 + 1.162 0.269 18/124 0.549 + 0.169 0.112

Type 3 3.784 + 2.107 0.267 97/124 2.960 + 1.649 0.194

Fig. 13. The Performance of Path Matching in Compressed Traces.

shown in logarithmic scale while X axis list different bench-
mark programs. The four bars show the results of different
path matching schemes respectively.

Path type 1 has low frequency and coverage. When we divide
the whole trace into 4M blocks, it appears in only 1 block.
Path type 2 has modest frequency and coverage. It appears in
roughly half of all blocks. Path type 3 has high frequency and
coverage. It appears in nearly all blocks. The searching time
for scheme 1 and 3 includes both the decompression (the
first number) and the matching time (the second number).
For scheme 3 and 4, the block size is 4MB. In performing
the experiment, we keep roughly about the same amount of
main memory across different schemes.

From the table, we observed that path matching on com-
pressed traces performs better than that on uncompressed
traces. For the latter, the major overhead comes from the
need to decompress the trace. The decompression time is the
major fraction for schemes using either fully decompression

or partial decompression (scheme 1 or 3). As an example,
in matching type 3 of 008.espresso, scheme 2 spends 360ms
while scheme 1 has to spend 900ms to decompress the trace
and then 336ms to perform the matching. The time to de-
compress a large trace is substantial when the size is more
than 500MB. A full scan takes around 1 second while the
decompression takes around 4 seconds.

The actual matching time is comparable in searching either
compressed or uncompressed traces. Matching in the com-
pressed traces sometimes is slower due to the complicated
control structure that it has to maintain during searching.
For example, in search path 2 of 126.gcc, scheme 2 has to
spend 1432ms while scheme 1 spends only 1149ms.

We also observed that for different path types, scheme 1 and
scheme 2 have almost constant path matching performance.
This is due to the fact that matching has to be performed
from the start to the end for these two schemes. With small
indices, scheme 3 and scheme 4 gain large performance
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Fig. 14. The Performance Comparison of Path Matching Schemes

benefits for paths that have low to modest coverage. For
example, for all benchmarks, path type 1 can be extremely
quickly identified. Only one block needs to be decompressed
and searched using scheme 3. Scheme 4 also proportionally
reduces the number of rules to be searched.

From the results, we conclude that both compressed path
matching and matching after decompression algorithms are
useful in practice. In the case that the main memory size
is large and there are a lot of path matching requests, we
can cache these decompressed blocks in the memory. Once
the decompression cost can be amortized from consecutive
searches, the simple structure in the uncompressed trace has
better in-memory search time. On the other hand, if the main

memory size restricts the caching of decompressed blocks,
or the path matching requests are random, we may choose
a compressed search scheme instead.

6 Conclusions

In this paper, we designed and evaluated four different path
matching schemes over compressed and uncompressed con-
trol flow traces. We not only identified the challenges but
also exploited the opportunities in matching intraprocedu-
ral paths in control flow traces. We evaluated the proposed
schemes with real control flow traces. Our experimental re-
sults show that small indices are very effective in improving
matching performance of paths that are of small to modest
coverage. In particular, the path matching scheme based on
Sequitur-compressed traces with small indices achieves large
performance benefits over other path matching schemes.
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