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Abstract

With the availability of chip multiprocessor (CMP) and simultane-
ous multithreading (SMT) machines, extracting thread level paral-
lelism from a sequential program has become crucial for improv-
ing performance. However, many sequential programs cannot be
easily parallelized due to the presence of dependences. To solve
this problem, different solutions have been proposed. Some of them
make the optimistic assumption that such dependences rarely man-
ifest themselves at runtime. However, when this assumption is vi-
olated, the recovery causes very large overhead. Other approaches
incur large synchronization or computation overhead when resolv-
ing the dependences. Consequently, for a loop with frequently aris-
ing cross-iteration dependences, previous techniques are not able to
speed up the execution. In this paper we propose a compiler tech-
nique which uses state separation and multiple value prediction to
speculatively parallelize loops in sequential programs that contain
frequently arising cross-iteration dependences. The key idea is to
generate multiple versions of a loop iteration based on multiple
predictions of values of variables involved in cross-iteration depen-
dences (i.e., live-in variables). These speculative versions and the
preceding loop iteration are executed in separate memory states si-
multaneously. After the execution, if one of these versions is correct
(i.e., its predicted values are found to be correct), then we merge
its state and the state of the preceding iteration because the depen-
dence between the two iterations is correctly resolved. The memory
states of other incorrect versions are completely discarded. Based
on this idea, we further propose a runtime adaptive scheme that not
only gives a good performance but also achieves better CPU uti-
lization. We conducted experiments on 10 benchmark programs on
a real machine. The results show that our technique can achieve
1.7x speedup on average across all used benchmarks.
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1. Introduction

Extracting thread level parallelism from a sequential program is
very important for improving performance on widely available
multicore processors. Unfortunately, manual code parallelization
by programmers is a time-consuming and error-prone process.
Consequently, compiler based automatic parallelization techniques
have drawn much attention of researchers. Many earlier works
on DOALL parallelism [12, 16] focus on identifying loops with-
out cross-iteration dependences. However, most sequential pro-
grams cannot be easily parallelized by a compiler due to the
presence of cross-iteration dependences. To handle such depen-
dences DOACROSS parallelism techniques [3, 18] use explicit
communication to pass values between threads. Synchronization
and send/receive instructions are inserted by the compiler to en-
force cross-iteration dependences. A receive call blocks the recip-
ient till the needed value becomes available. This blocking results
in a degree of serialization. In addition, significant amount of time
is spent on communication between different threads when consid-
erable number of variables’ values are communicated.

Thread level speculation (TLS) [5, 6, 11, 13–15, 21, 26–31, 36]
is another approach that parallelizes sequential programs. In TLS
techniques, multiple threads are created by the compiler to exe-
cute different parts of a sequential program (e.g., loop iterations)
in parallel. An optimistic assumption that no dependence exists be-
tween the selected parts is made during compilation. Thus, TLS
techniques can effectively exploit loop parallelism when the cross-
iteration dependences are either absent or rarely manifest them-
selves at runtime. Note that TLS must be able to detect any mis-
speculations (i.e., dependence assumption violations) at runtime
and appropriately deal with the speculative results to ensure the
correctness of program execution. These functionalities of TLS can
be implemented in hardware, software or a combination of both.
However, if cross-iteration dependences of a sequential loop fre-
quently take place at runtime, prior TLS techniques cannot improve
the program performance. The reason is that these frequent depen-
dences will cause the speculation to fail very often and thus wipe
out the benefits of parallelism. One solution is to explicitly pass the
value [35]. However, this approach will inherit the problems of the
DOACROSS approach.

In this paper we propose a compiler technique, which uses state
separation and multiple value prediction to speculatively parallelize
loops in a sequential program that have frequently arising cross-
iteration dependences. In our technique, we create multiple ver-
sions for a later loop iteration by using different predictions for
the live-in variables (i.e., variables whose values must be obtained
from an earlier iteration). These versions are executed in separate
memory states. If one of these versions turns out to use correct pre-
dictions for all predicted variable values, then the performance is



improved due to the parallel execution of the two iterations, i.e.,
the earlier iteration and the later iteration.

The remainder of this paper is organized as follows. Section 2
motivates our work and provides an overview of the state separa-
tion based speculative execution model. Section 3 describes how
we generate multiple value predictions and how the code is trans-
formed. A runtime adaptive scheme is proposed in section 4. Sec-
tion 5 gives the evaluation results followed by discussion of related
work in section 6. Conclusions are given in section 7.

2. Overview of Our Approach

2.1 Motivating Example

It has been observed that in some programs dependences may
not occur frequently. To take advantage of such infrequent depen-
dences, thread level speculation (TLS) based parallelization tech-
niques have been proposed. The key idea of these techniques is
to make the assumption that there is no dependence between the
two sequential regions and execute them in parallel. However, if
a dependence manifests itself during execution, then the specula-
tion fails and the runtime system is required to detect and recover
from misspeculation. Fig. 1 shows a speculative parallelization ex-

var1=... ;
var2=... ;
...

while (...){
1 compute(..., latest config);
2 if (cond1){
3 if (cond2){
4 x = var1;
5 }
6 else {
7 x = var2;
8 }
9 latest config = config[x];
10 }

...
}

...

Figure 1. Speculative Parallelization Example.

ample where the loop iterations can be speculatively executed in
parallel. Specifically, there is a cross-iteration dependence on vari-
able latest config between statements at lines 1 and 9. However, if
the first condition cond1 evaluates to false most of the time, then
latest config will not be updated frequently. Consequently, specu-
lating on the absence of the dependence between line 1 and 9 is
a good choice, as this speculation is frequently successful, which
enables the parallelism to be aggressively exploited.

Unfortunately, if the condition cond1 is always or frequently
true at runtime, using speculative parallelization technique will not
speed up the execution as misspeculation will occur frequently. The
dependence carried by variable latest config will cause the loop
iterations to be executed sequentially. Moreover, the overhead of
the technique such as isolating speculative states and dealing with
misspeculation could make the performance even worse.

In this paper, we propose a technique, multiple value predic-
tions, that can exploit the parallelism when such frequent depen-
dences exist. The key idea is that for every two consecutive itera-
tions that have data dependences on some variables (a.k.a live-ins),
we predict the value of such variables for the second one. If the pre-
diction is correct, then executing these two iterations in parallel us-
ing the predicted values for the later iteration will yield a speedup.
For example, in Fig. 1, if both cond1 and cond2 are always true,
then predicting latest config to be config[var1] will enable specu-
lative parallelization to succeed and lead to a better performance.

However, a single predicted value may not be very accurate.
For instance, consider the scenario for Fig. 1 in which cond1 and
cond2 keep evaluating alternately to true and false. Thus, a single
prediction for the value of latest config is not effective as it is not
frequently successful. To solve this problem, we employ multiple
predictions, each giving rise to a distinct version of the second
iteration. The idea is that among all predictions that are chosen,
it is highly likely that one prediction will turn out to be correct and
the corresponding version will generate the correct result. More
importantly, the correct result is computed in parallel with the
execution of the first iteration. In other words, we will exploit
parallelism by executing two consecutive iterations in parallel.

In the example shown in Fig. 1, for the second iteration of
every pair of consecutive iterations, we can create three versions
that are capable of generating the variable latest config based on
different path selections. Table 1 shows these versions. In the first
version, we assume that both cond1 and cond2 are true in the
first iteration and thus latest config is set to config[var1] when the
computation starts in the second iteration. In the second version
only cond2 is assumed to be false, and we set latest config to be
config[var2] at the beginning of the second iteration. Finally, in the
third version we assume cond1 is false in the first iteration. Thus,
the computation of the second iteration can be directly started. For
these three versions, one of them must be correct and thus lead to
an execution speedup. This prediction method is essentially based
upon collecting data slices of latest config and creating one version
for each distinct data slice. In Section 3, we will describe further
details of our prediction method.

Version Path In An Earlier Prediction In A Later
Number Iteration Iteration

1 cond1=true, x=var1;
cond2=true latest config= config[x];

2 cond1=true, x=var2;
cond2=false latest config= config[x];

3 cond1=false No Prediction Code

Table 1. Three Versions For Generating latest config.

2.2 State Separation Based Execution Model

To support multiple prediction schemes, we employ a state separa-
tion based execution model of [28, 29]. In particular, a program is
compiled to contain one main thread and multiple parallel threads.
For any two consecutive iterations, the first one is executed by the
main thread and each version of the next one is executed by a par-
allel thread.

Figure 2. Thread Execution Model.

Fig. 2 shows the thread execution model. The original sequential
execution, which consists of 4 iterations, is shown on the left.
The corresponding parallel execution is shown on the right. As
we can see, there is one main thread and multiple parallel threads.
The main thread executes iteration 1 and 3 while parallel threads



execute different versions of the iterations 2 and 4. A parallel thread
does not begin execution until it receives the start signal from the
main thread.

The dark region at the start of each parallel thread represents
execution of code that predicts the values of the live-in variables
that are to be computed by the previous iteration. Following this
code, the computation of the current iteration is performed. The
dark region at the end of the main thread’s execution represents
execution of code that validates the results. After finishing its own
computation, the main thread needs to identify the parallel thread
executing the correct version of the next iteration, and uses its
result to continue the execution. The parallel thread that generates
the correct result is also called the winner. In Fig. 2, we show
that parallel threads P2 and P3 are the winners for iterations 2
and 4 respectively. In this execution model, every two dependent
iterations can be executed in parallel and hence the theoretical
speedup for the parallel execution is 2.

The key characteristic of our execution model is state separa-
tion, according to which the non-speculative state of the program
maintained by the main thread is kept separate from the specula-
tive state of the computation maintained by the parallel threads. To
achieve state separation, we logically divide the entire shared mem-
ory space into three disjoint partitions (D, P, C). The D memory is
the part of the address space that reflects the non-speculative state
of the computation. Only the main thread can update the D space.
The P memory is the part of the address space that reflects the spec-
ulative state of parallel threads. The results produced by the parallel
threads are communicated to the main thread that then performs up-
dates of D. The C memory is part of the address space that contains
the coordinating state of the computation. The coordinating state is
maintained to synchronize the actions of the main thread and the
parallel threads and also to track how the speculatively-read values
are copied or predicted so that misspeculation can be detected and
the speculative results can be committed. Since the D and P mem-
ories are used by all threads, they must support stack, global and
heap sections and each of these sections must provide state sepa-
ration. The mechanisms used to provide state separation in each if
these sections are described next.

Figure 3. Separation Of Stack And Global Section.

Stack Separation. For a sequential program, all local variables
are allocated on the stack and accessed through a stack pointer.
When multiple threads co-exist, each of them has its own stack and
stack pointer as shown in Fig. 3. Since our model is implemented
using POSIX thread on Linux, this is automatically achieved by
pthread library and OS. The default size of the stack allocated for
each thread is 10M.

To avoid the stack overflow of each thread, a safety check needs
to be performed when a stack grows. This is also automatically
achieved by the OS. In particular, when the size of a stack exceeds
its limit, OS sends a signal to the running process. In our execution
model, this signal is captured by the process. Within the signal

handler, we can reset the size of each parallel thread’s stack by
calling pthread attr setstacksize().

Global Section Separation. Variables stored in the global sec-
tion can only be used by the main thread. Parallel threads need to
maintain speculative copies of these variables to achieve state sep-
aration. However, creating a copy of the entire global section for
each parallel thread is wasteful because parallel threads do not run
any more after they complete the speculative computations. There-
fore, we only maintain one global section, which is used by the
main thread. For every global variable used by a parallel thread,
we create a local copy in the thread local storage above the paral-
lel thread’s stack as shown in Fig. 3. As a result, we do not need
the overflow check on the global section because its size is not in-
creased at runtime.

Heap Separation. Heap is used to support dynamic memory
allocation in a sequential program. The allocation is performed
through a memory allocator such as malloc library call. In our mul-
tithreading based execution model, however, we do not maintain a
separate heap for each thread. This is because it is very hard to pre-
dict how much heap a thread will use at runtime. Thus, only one
heap is used by the whole process. Logical separation is achieved
as follows. When a heap chunk is allocated to the main thread, it is
considered as D space heap. If it is allocated to a parallel thread, it
is considered as P space heap. The safety check of heap access is
simply done by checking the return value of the memory allocator.
Specifically, if a malloc call fails in a parallel thread’s execution,
the parallel thread will free all the memory resources and exit.

Figure 4. Separation Of Heap.
Besides the D space and P space that support the execution of

different threads, we also allocate a buffer for each parallel thread to
coordinate the execution of the parallel thread and the main thread.
For example, if a variable (stack, global or heap) maintained by
the main thread in D space is used by a parallel thread, a local
copy of the variable is created in the corresponding P space. The
mapping information of this variable (from a D space address to
a P space address) needs to be stored in the buffer. C space is
essentially the collection of all these buffers. In our model, the main
thread allocates them by calling the malloc function. Thus, they are
also on the heap at runtime. Each of them is deallocated when the
corresponding parallel thread finishes its execution.

Fig. 4 illustrates how the heap of a process is used in our ex-
ecution model. The figure shows that six heap chunks have been
allocated. Two are allocated by the main thread, and thus consid-
ered in D space. Two chunks requested by parallel threads P1 and
P2 respectively are considered in P space. Essentially, they are the
duplicate copies of some D space heap chunk in the speculative
state. Another two are allocated for coordinating the main thread
and parallel threads, so they are logically in C space. The rest of
heap is unused. The location of each memory chunk in the heap is
decided by the memory allocator at runtime.



3. Basic Scheme of Multiple Value Predictions

3.1 Choosing Parallelization Candidate

Our technique is based on value predictions, and therefore resolves
the situation where tasks of a program cannot be done in parallel
due to dependences. In this work, we mainly focus on applying
the technique to loops where each loop iteration is considered as a
task. A loop is a good candidate if the following two conditions are
satisfied:
• The loop has frequent loop carried dependences; and

• The values carried by loop dependences are predictable.

The first condition requires the examination of loop depen-
dences. Although the dependence analysis can be performed us-
ing either static information (compiler based) or dynamic informa-
tion (profile based), compiler based analysis does not work well
for speculative parallelization. The reason is that it does not tell
how often a dependence manifests itself at runtime. This frequency
information is the key to selecting candidates for speculative par-
allelization. Therefore, profiling based loop dependence analysis is
used for this work. In particular, the frequencies of cross-iteration
dependences are captured during the profiling run. If the ratio of the
number of iterations involving such a dependence to the total num-
ber of iterations is above a threshold, the dependence is considered
as being frequent.

The second condition emphasizes that values of live-in vari-
ables are predictable. In this work, we consider a variable to be
predictable if its value can be computed through a small backward
data slice [1]. This can be checked by analyzing the trace of each
iteration in the profiling run and computing dynamic slices from
the traces. If a variable’s slice is very large, we can further shrink
the slice by applying some value prediction methods. More details
are described in section 3.2.

The dependence frequency and predictability conditions must
both be satisfied for the application of our technique. They both
can be checked based on the information collected from the pro-
filing run. Note that if the first condition is not satisfied, then the
program is a good candidate for application of other speculative
parallelization approaches [5, 11, 13–15, 28, 29].

3.2 Generating Multiple Versions

3.2.1 Using Data Slices and Control Flow Paths

To construct a speculative version of the second iteration, we need
to insert the value prediction code of live-in variables before the
original loop iteration code. The most accurate value prediction
for a variable is to compute the value by executing its full slice
extracted from the first iteration. However, the size of the full slice
can be as large as the computation of the whole iteration. Using
such a slice to obtain the value will be the same as executing the
two iterations sequentially.

Figure 5. Trace Of Fig. 1.

To construct small prediction code and take advantage of the
multiple value prediction model, following steps are used to gen-

erate multiple versions of the second iteration. First, we only com-
pute the backwards data slices of a live-in variable. All the control
dependences and the dependence chains of predicates are removed.
Since different control flow paths may be taken in the first iteration,
we can then compute the data slice on each different path. Conse-
quently, we obtain multiple data slices for a live-in variable. At this
point, we can create multiple versions for the second iteration based
on different control flow paths taken by the first iteration. Specif-
ically, each path corresponds to one version and the data slice on
that path is used to predict the live-in variable. The data slice and
path information are computed based on the profiling trace. Fig. 5
shows an example profiling trace of the while loop in Fig. 1.

In the example, we observe three things. First, there exists a
frequent loop dependence on variable latest config because two
thirds of the iterations are involved in a dependence on variable
latest config. Second, there exist three different ways or data slices
for computing this variable as shown in iterations i, j and k. All
three are very small in comparison to the computation of the whole
iteration. Therefore, we can create three versions for the second
iteration. Last but not least, the path execution frequency, which
equals to the frequency of the occurrence of each kind of slice,
can be easily computed. This number will be used to compute the
version confidence (VC) which reflects the probability of a version
being correct.

VC = path frequency × prediction confidence

The prediction confidence for each live-in is always 1 if a data
slice is used as the prediction code. If there are multiple live-ins,
their data slices will be merged for the same control flow path. In
other words, we construct one big data slice that is a union of all
live-in variables’ slices for each path and use it as the prediction
code. The overall prediction confidence will be the product of
individual live-in’s confidence, which is still 1 in this case.

3.2.2 Reducing Data Slice on Each Path

Although by using data slices and path frequencies in generating
multiple speculative versions we greatly increase the likelihood of
covering the correct prediction of live-in variables, the performance
can still be limited due to large sizes of the data slices. For example,
if the variable var1 and var2 in Fig. 1 are computed within the loop,
then the data slices of latest config may be very large. Besides,
merging the slices of multiple live-in variables can also lead to a
large slice. Executing a large slice in each parallel thread can nullify
the benefits of parallelism.

To tackle this problem, we reduce the data slice on each path
by computing a partial slice, where the value of a live-in variable
can be computed based on the predictions of other variables in the
original slice. Given the data slice on each control flow path, we
use the algorithm as shown in Fig. 6 to backwards traverse the slice
and construct the prediction code of a live-in variable.

The idea behind this construction is that we search a point in a
data slice where all variables in the slice can be either computed or
predicted with high confidence using some simple value predictor.
The search range is limited by a predefined value size (line 2 and
13), which can be set to a fraction of total number instructions in
the iteration.

In the algorithm, the boundary, implemented as a FIFO queue,
stores those variables that need to be predicted to execute the state-
ments stored in partial slice, which compute the remaining vari-
ables appearing in the slice. This boundary queue initially contains
the live-in variable var (line 1), and is used to backwards traverse
the slice in a breadth-first fashion. Specifically, in each search iter-
ation, the first variable in the boundary is popped out (line 9), and
its definition in the slice is identified and stored in the partial slice
(line 10-11). After that, all source variables in the definition are
pushed into the boundary (line 12).



function compute partial slice(){
input = a data slice of var;
output = {}; //prediction code
partial slice = {};//partial slice of var

size = predefined maximum size of output;
i = 0;
OCBQ = 0;
boundary = a FIFO queue;

1. boundary.enqueue(var);
2. while(i < size) {
3. c = get predictability(boundary)
4. if (c > OCBQ) {
5. ouput = prediction stmt(boundary) +
6. partial slice;
7. OCBQ = c;
8. }
9. v = boundary.dequeue(var);
10. stmt = the definition of v in input;
11. partial slice += {stmt};
12. boundary.enqueue(source variables in stmt};
13. i++;
14. }
15. return output;
}

function get predictability(){
input = a set of variables;
overall confidence = 1;

16. for each var in input{
17. c1 = valuePredictor1 confidence(var, trace);
18. c2 = valuePredictor2 confidence(var, trace);

...
19. cN = valuePredictorN confidence(var, trace);
20. var.pred flag = method i whose confidence is the highest;
21. overall confidence *= max(c1,c2,...,cN );
22. }
23. return overall confidence ;
}

Figure 6. Prediction Code Construction For var.

A function get predictability is called every time the boundary
queue changes (line 3). In this function, we look up the trace of the
profiling run to find the values of every variable stored in the queue
(also called boundary variables). Since each variable may have a
different value in a different loop iteration, we make a value se-
quence for each variable by considering its value at the beginning of
each iteration. Then we apply different value predictors on this se-
quence to compute a confidence number of the prediction (line 17-
19). For every variable, we choose its prediction method by identi-
fying the one with the highest confidence number. This prediction
method is stored in the global flag pred flag maintained for the vari-
able (line 20). We multiply these highest numbers and store the re-
sult into overall confidence (line 21). This product is used as the
overall confidence of the boundary queue (OCBQ) as it indicates
how good the combined prediction of all variables in the current
boundary queue is. A boundary queue that has the highest OCBQ
will be used to construct the prediction code, which basically con-
tains the predictions of variables in the boundary and the state-
ments in the partial slice (line 3-6). The function prediction stmt
is called every time a higher OCBQ is found (line 4-8). When gen-
erating the prediction statements for each variable, it uses the best
prediction method determined in function get predictability.

To construct function get predictability, we use three different
value predictors, last value predictor [19], stride predictor [25] and
context predictor [34]. In the last value predictor, the same value is
assumed as being used again. Therefore, the last used value needs

to be saved. The stride predictor assumes that two consecutive
values of a variable have a constant difference (stride). Therefore,
the most recent stride and values are used to predict the next value.
The context predictor assumes that the most recent values are most
likely to be used. Thus, it maintains a history of most recent values
(normally 4) in a buffer. The prediction is made by referring to the
buffer. The confidence of a method is defined as the percentage of
the correct prediction.

If a version is constructed through a partial slice instead of a
complete data slice, its VC is computed using OCBQ instead of 1.

VC = path frequency × OCBQ

When more than one live-in variable is considered, we must ap-
ply this algorithm to all their data slices. The generated prediction
code is merged if the data slices are on the same path. As a result,
the VC is computed using the overall OCBQ of each path, which is
the product of individual live-in’s OCBQ.

Figure 7. An Example Of Reduced Slice Construction.

Consider the example in Fig. 7. Suppose A is a live-in variable.
On the left, we show the backward data slice of A on one control
flow path. If the slice is very large, we can apply the algorithm
to compute the prediction code for A. At the beginning, A is the
only variable in the boundary queue. Since it can be predicted by
one method with 0.2 confidence, A can be directly predicted and
the prediction is put into the output (as shown in the bottom right).
Then we continue to build better prediction code by examining the
data slice backwards. According to the algorithm, we add the first
statement A = B +1 into the partial slice set and recompute the
boundary queue, which now contains B. Since the confidence of
predicting B is 0.6 which is higher than 0.2, the prediction code
for A will become the prediction of B and first statement. By
continuing backwards traversal of the data slice we find the highest
confidence when predicting both D and E. Therefore, we will get
the best prediction code for A as shown on the top right, and the
corresponding OCBQ is 0.8.

3.3 Code Transformation

Next we discuss the code transformation performed by our com-
piler - Fig. 8 shows the transformation. Given a loop as shown in
Fig. 8(a), we first use trace-analysis tools to analyze the execution
trace of the profiling run and generate the prediction code for live-
in variables for different paths. The prediction code is generated
by algorithm in Fig. 6. It is associated with a path represented by
the branch history. The transformed parallel version contains the
code for the non-speculative thread shown in Fig. 8(b) and for the
speculative parallel threads shown in Fig. 8(c).

In Fig. 8(b) we can see that the main thread creates parallel
threads before entering the loop. Each created thread executes the
function func which contains a while loop waiting for the “start”
signal so as to execute the loop body shown in Fig. 8(c).



(a) Sequential Code. (b) Parallel Version - Main Thread. (c) Parallel Version - Parallel
Threads.

Figure 8. Code Transformation.

After threads are created, the main thread enters the loop. It
first creates multiple versions of the next iteration by executing
next spec. Then it executes the current iteration. Finally, it checks
the speculation of each thread by executing result validation.
Copying in the main thread. In function next spec, the non-
speculative thread needs to perform copying operations. In par-
ticular, the variables in the boundary set and modified in the loop
body will be copied to parallel threads’ space. This is important to
avoid data races. Fig. 9 illustrates this with an example.

Figure 9. An Example Of A Possible Race.

Assume B is a live-in variable and its backwards slice can be
traced back to the statement A = x; (Fig. 9(a)). In other words, A
is a boundary variable. To predict B, a parallel thread needs to read
A and execute the slice of B as shown in Fig. 9(b). However, the
main thread modified A after A is used for computing B. Hence,
it is possible that the parallel thread reads the wrong value (y in
the example) of A because of the race condition, and leads to a
misprediction of B. To overcome this situation, the main thread
should copy A for the parallel thread instead of allowing it to read
A. After the copying operation, the main thread will send the “start”
signal to parallel threads.
Copying in parallel threads. Parallel threads also need copying
operations to ensure state separation. In particular, when a variable
is about to be modified during the execution, it is copied from D
space to P space. This is well known as the copy-on-write scheme.
Similar to work [27–29], a mapping table is needed for each parallel
thread to store the variables’ mapping information. This is used
when we merge the result.
Result validation. The result validation work is performed by
the main thread. It needs to identify the correct version of the
next iteration among all versions. To do that, the main thread
needs to track the branch history of the current iteration and record
the values of the boundary variables. When validating the result,
the main thread simply needs to examine this information of the
prediction code in each parallel thread. If a match is found, the
corresponding parallel thread is the winner and its result will be
merged into non-speculative state. Otherwise, the main thread has
to re-execute the next iteration.

Committing results. The winner’s results are committed by the
main thread. Since the mapping table stored in C space contains the
D space addresses of the modified variables, the main thread simply
walks through the table and performs memory copying operations.

4. Adaptive Multiple Value Prediction Scheme

Although in the basic scheme the parallelism between every two
consecutive iterations is exploited if one of the versions of the
second iteration is correct, there are two problems with the basic
scheme. First, it is possible that a small number of versions cover all
popular execution paths, and thus the VCs of these versions are very
high. Therefore, executing other versions, whose VCs are small,
from the same iteration will waste cores. Second, the computation
of each version’s VC relies on the path frequency information of
the profiling run. In a real run, different inputs may exhibit differ-
ent path frequencies and thus change the VC. As a result, some ver-
sions may be less likely to be correct than expected causing cores
to be wasted. Wasting cores can dramatically decrease the system
throughput, if multiple applications co-exist. If the parallelized ap-
plication runs alone, use of extra cores leads to waste of power.

To tackle this problem we propose an adaptive technique for
better use of available cores. Our key idea is to consider the versions
with a higher VC as candidates for executing additional iterations
beyond the second iteration. Fig. 10 illustrates the idea.

Figure 10. Selecting Versions With A Higher VC.
Suppose there are n different paths in a loop iteration. From

the figure we can see that iteration i+1 has n versions as denoted
by v1, v2, ..., vn, each of which corresponds to a certain path that
might be taken in iteration i. The probability of each path being
taken is marked on the edge. The VC of each version is shown
in the node. When the first version of iteration i+1 is executed, it
still takes one of n paths in its own computation. As a result, the
prediction code of iteration i+2 has n2 different cases leading to
n2 different versions. To calculate the VC of a version in iteration
i+2, we need to multiply all the probabilities along the path back
to the root (iteration i in the example). For example, the VC of the
second version of iteration i+2 is the product of 0.3 (the probability
of iteration i+1 taking path 2) and 0.5 (the probability of iteration i
taking path 1).



Suppose P is the number of available cores for parallel threads.
To assign the work to each parallel thread at runtime, the main
thread identifies P versions that have the highest VCs as follows.
It first calculates the VCs of all versions of iteration i+1. A version
with the highest VC is then selected. Next, it computes the VCs of
this version’s children in iteration i+2. Assuming each iteration has
n versions, it now has the VCs of n-1 versions in iteration i+1 and
the VCs of n versions in the iteration i+2. It continues to select a
version with the highest VC among these unselected versions and
explores the children of the selected version. If two versions have
the same VC, their parents’ VCs are used to break the tie. Once the
number of selected versions reaches P , the exploration terminates
and the P versions are assigned to the parallel threads. In the
example shown in Fig. 10, the versions represented by the shaded
node will be selected if P is 3. This version-selection process in
efficiently implemented using the maximum-heap data structure.

While we use extra cores to improve performance, we still need
to avoid using cores to execute the versions that are unlikely to be
a winner. This is important for achieving fairness among multiple
applications being executed. Therefore, a threshold number is used
to prevent a version with small VC from being executed. If the main
thread cannot find P versions with VCs larger than the threshold,
then the extra parallel threads are set to be inactive so that OS can
schedule other applications on the remaining cores.

5. Experimental Results
5.1 Experimental Setup

Implementation. We implemented our technique using the Pin [20]
instrumentation framework and the LLVM compiler infrastruc-
ture [17]. Fig. 11 shows the procedure for parallelizing a sequential
program. We first compile a sequential program into its executable

Figure 11. Experimental Framework.

with debugging information. Then we use our profiling tool to col-
lect runtime information for outermost loops under a small input
– the profiler is implemented by instrumenting the executable us-
ing Pin. The information collected includes dependences, values of
variables at start of each iteration, and control flow paths taken with
their execution frequencies. The dependences are classified into
intra-iteration and cross-iteration dependences. The live-in vari-
ables are identified by looking at the cross-iteration dependences.
The prediction code of these variables on each path is identified us-
ing intra-iteration dependences, value sequences, and control flow
paths based on the algorithm shown in Fig. 6. Then, LLVM uses
these predictions and a transformation template to recompile the
sequential program into the parallelized version. Finally, we run
the parallelized program with a larger input and collect the data
under CentOS 4 OS running on a dual quad-core Xeon machine
with 16 GB memory. Each core runs at 3.0 GHz.
Benchmarks. In our experiment, we use ten programs. Five of
them, namely dry, fldry, llu, mechcall and objinst, are from the
benchmark suite distributed with LLVM. Another five programs
are from the SPEC2000 suite: 164.gzip, 175.VCR, 255.vortex,
253.perlbmk and 300.twolf.

5.2 Performance Analysis

5.2.1 Performance of Basic Scheme

Fig. 12 shows the performance of each program when we apply the
basic scheme where for every two consecutive iterations, different
number of versions are created for the second one. It should be
noted that throughout our experiments, the maximum number of
speculative versions (threads) we allowed is 7 since the machine
has 8 cores and we reserve one core for the main thread. To avoid
thread idling, we unroll 10-20 iterations for the programs from
LLVM [28, 29]. The degree of unrolling is chosen based on the
tuning result obtained in the experiments. For the SPEC programs,
no unrolling is needed because the loop body is large enough.
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Figure 12. Overall Performance.

As we can see, the speedup for all benchmarks increases faster
at the beginning and slower as more versions are used. The high-
est speedups ranging from 1.12x to 1.51x are achieved when three
or four versions are used. This can be explained by Fig. 13 which
shows the cumulative speculation success rate of each benchmark
when increasing number of versions are executed in parallel. In
Fig. 13 , we notice that using the first 3 to 4 versions significantly
increases the success rate and thus leads to a big increment in
the speedup for every program. When more versions are used, the
total speculation success rate does not significantly increase any
more, so these later versions provide little contribution to the per-
formance. This is primarily because the paths corresponding to the
later versions have low execution frequencies. In these programs,
three or four hot paths are taken with over 95% probability. Conse-
quently, the versions corresponding to the infrequently taken paths
are not likely to be winners. In the case of mechcall and objinst,
the control flow graphs are very simple and there are only three
ways of computing live-in variables. Therefore, using three ver-
sions (threads) is enough to execute two consecutive iterations in
parallel and the other threads remain idle.
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Figure 13. Speculation Success Rate.

From Fig. 13, we also observe that all SPEC benchmarks ex-
cept for gzip have lower speculation success rates (less than 60%)
than the other five LLVM benchmarks even when 7 versions are
executed. This is because the data slices of live-in variables in the
LLVM programs are small and hence the speculation success rates



(a) gzip (b) vpr (c) perlbmk (d) vortex (e)twolf

(e) dry (f) fldry (g) llu (h)mechcall (i) objinst

Figure 14. Performance Of Adaptive Scheme.

are only determined by the path coverage of the speculative ver-
sions. For most SPEC benchmarks, however, the value mispredic-
tions on hot paths also causes the speculation to fail, and thus re-
duces the success rate. In the case of gzip, the value predictions of
the live-in variables are very accurate and hence we observe a very
high speculation success rate.

5.2.2 Performance of Adaptive Scheme

We also conducted a set of experiments for each benchmark when
the adaptive scheme is used. Fig. 14 shows the results. For each pro-
gram, we measured two numbers when different number of parallel
threads are allowed. The first number is the speedup demonstrated
by the line with markers. The left y-axis shows the speedup values
and the x-axis shows the maximum numbers of parallel threads that
are allowed. Compared to the basic scheme, additional speedups
are achieved when more threads are used. The highest speedups
range from 1.18x (perlbmk) to 2.33x (gzip) for all benchmarks.
These numbers are achieved when 7 versions (parallel threads) are
allowed to be used. This is because the adaptive scheme executes a
few versions of the third or even fourth iteration at runtime. Since
these versions are more likely to be correct than some versions in
the second iteration, executing them allows us to exploit more par-
allelism and achieve higher speedups.

The second number we measured is the average utilization of
cores. As described in section 4, to avoid wasting CPU resources,
versions with very small VCs (less than 0.05 in our experiments)
are not executed and the remaining threads are set to inactive. To
measure the actual CPU utilization of each parallelized program,
we recorded the number of versions that are selected every time by
the main thread. The selected versions are the ones whose VCs
are not only above a threshold number, but also among the P
highest ones, where P is the maximum number of parallel threads
allowed (shown on the x-axis). Then we compute the average of
all these numbers obtained throughout the whole execution. The
data are represented by the bars in each figure and the right y-
axis shows the values. For all benchmarks, the utilization is very
high when the maximum number of parallel threads allowed is less
than 4. After that, some programs may not always use all cores to
execute the speculative versions. In particular, when 7 threads are
allowed, for vortex and perlbmk, the best speedup is achieved by
only using around 4 cores on average. In other words, the main
thread normally cannot find more than 4 versions with VCs above
the threshold at runtime and hence saves the extra 3 cores without
sacrificing performance. This saving for llu and twolf, is about 2

cores, and for vpr, dry and fldry is one core on average. In the case
of gzip, objinst and mechcall, the parallelized program often uses
all cores to exploit the parallelism.
5.2.3 Performance Comparison with Other Techniques

We compare the effectiveness of our technique with three other
techniques. The first is DOACROSS [3, 18] where the values of
all live-in variables are passed through explicit messages. In our
experiments, the message-passing scheme is implemented through
POSIX pipe which supports send/receive calls. The second tech-
nique is TLS, which optimistically assumes no cross-iteration de-
pendences exist. Since our technique is implemented purely in soft-
ware, we used our CorD implementation [28] for comparison. The
last technique in our comparison is Mitosis [23] where all live-in
variables are pre-computed through full slices. As mentioned ear-
lier, the slice size is normally large. Therefore, an optimization has
been proposed in [23] where the data slice on the path that is most
frequently taken is kept. Note that Mitosis requires architectural
support for speculative execution. For a fair comparison, we eval-
uate Mitosis using our software speculation approach. Specifically,
we simulate Mitosis by generating one version for each iteration
and constructing the pre-computation code by using the complete
data slice on a path with the highest frequency.

DOACROSS
TLS
Mitosis
Ours

  0.00

  0.50

  1.00

  1.50

  2.00

  2.50

objinstmech.llufldrydrytwolfvortexperl.vprgzip

 S
pe

ed
up

 

Figure 15. Performance Comparison With Other Techniques.
Fig. 15 shows the results of the comparison where 7 parallel

threads are allowed for all techniques. From the figure, we can see
that our multiple-value-prediction technique outperforms the other
three techniques for all benchmarks. In most cases, DOACROSS
and TLS slow down instead of speeding up sequential executions.
The reason for DOACROSS is that it spends significant time on
waiting for the values of live-ins, especially when such variables
are used very early by a speculative thread. In the case of TLS,
being too optimistic leads to excessive misspeculations.



Mitosis performs much better than DOACROSS and TLS for
most programs. Compared to TLS, Mitosis has lower misspecula-
tion rate because it uses full data slice to calculate live-ins. The
reason for Mitosis not being as good as our technique is that it
only uses one version of each iteration. Therefore, if more than one
hot path exists, which is true for most benchmarks as indicated in
Fig. 13, the misspeculation rate is high because the speculation on
later iterations is prone to be wrong. As a result, the parallelization
benefit is diminished. For gzip and perlbmk, Mitosis slows down
the execution because in these two programs, the size of live-in
variables’ slices on the most frequent paths is very large. With-
out value predictions, Mitosis executes the loop almost sequentially
and the overhead of the runtime system further degrades the perfor-
mance.
5.3 Overhead Analysis

5.3.1 Time Overhead

Our execution model imposes the overhead on the execution of
the parallelized program. We measured this overhead by breaking
down the execution time into different categories for the parallel
threads and the main thread respectively.

Communication
Prediction Code
Computation

  0%

  20%

  40%

  60%

  80%

  100%

742742742742742742742742742742

 P
ar

al
le

l T
hr

ea
d 

E
xe

cu
tio

n 
T

im
e 

B
re

ak
do

w
n

 gzip  vpr  perl.  vortex  twolf  dry  fldry  llu  mech. objinst 

Figure 16. Time Breakdown: Parallel Threads.

Fig. 16 shows the average time breakdown of one parallel thread
in case of using a total of 2, 4, and 7 parallel threads. As we can
see, each parallel thread spent most time on the computation and
less than 1% time on executing the prediction code. The rest of the
time is spent on communication with the main thread. According
to the results, the communication overhead rises as the number of
threads increases. This is because the main thread controls the par-
allel threads by sending the start signal and examining the results
sequentially and thus using more parallel threads leads to a longer
waiting time for each.
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Figure 17. Time Breakdown: Main Thread.

Fig. 17 shows the breakdown of time for the main thread that
is responsible for executing the sequential part and some itera-
tions of the parallelizable loops, communicating with the parallel
threads, and performing misspeculation checks and copying oper-
ations. From the figure, we can see that the computation category

dominates the execution time for all programs. The fraction of time
spent on communication, misspeculation check, and copying op-
erations increases when more parallel threads are used. The sum
of these two fractions, which reflects the overhead imposed by the
execution model, is less than 25%. Considering the speedups we
obtained, the benefit of exploiting parallelism outweighs the cost
of implementation overhead.

5.3.2 Space Overhead
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Figure 18. Space Overhead.

We also measures the space overhead incurred to obtain speedups
by monitoring the peak value of memory consumption while the
parallelized program is run with varying number of threads. As
we can see from Fig. 18, when more threads are used, more space
is used for all benchmarks. We notice that the parallelized SPEC
benchmarks consume more memory especially when 7 threads are
used (20%-80%). On the other hand, the parallel versions of the
other 5 programs consume less than 7% extra memory regardless
of the number of parallel threads. This is because SPEC programs
are much larger and have more variables being used in each loop
iteration. Consequently, each parallel thread has to maintain a copy
of these variables which requires more memory.

6. Related work

DOALL/DOACROSS. To improve performance through loop par-
allelization, DOALL techniques were proposed decades ago [12,
16]. Due to the cross-iteration dependences, many programs cannot
be simply parallelized. To solve this problem, DOACROSS tech-
nique was proposed [3, 18] which uses explicit send/receive calls or
instructions to synchronize and exchange values between threads.
However, the blocking at receives serializes the execution. As a
result, DOACROSS techniques cannot greatly improve the perfor-
mance, especially when the value of a live-in variable is used at the
beginning of a thread’s execution.
TLS techniques. Numerous thread level speculation (TLS) tech-
niques have been proposed to aggressively exploit potential paral-
lelism from a sequential program. Among these techniques, several
are software based [4, 5, 9, 11, 13–15, 24, 28, 29]. Compared to
hardware based solutions, software TLS does not require any non-
trivial architectural modifications like special buffer [10, 22], ver-
sioning cache [8] or versioning memory [7].

While these software TLS techniques can be applied in array-
only applications [4, 9, 24], pointer-based irregular applications
[13–15], or general applications [5, 11, 28, 29], they are only
effective in parallelizing a loop that does not have frequent cross-
iteration dependences. Otherwise, excessive misspeculations occur.
Pre-computation technique. Quinones et al. [23] proposed the
Mitosis compiler where the values of live-in variables are pre-
computed through data slice on the most frequently taken path.
Although this approach is effective in dealing with frequent cross-
iteration dependences, it has two drawbacks. First, the data slice
of one or more live-in variables on one particular path can be very
large (e.g., gzip). Without value predictions, the pre-computation
takes almost the same amount of time as executing one iteration



in such cases. Second, the most frequently taken path is decided
by the compiler using profiling results. However, there may exist
more than one hot path in a loop execution at runtime. Moreover,
the inputs used in the real runs are different from those used in the
profiling runs. Therefore, the hot paths in the profiling runs may
not be frequently taken in the real runs. Thus, picking one hot path
at compile time may cause many misspeculations at runtime. Apart
from these two drawbacks, Mitosis compiler does not fully support
speculation. It relies on the hardware to detect misspeculations
and handle speculative results, and hence is not a purely software
speculation technique, but rather a hybrid one.
Multipath execution techniques. Using control flow paths to cre-
ate multiple executions has also been used in architectural designs
[2, 32, 33]. In these works, spare hardware contexts are used to
execute instructions along the paths corresponding to different pre-
dictions of hard-to-predict branches. If one of these redundant ex-
ecutions is correct, then the penalty of the branch misprediction is
greatly reduced. Since these techniques focus on improving per-
formance through hardware changes, they are different from our
software based compiler technique.

7. Conclusions
In this paper we presented a speculative parallelization technique
that is implemented purely in software. By using multiple value
predictions and state separation, this technique resolves frequent
cross-iteration dependences and exploit the parallelism between
consecutive loop iterations. The experimental results show that,
on an average, our technique achieves 1.7x speedup across ten
benchmarks.
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