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Abstract
It is important that long running server programs retain availabil-
ity amidst software failures. However, server programs do fail and
one of the important causes of failures in server programs is due to
memory errors. Software bugs in the server code like buffer over-
flows, integer overflows, etc. are exposed by certain user requests,
leading to memory corruption, which can often result in crashes.
One safe way of recovering from these crashes is to periodically
checkpoint program state and rollback to the most recent check-
point on a crash. However, checkpointing program state periodi-
cally can be quite expensive. Furthermore, since recovery can in-
volve the rolling back of considerable state information in addition
to replay of several benign user requests, the throughput and re-
sponse time of the server can be reduced significantly during roll-
back recovery.

In this paper, we first conducted a detailed study to see how
memory corruption propagates in server programs. Our study
shows that memory locations that are corrupted during the pro-
cessing of an user request, generally do not propagate across user
requests. On the contrary, the memory locations that are corrupted
are generally cleansed automatically, as memory (stack or the heap)
gets deallocated or when memory gets overwritten with uncor-
rupted values. This self cleansing property in server programs led
us to believe that recovering from crashes does not necessarily re-
quire the expensive roll back of state for recovery. Motivated by
this observation, we propose SRS, a technique for self recovery in
server programs which takes advantage of self-cleansing to recover
from crashes. Those memory locations that are not fully cleansed
are restored in a demand driven fashion, which makes SRS very
efficient. Thus in SRS, when a crash occurs instead of rolling back
to a safe state, the crash is suppressed and the program is made to
execute forwards past the crash; we employ a mechanism called
crash suppression, to prevent further crashes from recurring as the
execution proceeds forwards. Experiments conducted on real world
server programs with real bugs, show that in each of the cases the
server program could efficiently recover from the crash and the
faulty user request was isolated from future benign user requests.

Categories and Subject Descriptors D.4.5 [Operating Systems]:
Reliability – Checkpoint/Restart, Fault-tolerance
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1. Introduction
Long running server programs seek to maximize their uptime and
thereby ensure that they are available to users. However, server
programs do fail and one of the important causes of failures in
server programs is due to memory errors. According to the National
Vulnerability Database [nvd], memory errors like buffer overflows,
format string errors, integer overflows etc. constitute a significant
percentage (30% as of 2008) of software failures. Memory bugs in
the server code, when exposed by certain user request, can lead to
memory corruption which can eventually lead to crashes or even
software attacks (if user input is malicious).

There has been significant research on the recovery from soft-
ware failures. One safe way of recovering from such software fail-
ures and ensure availability is to periodically checkpoint program
state and rollback to the most recent checkpoint, when failure is
detected [Gray 1986, Plank et al. 1998, Qin et al. 2005, Randell
et al. 1978, Tallam et al. 2008]. Having rollbacked to a safe state,
all user requests starting from the safe state point until the crash
point are replayed; during replay, the particular bad user request
that triggered the crash is identified and dropped [Qin et al. 2005,
Tallam et al. 2008] so that the same failure is not repeated. However
the checkpointing/rollback scheme has its limitations. First, check-
pointing program state periodically can be quite expensive. Sec-
ond, since recovery can involve rolling back of considerable state
information, the throughput and response time of the server can be
reduced significantly during rollback recovery. Third, since check-
pointing is done only at specific program points, recovery can in-
volve the replay of several good user requests. Finally, checkpoint-
ing/rollback system is complex and poses implementation chal-
lenges for multithreaded programs [Qin et al. 2005].

In this paper, we first conducted a detailed study of memory cor-
ruption in server programs, to see how memory corruption propa-
gates as the server program executes, with a view to understand
whether the expensive checkpointing and rollback operations are
really needed. If the memory corruption does really propagate a
lot through memory, then that would vindicate the expensive state
rollback in the checkpointing/rollback approach; on the contrary,
if memory corruption does not propagate all that much, such ex-
pensive recovery mechanisms might not be really needed. In our
study of real world server programs, we assumed that the values
written to the memory by different store instances (we compre-
hensively tested all store instances) to be “corrupt” and studied its
propagation. From this study, we found that memory locations that
are corrupted during the processing of an user request, generally
do not propagate across user requests. On the contrary, the mem-
ory locations that are corrupted are often cleansed automatically,
as memory (stack or the heap) gets deallocated or when memory
gets overwritten with uncorrupted values. Thus this self cleansing
property in server programs, led us to believe that recovering from
crashes does not necessarily require the expensive roll back of state
for recovery.



Motivated by the above study, we propose SRS a safe technique
for enabling Self Recovery in Server programs. In SRS, we take
advantage of the self-cleansing property in server programs to iso-
late the faulty user request from other succeeding benign user re-
quests, without checkpointing or rollback. In other words, in SRS,
when a crash occurs, we do not rollback state to a previously saved
safe state; on the contrary, we suppress the crash and execute for-
ward. When executing forward, SRS guarantees that the user re-
quests succeeding the faulty request do not read any values writ-
ten during the processing of the faulty request, thereby achieving
the effect of dropping the bad request. Despite self cleansing, there
can be a small number of memory locations that remain corrupt;
if there is a need to access such a corrupted location, we use a de-
mand driven approach to restore the corrupted value when a read
for it is encountered. Thus in SRS, instead of the expensive rollback
operation to restore the memory contents to a safe state, we use the
efficient demand driven restoration. Furthermore, since execution
is made to proceed forward past a crash, the need to replay benign
user requests is eliminated altogether.

However, executing forwards past a crash is not without its own
challenges. Even though the first crash can be suppressed, simi-
lar crashes can recur (and likely will recur), when values that are
dependent on the corrupted memory values are used later. To pre-
vent such crashes from recurring we use a mechanism called crash
suppression in which those instructions that use values that are cor-
rupted are not made to execute, and are suppressed. Owing to the
self-cleansing property, fewer memory locations remain corrupted
because of which fewer instructions need to be suppressed as exe-
cution moves forward.

We evaluated SRS with real world memory bugs in 4 widely
used server programs and found that SRS could successfully re-
cover from the failures caused by faulty user requests. We also
found that SRS is efficient, causing negligible drop in the response
time of the program during normal run and after recovery.

Thus the main contributions of this paper are as follows:

• Self Recovery. We present a self recovery technique called SRS
that hinges on the self-cleansing property inherent in server
program.
• Efficient Recovery through demand driven restoration. In SRS,

we do not have the expensive checkpointing or rollback opera-
tions. On the contrary, the self cleansing property allows us to
execute forwards past a crash, and restore the residual corrupted
values using demand driven restoration.
• Crash Suppression. To enable execution forward past a crash,

we use a mechanism called, crash suppression where instruc-
tions which use corrupted memory values as its operands are
suppressed and not executed.

This paper is organized as follows. In section 2 we describe
the detailed study we conducted to study how memory corruption
propagates in server programs. Motivated by the observations from
the study we propose and describe our technique for self-recovery,
SRS, in section 3. In section 4 we evaluate SRS with real world
bugs in server programs and also evaluate the overhead imposed by
SRS. In section 5, we discuss related work and finally, we conclude
in section 6.

2. Study of Memory Corruption Propagation
The process of exposing a memory bug in a program via a user
request that causes a crash consists of three events in program ex-
ecution. In the first step, the bug in the source code is traversed by
user input. In the second step, the traversal of the bug leads to the
first point of memory corruption; this is the point when a mem-
ory location is mishandled in some way. The corrupted memory

Table 1. Server Programs Characteristics.
Program Description LOC
mysqld Database server 588K

cvs Version Control server 93K
squid Web Proxy cache server 283K

Apache Web server 114K

location then propagates across memory where it spreads and cor-
rupts other memory locations. Finally, a crash occurs when there
is an access to a spurious memory location. The goal of a check-
pointing/rollback system is to rollback to a prior memory state, a
state that is hopefully devoid of memory corruption. We conducted
a detailed study of memory corruption in server programs to see
how memory corruption propagates as the server program executes,
with a view to understand whether the expensive checkpointing and
rollback operations are really needed. Does the corrupted memory
location go on to corrupt other memory locations; if so on an av-
erage how much does the corruption spread? Is it possible that the
set of corrupted memory locations can shrink? These were some of
the questions we wanted to answer with our memory propagation
study. If the memory corruption does really propagate a lot through
memory, then that would vindicate the expensive state rollback in
the checkpointing/rollback approach; on the contrary, if memory
corruption does not propagate all that much, such expensive recov-
ery mechanisms might not be really needed. In this section, we first
discuss the server programs we used in our study. Then we describe
the study of memory corruption propagation along with an analysis
of salient observations.

We used 4 widely used real world server programs in our study,
mysqld, cvs, squid, and apache as listed in Table 1. For each of these
programs, the client sends separate user requests; for mysqld we
send 3 separate requests that build and manipulate separate tables;
for cvs we send 3 separate requests to checkout source code; for
apache and squid we send 3 requests to download files of various
sizes.

2.1 Memory Propagation Study
Methodology: The purpose of this study is to understand how
memory corruption propagates through memory as the program
executes. One possibility is to study the propagation of the memory
corruption in real bugs. However, the memory propagation clearly
depends on what memory location(s) are corrupted. For example,
a global variable that is marked corrupt is expected to lead to
several other corrupted values, while a local temporary may only
lead to fewer corrupt values. Hence, to comprehensively study the
propagation of memory corruption, we consider several executions
of the server program; in each execution, we consider different
memory locations to be corrupt and study their propagation. More
specifically, in each execution we assume that a specific dynamic
store instruction writes a corrupt value to memory and study the
propagation of this corruption in the rest of the execution. This
way, we exhaustively cover all possible memory locations that can
potentially be corrupted.

The steps of the memory propagation study, as illustrated in
Fig. 1, consists of two phases. In the first phase, called Trace Stores,
we collect a trace of all store instructions and the corresponding in-
struction count when each store instruction is executed (see step 4
in 1st phase), so that each dynamic store can be uniquely identi-
fied. In the second phase, called Memory Corruption Propagation,
we repeatedly assume each unique dynamic store to be corrupted,
i.e. we assume that it writes a corrupt value to the memory, and
study the memory corruption propagation. This is achieved by as-
sociating a corruption bit with every memory word and register



Table 2. Memory Corruption Propagation.
Action Target Src1 Src2
Fault Corr.

Instr: Target = src1 op src2 Corr. Uncorr. Corr.
Instr: Target = src1 op src2 Corr. Corr. Uncorr.
Instr: Target = src1 op src2 Corr. Corr. Corr.
Instr: Target = src1 op src2 Uncorr. Uncorr. Uncorr.

Deallocation Uncorr.

Phase 1: Trace Stores

Let cnt: global instruction count

1. switch (instruction)
2.        cnt ++                                                           // Update Current instruction count
3.        case store:
4.            fprintf (trace-file, cnt)                                // Write current instruction count to trace file

Phase 2: Memory Corruption Propagation

For each memory word addr, register reg,   
src.corruption : Whether src (address/reg) is corrupted

1.     while ( !eof (trace-file) )
2.       fscanf (trace-file, propagate_cnt)                     // Read count from trace file and start new execution
3. switch (instruction)
4.         cnt++                                                             // Update current instruction count
5.         case target = src1 op src2                                             // Target, src1, src2 can be memory / register
6.             if (cnt == propagate_cnt)    
7.                 propagation = true                           // Start propagation mode
8. target.corruption = true                        // Initial Corruption
9.             if (propagation) 
10.                 if (src1.corruption or src2.corruption) 
11.                   target.corruption = true                    // Propagation semantics
12.           target = src1 op src2                                                  // Regular semantics

Figure 1. Algorithm for Memory Propagation Study.

and propagating the corruption bits as the program executes. us-
ing the propagation rules detailed in Table. 2 (see Fig. 1 2nd phase,
steps 9,10). When an instruction experiences an exception (for ex-
ample an out-of-bounds load), the target of that faulting instruction
is marked corrupt. When a corrupted location is used by an instruc-
tion, then the value computed (or defined) by that instruction in
turn is marked corrupt. However, when an instruction whose uses
are uncorrupted, redefines a value, then the redefined value is con-
sidered to be uncorrupt, since it is computed with valid operands.
Finally, when memory (stack or heap) gets deallocated it is marked
uncorrupt. Thus for a load instruction that moves a memory value
into a register, the corruption bits corresponding to the memory
word are also moved into a register. Similarly, the corruption bits
are cleared when memory gets deallocated.
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Figure 2. Variation of Corrupted Memory Locations with Time.

Observations and Analysis: When a memory value is cor-
rupted, it can go on to corrupt other memory locations; at the same
time, the memory locations that are marked corrupt can revert back

Table 3. Memory Propagation Study.

Program Max Corrupted Location Final Corrupted Locations
Min Max Mean Med Min Max Mean Med

mysqld 1 14241 377 1 0 4995 120 0
cvs 1 1672 56 1 0 577 18 0

squid 1 475771 6997 2 0 8680 423 0
apache 1 32672 3228 5 0 6631 607 0

to being uncorrupt, as memory gets deallocated. Fig. 2 shows dif-
ferent ways in which the number of corrupted memory locations
varied, after the initial memory corruption. One common pattern
we observed was that, a memory location once corrupted, marks
zero or more memory locations corrupt, each of which revert back
to uncorrupted state, as that respective memory locations are deal-
located (see Fig. 2(a)). On the other hand, Fig. 2(b) shows the sit-
uation in which not all of the memory locations that are corrupted,
revert back to uncorrupt state. Similarly, Fig. 2(c) shows the situa-
tion in which none of the memory locations that are corrupted, re-
vert back to uncorrupted state. This can happen when the corrupted
variables are those variables that are used across user requests, in
which case they are not deallocated.
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Figure 3. Variation in Max Corrupted and Final Corrupted across
different execution instances for mysqld.
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Figure 4. Variation in Max Corrupted and Final Corrupted across
different execution instances for cvs.

To get a quantitative perspective of the propagation of mem-
ory corruption, we measured the maximum number of corrupted
memory locations and the final number of corrupted locations at
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Figure 5. Variation in Max Corrupted and Final Corrupted across
different execution instances for squid.
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Figure 6. Variation in Max Corrupted and Final Corrupted across
different execution instances for apache.

the end of the current user request. For each of the above metrics
we measured the min, max, mean and median across different ex-
ecutions, where different memory locations are marked corrupt as
shown in Table. 3. To study how the above values are distributed
across different executions, we also plotted the values for each of
the benchmarks as shown in Figs. 3 through 6. Each graph shows
the variation in the max corrupted values and final number of cor-
rupted values over different execution instances, in each of which
an unique store is assumed to write a corrupt value. From Table. 3
and Figs. 3 through 6 we make the following observations:

• The minimum value of maximum number of corrupted loca-
tions (minmax) across all benchmarks is 1; this is the one that
is initially marked corrupt and does not corrupt any more new
locations. This can happen for several reasons. One possible
reason is because the corrupted value can be used as a loop
counter, in which case the corruption does not propagate across
other memory locations. Another possible reason is because the
stored value is sometimes not read at all, in which case no prop-
agation occurs.
• We also observe that the minimum value of final number of cor-

rupted locations (minfinal) is 0 . This corresponds to the case in
which each of the memory locations that were marked corrupt
were reverted back to uncorrupted state. This can happen due
to two reasons. First, those memory locations that have been

marked corrupt could have been deallocated; second, the val-
ues that have been marked corrupt could have been overwritten
with uncorrupt values.
• The maximum number of maximum number of corrupted loca-

tions (maxmax) can be large. This can happen if some of the im-
portant variables that has several uses is marked corrupt. How-
ever, as we can see from Figs. 3 through 6 often the maximum
number of corrupted locations is quite low. For 80% of the exe-
cution instances, less than 10 memory locations get corrupted.
• We also observe that the maximum number of final number of

corrupted locations (maxfinal) is relatively lower than maxmax.
This is because of what we call the self cleansing effect in server
programs; this causes a large number of memory locations that
are marked corrupt are reverted back to uncorrupt state. This
fact is confirmed from Figs. 3 through 6 where the final number
of corrupted locations is significantly lower. In fact, between
70% and 90% of the execution instances, the final number of
corrupted memory locations is 0, meaning whatever memory
locations that were marked corrupt were fully cleansed.
• This fact is further reinforced when we observe the median

of the maximum number of corrupted locations (medmax) and
final number of corrupted locations (medfinal). While medmax
is less than 5 across all benchmarks, medfinal is 0. This means
that more often than not, a corrupted memory location goes on
to mark only few other additional memory locations as corrupt,
each of which are reverted back to uncorrupted state.

Thus the most important insight that we inferred from the
memory corruption propagation study is that a memory location
that is marked corrupt goes on to corrupt only a few other
memory locations, most of which are uncorrupted by the end
of processing of the user request. This is what we call the self
cleansing property inherent in server programs.

2.2 What causes self cleansing?
Next, we wanted to study and find out the reasons for the above
observations. In particular, we wanted to figure out why self cleans-
ing takes place in server programs. Why does memory corruption
spread and then diminish rapidly as the server begin to handle the
next request. One possible reason could be that user requests are
already isolated, in that, there is very little data that is shared be-
tween user requests, which can cause memory locations corrupted
during the processing of one user request to become invisible for
other user requests. So, we conducted this study if this is indeed
true.

Memory Isolation Study

Let curr-id : Current user request id
For each memory word addr:
addr.request-id: User request that wrote to it last
shared : set of shared memory locations

1. switch (instruction)
2.         case store:

addr.request-id = curr-id 
3.         case load:

if (addr.request-id < curr-id)
shared = shared U addr

Figure 7. Algorithm for Isolation Study.

Methodology: The purpose of this study is to determine the
degree of isolation among user requests already inherent in server
programs. In this study, we connected the server with several user



Table 4. Isolation Study.
Program # Shared # Non-Shared % of Shared
mysqld 758 6493 10.4

cvs 271 1457 15.6
squid 2753 41650 6.2

Apache 1471 2646 35.7

requests, and determine the number of memory locations that are
shared across user requests. A memory location is said to be shared
if it was written into by an earlier user request, and read by a later
request; in other words if a memory location is used to exercise
an inter user request RAW dependence, it is considered shared. A
small percentage of shared memory locations, would mean that
values written during the processing of one request, is not read
during the processing of other user requests and thus can explain
why self cleansing takes place. To determine the number of shared
memory locations, we instrument stores and loads as shown in
Fig. 7. Each memory location is tagged with a shadow memory
location; each store is instrumented to store the current user request
id in the shadow memory location associated with the original
address. Each load is instrumented, to check if the value loaded
comes from a previous user request, by checking the user request
id; if that is the case, that particular memory address is added to the
set of shared addresses.

Observations and Analysis: We measured the percentage of
memory locations that are shared across several user requests in
each of the server programs. As we can see from Table. 4 only a
small percentage of memory locations (ranging from 6% to 35%)
were shared across user requests. We also measured the effect of
the complexity of user requests on the number of shared memory
locations. We present the results for two programs mysqld and
squid. For mysqld, we measured the number of shared memory
locations, as the size of the tables were varied. For squid, we varied
the sizes of the webpages that squid fetches and measured the effect
on the number of shared memory locations. As we can see from
Figs. 8 and 9: as the complexity of user requests increases, the
number of non-shared memory locations increases rapidly, while
the number of shared memory locations almost remains the same.
This evidence points to the fact that server programs have a fixed
global state that is shared across user requests.
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Thus the most important insight we derived from this study
is that most of the values that are written during the processing
of a user request are used locally; only a small (fixed) amount
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of global state is shared across user requests. The small shared
state is the reason why memory corruption does not propagate
across user requests, and hence explains self cleansing.

3. Design and Implementation of SRS
In this section, we describe in detail the design and implementation
of our technique SRS, for recovering from server failures related
to memory corruption. First, we discuss the general idea of SRS
at a high level. Then we discuss in detail the steps involved in
implementing SRS at a conceptual level.

When a server program experiences a failure while processing
a user request, ideally the server should not crash; on the contrary,
the server program should continue to process future user requests.
At the same time, the memory state that has been corrupted by
the fault inducing memory request should not be visible to future
user requests. In other words, the faulty user request should be
isolated from the processing of other benign user requests. One
way to perform this is to checkpoint memory and architectural state
before processing every user request; upon the detection of a failure
we can rollback to the prior benign state. The objective of SRS
is to ensure semantics similar to rollback based recovery scheme,
without performing checkpointing or rollback. For this SRS takes
advantage of self cleansing inherent in server programs. Recall that
from the study we learned that different user requests of sever
programs share very little shared state, owing to which memory
corruption that happens during the processing of a user request is
largely invisible to future requests. Thus the main steps in SRS are
two fold:

• Execute past a failure, when a failure is detected, instead of
rolling back, so as to trigger self cleansing. We enable execution
past a failure by executing instructions under crash suppression
mode – under suppression mode, instructions, any of whose
source operands are corrupt, are not executed and the target is
marked corrupt.
• Despite self cleansing there can be small number of memory lo-

cations that remain corrupted – if there is a need to access such
corrupted locations later (by a later request), we use a demand
driven approach to restore the corrupted values only when it is
needed to be read. In SRS, the set of memory locations that are
potentially shared across user requests are identified via profil-
ing; these specific memory locations are specially monitored,
so that in case of a failure these specific locations are restored
in a demand driven fashion.



The rest of this section is organized in follows. We first describe
in detail the crash suppression semantics and then discuss how
we implement it. Then we discuss how we realize isolation with
demand driven restoration of shared memory locations. Then we
briefly discuss how SRS maintains thread safety for multithreaded
code. Finally, we integrate each of the above steps and present as a
whole, the SRS technique.

For each memory word addr, register reg
src.corruption : Whether src (address/reg) is corrupted

1. switch (instruction)
2. case faulting instruction:                                      
3.              suppression = true                      // Start suppression mode
4. target.corruption = true               // Initial Corruption

5.          case target = src1 op src2
6. if (suppression)

7. if (src1.corrupt or src2.corrupt) 
8. target.corrupt = true            // Suppression semantics
9. else  
10. target = src1 op src2                   // Regular semantics

Figure 10. Suppression Semantics.

3.1 Crash Suppression
Once a failure is detected while processing a user request, in SRS,
we continue execution forwards so that we can take advantage
of the self-cleansing property1. However, executing forwards past
a crash is not without its own challenges. Even though the first
crash can be suppressed, similar crashes can recur (and likely will
recur), when values that are dependent on the corrupted memory
values are used later. We enable execution past a failure using
crash suppression semantics, in which an instruction is suppressed
without executing, if any of its source operands are corrupted.
The basic steps for realizing suppression semantics are outlined in
Fig. 10. We implement suppression by associating a corruption bit
with every memory word and register. Upon detecting a failure,
the corruption bit for the target of the instruction that causes the
failure is set. Suppression semantics entail that any instruction, any
of whose source operands are marked corrupt, is suppressed and
is not executed. However, the corruption bit is propagated, which
means the target operand’s corruption bit is set. If the corruption
bit for a branch predicate is set, the control is made to skip the
whole branch structure; For instance if the predicate for an if-then-
else structure is marked corrupt, then both the then and the else
parts of the structure are skipped. Dealing with indirect jumps (and
returns) whose target address is marked corrupt is more tricky. In
our current implementation, we use profiling to figure out the most
frequent branch target for such indirect jumps and jump to that
target. In case profile information is not available, we directly jump
to the next user request.

3.2 Ensuring Isolation
We need to ensure that an user request, that encountered a failure,
should be isolated from future benign user requests. This entails
that values written to memory during the processing of the faulty
request should not be visible to future requests. Those memory
locations that are shared across user requests are those which can

1 For this work, failure refers to an OS out-of-bounds exception, although
others sensors [Qin et al. 2005] can be used to detect a failure

possibly be visible to future requests. Fortunately, our study shows
that the number of shared memory locations are relatively small.
In SRS, we identify memory locations that are likely shared using
profiling. During normal run, these shared memory locations are
monitored and multiple versions of these shared memory locations
are maintained. Thus, when an user request experiences a failure
and there is a need to access one these shared memory locations, we
can restore the corrupted value to its original uncorrupted state, on
demand. However, it is worth noting that profiling only gives us an
underestimate of the set of memory locations that are shared across
user requests. Thus, we could potentially encounter a situation
when we need to access a corrupted shared memory location, which
has not been identified and monitored. Our approach to deal with
this situation is to provide capability to detect such a situation.
When such a situation arises, we restart the server; by doing this
we ensure that recovery is fail safe. Having explained our approach
for ensuring isolation at a high level, now let us consider in detail
the individual steps.

3.2.1 Monitoring Shared Locations
We find the memory locations that are potentially shared across
user requests using profiling. In the profiling run we connect to
the client with several user requests, and then identify the memory
locations which are written to by an earlier request and read by
a later request. In other words, we identify the set of memory
locations which are used to enforce true dependences across user
requests. These are the memory locations in which global state is
maintained. For instance, a global variable which essentially stores
the number of user requests handled will have this property. Let
us call these set of memory locations as the TrackSet. It is worth
noting that this is only an underestimate, since we use profiling to
identify this set. We do not need to worry about anti and output
dependences; this is because these locations are overwritten with a
new (uncorrupt) value in the later request.

We now discuss how the TrackSet is monitored and how differ-
ent versions are maintained for the memory locations in the Track-
Set. Whenever we start processing a new user request, we allocate
memory, the TrackLog to hold the previous values of the memory
locations within the TrackSet. The TrackLog is a buffer, each entry
having two values: the address and the (previous) value. We instru-
ment all stores operating on the TrackSet to maintain their prior
values in the TrackLog. If the current user request does not experi-
ence a fault, then the TrackLog can simply be discarded. However,
if the user request experiences a fault, the TrackLog is used later
to restore the corrupt memory locations to their prior values, on
demand.

3.2.2 Demand Driven Restoration
The main idea of demand driven restoration, is to restore the cor-
rupted value using the TrackLog, when it is is about to be read in a
future request. To be able to do this we first need to identify that a
value is corrupt, when it is about to be accessed. A value is consid-
ered corrupt, if it was written into during the processing of a fault
inducing user request. To identify such memory values, we asso-
ciate (or shadow) every memory location2 with a request-id. This
is essentially a unique number associated with every user request.
All stores are then instrumented to additionally write the current
request-id to the shadow location associated with the memory ad-
dress.

When a user request experiences a failure, we remember this
by adding the current request-id to the list of failed requests. Once
a failure is encountered, all loads in the program are instrumented

2 It is sufficient if we shadow the heap and global space, since stack memory
locations are not used to enforce true dependences across user requests



to perform an additional check. By comparing the request-id asso-
ciated with the loaded memory location with the list of failed user
request, we are essentially checking if the value loaded comes from
a value that has been stored during the processing a fail request. If
so, we then consult the TrackLog using the effective address as an
index into the TrackLog. An entry in the TrackLog means that this
memory location has been identified during profiling and the value
has been backed up in TrackLog. Accordingly, we then restore the
value from the TrackLog into the actual memory location, and use
this restored value. In other words, we restore corrupted values on
demand, when they are accessed.

However, it is important to note that the TrackLog is only an
underestimate of the actual set of values that is shared across user
requests. Hence it is possible that the TrackLog does not have an
entry if the memory location had not been identified as a part of
TrackSet during profiling. If this is the case, we then restart the
server to ensure fail safety.

1st User Request

TrackLog[]         :    Buffer to store previous values
curr-id                :    Current user request id (=1)
request-id[addr] :    Stores the id of user request that

wrote to this addr
faulting-reqs[]    :    Buffer that stores faulting requests

1:     Ld1 reg1, [0x1000]

2:     Ld2 reg2, [reg3]

3.     St1 reg1, [0x1000]
i) Append *(0x1000), 0x1000 to TrackLog[]
ii) request-id[0x1000] = curr-id     

4.     St2 reg2, [0x2000]
i) request-id[0x2000] = curr-id     

…

5.     Fault:                  
i) Append curr-id to faulting-reqs[]

…
…

2nd User Request

TrackLog[]         :  Buffer to store previous values
curr-id                :  Current user request id (=1)
request-id[addr] :  Stores the id of user request that

wrote to this addr
faulting-reqs[]    :  Buffer that stores faulting requests

1:     Ld1 reg1, [0x1000]    
i) id = request-id[0x1000]
ii) if id among faulting-reqs[] 

if TrackLog.find(0x1000)
*(0x1000) = TrackLog[0x1000]

else
restart server

endif
endif

2:    Ld2 reg2, [reg3]

i) id = request-id[reg3]
ii) if id among faulting-reqs[] 

if TrackLog.find(reg3)
*(reg3) = TrackLog[reg3]

else
restart server

endif
endif

…

Figure 11. Ensuring Isolation.

3.2.3 An Example
In this section, we illustrate with a simple example which summa-
rizes the steps involved in ensuring isolation. Let us consider two
user requests the first of which experiences a fault while being pro-
cessed. The first step is to identify the TrackSet using profiling. Let
us assume that during profiling run, there is only one memory lo-
cation (0x1000) that is shared between two user requests, and it is
the one that is written into by St1 and read by Ld1 across user re-
quests as shown in Fig. 11. Consequently, St1 is instrumented with
code that stores the prior value residing in the memory location to
the TrackLog associated with the user request (step 3). Since St2
does not write to the TrackSet, it is not instrumented in the above
fashion. However, it is instrumented to write the current request-
id in the shadow memory associated the memory location (step 4).
Let us assume that the program then experiences a fault while ex-
ecuting a subsequent instruction, while processing the same user
request. Upon a fault (step 5), the current request-id is added into
the list of failed user requests.

Now let us consider the processing of the next user request, and
in particular the execution of the two loads Ld1 and Ld2. Ld1

which obtains its value from St1, now gets it value from a store
that was executed during the processing of a fault inducing request
(request 1). In other words, the value to be loaded is corrupt and the
condition (step ii) evaluates to true. Since the value is corrupt, the

TrackLog is searched for the value. As the value was already ap-
pended in step 3 of the 1st request, it is found there. Consequently,
the value is restored from the TrackLog and the correct (uncorrupt)
value is loaded. Now, let us consider the execution of Ld2. Let us
assume that during this run Ld2 actually gets its value from St2
since the value of reg3 happens to be 0x2000 during this run. This
is an instance of a dependency across user requests that was not
captured during profiling. Consequently, the value is not found in
the TrackLog and the server is restarted.

3.2.4 Handling Multithreaded Code
Since the SRS technique is associated with meta data for every
memory location (for eg. request id) and includes software instru-
mentation associated with loads and stores, races present in the
source can lead to meta data inconsistency [Chung et al. 2008]. In
SRS, we deal with this problem by serializing the threads and mak-
ing sure that thread switches do not occur between data and meta
data updates as in [Nethercote and Seward 2007b]. However it is
worth noting that thread serialization is inefficient as it forces the
code to run on a uniprocessor. Solutions proposed in [Chung et al.
2008] and [Nagarajan and Gupta 2009] can be used to deal with
meta data inconsistency problem without sacrificing the efficiency.

Offline: Normal Run

1. Perform profiling and 
determine TrackSet.

2. Determine the Stores that 
operate on TrackSet.

Online: Normal Run

1. For stores that operate on 
TrackSet maintain their 
previous values in TrackLog.

2. Instrument other stores to write 
current request id to shadow 
memory.

Online: Fault Detection

1. Catch OS exceptions for 
access violations.

2. Append current user request to 
set of faulting requests.

3. Enter Suppression mode until 
the end of current request.

Online: Recovery Run

1. Instrument loads to check if 
they were written during 
faulting request

2. If so, check if the available in 
TrackLog. If available, restore 
it, otherwise restart.

Figure 12. Summary: SRS.

3.3 SRS Summary
We now summarize each of the steps of SRS in the concise algo-
rithm shown in Fig. 12. The steps of SRS are roughly divided into
four phases. In the first profiling phase, which is performed offline,
the TrackSet is determined and all the stores that write to the Track-
Set are determined. In the normal run, the TrackLog is maintained
for all stores that write to the TrackSet. For all other stores, the
current request id is written out to the shadow memory to assist
on-demand restoration. It is worth noting that the online overhead
imposed by SRS is the overhead of executing the additional instru-
mentation. The next phase consists of the fault detection. In this
phase, we use the OS out-of-bounds exception to denote a fault.
However it is worth noting that we can use other sensors includ-
ing security attack detection tools in this step. Once the fault is
detected, the current user request is added to the set of faulting re-
quests, and execution enters suppression mode. In the final recovery
phase, loads are instrumented to check if the request id correspond-
ing to the loaded value comes from a faulty user request. If this
is the case, then the TrackLog is searched and the correct value is
restored on demand. If the entry is not found in the TrackLog, the
server is restarted.



Table 5. Bugs in Server Programs.
Program Bug
mysqld Uninitialized Read [sql]

cvs Double free [Lu et al. 2005]
squid Buffer overflow [Lu et al. 2005]

Apache Stack Overflow [Lu et al. 2005]

4. Experimental Evaluation
We performed the experimental evaluation of SRS with several
goals in mind. First and foremost, we wanted to see if SRS can
recover from real faults in server programs. At the same time, we
wanted to see what are the overheads imposed by SRS in the normal
run and during recovery. But before we present our results, we
briefly describe how we implemented the prototype for SRS.

4.1 Implementation
We implemented a functionally working version of SRS in Valgrind
[Nethercote and Seward 2007b], which we also used for conduct-
ing the study. We used Valgrind’s shadow memory support [Nether-
cote and Seward 2007a] for storing the various meta data informa-
tion we use for implementing SRS. We had to manually identify
the starting instruction address, where processing of every user re-
quest commences. Once we encounter this address, we allocate the
TrackLog and increment the current request id. With Valgrind, we
were able to catch the out-of-bounds OS exception, and then con-
tinue execution in suppression mode. After completing the faulty
user request and encountering the start address of the next request,
the execution leaves suppression mode and enters recovery mode,
where every load includes the fail safety check. However, since the
Valgrind infrastructure, which is built for the ease of writing com-
plex tools, imposes higher overheads, we also implemented a per-
formance optimized version in dynamoRIO [Bruening et al. 2003].
This version of SRS, which we use to measure the overhead of SRS,
includes all instrumentation of the prior version, but does not catch
OS exceptions, so it has to be manually run in normal mode or re-
covery mode. All performance results reported in this paper are the
overheads obtained with dynamoRIO tool.

4.2 Recovery in the presence of faults
We used versions of the server programs with real memory errors.
The bugs in the program are described in the Table. 5.

For each of the programs, we connected the server with about
10 user requests, with the special user request that triggers the fault
as the 5th request. We also used different user requests compared
to the one used in profiling runs. In each of the cases, the bug
causes an out-of-bounds OS exception which SRS catches; then,
SRS enters suppression mode under which SRS was able to safely
execute to the end of the faulty request, without experiencing other
faults. Once the faulty request is “processed”, SRS enters recovery
mode in which fail safety checks are added before every load. In
our set of experiments, we found that none of the fail safety checks
failed; thus the need to restart the server never arises. We believe
that typically, the need to restart will not occur, since the shared
variables stay mostly the same irrespective of the variation in the
user request. Thus this experiment shows that SRS can be used to
survive faults safely.

4.3 Performance of SRS
In this experiment, we wanted to measure the overhead in the re-
sponse time imposed by SRS during normal run as well as during
recovery. Recall that the overhead imposed during normal run is
due to the additional instrumentation involved for maintaining the

TrackLog and for storing the current user request id for every orig-
inal store instruction. As we can see from Fig. 13, the overhead
imposed is very low, on an average, 5% across all benchmarks.
This overhead is low mainly for two reasons. First, since these are
not computationally bound programs, the additional instrumenta-
tion could easily be tolerated. Second, the additional instrumenta-
tion during normal run, is only an additional store for every store in-
struction. Since the processor does not generally wait for the stores,
the overhead imposed is not high.
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Figure 13. Response Time Overhead in Normal Run.
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Figure 14. Response Time Overhead after Recovery.

We also measured the additional overhead imposed after recov-
ery, which is basically the overhead for performing the fail safety
checks along with every load. Even this overhead is pretty low, on
an average 8% across each of the benchmarks (Fig. 14). The over-
head is higher because now the instrumentation is performed for
every load along with a safety check.

Finally, we also measured the overhead involved in executing in
suppression mode. As we can see, from Fig. 15, this overhead can
be as high as 3 times for these benchmarks. However it is impor-
tant to note that the overhead for performing suppression is only for
the duration of processing the faulty request, hence the dip in per-
formance is only applicable for a very short time. Once the faulty
request is handled, then SRS stops executing in suppression mode.
Furthermore, there has been significant research on performing dy-
namic information flow tracking efficiently using hardware support
[Suh et al. 2004, Crandall et al. 2006, Dalton et al. 2007]. DIFT
hardware can be used to optimize the performance of the suppres-
sion mode, since the instrumentation operations performed during
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Figure 15. Response Time Overhead during Recovery in Suppres-
sion Mode.

suppression mode resemble those that are performed during dy-
namic information flow tracking.

Performance of Checkpointing/Rollback Schemes. One is-
sue with Checkpointing based rollback recovery schemes is the
frequency of checkpointing, which in turn results in the tradeoff
between the normal execution performance and recovery perfor-
mance. Infrequent checkpointing can reduce the overhead of check-
pointing, but can increase the cost of recovery [Qin et al. 2005]. On
the other hand, frequent checkpointing can cause greater overhead
during normal execution. A highly optimized checkpointing sys-
tem [Srinivasan et al. 2004] with a checkpointing interval of 50ms
resulted in a overhead of about 11% during normal execution run,
with marginal overheads during recovery. The overheads incurred
by SRS are thus comparable (slightly lesser) to overheads experi-
enced in a checkpointing based rollback recovery scheme, without
the need for a complex checkpointing/rollback system.

5. Related Work
Recovering from failures has been a subject of significant research
over the years. There has been significant work on coping with soft-
ware failures by using various kinds of rebooting techniques. While
whole program restart [Gray 1986] works by simply restarting the
failed application, a small set of partial software components may
be selectively restarted [Candea et al. 2004] to reduce the cost of
recovery. The problem with restarting techniques is that the server
program can be temporarily unavailable during restart. To reduce
the cost of recovery, checkpointing based techniques[Gray 1986,
Plank et al. 1998, Qin et al. 2005, Randell et al. 1978, Tallam et al.
2008], periodically checkpoint program state and rollback to the
most recent checkpoint when the failure is detected. Having roll-
backed to a safe state, that particular user request is then dropped
[Qin et al. 2005, Tallam et al. 2008] so that the same failure is not
repeated. However, the space and time overheads of checkpointing
can be expensive if the checkpointing interval is small [Plank et al.
1998, Qin et al. 2005]. On the contrary, if the checkpoint interval
is large then the throughput and the response time of the server can
be affected during recovery.

There has also been work on the reliability of long running pro-
grams using a combination of checkpointing and tracing [?Zhang
et al. 2006]. The scope of this work is to consider server programs,
since there is a pressing need for them to be available. However, the
techniques presented in this paper are also applicable for other long
running programs, which process different user inputs continually.

There has been recent research on recovering from memory er-
rors without the need for checkpointing or rollbacks [Rinard et al.
2004, Sidiroglou et al. 2005]. Our work is closely related to failure
oblivious computing [Rinard et al. 2004], which also observes and
utilizes the self cleansing property for maintaining server availabil-
ity amidst failures. In the above work, instead of crashing when an
illegal memory access occurs, the server continues program execu-
tion by simply discarding the illegal writes and manufacturing val-
ues to return for illegal reads. The success of the above technique
hinges on small error propagation distances on server programs,
which we refer to as self cleansing in our work. In our work, in
addition to studying the self cleansing property in detail, we also
use it in SRS differently compared to failure oblivious computing.
Instead of speculating the programmer’s intentions (for example,
by manufacturing values for reads), in SRS we nullify the faulty
request using crash suppression and isolate the faulty request from
other requests.

Recovery oriented computing [Oppenheimer et al. 2002, Pat-
terson 2002] proposes a system in which software components of
a system are designed to be isolated, so that the impact on fail-
ures can be reduced. Our work is also related to work on recov-
ering from failing device drivers [Swift et al. 2004, 2003] in that
the above works also try to build a system that tries to isolate the
failing device drivers from other parts of the system. In our work,
we showed how this isolation is already present is server programs,
to some extent. We then use this property to our advantage to build
SRS, which is fail safe.

There has been significant work on recovering from Transient
soft errors [Mukherjee et al. 2005, Reis et al. 2005, Reinhardt and
Mukherjee 2000, Wang et al. 2007, Vijaykumar et al. 2002], which
are radiation induced errors that cause random bit flips in both
the computational and memory hardware. Bit flips to computation
circuitry and memory elements are a form of memory corruption,
and the results of the study conducted in this work are equally
applicable for transient errors. In particular, the observation that a
corrupted memory location , most often, corrupts only a few other
memory locations can be taken advantage by a system that recovers
from transient errors. Finally in this work, we merely used out-of-
bounds memory accesses to trigger a fault, we can use dynamic
security detection tools [Cheng et al. 2006, Newsome and Song
2005, Suh et al. 2004, Qin et al. 2006] or other assertion checks for
this purpose.

6. Conclusions
In this paper, we conducted a detailed study of memory corruption
propagation and isolation for a set of real world server programs.
Our study shed light on an useful insight: the self-cleansing prop-
erty which basically says that memory corruption does not gener-
ally propagate across user requests; on the contrary, it is cleansed
automatically as memory gets deallocated or corrupt values are
overwritten. We found out that this was because most of the val-
ues that are written during the processing of a user request are used
locally; only a small (fixed) amount of global state is shared across
user requests. Motivated by this insight, we proposed SRS, a tech-
nique that enables self recovery in server programs without requir-
ing checkpointing or rollback. In SRS, we suppress the crash and
execute forwards, using a demand driven approach to restore cor-
rupted memory locations. Our experiments showed that SRS is able
to recover from real world memory bugs in server programs; At the
same time, SRS is very efficient causing only 5% overhead during
normal run and 8% overhead after recovery.
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