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ABSTRACT
The advent of multicores has introduced new challenges for
programmers to provide increased performance and software
reliability. There has been significant interest in techniques
that use software speculation to better utilize the computa-
tional power of multicores. At the same time, several recent
proposals for ensuring software reliability are not applica-
ble in a multicore setting due to their inability to handle
interprocessor shared memory dependences (ISMDs). The
demands for performing speculation and ensuring software
reliability in a multicore setting, although seemingly differ-
ent, share a common requirement: the need for monitoring
program execution and collecting interprocessor dependence
information at low overhead. For example, an important
component of speculation is the efficient detection of miss-
speculation which in turn requires dependence information.
Likewise, tasks that help ensure software reliability on mul-
ticores, including recording for replay, require ISMD infor-
mation.

In this paper, we propose ECMon: support for exposing
cache events to the software. This enables the programmer
to catch these events and react to them; in effect, efficiently
exposing the ISMDs to the programmer. In the context of
speculation, we show how ECMon optimizes the detection
of miss-speculation; we use this simple support to speculate
past active barriers and achieve a speedup of 12% for the set
of parallel programs considered. As an application of ensur-
ing software reliability, we show how ECMon can be used
to record shared memory dependences on multicores using
no specialized hardware support at only 2.8 fold execution
time overhead.

Categories and Subject Descriptors
B.2.2 [Memory Structures]: Design Styles – cache mem-
ories; D.2.5 [Software Engineering]: Testing and Debug-
ging – debugging aids, monitors; D.3.4 [Programming Lan-
guages]: Processors – compilers,optimization

General Terms
Design, Reliability, Performance, Experimentation
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1. INTRODUCTION
The advent of multicores has introduced new challenges

for programmers to provide increased performance. There
has been significant interest on software speculation tech-
niques [7, 37] which uncover parallelism by speculating past
dependences. At the same time, there has been significant
research on ensuring software reliability of programs through
online monitoring of running programs for a variety of pur-
poses including debugging [35, 23] and security [25, 26]. The
demands for performing speculation and ensuring software
reliability on multicores, although seemingly different, share
a common requirement: the need for monitoring program
execution and collecting interprocessor shared memory de-
pendence (ISMD) information correctly and efficiently.

Figure 1: ISMDs in (a) speculation (b) record-
replay.

• Fig. 1(a) illustrates the basic steps of software speculation,
where fun2 is executed speculatively in parallel with fun1,
although in sequential execution fun2 follows fun1. Let us
assume that fun2 is made to run in a protected memory
space so that the anti and output dependences between
them vanish [7, 37]. The speculation then succeeds if no
true dependences are exercised between fun1 and fun2; in
other words, the speculation succeeds if fun2 does not read
any memory location that was written by fun1.

• Record-replay based debugging [12, 17, 22, 35, 40] is a
technique that helps ensure software reliability by recording
program execution, so as to enable replay to help in debug-
ging. In a multicore setting, ISMDs need to be recorded in
addition to recording other non-deterministic events. Let
us consider the example shown in Fig. 1(b) which shows
the parallel execution of two functions (no speculation in-
volved) fun1 and fun2. As we can see, fun2 reads the
value written by fun1 and this RAW dependency must be
recorded to ensure that ld2 gets the correct value (from
st1) during replay.



Monitoring Application Purpose of tracking ISMDs

DIFT [25, 26] (Dynamic Informa-
tion Flow Tracking) is used to track
whether contents of memory loca-
tions are data dependent upon in-
secure inputs. With each memory
location (byte) a taint bit is associ-
ated, which indicates whether that
memory location is data dependent
upon an insecure input.

Whenever there is an ISMD
between two memory loca-
tions, ensure that there is
a corresponding dependence
between taint bits associ-
ated with the memory loca-
tions.

Eraser [32] is used to track informa-
tion to enable data race detection.
With every memory word Eraser as-
sociates the status and the lockset.
The status tells if the current word
is shared across threads or exclusive
to one thread, while the lockset indi-
cates the set of locks used to access
that memory location.

Whenever there is an ISMD
between two memory loca-
tions, ensure that there is
a corresponding dependence
between status and lockset
associated with the memory
locations.

Memcheck [23] is used for debug-
ging memory bugs. Every location is
associated with two values, the A bit
and the V bits. While the A bit indi-
cates if that particular memory loca-
tion is addressable, the V bits indi-
cate whether the corresponding bits
in the memory location have been
defined.

Whenever there is an ISMD
between two memory loca-
tions, ensure that there is
a corresponding dependence
between A bit and V bits
associated with the memory
locations.

Table 1: Other Monitoring applications requiring
ISMD information.

• In addition to speculation and record-replay based debug-
ging, the detection of ISMDs is crucial to a variety of other
monitoring applications, as illustrated in Table 1. Each
of the monitoring applications listed in Table 1 associates
meta data with original memory locations in corresponding
shadow memory locations [23]. When run on multicores,
races between original memory accesses and meta data ac-
cesses can result in inconsistent meta data values [3, 19, 20,
23]. Knowledge of ISMDs between original memory oper-
ations enables us to enforce the corresponding meta data
dependences and thus maintain consistent meta data [20].

Current software based monitoring tools are thwarted by
these ISMDs, which makes them inapplicable for multicores
[25, 26, 35]. On the contrary, hardware based monitoring
tools [5, 12, 17, 21, 22, 36, 40], which are applicable, use
specialized hardware support that is geared toward the par-
ticular monitoring application. Thus this paper is motivated
by the lack of general purpose hardware support for detect-
ing these ISMDs. In ECMon, we expose cache events to
the software; in effect, efficiently exposing the ISMDs to
the programmer. Whenever the cache controller of a pro-
cessor receives a cache event (eg. invalidate, data value
reply), it interrupts the processor, and calls a predefined
handler function. The handler function is programmable
and is defined based upon the monitoring application. In
this work, we show how the handlers can be programmed
for two different monitoring applications: speculation past
barrier synchronizations for performance and record-replay
based debugging; we use the handler associated with inval-
idates to detect miss-speculation and to record WAR de-
pendences. Handlers associated with data value replies are

used to record RAW and WAR dependences. By suitably
programming the handler functions, other monitoring ap-
plications (including those mentioned in Table. 1) can be
supported on multicores [20].

Our work is related to prior works [11, 15, 18] which ob-
serve that exposing memory operations is crucial for a va-
riety of monitoring related tasks. One approach in [15] in-
tegrates monitoring code into the coherence protocol where
the memory operations are visible. A flexible solution pro-
posed in [11] exposes the memory operations directly to the
programmer via user mode exceptions so that a variety of
monitoring tasks can be implemented without modifying
cache coherence implementation. We also follow the ap-
proach proposed in [11]. However, our work differs almost
entirely as it exposes different set of cache events so as to
enable contemporary monitoring applications. While the
cache-miss event is exposed for implementing cache coher-
ence in software [11] and implementing software controlled
multithreading [18], this event is not adequate for exposing
ISMDs needed for detecting miss-speculation during soft-
ware speculation and enabling replay for debugging.

We implemented ECMon in a cycle accurate multicore
simulator [29]. As an instance of software speculation, we
speculatively execute threads past active barriers [8, 14] and
use ECMon to detect miss-speculation. Using this simple
support, we find that the overall program execution time is
reduced by an average of 12%, as opposed to 10% slowdown
without this support, for the set of 7 parallel applications
considered. As an instance of reliability, we show how EC-
Mon can be used to capture and record the ISMDs at only
2.8 fold overhead for SPLASH-2 programs, a monitoring task
which is prohibitively expensive to perform without this sim-
ple support. Thus the main contributions of this paper are
as follows:

• The observation that exposing ISMDs to the program-
mer is crucial to performing a variety of monitoring tasks
on multicores and ECMon, a lightweight, general purpose
mechanism for achieving the above.

• ECMon is programmable, since the programmer can inter-
act with ECMon via rich ISA support. We demonstrate the
efficacy of ECMon with two different applications: Specula-
tion past barriers and Recording ISMDs, each of which had
no prior software solutions and required specialized HW
support for implementing them.

2. ECMon: ARCHITECTURAL SUPPORT
Event Parameters

receive data value reply block address, remote proc id
send data value reply block address, remote proc id

receive invalidate block address, remote proc id
send invalidate block address, number of remote procs

read miss block address
write miss block address

Table 2: Exposed Cache Events.

In ECMon, we propose exposing cache events to the soft-
ware; in effect, efficiently exposing the ISMDs to the pro-
grammer. Whenever the cache controller receives a cache
event for a processor’s local cache, it can be programmed to
interrupt the processor, and call a predefined handler func-
tion, before responding to the event as shown in Fig. 2(a).



Figure 2: (a) ECMon semantics (b) New instructions added (c) Hardware structures added

For this discussion and our implementation, we consider
a MOSI directory based coherence protocol with directory
stored in the shared L2 cache, executing in an inorder mul-
ticore processor with local L1 caches.

(Events and Handlers) The cache events exposed for
the applications in this work are the following: (i) a proces-
sor sending/receiving an invalidate message, (ii) a processor
sending/receiving a data value reply, (iii) a processor expe-
riencing a read miss for a block uncached in any processor
and (iv) a processor about to write back a block as illustrated
in Table. 2. While the first four events expose ISMPs exer-
cised via the cache coherence network, the last two events
expose ISMPs exercised via memory. The handler function
is programmable and is defined based upon the requirement.
Since the handler resides in user space, the semantics of the
call to the handler is similar to a function call; the program-
mer is responsible for saving and restoring the values of reg-
isters that are used in the handler. However, the hardware
is responsible for providing values to the handler as function
call parameters as mentioned in Table 2. In general, the
block address1 and the remote proc id are the parameters.
However, for the send invalidate event, since there are po-
tentially multiple remote processors, the parameter for this
event is the number of remote processors holding the inval-
idated block. Finally, it is important to note that while the
handler function is called, the coherence controller indepen-
dently responds to the cache event, as usual. In other words,
the original coherence protocol itself is unaltered in ECMon.

(ISA Support) Through our proposed ISA interface, the
programmer interacts with the processor and is able to effec-
tively utilize ECMon support. The programmer notifies the
hardware through the handler instruction, which handler
to call for what event. While the event is expressed via the
predefined event-code, the handler is specified with its start
address. We then give the programmer the ability to mark
regions of code, where the ECMon support is active. For
this purpose, we have the start-handler and end-handler

instructions; the handler is actually called upon reception of
the event only for execution within these two points. Fur-
thermore, the programmer is given flexibility as to when the

1The address refers to the virtual address. Since the ad-
dresses seen in the coherence messages are physical, they
are converted to virtual addresses and then passed as a pa-
rameter.

handler will be called, upon reception of an event. For this
purpose, the start-handler instruction takes a when bit
as one of its operands; a 0 indicates that the handler will
be called as soon as the event is received; whereas a 1 in-
dicates that the handler should be called only on specific
points. If a 1 is specified as the operand, the programmer
inserts the call-handler instruction (within start-handler
and end-handler). When the processor receives an event,
it does not call the handler immediately and only calls the
handler when the call-handler is encountered. It is very
useful for the programmer to control when the handler will
be called. For example, in speculative execution we may
need to call the handler after the speculation to verify its
correctness. Likewise, this feature can be used to handle
the atomicity problem associated with software monitoring
[3, 23], as we shall see later. Finally, through the track-

range instruction, we give the programmer the ability to
specify the range of block addresses for which the handler
will be called. The rationale for supporting this option is to
limit the number of times the handler is called.

Having explained the purpose of each of the new instruc-
tions added at a high level, we now describe in detail with an
example as shown in Fig. 2(b), the semantics of the instruc-
tions and the hardware structures that need to be added to
implement the semantics, as illustrated in Fig. 2(c).

(Handler instruction) The programmer notifies the hard-
ware through the handler instruction, what handler to call
for what event. The handler instruction has two operands.
The first operand is used to specify the event code, which is a
predefined code for each cache event. For example, the event
code 0x1 may refer to the event when the processor receives
an invalidate message. Through the second operand which is
a register, the programmer specifies the instruction address
of the handler to the hardware. In the above example, the
handler resides in the instruction address 0x4000. To main-
tain this information, each core of the multicore maintains
an event-descriptor table. When the handler instruction is
encountered it adds the event code and the handler’s instruc-
tion address to the event-descriptor table as shown in Fig. 2.
(Start-handler and end-handler instructions) Through
the start-handler and end-handler instructions, the pro-
grammer marks the region of code where the ECMon support
is active. The handler is actually called upon reception of an
event only for execution within these two points. The start-



handler takes two operands. While the first operand speci-
fies the event-code, the second operand is a one bit operand
(called the when bit) which controls when the handler should
be invoked. When the start-handler instruction is encoun-
tered, it sets the start bit and the when bit in the event-
descriptor; on the other hand, the end-handler clears the
start-bit.

(When bit and call-handler instruction) Now we will
discuss the purpose of the when bit. A 0 value indicates that
the handler will be called as soon as the event is received;
whereas a 1 indicates that the handler should be called only
at specific points. If a 1 is specified as the operand, the pro-
grammer inserts the call-handler instruction at specific
points (within start-handler and end-handler). When the
processor receives an event, it does not call the handler im-
mediately and only calls the handler when the call-handler
is executed. In the above example, the when bit is set to 1,
which means that the handler will be called only when the
call-handler instruction is executed. If the processor receives
multiple events before encountering the call-handler, it
is buffered in the event-queue and then processed inorder
when the call-handler instruction is finally encountered.
In the above example, proc 0 receives three events before
the call-handler is encountered, two of which are buffered
in the event-queue. We will explain why one of them is not
buffered after describing the actions for the track-range in-
struction. Finally, when the handler is called, the hardware
forces all the when bits in the event-descriptor table to 1, to
make sure that there are no nested handler calls. This en-
sures that any events that occur when the handler is called
are buffered in the event-queue. The processor subsequently
treats the return within the handler like a call-handler

and empties the event-queue.
(Track-range instruction) We also give the program-

mer the ability to restrict the runtime values of block address
for which the handler is called. We use the track-range in-
struction to implement this. It has two operands: the start
value and the end value. The handler is called for any value
that lies in the range (between start and end). Once the
track-range instruction is encountered, the ranges speci-
fied in the instruction are stored in the event-descriptor. For
each entry in the event-descriptor we support the storage of
four such ranges. When the event is encountered, the hard-
ware checks if the block address of the event fall into these
range(s). If not, the handler is not called for that event.
In the above example, the track-range instruction speci-
fies the range as addresses between 0x1000 and 0x2000. As
we can see, the second invalidate message with the address
0x2040 was not buffered in the event-queue since it did not
lie within this range.

2.1 Completeness
ECMon is complete, in that it is guaranteed to expose all

ISMDs. ISMDs consisting of RAW, WAW and WAR depen-
dences can be exercised via two modes: through the cache
coherence system or through the memory. By exposing all
invalidate events, we make sure that we expose all WAR
dependences exercised through the coherence system. Simi-
larly, by exposing all data value reply events, we make sure
that we expose all RAW and WAW dependences exercised
through coherence. However, not all dependences are exer-
cised through cache coherence system; some are exercised
through the main memory due to cache block replacements.

Let us see how we expose the various dependences exercised
via memory:

WAR dependency: Proc 1 holding a shared block in
its local cache (due to a prior read to that block) can later
replace that block. A write to the same block by another
processor, proc 2, results in a WAR dependency between
proc 2 and proc 1. In our implementation of the directory
protocol, we make sure that local caches do not notify the
directory on shared block replacements. This ensures that
proc 2 will still get the invalidate message from proc 1, al-
though proc 2 has replaced the block, thereby exposing the
WAR dependency.

RAW, WAW dependences: Proc 1 holding a block
in exclusive state (due to a prior write to that block) can
later write it back to the memory. A read (or write) to the
same block by a different processor, proc 2, results in a RAW
(or WAW) dependency between proc 2 and proc 1, which is
exercised through the memory. We expose two additional
events to detect the above dependence. When a processor is
about to write-back an exclusively held block to the directory,
we expose this write-back event to the processor causing the
write-back. Later when a different processor requests the
block, it sends a read-miss to the directory. If such a read
miss request is received by the directory and is uncached in
any of the processors, we expose the above read-miss event
to the processor causing the read miss. To summarize, we
detect RAW (WAR) dependences by exposing the appropri-
ate write-back and read-miss events.

2.2 Correctness
In our design of ECMon, the coherence controller merely

calls the handler for specified cache events. Since there is
no change to the coherence protocol itself, the correctness of
the original coherence protocol is retained.

3. SPECULATION PAST BARRIERS
Barrier synchronization is commonly used in parallel pro-

grams when situations arise in a program when a given
thread has to wait for other threads to arrive at a point
before it can proceed. Upon reaching a barrier, a thread has
to stall until other threads reach the barrier. Thus a thread
that arrives at a barrier first, does no useful work until other
threads arrive at the barrier and this amounts to the time
lost due to the barrier synchronization. In order to reduce
the time lost due to the barrier synchronization, compilers
typically try to distribute equal amounts of work to the dif-
ferent threads. Even if this is the case, threads do not always
execute the same code which in turn causes a variation in
the arrival times. Moreover, even if each thread executes the
same code, they can each take different paths leading to a
variation in number of instructions executed. From our ex-
periments, we found that the time spent on barrier synchro-
nization can be as high as 25% of the total execution time
for the set of programs considered. Furthermore, we also
observed that the time spent on synchronization increased
as the number of processors were increased.

To reduce the time spent during synchronization, we exe-
cute speculatively past barriers. We then use ECMon to de-
tect miss-speculation and if there is one, we restore the state
of the program back to the state at the time of barrier syn-
chronization. The idea of executing past barriers while syn-
chronization is pending has been proposed before [8, 14, 27].
While [8] is a compiler based approach to identify the code



Figure 3: (a) High level Idea of Speculative Barrier
and (b) Compiler Transformation

that can be executed safely past a barrier, [14] and [27] are
speculative approaches that use hardware support to detect
and recover from miss-speculations. Our approach is specu-
lative, but takes advantage of exposed cache events so that
detection and recovery from miss-speculations is performed
in software in the handler. Our approach to speculatively
executing a barrier using ECMon, as shown in Fig. 3(a), is
as follows:

• When a thread reaches a barrier, we first checkpoint the
architectural state using software (setjmp). This is done
so that we can jump back to this state, when a miss-
speculation is detected.

• We then create a safe address partition for the specu-
lative thread to work on; in effect isolating the address
space of the speculative and the non-speculative threads.
The primary benefit of this isolation is that name depen-
dences that manifest between the speculative and the non-
speculative threads can be safely ignored, and do not cause
a miss-speculation. Moreover, we do not need any rollback
in case of a miss-speculation; we merely free the newly
created address space and jump back to the saved safe ar-
chitectural state. The compiler generates the speculative
code and ensures thread isolation. One way to implement
thread isolation is by making the speculative thread write
to a different address space as shown in Fig. 3(b). All store
instructions store their values into this new address space,
each of whose memory words are tagged with init values.
This will make sure that the speculative thread does not
modify non-speculative state. However, loads have to be
modified to ensure that they load from the new address
space only if there has been a store to that location. A
memory word tagged with an init value, implies that there
has been no store to that memory location in the new ad-
dress space; if this is the case, we proceed to load from the
original memory address. We also add the address to the
ReadSet, which we keep track to help in detecting miss-
speculation.

• Since we dealt with name dependences using thread isola-
tion, the only other way in which there is a miss-speculation
is when a non-speculative thread (the one that is yet to ar-
rive at the barrier), writes to a location that has already
been read by the speculative thread. We detect this effi-
ciently using ECMon. The compiler utilizes ECMon ISA
support to ensure that miss-speculation is detected. The
speculative thread registers a handler for the receive in-
validate event and encloses the speculative code around
start-handler and end-handler instructions. The when
bit operand for the start-handler instruction is set to 0,
meaning the handler is called as soon as the event is re-
ceived. The speculative code, which ensures thread isola-
tion as explained before, also tracks the set of memory loca-
tions that it reads, which is maintained in ReadSet. When
a non-speculative thread writes to any of these locations,
the coherence protocol will invalidate the corresponding
block stored in the cache of the speculative thread. Us-
ing ECMon support, this invalidate event will interrupt
the processor in which the speculative thread runs, and
trigger the software handler associated with the invalidate
event. Inside the handler we check whether the block has
already been read by the speculative thread by checking if
the block is a part of the ReadSet. If so, we know that there
is a miss-speculation and hence we jump back to the state
at the time of the synchronization as shown in Fig. 3(b).

3.1 An Example: Parallel Jacobi Iteration
Having explained our approach at a higher level, we illus-

trate our approach in more detail using the example shown
in Fig. 4(a), that shows the parallel implementation of the
Jacobi iteration using barriers. The code fragment describes
the worker loop of the iterative solver wherein at each iter-
ation, the value at each point is replaced by the average of
the North, South, East and West neighbors. To parallelize
Jacobi iteration, the grid is first partitioned into strips and
each thread is given the task of performing the computation
in its own strip. However, it is important to note that each
strip needs to read values from its neighboring strips every
iteration for computing the new values of the rows border-
ing other strips as shown in Fig. 4(a). It is precisely for this
reason that barriers are introduced into the code, for they
ensure that when a thread reads values from the neighbor-
ing strips, they are the values from the correct (previous)
iteration. Finally, note that the main worker loop does two
computations to avoid copying from one grid to another.

Why speculative barriers work?.
Let us assume that Thread B, working on strip B, has

arrived at the barrier and speculatively executes past it. By
doing this, thread B is speculating that whenever thread B
reads from strip A (row n) and C (row 1), they have already
been updated by threads A and C respectively and are the
current values. It is important to note that this speculation
will definitely succeed if threads A and C arrive at their bar-
riers by the time row n from strip A and row 1 from strip B
are read by thread B. Furthermore, even if thread C has not
arrived at the barrier, the speculation will succeed if thread
C, merely, has updated row 1 of its strip, by the time it is
read by thread B; it is worth noting that this is very likely,
since row 1 of each strip is updated first. This explains
why speculatively executing past a barrier is a good idea.
First, barrier synchronizations maybe placed conservatively



Figure 4: (a) The code for parallel execution of
Jacobi Iteration: The grid is divided into strips
and each parallel thread works on its strip, read-
ing values from the boundary rows of neighboring
strips. (b) shows how optimized code is generated
for thread isolation and miss-speculation detection
by utilizing static analyses

by the programmer or the compiler. Second, even if a bar-
rier synchronization is required, the thread that has arrived
at a barrier may only require that a subset of threads ar-
rive at a barrier, before it can proceed. Finally, even if that
subset of threads have not arrived at a barrier, they (the
subset of threads) may have already updated the memory
locations that are eventually going to be read by the spec-
ulative thread. We also observed in our experiments, for
well partitioned parallel programs that use barriers, each
thread works on shared data in its partition mostly, access-
ing data from other partitions infrequently (those that are
in the boundaries of its neighbors).

Optimizing speculative code.
Our baseline implementation of thread isolation and de-

tection of miss-speculation (Fig. 3) introduces overhead for
the speculative thread, since it involves instrumenting loads
for (a) maintaining the ReadSet (b) getting the recent most
value. Furthermore, the speculative thread’s handler needs
to be called for every invalidate message it receives – it would
be helpful if there was a way to filter out several messages
which we are sure would not cause a miss-speculation. For
several scientific codes that deal with arrays, static analyses
can be used to optimize code generation for thread isolation.
In the above example, when thread B reaches the barrier, it
speculatively executes past the barrier and writes to the pre-
allocated spec-grid2 as shown in Fig. 4(b), instead of grid2.
In other words, all the stores are transformed to write into
new address space (spec-grid2). However, there is no need to
transform the loads, since it can be figured out statically that
all the loads get their values from grid1. Likewise, ReadSet
can be figured out by the compiler statically and this can be
used to optimize miss-speculation detection. The compiler

figures out the ReadSet and communicates it via the track-

range instruction. Recall that the track-range instruction
specifies a range of addresses for which the handler should
be called. Thus the handler is called only if the block that
is invalidated is either from row n of strip A, or from strip
B or row 1 of strip C – the set of memory locations that is
speculatively read by thread B, as shown in Fig. 4(b). Once
the handler is called, we know there is a miss-speculation
and we can simply jump back to the architectural state at
barrier synchronization.

4. RECORDING ISMD
Deterministic Replay Debugging (DRD) [22, 35, 40] is a

technique that helps programmers debug their program by
replaying the exact execution that causes the bug to man-
ifest itself. Naturally, the first step of DRD is the online
recording of program information as it executes, so that
replay can be enabled. Recording the execution of multi-
threaded programs involves the recording of ISMDs, since
their order is non-deterministic. Software based approaches
[35] are unable to record these shared memory dependences
for multithreaded programs executing in multiprocessors.
On the contrary, specialized hardware support, involving
changes to the cache, cache coherency and processor pipeline,
has been proposed in prior work [22, 40] to efficiently record
these dependences. In this section, we discuss how ECMon
support can be used to record these dependences. First we
review how recording is performed in hardware based ap-
proaches and then derive our own ECMon based implemen-
tation.

We now briefly overview the steps involved in record-
ing dependences in hardware recording systems as shown
in Fig. 5(a). Each processor keeps track of its instruction
count in an on-chip counter instr-count. Furthermore, each
cache block is augmented with space to hold the instruction
count in cache-block[addr]. Whenever the processor accesses
that memory block, it writes the current instruction to it.
This is done so that when that memory block is involved in
an inter-processor dependence, the time in which it was last
accessed can be remembered. Dependences are expressed
as edges between processor ids along with each of their in-
struction counts [22, 40]. The key idea of recording ISMDs is
based on the observation that in a multiprocessor with local
caches, the cache coherence protocol is actually responsible
for enforcing the above dependences and thus the coherence
messages reveal the dependences. Thus hardware recorders
piggyback cache coherence messages with instruction counts
and the hardware takes care of recording these edges. Fi-
nally, before recording the dependency the hardware checks
if the dependency that is currently recorded is automati-
cally implied by a previously recorded dependency; if so, it
will not log the current dependency. We illustrate the above
steps with the following simple example with two processors.

4.1 An Example
Fig. 5(b) shows read and write operations prefixed by their

dynamic instruction counts and also indicates the depen-
dency exercised between processors. There are two depen-
dences exercised in the above example: a WAR dependency
with the write from processor 2 at instruction count 175
and the read from proc 1 at instruction count 125. Likewise,
there is a RAW dependency with the write from proc 1 at



Figure 5: Recording ISMDs using HW support

instruction count 100 and the read from proc 2 at instruc-
tion count 200. Recording ISMDs involves remembering the
instruction counts at the time of the write and read, so that
the same dependences can be enforced during replay. Let
us first consider the actions required for recording the WAR
dependency. When the read occurs in proc 1, we need to
somehow remember the instruction count at the time of the
read, so that the RAW dependency can be recorded when
it is subsequently written in processor 2. To remember this
count, an instruction count is added to every cache block.
Thus as the read is executed, the value 125 is stored in the
cache block associated with the read address. When the
write is executed in processor 2, the instruction count (175)
is similarly remembered in the cache block. Since it is a
write, the coherence controller sends an invalidate message
to invalidate shared copies of the block in other processors.
Consequently, the same cache block that already resides in
proc 1 is invalidated. Once it is invalidated, proc 1 sends an
invalidate acknowledgment, appending to it the instruction
count when it was last read. Using this, the dependence
(P1, 125) → (P2, 175) is recorded.

Now let us consider the outer RAW dependency. When
the write in proc 1 is executed, the instruction count (100)
is remembered in the cache block. It then proceeds to in-
validate shared copies in proc 2. Thus when there is a read
in proc 2, there is a read miss and the value is sent as a
data reply from proc 1, as usual appended with it the in-
struction count when the block was written (100). How-
ever, before recording the dependency, hardware recorders
perform the Netzer’s transitive reduction [24] test, in which
they basically check if the current dependence is actually im-
plied transitively by previous dependences. In fact, in the
above example, there is no need to record the outer RAW
dependence since it is automatically enforced by the WAR
dependence that has already been recorded. The record-
ing of WAW dependences (not shown) takes place similar to
RAW dependences.

4.2 Recording ISMDs using ECMon
Recording using ECMon is motivated by the fact that all

the steps involved in recording dependences, excluding the

ones dealing with coherence messages, can already be per-
formed in software; with ECMon support, we can also now
deal with coherence messages under software control. Us-
ing shadow memory support [23] we associate per processor
instruction counts (instr-cnt[p]), which are incremented in
software for every memory instruction. Likewise, we also
maintain instruction count for every processor’s cache block
(cache-block[addr]) as well as memory block (directory[addr])
in software. We instrument all stores and loads in the pro-
gram, with instructions that copy the processor’s instruction
count to the shadow memory associated with the processor’s
cache block for that memory access. The basic steps involved
in maintaining these counters are same as shown in Fig. 5;
only all the variables are actually stored in memory and the
counters are maintained using instructions. We then use
ECMon support by programming the software handlers to
record ISMDs.

To illustrate the process at a high level let us consider the
RAW dependency exercised between the two processors in
Fig. 5(b). When the read, accessing block address, addr,
occurs in proc 2, it sends a fetch message to proc 1, which
contains the block in exclusive state because of the earlier
write that happened in proc 1. Upon receiving the fetch
message, proc 1 attempts to send a data-value reply to proc
2. This triggers the software handler; within the handler, we
access two values: the instruction count corresponding to the
block address, cache-block[addr], and the current instruction
count of proc 2, instr-count[2]. Upon accessing the values,
we are able to record the dependency (or skip recording),
after checking for Netzer’s transitivity condition. Record-
ing of the WAR dependency in Fig. 5(b) proceeds among
similar lines. When the write accessing block address, addr,
occurs in proc 2, it sends an invalidate message to proc 1.
Upon receiving the invalidate message, the software han-
dler is triggered. Within the handler, we again access two
values: the instruction count corresponding to the block ad-
dress, cache-block[addr], and the current instruction count
of proc 2, instr-count[2]. Upon accessing the values, we are
able to record the dependency, after checking for Netzer’s
transitivity condition.

4.2.1 Correctness Issues
There are some issues that threaten the correctness of the

recorded dependences.
(Atomicity) The first issue concerns the atomicity of the
original and shadow memory operations [3, 23]. Recall that
we require a separate store (denoted W ′1) to update the in-
struction count of cache-block[addr], for the original store,
denoted by W1. This means that these two operations are
not atomic anymore. To see how this can cause correctness
problems, let us consider the example shown Fig. 6(a), which
shows the same RAW dependency. Let us first assume that
we perform the shadow store after the original store (sce-
nario 1). In the example, let us suppose that the read R
from proc 2 happens before W ′1 but after W1. This implies
that cache-block[addr] is yet to be updated and contains a
stale value. Consequently, W0 → R, is recorded instead
of W1 → R. A similar correctness issue manifests itself,
even if we perform shadow store before the original store,
as shown in scenario 2 of Fig. 6(a), if read R from proc 2
happens after the shadow store W ′2, but before W2. This
implies that cache-block[addr] would have been updated by
W ′2; but the read R still gets its value from W1. Conse-



Figure 6: (a) Problems due to lack of atomicity and its solution, solid lines represent the exercised depen-
dences, while dotted lines show the recorded dependences (b) Instrumentation involved for recording using
ECMon (c) Work done in the software handlers.

quently, W2 → R, is recorded instead of W1 → R. To deal
with this issue, we simulate the effect of the original and
shadow memory instruction executing atomically via EC-
Mon support. We use the ECMon facility to control when
the handler is invoked, to simulate atomicity. Instead of
forcing the handler to be invoked immediately, upon recep-
tion of the event, we make it call the handler at certain key
points. More specifically, we instrument the call-handler

instruction after every memory instruction/shadow memory
instruction pair W1/W

′
1. This will ensure that if an event

is received in between (between W1 and W ′1), we still have
to wait for both of them to finish executing, before the han-
dler is called. In the above example, Fig. 6(a), let us first
consider the case where shadow store is performed after orig-
inal store. When the event is received after W1 but before
W ′1, the handler is not called then; it is only called when
the call-handler is encountered which is after W ′1. This
ensures that cache-block[addr] is updated and contains the
current value. Similarly, in the second scenario, when the
event is received after W ′2, but before W2, the handler is not
called yet; it is only called after W2. This means that the
data value reply is after W2 and hence R gets its value from
W2, which is the dependency that is recorded.

(Correct Instruction counts) The second issue con-
cerns the value of instr-count[2], the instruction count of
proc 2 when it is accessed in the handler from proc 1 for
recording the dependency. Recall that proc 1 is providing
a data value reply in the first place as proc 2 experienced
a miss due to R. The value of instr-count[2] will thus be
correct, if it is not changed by a future write, from proc
2. To ensure this, we make sure (via software) that proc 2
waits until the handler finishes in proc 1 as shown in Fig. 7.
To accomplish this synchronization, we maintain a synchro-
nization variable ready(i, j) for every processor pair i and j.

Figure 7: Maintaining correct instruction counts

When proc 2 receives a data reply, we call a handler within
which we spin until the ready(1, 2) becomes 1. The vari-
able ready(1, 2) is set to true only when proc 1 has recorded
the dependence and is about to return from the handler.
Similarly for WAR dependences we make sure that the pro-
cessor sending the invalidate, waits until all the processors
receiving the invalidate have recorded the dependency.

(Avoiding nested handler invocations) It is worth
noting that the access of instr-count[2] within the handler
of proc 1 will cause a miss, since the variable instr-count[2]
will be in exclusive state in proc 2. Thus, the value of instr-
count[2] will finally be obtained via a data value reply from
proc 2. However, we do not want this data value reply to
cause a handler call in proc 2. This is because we are not
interested in recording this dependency, since it is not due
to the original program. We deal with this problem by tak-
ing advantage of the track-range instruction – we make
sure that the range of addresses provided does not include
instr-count[1..n]. This will make sure that the handler is not
called for such events.



(Cache block replacements) When cache blocks are
replaced, the dependences are then exercised through the
memory, rather than coherence system. We are able to
record dependences exercised through memory, since EC-
Mon is also able to expose such dependences using the write-
back and read-miss events. First, let us consider the record-
ing of the RAW dependency shown in Fig. 5(b). Let us
suppose that proc1 writes back the block to the directory
before it is read by proc 2. The write-back event triggers the
software handler, within which we save the processor id and
the instruction count corresponding to the block address,
cache-block[addr], into the directory2. Later, when the read
occurs in proc 2, it results in a read-miss. This triggers the
software handler associated with the read-miss within which
we are able to record the RAW dependency by accessing the
information we saved in the directory, during the write-back
event.

(Thread switches) When a thread is scheduled out of a
processor, the processor can still hold cache blocks accessed
by the previous thread. For example, proc 1 can hold an
exclusive block dirtied by thread 1, even after thread 1 is
swapped out of proc 1. Then later when there is cache miss
for the same block in proc 2 running thread 2, the block may
be provided by proc 1 as a data value reply, even though it is
currently idle. In this case, we may not be able to record the
above RAW dependency, since proc 1 is idle. To handle this
case, whenever a thread is scheduled in or out of a processor,
we record instruction counts of each of the processors. This
dependency, also known as strata [21] in prior work, will
transitively subsume the missed dependences due to thread
switches. We also record the mapping between the thread
ids and processor ids, at the time of a thread switch. Recall
that whenever we record dependences, we record the depen-
dences between processors; using this mapping between the
processors and threads, we can then derive the dependences
between the threads.

4.2.2 Summary
We summarize the instrumentation involved for record-

ing ISMDs using ECMon in Fig. 6(b). At the start of the
program we register handlers for both events: (i) a proces-
sor receiving an invalidate message, (ii) a processor about to
send the data value reply. We then add the start-handler

instruction, with the when bit set to 1, to handle the atom-
icity problem. The track-range instruction is added, so that
addresses involving accesses to instr-cnt[1..n] do not cause
handlers to be called. As discussed earlier, we increment
instr-cnt and update cache-block[addr] for every memory in-
struction. For the purpose of simulating the effect of atom-
icity, we introduce the call-handler after this update. The
handlers for the events are summarized in Fig. 6(c) and
are self-explanatory. The first two events are for the pur-
pose of recording dependences exercised through coherence
controller, while the last two events are for the purpose of
recording dependences exercised through memory.

5. EXPERIMENTAL EVALUATION
In this section, we present the results of our experimen-

tal evaluation of ECMon support in supporting speculative
barriers and recording ISMDs.

2We associate additional memory with each directory entry
in SW for this purpose.

5.1 Implementation
We implemented our ECMon support in the SESC [29]

simulator, targeting the MIPS architecture. The simulator
is a cycle accurate multiprocessor (supports multicore mode)
simulator which also simulates primary functions of the OS
including memory allocation and TLB handling. To imple-
ment ISA changes, we used unused opcodes of the MIPS
instruction set to implement the newly added instructions.
We then modified the decoder of the simulator to decode the
new instructions and implemented their semantics by adding
the hardware structures to the simulator. Finally, we imple-
mented our coherence algorithms for a MOSI based direc-
tory protocol for an 8 core processor with a shared L2 cache,
which holds the directory entries. In our implementation of
the coherence protocol, the L1 cache does not notify the di-
rectory on shared cache replacements. Furthermore, when
a processor proc i writes back its owned block to the direc-
tory, the directory continues to store the id of the processor
in the owned field, in the record for the block. Recall that
the above steps helped us to deal with cache block replace-
ments. The architectural parameters for our implementation
are presented in Table 3. We now briefly overview our imple-
mentation and the benchmarks used for speculative barriers
and recording of ISMDs.

5.1.1 Speculative Barrier
The benchmarks we chose for speculative barrier applica-

tion are listed in Table 4 In choosing benchmarks to show
the efficacy of speculative barrier, we were looking at those
that have numerous dynamic barrier synchronizations. We
first looked at the popular SPLASH [39] benchmarks suite,
and found that they did not have significant number of dy-
namic barrier synchronizations. Then we wanted to look at
parallelizing sequential codes with loops, since parallelizing
these codes typically involves the addition of barrier syn-
chronizations. This led us to use Livermore Loops, which
have a set of challenging kernels, with hard to extract fine-
grained parallelism. We used kernel 2, which is a part of
a Cholesky conjugate gradient code and kernel 6, which is a
general recurrence relation. We used the parallelized version
of these codes, which were described in [31]. We then looked
at the SPEC openmp benchmarks, which contain compiler
directives for parallelizing loops. The semantics of openmp
entail that processors synchronize with each other at the end
of a parallel section, which can result in numerous barrier
synchronizations. We used equake and the swim programs
from the above suite. We also used Bitonic Sort and MST
from the Olden [30] benchmarks suite which performs par-
allelizable sorting. It is important to note that the Olden
benchmarks, which operates on pointers and irregular data
structures, offer a contrast with the Livermore loops and
spec programs which operate on arrays. In parallelizing
Bitonic sort, we faithfully followed the annotations provided
in the source code [30], which resulted in the introduction of
several barrier synchronizations. For our final benchmark,
we used the parallelized version of the Jacobi iteration, which
we already discussed.

5.1.2 Recording ISMDs
We chose the popular SPLASH [39] benchmark suite (in

Table 5) to evaluate our ECMon support for helping in
recording ISMDs. We performed instrumentation by mod-
ifying the assembler output generated by the gcc-4.1 com-



Table 3: Architectural Parameters

Processor 8 processor, inorder
L1 Cache 32 KB 4 way

L1 hit latency 1 cycle
L2 Cache 512 KB 8 way

L2 hit latency 9 cycle
Memory latency 200 cycle

Coherence MOSI Directory

Table 4: Speculation: Benchmarks

Programs Description

Jacobi Iterative solver
Livermore 2 Cholesky gradient
Livermore 6 Linear recurrence
Equake Earth quake simulation
Swim Weather Prediction
Bisort Bitonic sort
MST Spanning tree

Table 5: Recording: Benchmarks
Programs Description

BARNES Barnes-Hut alg.
FMM fast multipole alg.
OCEAN ocean simulation
RADIOSITY diffuse radiosity alg.
RAYTRACE ray tracing alg.
WATER-NSQ nsquared
WATER-SP spatial

piler. We did not actually output the dependences to a
file, but maintained them in a specially maintained circular
buffer, similar to Bugnet [22]. We maintained time stamps
by instrumenting loads and stores with additional instruc-
tions that incremented a counter and stored the time stamps
in shadow memory. We reserved one register specifically for
maintaining these time stamps, so that it need not be spilled
and restored for every memory instruction. Finally, we could
not get the program VOLREND to compile using the com-
piler infrastructure that targets the simulator and hence we
omitted VOLREND from our experiments.

5.2 Performance: Speculation past Barriers
In this section, we wanted to measure the execution time

reduction with speculation past barriers with ECMon sup-
port. Secondly, we also wanted to see the effect on the ex-
ecution time if we did not have ECMon support. But first,
we briefly discuss the characteristics of the programs used.
As we can see from the table in Fig. 8, the above programs
spend significant percentage of their execution times wait-
ing for other processors to reach the barrier, ranging from
18% for Bitonic sort to as high as 61% for Livermore loop
2. This in turn gives scope for processors reaching the bar-
rier early, to speculate past the barrier. The graph in Fig. 8
represents the percentage reduction in execution times by
speculating past active barriers with and without ECMon
support. Recall that ECMon support provides support for
efficient detection of miss-speculation; whereas without EC-
Mon, we would have to add additional checks at commit
time. More specifically, we would have to check at com-
mit time, that the values read by speculative code have not
since been updated. As we can see, with ECMon support,
we are able to reduce the execution time significantly. The
percentage reduction in execution times ranges between 6%
(Bitonic sort) and 24% (livermore loop 2). On an average
we could achieve a 12% reduction in execution time by spec-
ulating past barriers. However, without ECMon support we
observe that the program slows down by around 10%. To
gain further insight as to why we were getting the speedup,
we measured how the original time spent in synchronization
(without speculation) was now being spent with speculation
using ECMon support. As we can see from Fig. 8(c), about
37% of the original time spent in barrier is now channeled
into performing useful work. We can also see that the time
spent inside the handler recovering from miss-speculation is
relatively less (about 5%), owing to small number of miss-
speculations. However, significant time (about 58%) was
spent performing copies.

From the above set of experiments we were able to observe
that (for the programs considered) speculating past barriers
can lead to significant savings in execution time. However, to
efficiently speculate past barriers we needed support for effi-

cient miss-speculation detection and ECMon could be used
for the above purpose.

5.3 Performance: Recording Dependences
In this experiment, we wanted to measure the execution

time overhead of performing recording in software with EC-
Mon support. As we can see from Fig. 9, the overhead for
performing recording ranges from 2.2 fold execution time
overhead for the BARNES benchmark through 3.6 fold over-
head for the FMM benchmark. On an average (harmonic
mean), recording causes a 2.8 fold execution time overhead.

To understand the causes for this overhead, we split the
overhead into several contributing categories as shown in
Fig. 9. The first category is the overhead due to the ex-
ecution of additional instructions to maintain instruction
counts; recall that in the software version we actually needed
to instrument loads and stores to maintain these counts.
As we can see, this is the major contributing factor of the
overhead, accounting for 89% of the overhead on an aver-
age. We are now in a position to reason why the overhead
was high for the FMM program – since it had a large per-
centage of memory instructions (around 50%), significant
time was spent to maintain the instruction counts. On the
contrary, BARNES and OCEAN programs, with relatively
fewer memory instructions (around 30%), causes lesser over-
head. It is important to note that, since most of time is spent
on instrumentation, only 11% of the execution time is spent
executing the handler recording the ISMDs. This vindicates
ECMon’s main motivation: efficient support to expose de-
pendences to the software. We additionally split the time
spent in the handler into 3 categories: time spent to log
RAW, WAR and WAW dependences. As we can see most
of the time (out of 11% time spent recording dependences)
is spent recording RAW dependences.

From the above set of experiments, we could observe that
with ECMon support we could efficiently record ISMDs at
only 2.8 fold execution time overhead. It is worth noting that
without ECMon support it would be prohibitively expen-
sive to perform recording; several additional instructions are
needed for each memory instruction to derive dependences,
in addition to thread serialization to handle the atomicity
problems which could result in overhead at least an order of
higher magnitude [20, 23].

6. RELATED WORK
(SW based monitoring) Although there are several soft-

ware based monitoring tools, they are thwarted by ISMDs,
which makes them either inapplicable [25, 26, 35] or ineffi-
cient [7, 23] on multicores. For example, Flashback [35] is a
software based record-replay tool applicable for (single and)
multithreaded programs running on a uniprocessor. Soft-
ware tools that perform monitoring [23, 25, 26] need sepa-



Programs % time
barrier

Jacobi 25
Livermore2 61
Livermore6 42
equake 32
swim 24
Bisort 18
MST 28

With ECMon
 Without ECMon 
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Figure 8: (a) Speculative Barrier Characteristics (b) Execution Time Reduction with and without ECMon
(c) Breakup of how original time spent in barrier, is now spent with ECMon

  1x

  1.5x

  2x

  2.5x

  3x

  3.5x

  4x

av
er

ag
e

w
at

er
−s

p

w
at

er
−n

sq

ra
yt

ra
ce

ra
di

os
ity

oc
ea

n

fm
m

ba
rn

esN
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e 

O
ve

rh
ea

d

Benchmark

Handler:WAW 
Handler:WAR
Handler:RAW
Load/store instrumentation

  50

  60

  70

  80

  90

  100

  110

  120

  130

av
er

ag
e

w
at

er
−s

p

w
at

er
−n

sq

ra
yt

ra
ce

ra
di

os
ity

oc
ea

n

fm
m

ba
rn

es

 D
ist

rib
ut

io
n 

of
 O

ve
rh

ea
d

Benchmark

Figure 9: Dependence Recording Overhead and Break up of Overheads

rate instructions to perform monitoring, giving rise to races
between data and meta-data when executed on multicores
[3]. Since the ISMDs can be captured using ECMon, these
races could be avoided. In this work, we showed how EC-
Mon could be used to program two very different monitoring
applications: speculation past barriers and record-replay for
debugging. In [20], we showed how a class of monitoring
applications that utilize shadow memory [23] can be pro-
grammed for multicores using ECMon.

(HW based monitoring) There has been several pro-
posals that use specialized hardware support to ensure the
reliability of software [5, 21, 22, 36, 40]. The hardware sup-
port involved in each of the above proposals is non-trivial
and involves changes to the processor pipeline, caches, cache
coherence and memory subsystem. For example, FDR [40]
and Bugnet [22] involve augmentations to the cache coher-
ence protocol to capture dependences, changes to proces-
sor pipeline to maintain instruction counts, addition of per
block counters to the caches and addition of other hard-
ware structures to optimize recording. In our work, we iso-
late the minimal hardware support needed (exposing cache
events), and perform all other tasks required in software.
This approach, in addition to increasing the flexibility and
programmability, makes ECMon applicable to a variety of
monitoring tasks. Recently there has been work to design
general purpose hardware support for a variety of monitor-
ing applications [2, 38]. However, the applications described
in this work (speculation and recording ISMDs) can not be
directly handled with the above proposed support.

(Transactional memory) The problem of detecting cross-

thread dependence violations at run time is known as con-
flict detection under Transactional memory (TM) [10] par-
lance. STM systems [1, 13] instrument loads and stores
with read/write barriers to detect conflicts. On the contrary,
HTM systems [9, 10, 28] like TLS systems [4, 9] rely on hard-
ware support (modifications to caches/cache coherence) to
detect conflicts. Hybrid TMs [6, 16, 33] use hardware to
perform the simple and common case and rely on software
support to handle the uncommon case. Recent proposals
on hybrid TM have proposed hardware support for conflict
detection. While SigTM [16] uses hardware signatures for
conflict detection, RTM proposed the Alert-on-Update [34]
mechanism which triggers a software handler when specified
lines are modified remotely. Whereas the hardware support
involved in ECMon is similar to Alert-On-Update, we addi-
tionally show how other cache events (in addition to remote
update), can be used for performing a variety of monitoring
applications including speculation bast barriers and record-
ing of ISMDs.

7. CONCLUSIONS
In this paper, we proposed ECMon, a simple interface for

exposing cache events to the software for capturing ISMDs.
We then showed how these dependences could be used for a
variety of applications including speculation and recording
shared memory dependences. More specifically, we showed
how ECMon support could be used to speculatively execute
past barriers, and cause a performance improvement of 12%
for the parallel codes considered. We also showed how EC-
Mon support could be used to perform recording of ISMDs
on a multicore, at 2.8 fold execution time overhead.
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