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Abstract—Nested patterns are one of the most frequently oc-
curring algorithmic themes in GPU applications where coarse-
grained tasks are constituted from a number of fine-grained
ones. However, efficient execution of irregular nested patterns,
with coarse-grained tasks that substantially vary in size, has
remained an open problem for the GPUs SIMT architecture.
Existing methods rely on static task decomposition where
one or a fixed number of threads inside the SIMD grouping
(warp) carry out the fine-grained tasks. These approaches fail
to provide portable performance across diversity of irregular
inputs. Moreover, due to intra-warp load imbalance, they incur
warp underutilization. In this paper, we introduce a novel
software technique called Collaborative Task Engagement
(CTE) that, unlike previous methods, achieves sustained high
warp execution efficiencies across irregular inputs and provides
portable performance. CTE assigns a group of coarse-grained
tasks to the warp and allows threads inside the warp to carry
out the expanded list of fine-grained tasks collaboratively. In
multiple rounds, all the warp threads perform mapping portion
of fine-grained tasks and participate in a reduction phase with
appropriate lanes to reduce calculated values. This scheme
avoids over-subscription or under-subscription of threads while
preserving the benefits of parallel reduction. We prepared a
CUDA C++ device-side template library for developers to easily
express nested patterns in GPU kernels using our technique.
Our experiments show that CTE delivers up to 37% warp
execution efficiency improvement and gives up to 1.51x speedup
over sub-warp decomposition with the best sub-warp width.
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I. INTRODUCTION

The abundance of execution units, accompanied with a
high memory bandwidth, have made GPUs the primary
candidates for accelerating algorithms containing data par-
allelism. To increase the energy efficiency, GPU threads
are grouped into warps1 (on current Nvidia devices, 32
threads are grouped into one warp). While the instruction
fetch and decode are performed once for all the threads
inside the warp, threads map into different GPU execution
units (cores) to process different data. Hence, the underlying
design enforces the whole warp to contain only one active
PC (Program Counter) at a time. However, GPU’s SIMT
architecture design allows threads inside the warp to take

1We use terms employed in CUDA platform to describe GPU specific
architecture and programming model throughout the paper.

different execution paths by masking off inactive threads.
This feature has made GPU programming easier since the
developers need not worry about handling diverging threads
executing unwanted pieces of code. However, this comfort
can jeopardize the performance. One such frequent scenario
is of nested patterns that contain imbalanced loads, more
specifically a pattern where a set of coarse-grained tasks
hold a number of fine-grained tasks with different sizes.

Early work for handling such nested patterns on GPUs
employed 1D decomposition by assigning one thread to
every coarse-grained task. The thread then iterates over
the fine-grained tasks and carries them out. This ap-
proach has appeared in many GPU applications including
graph processing [12], Sparse Matrix Vector Multiplication
(SpMV) [3], and the analysis framework in [20] where
it is known as 1D mapping. While being concise and
easy to reason about, 1D decomposition is highly prone
to underutilization in presence of imbalanced loads since
all the threads inside the warp have to wait for the thread
that has been assigned the largest number of fine-grained
tasks. To cope with the warp underutilization issue in
irregular nested workloads, researchers suggested assigning
fixed-sized sub-warps to coarse-grained tasks [14], [34].
Therefore, threads in a sub-warp carry out its assigned
fine-grained tasks iteratively. We refer to this approach as
sub-warp decomposition. Although providing better warp
utilization compared to 1D decomposition, sub-warp decom-
position lacks portable performance since every application
and input combination exhibits the best performance at a
specific sub-warp width. Most importantly, the same issue
that hurts 1D decomposition performance still exists in sub-
warp decomposition. Here, the whole warp has to wait for
the sub-warp with the largest assigned task size.

In this paper, we present Collaborative Task Engagement
(CTE), a novel software technique that greatly enhances
the warp utilization of irregular nested tasks compared to
previous approaches. It provides a portable performance
across inputs and applications. Unlike aforementioned static
task-to-thread assignment methods, CTE delivers dynamic
decomposition via the expansion of coarse-grained tasks. In
multiple rounds, each thread inside the warp gets assigned
the work of mapping portion of a fine-grained task regardless



of the coarse-grained task it belongs to. Later, the thread
determines the coarse-grained task to which the fine-grained
task belongs. This is achieved efficiently via a binary search
of the buffer containing prefix sum of task sizes – the
buffer is held inside the shared memory. Therefore, it can
participate in the reduction for the coarse-grained task’s
final value, if necessary. CTE does not over-subscribe or
under-subscribe warp threads in the mapping stage and yet
performs parallel reduction in minimum number of steps
between the fine-grained tasks of a coarse-grained task in
every round. To facilitate the employment of our technique,
we have prepared a CUDA C++ device-side template library.
The template library abstracts away the complications of
the implementation of nested pattern with CTE, allowing
developers to focus on the program’s algorithm and to
quickly obtain the desired functionality. In addition, the
template library is built with the program hence providing
ultimate portability across various systems.

The major contributions of this paper are:
• We propose Collaborative Task Engagement (CTE), a

novel task decomposition technique to efficiently pro-
cess irregular nested parallel patterns in GPUs. Unlike
previous methods, warp threads in CTE pass over the
expanded list of fine-grained tasks, making it resilient
against input irregularities.

• We developed a CUDA C++ device-side template li-
brary for easy-expression of nested patterns with CTE.

• We measured and analyzed the performance of our CTE
in comparison with other static decomposition methods
across different class of applications. CTE improves the
warp execution efficiency of CUDA kernels by up to
37% and provides 1.51x speedup compared to the sub-
warp decomposition with the best sub-warp width.

The rest of this paper is organized as follows. Section II
explains the drawbacks of available static task-to-thread
assignment approaches and motivates the necessity of a
solution that copes with irregularities in the input. Section III
presents our solution that dynamically assigns tasks to SIMD
threads and is robust against load imbalance. Section IV
gives experimental evaluation results. Section V discusses
the related work and Section VI concludes the paper.

II. MOTIVATION: INEFFICIENCY OF STATIC TASK
DECOMPOSITION METHODS

GPU’s innovative SIMT architecture enables the imple-
mentation of conditional device code in which threads
belonging to a warp take different execution paths. The
underlying hardware keeps track of active and inactive warp
threads in diverging paths and masks off irrelevant threads.
While this scheme speeds up GPU software development,
it can easily make GPU kernels prone to resource under-
utilization. If only a few threads take a divergent path, all
other threads inside the warp will have to wait for those
threads before they can continue. In other words, execution

1  template<typename valT, typename idxT>

2  __global__ void spmv_CSR_1D_mapping( const valT* mat,

3   const idxT* nnzRowScan, const valT* inVec,

4   const idxT* colIdx, valT* outVec ) {

5     int rowID = threadIdx.x + blockIdx.x * blockDim.x;

6     valT sum = 0;

7     const idxT startPos = nnzRowScan[ rowID ];

8     const idxT endPos = nnzRowScan[ rowID + 1 ];

9     for( idxT i = startPos; i < endPos; ++i ) {

10       valT mapped =

11        mat[ i ] * inVec[ colIdx[ i ] ];  // MAP.

12       sum += mapped;  // REDUCE.

13    } outVec[ rowID ] = sum; }

(a) The SpMV CUDA C++ kernel with 1D decomposition.
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(b) The visualization of a possible warp execution of the kernel in
Figure 1(a). Warp size is assumed 8.

Figure 1. An example — Sparse Matrix-Vector Multiplication (SpMV)
CUDA kernel with a CSR matrix using 1D decomposition. Intra-warp load
imbalance induces warp inefficiency and performance loss.

units are reserved for inactive threads and they perform no
operations.

Aforementioned issue intensifies in GPU kernels with
irregular nested patterns where there are a number of coarse-
grained tasks each of which contains a different number of
fine-grained tasks. Therefore, threads inside the same warp
may have to iterate different number of times over the code
to fully carry out their task. Figure 1(a) illustrates the above
problem using an example of nested pattern that appears
in the SpMV kernel with CSR (scalar) [4] decomposition.
Since all the threads reconverge at the end of the loop,
different amounts of load for different warp threads results
in partial warp utilization. In other words, threads that finish
early stay inactive until the thread with the longest number
of iterations finishes. In Figure 1(a), inside the loop, threads
first compute the intermediate value (map) and then reduce it
with the thread’s private variable. Figure 1(b) visualizes the
utilization of warp threads executing this loop. Note that in
this work, we focus on intra-warp task assignment strategies.

This task assignment strategy, being very intuitive, is
frequently seen in widely-used GPU applications involving
nested parallel patterns; especially when the algorithm con-
tains a set of coarse-grained tasks each of which containing a
number of fine-grained tasks. Sparse Matrix-Vector Multipli-
cation (SpMV) with Compressed Sparse-Row (CSR) format
in [3] uses this task assignment strategy, and is algorithmi-
cally identical to the kernel in Figure 1(a). This method is
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Figure 2. Warp execution visualization in sub-warp decomposition (with
width 4) for the example in Figure 1. Sub-warp decomposition attempts to
exploit parallelism inside coarse-grained tasks.

also employed by the analysis framework in [20] where it
is called 1D mapping. We use the term 1D decomposition
throughout this paper.

To tackle the inefficiencies of 1D decomposition, CUDA
provided dynamic parallelism to let threads spawn thread
blocks for ease of expressing nested patterns; it has been
shown in [34], [31] that dynamic parallelism imposes over-
heads such as parent thread blockage and communication via
relatively slow global memory between the parent and chil-
dren threads. These overheads have hindered the adoption
of dynamic parallelism in GPU applications.

Other task assignment approaches aim to exploit paral-
lelism inside a coarse-grained task— which is untouched
by the 1D decomposition. The most notable among them,
groups the threads belonging to the same warp and assigns
the resulting coarse-grained tasks to the warps [3]. Later
works improve upon this strategy by dividing the warp into
smaller sub-warps and assigning each sub-warp to process
a coarse-grained task. Sub-warps have fixed width – one
of 2, 4, 8, 16, or 32 – throughout the kernel computation.
Threads within a sub-warp participate in carrying-out the
fine-grained tasks of the coarse-grained task. As an instance
of usage of this scheme, CUSP library [6] assigns a sub-warp
to process a row of the CSR matrix in SpMV computation.
Threads inside the sub-warp execute the mapping function
for a section of the row and reduce the outcomes in parallel.
This procedure is performed iteratively on all the sections
of the row. CUDA-NP [34] expressed a similar approach
in form of a primary thread and a few subordinate threads
for nested parallel patterns. Here we refer to this approach
as the sub-warp decomposition (such approaches have also
been called warp-based mapping [20]). Figure 2 visualizes
the warp execution for the example in Figure 1 when sub-
warp decomposition with width 4 is employed.

Although sub-warp decomposition provides improved
SIMD utilization, it suffers from a constraint. In order to
guesstimate the best sub-warp width, for every specific GPU
kernel, the developer needs to know the characteristics of the
algorithm and must analyze the input in a preprocessing step.
This constraint of sub-warp decomposition makes applica-

Program Input 1D VW2 VW4 VW8 VW16 VW32

SpMV Wbedu 16.6% 36.8% 41.1% 49.8% 50.4% 28.9%
Delau 57.0% 63.4% 66.5% 61.3% 52.7% 38.7%

FMM nEquProb 20.9% 26.8% 39.7% 33.2% 37.8% 39.4%
EquProb 42.2% 44.3% 44.7% 44.8% 36.7% 29.1%

Table I
KERNEL WARP EXECUTION EFFICIENCY OF CUDA APPLICATIONS

EXPOSED TO DIFFERENT INPUTS WITH 1D AND SUB-WARP
DECOMPOSITION METHODS. THE EFFICIENCY OF KERNELS NOT ONLY

VARIES FROM ONE SUB-WARP WIDTH TO ANOTHER (THE BEST IN EACH
ROW IS UNDERLINED), IT IS ALSO WELL BELOW 100%.

tion portability unachievable. A sub-warp width that works
well for one input, may not deliver a good performance for
another input. In addition, sub-warp decomposition suffers
from the same issue as 1D decomposition. It leaves a great
portion of the warp underutilized when some coarse-grained
tasks contain a large number of fine-grained tasks while
others have only a few. For example, CUSP’s heuristic to
determine the best sub-warp width is to choose the closest
equal or higher power of 2 to the average of the non-zeros
per row (for averages bigger than the warp size it chooses
the warp size). Relying only on the average of the coarse-
grained task distribution, this method basically ignores their
variance. Some rows of the input matrix may have much
larger number of non-zero elements than other rows but this
method assigns the same processing power to each and every
row. Thus, the entire warp must wait for the sub-warp with
the largest amount of fine-grained tasks.

Essentially, in both 1D and sub-warp decomposition
methods, the static thread-to-task assignment not only
lacks portable performance across different inputs, but
also makes the kernel highly susceptible to the warp
execution inefficiency due to load imbalance between
irregular coarse-grained tasks. Table I confirms this ob-
servation by showing profiled warp execution efficiency2

of different benchmarks (FMM stands for Fast Multiple
Method [19] for n-body approximation) and inputs for 1D
decomposition and sub-warp decomposition with different
sub-warp widths. We can see that different applications with
different inputs demonstrate the best execution efficiency at
various sub-warp widths.

Above observation motivates the need for an approach
that, regardless of the input task size variance, effectively
maps the irregular tasks to threads for efficient execution
for nested patterns on the GPU architecture.

III. COLLABORATIVE TASK ENGAGEMENT

In this section, we introduce our technique, Collaborative
Task Engagement (CTE), that eliminates warp inefficiencies
induced by irregular nested patterns. We first describe our

2Warp Execution Efficiency is a metric provided by Nvidia Profiler
defined as the “ratio of the average active threads per warp to the maximum
number of threads per warp supported on a multiprocessor.” It is a measure
indicating what fraction of threads of warps in a kernel have been active on
an average. It can also be seen as a measure that is inversely proportional
to the overall thread divergence.
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(b) CTE reduces the execution time of irregular nested tasks by
enhancing the warp efficiency.

Figure 3. The visualization of the SpMV CUDA kernel in Figure 1(a)
after applying CTE.

solution, then explain its efficient CUDA implementation,
and finally, we present our template library that allows
developers to use this technique with ease.

A. Dynamic Task Assignment in CTE

To handle irregularities in nested patterns, we propose
Collaborative Task Engagement (CTE). In CTE, similar to
sub-warp decomposition, a fine-grained task is defined as
a combination of a mapping function and an associative
reduction function. While a mapping function computes
a candidate value for the fine-grained task, the reduction
function does a summary operation over fine-grained tasks’
candidate values for the coarse-grained task. For instance,
lines 11 and 12 in Figure 1(a) show the mapping function
which computes the result by multiplying the matrix element
with the corresponding vector element, and line 13 shows the
reduction function which accumulates the resulting values to
yield the output vector element.

In CTE, instead of assigning one coarse-grained task to
one thread (1D decomposition) or a fixed number of threads
inside the warp (sub-warp decomposition), we assign a
group of coarse-grained tasks to a warp, and let the
threads in the warp collaborate to carry out the fine-
grained tasks belonging to the coarse-grained tasks
assigned to the warp. More specifically, threads of the warp
view and iterate over the list of fine-grained tasks resulting
from the expansion of coarse-grained ones. Figure 3 demon-
strates this scheme for the example in Figure 1.

Unlike previous static task decomposition methods, Each
thread inside the warp is assigned to execute one compute
function corresponding to a fine-grained task; regardless
of the coarse-grained task from which the fine-grained
task comes from. By unbundling fine-grained tasks from

Input: thread’s initial coarse-grained task
(ThreadCoarseTask).
Output: thread’s initial coarse-grained task final outcome.

1  volatile shared scans[ N_CTA_WARPS ][ WARP_SIZE ];

2  volatile shared reds[ N_CTA_WARPS ][ WARP_SIZE ];

3  volatile shared mapped[ N_CTA_WARPS ][ WARP_SIZE ];

4  volatile shared taskDesc[ N_CTA_WARPS ][ WARP_SIZE ];

5  scans[ warp_id ][ lane_id ] = 

prefix_sum( ThreadCoarseTask.size );

6  NFineTasks = scans[ warp_id ][ WARP_SIZE - 1 ];

7  firstLoad = scans[ warp_id ][ 0 ];

8  reds[ warp_id ][ lane_id ] = 

ThreadCoarseTask.initRedVal;

9 taskDesc[ warp_id ][ lane_id ] =

ThreadCoarseTask.fineTaskDescriptor;

10 for( fineTaskID = lane_id;

fineTaskID < NFineTasks;

fineTaskID += WARP_SIZE ) {

11    coarseTaskID = 

binary_search( fineTaskID, scans[ warp_id ] );

12    fineTask = task_descriptor( fineTaskID, 

taskDesc[ warp_id ], coarseTaskID );

13    mapped[ warp_id ][ lane_id ] = map( fineTask );

14    inSegIdx = min( lane_id, fineTaskID –

scans[ warp_id ][ coarseTaskID ] + firstLoad );

15    segSize = min( scans[ warp_id ][ coarseTaskID ] 

– fineTaskID, WARP_SIZE – lane_id ) + inSegIdx;

16    redElemPos = ( inSegIdx != 0 ) ?

( mapped[ warp_id ] + lane_id – 1 ) :

( reds[ warp_id ] + coarseTaskID );

17    for( i = WARP_SIZE / 2; i > 0; i /= 2 )

18       if( ( inSegIdx + i ) <= segSize )

19          *redElemPos = reduce( *redElemPos,

mapped[ warp_id ][ lane_id + i - 1 ] );

20 }

21 return reds[ warp_id ][ lane_id ];

Figure 4. GPU pseudo-code for CTE.

their coarse-grained task, the execution of compute stage
in CTE completely avoids the warp inefficiency. After the
compute stage, since fine-grained tasks from a coarse-
grained task are processed by consecutive threads in the
warp, a thread can find its corresponding coarse-grained task
and execute the reduction function over the results with its
neighbors, if necessary. The parallel reduction is performed
over the results of the computation for a coarse-grained task
to produce its final result. Figures 3(a) and 3(b) exhibit this
procedure. As can be seen, warp inefficiencies due to load
imbalance in CTE can only appear during the reduction
phases, however, their effect will not last longer than at
most logwarpSize reduction steps. The advantages of CTE
include:

• It avoids under-subscribing or over-subscribing warp
threads during the mapping by assigning a map func-
tion to every thread in each round regardless of their
corresponding coarse-grained task; and

• It reduces the effect of load imbalance between coarse-
grained tasks by performing parallel reduction over the
fine-grained tasks belonging to a coarse-grained one.

B. Efficient CUDA Implementation of CTE

Next, we describe the details of CTE’s CUDA imple-
mentation using the pseudo-code presented in Figure 4. We
provide a step by step description of the pseudo-code.



Shared memory declaration and allocation – CTE
requires shared memory buffers to exchange data between
threads of a warp. To enforce sequential consistency between
the shared memory accesses within a warp, volatile
qualifier accompanies shared memory declarations (lines
1-4). Using this technique— and since in CTE the set
of interactions between threads is confined to within their
own warp— our procedure avoids introducing any explicit
syncing or fencing primitives.

Coarse-grained task feature extraction – Initially, each
thread corresponds to one coarse-grained task. This coarse-
grained task is the input to the procedure in Figure 4. First, at
line 5, we compute the inclusive prefix sum of coarse-grained
task sizes that threads of the warp hold and save them into
the scan buffer. This buffer is necessary for multiple uses in
the iterative code section (lines 10-20). For a fast intra-warp
prefix sum, we employed the method introduced in [32] that
utilizes the shuffle intrinsic. After calculating prefix sums,
the last element gives the total number of fine-grained tasks
(line 6). Plus, we put the first element into a variable (line
7) so we can use it inside the iterative segment to get the
exclusive prefix sum results. At line 8, each thread inserts
the initial value (given by the user-specified algorithm) for
the reductions of fine-grained tasks over its initially assigned
coarse-grained task. The reds buffer collects the reduction
results in the iterative section and eventually to be output by
the program (line 21). Moreover, taskDesc specifies the
set of shared memory buffers that collect the fine-grained
task descriptors for coarse-grained tasks.

Each thread, which is initially assigned to a coarse-
grained task, has a number of variables that are used by
the fine-grained tasks inside the coarse-grained task and vary
among the coarse-grained tasks. For example, in Figure 1(a)
startPos and endPos are thread-private variables that
directly affect the execution of fine-grained tasks inside the
loop. We call such variables task descriptor. Since in CTE
fine-grained tasks of one coarse-grained task are executed by
multiple threads, the thread saves its task descriptor variables
inside the shared memory so as to make them accessible by
all the threads inside the warp. Note that this is necessary
for all decomposition methods that exploit parallelism within
coarse-grained tasks (such as sub-warp decomposition).

Fine-grained task assignment and mapping – Lines
11-20 present the iterative segment in which every thread
inside the warp is assigned to one fine-grained task identified
by fineTaskID. First, the coarse-grained task owning the
thread’s assigned fine-grained task is found via a binary
search on the scans buffer inside the shared memory at
line 11. Then, at line 12, thread’s assigned fine-grained
task is retrieved from the taskDesc buffer using thread’s
fine-grained task index and its corresponding coarse-grained
task index. The thread executes the mapping portion of the
described fine-grained task in line 13 and saves the result
inside the designated shared memory buffer position.

Parallel reduction of mapped fine-grained tasks –
At this point, threads inside the warp performed mapping
on fine-grained task, and now, need to properly reduce
mapped values. Since fine-grained tasks belonging to one
coarse-grained task were assigned to consecutive threads,
they form segments when they are processed using the
for loop specified in line 10. If the thread discovers its
index inside the segment and also the segment size, parallel
reduction inside the segment will become feasible. Thus,
line 14 calculates the intra-segment index using scans
buffer and line 15 computes the segment size by adding
the intra-segment index with the fine-grained task index
inside the segment when observed from right to left. In
line 16, we assign the first thread inside the segment to
the segment’s reduction element inside reds buffer and
assign the rest of the threads to the mapped value of the
thread before them inside the segment. This re-assignment
becomes beneficial by eliminating the need for an additional
reduction with the corresponding element inside the reds
buffer at every iteration. Finally, an intra-segment parallel
reduction (with unrolled loop in the actual implementation)
reduces the mapped values and saves the outcome inside the
corresponding reds buffer position. Threads keep executing
the code section in lines 10-20 until all the fine-grained tasks
are carried out. Finally each thread returns the reduced value
for its initially-assigned coarse-grained task (line 21).

C. CTE as A Device-side Template Library

While CTE provides an efficient method to handle ir-
regular nested patterns, its implementation from scratch for
every GPU kernel can be time-consuming and challenging
for CUDA programmers. To enable easy usage of CTE
by developers, we provide our technique as a CUDA C++
device-side template library. A CUDA developer only needs
to include our library header file and call the designated
library function. The library function takes as its parameters
the thread’s fine-grained task index range, mapping and
reduction functions, and initial content for thread’s coarse-
grained task’s reduction value. While the programmer ex-
presses the tasks as if each thread is assigned to one coarse-
grained task (similar to 1D decomposition), the library
manages the CTE execution behind the scenes.

Figure 5 shows the usage of our library for the SpMV
kernel. In this example, the mapping function is defined as
a lambda (lines 10 and 11) that takes the iteration index
as the parameter and returns the corresponding element, i.e.
the multiplication outcome. The signature of the mapping
function for our library requires the first parameter to be
the iteration index while the rest of the parameters can be
passed by the user as the lane state. Lines 12 and 13 in
Figure 5 present the reduction function— again as a lambda
expression— for this example. The reduction function signa-
ture for the library accepts only two parameters and returns
one value of the same type. Finally, lines 14 and 15 give the



1  #include <cte.cuh>  // CTE library inclusion.

2  template<uint BlockDim, typename valT, typename idxT>

3  __global__ void spmv_CSR_with_CTE( const valT* mat,

4   const idxT* nnzRowScan, const valT* inVec,

5   const idxT* colIdx, valT* outVec ) {

6     int rowID = threadIdx.x + blockIdx.x * blockDim.x;

7     valT sum = 0;

8     const idxT startPos = nnzRowScan[ rowID ];

9     const idxT endPos = nnzRowScan[ rowID + 1 ];

10    auto mapF = [&]( idxT idx ) {  // MAP.

11     return mat[ idx ] * inVec[ colIdx[ idx ] ]; };

12    auto redF = []( valT lhs, valT rhs ) {  // REDUCE.

13     return lhs + rhs; };

14    sum = cte::for_each_index<BlockDim, cte::scanned>

15     ( startPos, endPos, mapF, redF, sum );

16    outVec[ rowID ] = sum; }

Figure 5. Expressing the nested pattern in Fig. 1(a) CUDA C++ kernel
in CTE form using our template library interface.

function call to execute the tasks with CTE technique.
CTA (thread-block) dimension needs to be sent to the

function as the first template argument so the library would
have the correct size for the static shared memory allocation.
Also, the second template argument hints the library that the
indices of consecutive threads are prefix summed. In other
words, the ending index for thread i’s region is the beginning
index for thread (i + 1)’s. This template specialization
will allow the library to avoid recalculation of the prefix
sum of the fine-grained task sizes. If such relationship
between indices does not exist, the user will have to pass
cte::disjoint as the template argument. We mentioned
earlier that in this example startPos and endPos act as
task descriptors and need to be passed as function arguments.
We specialized the CTE function calls with more template
signatures so that for an arbitrary mapping function, other
task descriptor variables can be passed as the last variables
of the CTE function call in the order they appear as the
further mapping function parameters.

Finally, since all the threads of the warp need to be present
for a correct CTE execution, upon entering the execution
function, the library performs a __ballot() operation
with true predicate. If the result of this operation is not a
variable with all bits set, it means one or a number of warp
threads are absent. In this case, as a safety procedure the
library falls back to the 1D decomposition method.

D. CTE Analysis for Comparison with Static Decomposition
Methods

To analyze the CTE characteristics and compare it with
static decomposition methods, we briefly provide analysis
over the execution time for static decomposition methods
and CTE. We show that while the execution time for 1D
decomposition and the upper-bound for sub-warp decompo-
sition execution times are a function of the maximum(s) of
the set of coarse-grained task sizes, the upper-bound for the
execution time of CTE is a function of the average of the
workload.

Assumptions and notation. For analysis, let us assume
that the warp size is W , and for simplicity, further assume
that there are W coarse-grained tasks to be processed – the
time for bigger coarse-grained tasks can be obtained via
scaling. Let us denote the execution time of the mapping and
reduction functions by TMAP and TRED respectively. Note
that for simplicity of analysis we assume that these times
are constant and not affected by memory access latencies.

1D decomposition – Given a set of coarse-grained tasks
L = {l1, l2, ..., lW }, the execution time of this set of loads
with 1D decomposition is given by:

t1D(L) = maxL× (TMAP + TRED) (1)

Equation 1 above can be easily understood by examining
Figure 1(b). Note that the above equation shows that t1D is
a function of the maximum of the set of loads.

Sub-warp decomposition – For sub-warp decomposition,
if the width of the chosen sub-warp is S (note logS W ∈ N),
then the upper-bound for its execution time is given by:

tSW (L, S) =

S∑
s=1

(TRED × log2 S+

(TMAP × d
max {li| (s−1)×W

S < i ≤ s×W
S }

S
e))

= TRED × S log2 S+

TMAP ×
S∑

s=1

d
max {li| (s−1)×W

S < i ≤ s×W
S }

S
e (2)

Initial form of Equation 2 sums up the execution times in
different rounds since sub-warp decomposition assigns V
threads to process a coarse-grained task. While log2 V is
the maximum number of steps required for the reduction,
the mapping operation is repeated within a round by the
warp as long as the largest coarse-grained task’s mapping
functions assigned to a sub-warp are being performed. The
final form of Equation 2 shows that tVW is still a function
of the largest tasks. Also, V appears at both top and the
bottom of the fractions of Equation 2 which usually makes
tVW a non-monotonic function of V . The V for which tVW

is minimum depends on the load distribution.
CTE – On the other hand, the upper-bound of the

execution time for CTE is expressed as below:

tCTE(L) = d

W∑
i=1

li

W
e × (TMAP + TRED × log2 W )

= dAvg(L)e × (TMAP + TRED × log2 W ) (3)

In CTE, in every round the fine-grained compute portion of
the tasks are assigned to the warp threads and therefore the
sum of loads divided by the warp size is the coefficient of
both TMAP and TRED in Equation 3. Also, the reduction
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Figure 6. The kernel execution speedup of CTE and sub-warp decompo-
sition over 1D decomposition for matrix operations on real-world matrices.

will take log2 W steps at most, therefore, this term accom-
panies TRED. Considering the final form of Equation 3, we
can see that the upper-bound for tCTE is a function of the
average of the loads, not their maximum unlike the previous
two methods, i.e. 1D and sub-warp decomposition.

IV. EXPERIMENTAL EVALUATION

Next, we evaluate the performance of CTE and compare
it with 1D and sub-warp decomposition methods. We use
applications from various domains including sparse matrix
operations, scientific computing, and graph analytics. We
performed the experiments on a Nvidia GeForce GTX 780
with 12 Streaming Multiprocessors from the Kepler family.
We compiled and ran all the programs for CUDA Compute
Capability 3.5 with -O3 and C++11 compilation flags on a
system with Ubuntu 14.04 and CUDA 7.0.

A. Performance Analysis

Sparse matrix operations – Figure 6 presents the
speedup of CTE over 1D decomposition and compares
it with the speedup provided by sub-warp decomposition
from CUSP library [6] for two application from sparse
matrix operation domain. SpMV is the Sparse Matrix Vector
Multiplication and DIAG is the extraction of the diagonal
of the given matrix. Input graphs are from The University
of Florida sparse matrix collection [7] and exhibit different
structures and therefore nested load size variation. Rajat31
(Rajat) is an unsymmetric and rather regular matrix with
a dimension of 4.69M and approximately 20M non-zero
elements. Delauny n24 (Delau) is a symmetric irregular
matrix with 16.7M rows and columns and 100M non-zero
elements. Wb-edu (Wbedu) is a more irregular unsymmetric
matrix compared to Delau with 9.8M rows and columns
and 57M non-zero elements. Also, to further verify the CTE
performance compared to static decomposition methods, we
profiled the warp execution efficiency of CTE, sub-warp and
1D decomposition kernels with Nvidia Profiler and plotted
the results in Figure 7.

Starting with Wbedu in Figure 6 as the most irregular
input, CTE provides 2.8x and 2.3x speedup compared to 1D
decomposition for SpMV and DIAG respectively. SpMV is a
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Figure 7. Profiled warp execution efficiency of CTE, sub-warp decompo-
sition, and 1D decomposition kernels for experiments in Figure 6.

more compute-intensive application compared to DIAG and
can benefit more from our technique. CTE speedup becomes
more compelling in the light of sub-warp decomposition
speedup over 1D decomposition which can be less than 1
(for sub-warp width 32) and maximize at 1.8x. The CTE
supremacy is explained via Figure 7 in which CTE shows
87% and 96% warp execution efficiency for SpMV and
DIAG respectively while 1D decomposition warp efficiency
does not exceed 20% and sub-warp decomposition warp
efficiency for different sub-warp widths varies greatly from
SpMV to DIAG. As we move toward more regular input
matrices (Delau and Rajat), the variation in the size of
coarse-grained loads reduces hence 1D and sub-warp de-
composition exhibit a better warp utilization and perform
better. For Delau, CTE provides 1.9x and 1.3x speedup over
1D decomposition by enhancing the warp efficiency 25%
and 23% for SpMV and DIAG respectively. It also provides
1.28x and 1.3x speedup over the sub-warp decomposition
method with the best sub-warp width. Finally, for Rajat,
since the graph is very regular, CTE shows approximately
the same speedup as the best sub-warp decomposition width
(1.18x) for SpMV.

Scientific applications – In this section, we measured
the performance of two scientific applications, Fast Multiple
Method [19] (FMM) and Dynamical Quadrature Grids [22]
(DQG) when performed using CTE and 1D and sub-warp
decomposition methods. The results are depicted in Figure 8.
For FMM, which is an n-body approximation that groups
the particles in a quad-tree, we consider 10M points in
3D space as the input, and vary the maximum density (Q)
of points in each leaf between 5 and 10. We calculate
the U-list phase of FMM procedure and distribute the
points with non-equal probability distribution (nEquProb)
and equal probability distribution (EquProb). It is evident
that for two irregular inputs, our technique outperforms both
1D decomposition and sub-warp decomposition by up to
1.5x and 1.15x-1.67x. However, for the regular input sub-
warp decomposition with sub-warp width 16 shows slightly
better performance. Moreover, DQG computes the points
inside a quadrature grid. For DQG, we vary the maximum
number of atoms per molecule between 20 and 40 and
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Figure 8. The kernel execution speedup of CTE and sub-warp decomposi-
tion over 1D decomposition for Fast Multiple Method [19] and Dynamical
Quadrature Grids [22] with different inputs.

provide regular and irregular input sets. For the regular input,
the number of atoms in molecules are randomly selected
between 1 and maximum allowed. For irregular inputs, they
are selected using normal distribution. Similar to FMM,
irregularity in inputs manifests the CTE supremacy while for
a regular input CTE performs on-par with the best sub-warp
decomposition width. Also, since compared to FMM, DQG
kernel has a more compute-intensive map portion, resulting
speedups are slightly higher, covering CTE overhead of re-
bundling fine-grained tasks with their corresponding coarse-
grained ones.

Graph Analytics – Figure 9 shows the kernel execution
speedup of CTE and sub-warp decomposition over 1D
decomposition for 3 graph applications (BFS, SSSP, and
PageRank [26]) over 3 real-world graphs. These graphs have
different number of nodes and edges and exhibit various
degree distribution patterns. A coarse-grained task in this
case processes a node which includes visiting its neighbors
as the fine-grained tasks. For this section, we used the sub-
warp decomposition implementation in [18] and hand-wrote
1D decomposition. First, LiveJournal [1] (LiveJ) has around
4.85M nodes and 69.0M edges and has a power-law degree
distribution. CTE shows better performance for this graph in
all application by being 1.30x, 1.08x, and 1.34x better than
the best sub-warp decomposition option for BFS, PageRank,
and SSSP respectively. Also note that the best sub-warp for
different applications differ; this signifies the need for try-
and-error or profiling in sub-warp decomposition for every
algorithm and input combination. Second, HiggsTwitter [8]
(Higgs) is even more irregular compared to LiveJournal
and contains 0.46M nodes and 14.8M edges. The results
for this graph demonstrate the ineffectiveness of 1D de-
composition confronting heavy amount of load imbalance
in nested patterns. Finally, RoadNetCA [21] (RoadN) with
1.96M nodes and 5.53M edges is an example of a regular
input for the benchmarks due to its internal connectivity.
Most of the nodes in this graph have approximately 1 to
4 neighbors. Therefore, for this graph, 1D decomposition
usually performs the best since coarse-grained tasks have
roughly equal amounts of fine-grained loads. However, even
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Figure 9. The kernel execution speedup of CTE and sub-warp decompo-
sition over 1D decomposition for different graph applications and inputs.
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Figure 10. Kernel execution duration (left plot) and Warp execution
efficiency (right plot) for decomposition methods when the task sizes vary
linearly and quadratically proportional to the lane index. Map and reduce
portion of the fine-grained tasks each contain 20 FMAD instructions. For the
LINE scenario, the coarse-grained task size is calculated with 4× laneID

while for the QUAD scenario it is calculated with laneID2

8
. Task sizes for

the sub-warp decomposition are calculated using their sub-warp index.

for this regular pattern, CTE exhibits performance in-par
with 1D decomposition by 0.92x, 0.96x, and 1.03x speedup
for BFS, PageRank, and SSSP respectively. Also, it is clear
that sub-warp decomposition performance becomes worse as
we increase the sub-warp size due to over-subscription.

B. Sensitivity Analysis: varying coarse-grained task sizes

In this section, we analyze the performance of 1D, sub-
warp decomposition, and CTE with two synthetic compute-
intensive scenarios. The first scenario assigns each thread
inside the warp a task size linearly proportional to its
laneID. Whereas, in the second scenario, the task sizes
are proportional to laneID2. These two scenarios are dis-
tinguished in Figure 10 with LINE and QUAD respectively.
Note that in sub-warp decomposition threads calculate their
task size using their sub-warp ID so that kernels for all
decomposition methods get the same overall task sizes for
a fair comparison. The coefficients for these two scenarios
are selected so that they give approximately the same overall
kernel execution duration for the 1D decomposition.

While 1D decomposition kernel takes the same amount
of time for both LINE and QUAD scenarios to finish, as
it is shown in Figure 10, average number of fine-grained
tasks per a coarse-grained task for LINE and QUAD are
approximately 60.8 and 40.5. This confirms our previous



statement about the kernel duration being a function of the
maximum of coarse-grained load sizes in 1D decomposi-
tion. Also, by making the loads more irregular (LINE vs
QUAD), warp execution efficiency for 1D decomposition
kernel halves, demonstrating its vulnerability to the intra-
warp load imbalance. For sub-warp decomposition, although
the kernel duration for different sub-warp sizes reduces by
moving from LINE to QUAD by 12 to 24 percent, it does
not reflect 33% reduction in the load size. On the other
hand, CTE kernel duration drops by 33% confirming the
CTE performance dependency to the average of the loads.
Plus, unlike sub-warp decomposition that exhibits varying
warp execution efficiency for different sub-warp widths in
both scenarios, CTE exhibits excellent warp efficiency.

V. RELATED WORK

In addition to the methods and works mentioned in
Section II, queue-based approaches are also implemented
to handle irregularities of task loads. [30] gives a dynamic
decomposition scheme based on task stealing and donation
using queues. However, the implementation of such queues
involves heavy contention over the atomic variable and also
over global locks that have to be passed around spawned
CTAs. Design that works around a central lock, such
as [23] for BFS graph traversal, imposes inefficiencies due
to latencies. Early works of graph computation on CUDA
platform [12] employ 1D decomposition and assign every
coarse-grained task (e.g., processing of a graph node) to one
GPU thread. The thread then iterates over fine-grained tasks
(e.g., visiting the node’s neighbors). Later, [14] presented
sub-warp decomposition for graph algorithms and named
each sub-warp a virtual warp. Similarly, virtual warps have
a fixed power-of-2 size throughout the kernel computation.
While only one thread inside the virtual warp performs the
SISD (Single Instruction Single Data) phase of the kernel, all
the threads inside the virtual warp participate in the SIMD
phases. [18] generalized this solution for vertex-centric
graph algorithms using intra-virtual-warp reductions. Merril
et.al. [24] realized the significance of load balancing with
parallel scan [25] in sparse graph processing. However, their
solution is limited to BFS graph traversal and does not con-
sider the interaction between fine-grained tasks of a coarse-
grained task. Finally, Warp Segmentation [16] introduces a
SIMD efficient reduction mechanism between neighbors of a
vertex. In comparison, CTE breaks the associativity between
fine-grained and coarse-grained tasks, formulates the idea of
expansion of fine-grained tasks, and generalizes the solution
by introducing an efficiently implemented template library.

Xiang et. al. examined the effect of inter-warp load
imbalance in [33], in which they referred to it as warp-level
divergence. This solution compliments intra-warp decompo-
sition methods (1D, sub-warp, CTE); even though inter-warp
load imbalance effect is insignificant especially for GPU
kernels with high occupancy.

Similar to our library, Thrust [13] is a CUDA
C++ template library that provides interfaces such as
thrust::for_each for the expression of iterative code
segments. However, underlying scheme to carry out the fine-
grained tasks in nested patterns is 1D decomposition.

Load imbalance, as a problem for SIMT architecture,
is generally a variation of thread divergence; thus, offered
solutions for divergence are of importance for irregular
nested parallel patterns. Collaborative Lanes [15] is a method
to overcome intra-warp underutilization during batched in-
sertions in GPU Hashing. To mitigate thread divergence, [9]
schedules the path in the program that most threads take
using __all() and __any() CUDA primitives; however,
it fails to provide full warp utilization. Other solutions that
rely on majority voting, [10], [11], [29], attempt to eliminate
thread divergence similarly by enforcing all or none of the
threads to take the divergent path. While [10], [11] require
information from the program to schedule the execution
of divergent path, [29] approximates the final outcome and
accepts errors in the output. Moreover, CCC [17] implements
an efficient all-or-none discipline for repetitive divergent
tasks. Warp specialization [2] is another method to overcome
thread divergence but only when there are tasks for threads
within a warp that are of differing nature. Furthermore, data
remapping techniques [35], [36] may reduce divergence at
the expense of static analysis or disrupting GPU kernel
autonomy. [28], [5], [27] aim to mitigate the effect of
divergence by profiling the GPU application. Profile-guided
approaches are orthogonal to our technique and can be
applied contemporaneously.

VI. CONCLUSION

In this paper, we introduced a novel software technique
named Collaborative Task Engagement (CTE) for efficient
expression and execution of GPU kernels containing nested
patterns. Unlike existing solutions where static assignment
of threads to tasks does not provide portable application
performance across multiple inputs and induces warp un-
derutilization, CTE assigns threads inside the warp to pro-
cess a group of tasks collaboratively. Consecutive threads
process the consecutive fine-grained tasks resulted from the
expansion of coarse-grained tasks, determine the coarse-
grained task they belong to, and participate in parallel
reduction with their neighbors. We prepared a CUDA C++
device-side template library to facilitate the employment
of our technique. We showed that CTE is resilient against
irregularities and provides up to 1.51x speedup over the best
sub-warp decomposition width and exhibits excellent warp
execution efficiency.
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