Dynamic Information Flow Tracking on Multicores

Vijay Nagarajan !

Ho-Seop Kim 2

Youfeng Wu 2 Rajiv Gupta *

! University of California, Riverside {vijay,gupta}@cs.ucr.edu

2 Intel Corporation {ho-seop.kim,youfeng.wu}@intel.com

ABSTRACT

Dynamic Information Flow Tracking (DIFT) is a promising
technique for detecting software attacks. Due to the com-
putationally intensive nature of the technique, prior efficient
implementations [21, 6] rely on specialized hardware support
whose only purpose is to enable DIFT. Alternatively, prior
software implementations are either too slow [17, 15] result-
ing in execution time increases as much as four fold for SPEC
integer programs or they are not transparent [31] requiring
source code modifications. In this paper, we propose the
use of chip multiprocessors (CMP) to perform DIFT trans-
parently and efficiently. We spawn a helper thread that is
scheduled on a separate core and is only responsible for per-
forming information flow tracking operations. This entails
the communication of registers and flags between the main
and helper threads. We explore software (shared memory)
and hardware (dedicated interconnect) approaches to enable
this communication. Finally, we propose a novel application
of the DIFT infrastructure where, in addition to the detec-
tion of the software attack, DIFT assists in the process of
identifying the cause of the bug in the code that enabled
the exploit in the first place. We conducted detailed simu-
lations to evaluate the overhead for performing DIFT and
found that to be 48% for SPEC integer programs.

1. INTRODUCTION

Software attacks have become increasingly prevalent. US
CERT Statistics [33] show that the number of attacks have
increased rapidly over the years. At the same time it has
become increasingly costly for businesses to deal with worms
and viruses. FBI computer crime survey estimates that US
businesses spent a total of $67.2 billion in the year 2005
to deal with computer crime, a significant proportion of
which was spent in dealing with software attacks (worms
and viruses).

Dynamic Information flow tracking (DIFT) [21, 15, 6, 17,
31] is a promising technique for providing security against
malicious software attacks. The basic idea hinges on the
fact that an important avenue through which an attacker
compromises the system is through input channels. This
is a direct consequence of most of the vulnerabilities being
wmput validation errors. In fact, 72% of the total vulnerabil-
ities discovered in the year 2006 are attributed to a lack of
(proper) input validation [34]. Note that most of the mem-
ory errors including buffer overflow, boundary condition and
format string errors fall into this category.

The main principle of DIFT is as follows. A set of input
channels, for example network inputs, are considered inse-

cure. The flow of information from these inputs is tracked
and those values that are data dependent on such inputs are
in turn marked tainted. Potential attacks are detected upon
the suspicious use of such tainted values.

There have been prior implementations of DIFT both in
hardware and software. Hardware-based approaches [21,
6] employ specialized hardware to perform DIFT opera-
tions concurrently along with the original operations. While
this approach incurs little performance overhead, it requires
substantial hardware changes. Furthermore these hardware
changes are specialized, in that, these are required only for
enabling DIFT.

On the contrary, software-based information flow tracking
[31, 17, 15] while not requiring specialized hardware for per-
forming DIFT, suffers from several deficiencies themselves.
Recent research [31] showed how software based taint anal-
ysis can be used to deal with a wide variety of software
attacks. But the above approach requires source code mod-
ifications, making it unsuitable for proprietary software and
library functions for which source code may not be avail-
able. Additionally, static instrumentation schemes (source
code level or binary level) suffer from the possibility of a
sophisticated attacker bypassing the tracking code at run-
time and annulling the benefits of performing tracking [7].
Finally, tracking for dynamically generated code and self
modifying code cannot be handled via static instrumenta-
tion. Information flow tracking via dynamic binary instru-
mentation [31, 15] eliminates the above problems but suffers
from a huge performance overhead. Even the most efficient
implementation slows down the SPEC integer programs by
a factor of four [17]. Thus, the motivation for this paper
is the lack of a transparent and efficient information flow
tracking mechanism that does not use specialized hardware
support.

Our main idea is to use a separate core of a chip multipro-
cessor (CMP), which is becoming increasingly ubiquitous, to
perform DIFT operations transparently and efficiently. In
our DIFT framework, a dynamic binary translator scans the
program image and transparently generates a helper thread
that performs DIFT for the main thread. Here, the main
thread refers to the original program. This helper thread is
scheduled on a separate core and tracks the information flow
of its corresponding main thread concurrently. Each register
of the helper thread holds the taint-value for the correspond-
ing register in the main thread while the taint-value for each
byte in the original program is stored in a linear fashion in
an additionally allocated memory space. Whenever the use
of a value violates the specified security policy, the helper

thread raises an exception and interrupts the main thread.

Having described our design in a nutshell, we now make
some observations to illustrate some of the design issues.
First, the helper thread should, as far as possible, execute
only the instructions required for DIFT. Otherwise, the helper
thread may run much slower than main thread [17]. Second,
the helper thread should exactly follow the control flow of
the main thread. Only then can it perform tracking for
all the executed instructions. Third, several instructions,
for example register indirect jumps, use register values as
its operands. As the helper thread executes only DIFT in-
structions it does not have access to these register values;
neither does it have the necessary flag values to exactly fol-
low the control flow of the main thread. Thus an important
consequence of this design is that the main thread needs to
continuously communicate registers and flags to the helper
thread at a fine grained level. We initially explored com-
munication of these values through shared memory. But
we found that this caused high overhead since most of the
time was spent in executing the instructions for enabling
this communication. To alleviate this problem, we utilize
a dedicated interconnect in the form of a hardware FIFO
buffer for the communication between the cores. Moreover
this FIFO bulffer is software controlled through two new in-
structions enqueue, that pushes values into the FIFO, and
dequeue which pops values from the FIFO. Although this in-
terconnect feature is not available in current CMPs; a num-
ber of recent studies [18, 16, 19, 26] have been advocating
use of such queues for intra- chip core-to-core communica-
tions for such wide ranging applications as automatic thread
extraction and debugging. Using this generalized hardware
support, we found that DIFT can be successfully performed
with only 48% slowdown, which is a significant improvement
over current software based schemes.

1.1 Bug Location

There has also been significant recent research on the sub-
ject of recovery from software attacks [20, 25]. The primary
goal is to ensure the availability of the server, despite it be-
ing a target of a software attack. The key idea is to have
techniques to save the machine state (including memory con-
tents) at periodic intervals. In the face of an attack, instead
of terminating the application under attack, a prior uncor-
rupted machine state is restored. It is worth noting that this
is only a temporary solution, since this does not prevent the
same attack from being carried out again [20]. Clearly, the
best possible recovery scheme is to apply a software patch
so that the bug in the code that causes the vulnerability
is removed. To do this, we first need to locate the bug in
the code that causes the vulnerability. In prior work [11]
architectural support has been provided to store the neces-
sary trace information, so as to enable deterministic replay
debugging. In this work, we go a step further in this di-
rection and leverage the DIFT infrastructure to assist us in
the process of bug location. The basic idea is quite simple.
Instead of propagating the boolean taint values, we propa-
gate PC values, where PC refers to program counter. Later,
we show that the CMP architecture is able to tolerate the
extra taint memory overhead incurred gracefully. As usual,
a zero indicates untainted data and a non-zero (PC) value
represents tainted information. At any instant, the PC value
corresponding to a tainted location is the PC of the most re-
cent instruction that wrote to the location. When an attack

is detected, the PC taint value of the tainted memory loca-
tion (or register) gives us additional information, namely the
most recent instruction (statement) that modified it. This
information can be vital in identifying the source of the bug
and our preliminary experiments confirm that in most cases
this directly points to the statement that is the root cause
of the bug.

1.2 An Example

To illustrate the key aspects of performing DIFT in a mul-
ticore, let us consider the example in Fig. 1. This expository
example will illustrate some of the design issues involved in
this work which will be considered in detail in the follow-
ing sections. The first column shows the source code of the
original program. The second shows the machine instruc-
tions that are executed by the main thread. The third col-
umn shows those that are executed by the helper thread for
DIFT while the last column shows the instructions executed
(shows only changes) by the helper thread with support for
bug location.

Original Code. The function fun calls three different
functions based on the variable choice, passing the character
string buf as a parameter to the function call. The string
is read from the file into a global using the (safe) library
function fgets. But the unsafe strcpy is used to copy the
global string into the stack. This overflows the buffer allo-
cated to buf, when the size of the read string is greater than
10 bytes, thereby overwriting the stack variable choice, that
has been spilled on to the stack. Since the variable choice
is later used as an index into the jump table (due to the
switch statement), overwriting this can potentially lead to
a return-to-libc attack.

Helper Thread for DIFT. Now let us consider the in-
structions in the main and the helper threads. As mentioned
previously, the registers in the helper thread contain the
taint-values of corresponding registers of the main thread
and taint-values of corresponding memory locations are as-
sumed to be offset by the value off. Initially, let us assume
that the value choice resides in the eax register. Further-
more, let us assume that the variable choice is not tainted,
which means the initial value of eax of helper thread is 0.

e Statement 1. This corresponds to a bounds checking
operation; the main thread terminates if the value of
eax exceeds 3. To ensure that helper thread follows the
control flow of the main thread, the branch outcome
needs to be communicated from the main to the helper
thread. Recall that the helper thread does not have
access to the register (and flag) values of the main
thread.

e Statement 2. This corresponds to the spill code,
where the value of eazx is pushed on to the stack. Ac-
cordingly, the helper thread moves the value of its eax,
which has the taint-value corresponding to the main
thread’s eaz, into the appropriate taint-memory loca-
tion corresponding to the main thread’s stack. To en-
able the computation of the address of this taint mem-
ory location, the main thread communicates its esp to
the helper thread. The semantics for Statement 5 are
similar.

e Statement 3. This corresponds to the call to fgets,
where the input is obtained and copied into the string

void fun (int choice) {
char buf[10];

//bounds checking

if (choice > 3) exit(0);

Il read into global
global = fgets();

/I vulnerability
strepy(buf, global);

switch(choice):

IIAssume choice present in %eax

/lbounds checking

cmp eax, 03h eflag
1. jge <exit>
/1 spill code Yoesp
2. push %eax
3. call <get>

i) call sys_read
ii) global[] = i/p[]

4. call <strcpy>
bufli] = global[i]

/1 spill code %esp
5. pop %eax

6. add %eax,%ebp

/IAssume taint-value of %eax is0.
//bounds checking

p// receive branch outcome
1. jge <exit>

p// receive %esp value
2. mov %eax, (%esp+off.)

3. call <get>
i) *(@/p[l +off.)=1
ii) global+off.[]=i/p+oft.[]

4. call <strcpy>
i)buf+off.[i]=global+off.[i]

>/l receive %esp value
5. mov (%esp+off), %eax

6. or %eax,%ebp

3. call <get>
i) *(i/p[] +off.[] = stmt.3

4. call <strcpy>
if global+off[i] ==
i) buf+off.[i] = stmt. 4

case 1: 7.cm Oh
f1(buf); jnzpliax, $ 7. cmp eax, $0h
case?: . . jnz Ly
f2(buf); raise exception /I eax points to stmt 4
case 3: 7.imp %eax—%aabd/ receive %eax value
f3(buf); L;: jmp %eax
)
(a) Original code (b) Main thread (c) Helper thread (d) Helper - Bug Location

Figure 1: DIFT/Bug Location using helper threads

global. The helper thread marks the taint-value corre-
sponding to input buffer as high and the taint-values
are faithfully copied when the input buffer is copied
into global in the main thread.

e Statements 4. This involves a call to strepy. As
we can see from the third column, the helper thread
performs memory movement operations of the taint-
values corresponding to original memory movement.

e Statement 6. This involves a computation operation
for which helper thread performs a logical or to reflect
the fact that the target should be tainted if any of the
source operands are tainted.

e Statement 7. This corresponds to a register indirect
jump based on eaz. To check for a control flow attack,
the helper thread checks the corresponding taint-value
of eaz; if it is tainted, it raises an exception. If it is
not tainted, the helper thread should follow the control
flow of the main thread. To enable this, the main
thread communicates the value of eax.

Had there been a buffer overflow in statement 4, this would
have tainted the spilled value. When the spilled value is sub-
sequently popped into eaz in statement 5, the corresponding
eax of the helper thread would also be tainted. Thus, an ex-
ception would have been raised in statement 7, preventing
the attack.

Helper Thread for Bug Location The last column
provides the code for the helper thread with bug location
support. The only changes to the code are for statements
3 and 4. For the gets statement, instead of initializing the
taint-values with a value of 1, we instead initialize it with the
PC of source code statement that caused the input (state-
ment 3). Similarly for strepy, we perform the following. If
the source is not tainted, we propagate the taint-value of 0
to the target. But if the source is tainted, we update the
taint-value of the target of the copy with the PC that caused

the copy (statement 4). This would enable us to detect the
cause of the error (statement 4) when the attack is detected
in statement 7.

2. DIFT USING ADDITIONAL CORE

In this section, we discuss the detailed design and imple-
mentation of DIFT using multicore. Initially we give a brief
overview of the creation of the helper thread and explain how
appropriate code is generated for the two threads. Then we
move on to the software and hardware techniques for com-
munication between the threads. We discuss the hardware
FIFO buffer in detail and introduce optimizations to reduce
the communication cost. Then we move on to taint-value
(register and memory) management in the helper thread.

2.1 Thread Management

We used a dynamic binary translator (DBT), to generate
DIFT code and manage the main and helper threads. In a
DBT based implementation, the DBT automatically loads
the original program code into memory and initializes the
processor execution context in the beginning. It also uses a
code cache to store the translated code so that the original
code is translated once and executed multiple times in or-
der to improve the overall program execution performance.
We used Intel’s StarDBT [1] infrastructure as the dynamic
translation engine for our work. We modified StarDBT in
the following way. Initially, we create two StarDBT threads,
both of which translate the original code. We modified the
translation engine such that it outputs different translations
based on the the current thread-id. In the main thread, the
translator is made to faithfully output the original code ver-
batim additionally generating code that communicates the
required registers and flags. In the helper thread, the trans-
lator is made to generate the required code for performing
DIFT operations in addition to instructions for communi-
cating with the main thread.

2.2 Inter-thread Communication

Since the helper thread performs only the DIFT opera-
tions, it does not have access to the values computed by
the main thread. As we saw in the example, the main
thread communicates the appropriate register/flag values
for branching instructions and indirect memory reference
instructions.

2.2.1 Communication through Shared Memory

Communication can be accomplished through shared mem-
ory employing a software queue abstraction. There are two
sources of slowdown when this type of communication is
used. First, the extra instructions introduced to accom-
plish communication. Extra instructions need to be exe-
cuted both by main and helper threads to send and receive
data from the queue. This is also known as intra-thread
latency in prior work [18]. Secondly, the actual communi-
cation latency, known as inter-thread latency [18], can be
substantial due to a large number of cache misses inherent
in producer-consumer communication patterns. This is ac-
centuated by the fact that most multicore processors do not
share the L1 cache and all receive operations need to neces-
sarily go to the L2 cache.

2.2.2 Hardware based Communication

As we discussed in the previous section software based
communication has two disadvantages: increased inter-thread
and intra-thread latencies. Each of these can be greatly mit-
igated by the use of hardware support for communication
between cores and by the addition of ISA support for us-
ing single instructions for send and receive operations. The
enqueue and the dequeue instructions, each take a register
as an operand; while the former puts the register contents
into the queue, the latter pops it from the queue into the
register. We model the queue as a FIFO buffer of fixed size.
Furthermore, the dequeue instruction blocks the processor if
the queue is empty and the enqueue instruction blocks if the
queue is full. Thus, there is no requirement to explicitly per-
form any other synchronization operation. The realization
of the such an interconnect structure is discussed in detail
in prior work [26]. More recently, a light-weight memory en-
hancement [18] has been proposed which can also be utilized
for this work. This light weight memory enhancement obvi-
ates the need for a direct hardware structure that connects
the cores and uses the memory system to for achieving the
communication.

We believe that the cost of utilizing hardware support in
the form of changes to ISA or assumption of a communica-
tion queue is minimal and more importantly general com-
pared to the changes that need to be made for incorporating
DIFT in hardware. Also hardware support for communica-
tion between cores is currently an active research area and
has several other applications including software pipelining
[16] and debugging [19].

2.2.3 Optimizations to Reduce Communication

The communication bandwidth required will play an im-
portant role in the actual complexity of the design of the
communication system. We conducted some simple experi-
ments with SPEC integer benchmarks to measure the band-
width required. While communication for register-indirect
jumps required a bandwidth of 1 byte every 100 instruc-
tions, communication of eflag registers and communication

for register-indirect memory addressing required a band-
width of 50 bytes and 150 bytes every 100 instructions. So
we looked at optimizing the costs for the last two.

Source code Main thread Helper thread
fun(){ push %ebp sub $0x4, %esp
int array[]; t.v[esp+off] = t.v[ebp]
push %ecx sub $0x4, %esp
mov %ecx, (%esp,off)
sub $0x24, %esp
while(){ L;: L;:
array[i] = Yoedx

mov %eax, (%ebp,edx) mov %eax,(%ebp, %edx,off)
i++
) inc %edx

jmpL;: jmpL;:
add $0x24, %esp
pop %ecx add 0x4, %esp

mov (%esp,off), %ecx

add $0x4, %esp

t.v[ebp] = t.v[esp+off]

ret add $0x4, %esp

if *(%esp+off) =1 exception();

) pop %ebp

Figure 2: Register indirect Optimization

OPT1: Register Indirect Memory addresses. The 286
instruction set allows memory addressing with the base and
index registers. We observe that several memory operations
have the ebp register as the base register, due to the use of
local variables in functions. This corresponds to the mov
instruction in Fig. 2 moving values into the stack allocated
variable, array. Similarly, all the stack operations use the
esp register for addressing, albeit implicitly. At the same
time, for compiler generated code, DIFT operations involv-
ing these registers are not frequent. For instance, consider
the add and sub instructions that change the stack pointer
in Fig. 2. Obviously no DIFT operations are needed for
these. Thus we make a design decision of maintaining the
actual values of stack pointer and the base pointer in the
helper thread. By doing these, we avoid the communica-
tion of these registers. This is seen in the mov instruction
where only the index register edr is communicated. Sim-
ilarly this saves us from communicating the stackpointer,
esp, for all push/pop instructions. Instead the stack pointer
of the helper is updated to reflect the push/pop. It is impor-
tant to note that we store the taint-values of esp and ebp in
memory, so that we can perform DIFT operations for these
registers if the need arises. This is illustrated in the pop
ebp instruction in the example. The value of ebp may have
been corrupted while it was in memory. So it is necessary to
perform DIFT and accordingly the taint-value (t.v) of ebp
in memory is updated.

Main - Orig. Helper - Orig | Main- OPT2a Helper-OPT2a | Main- OPT2b Helper-OPT2b
cmp 0, %eax cmp 0, %eax cmp 0, %eax
push %eax push %eax setleflag byte
pushf lahf
pop %eax setlo flag_byte Isbflag_byte | (updatezflag)

Yo | enqueuEz equelez
enqueue %eax | degueue %eax Yeh >

push %eax enqueve %ah | dequeue %ah | jl <rel32> jz<rel32>

pop %eax popf pop %eax sahf
jl <rel32> il <rel32> jl <rel32> jz<rel32>

Figure 3: EFLAGS Optimization

OPT2a: Software EFLAGS Optimization. In the naive
scheme, to communicate the control flow the EFLAGS regis-

ter is communicated fully, as shown in the first two columns
of Fig.3. But to perform control flow transfers only the
status flags namely the sign, carry, auxiliary carry, parity,
zero and overflow flags need to be communicated. All of
the status flags, except the overflow flag is contained in the
first byte of the eflags registers. Hence, using the lahf and
the sahf instructions, we can communicate all flags except
the overflow flag. The overflow flag is communicated via
shared memory separately through the seto instruction as
in [3]. This optimization has two advantages. First, com-
munication bandwidth is reduced, since only a byte of flag
information is communicated as opposed to a word. Second,
it also improves the performance as it eliminates the need of
executing a popf, which takes tens of cycles to execute [3].

OPT2b: Hardware EFLAGS Optimization. Intuitively,
we just need to communicate one bit information for branches;
whether the branch is taken or not-taken. To handle this we
could have expanded the enqueue instruction to specifically
communicate the exact flag bit. Note that due to inorder
nature of the queuing, sending multiple sized data (a word
or a bit) is not a problem. But since, several branch in-
structions use multiple flag bits for deciding the branch out-
come, we need to again use multiple enqueues/dequeues for
branch instructions. For example, the jl instruction takes
the branch if SF' = OF, requiring us to communicate both
of these flag bits. Here, we make use of the setcc instruc-
tion to write the taken/not taken information in a specific
allocated memory location (flag — byte). Then we expand
the enqueue/dequeue semantics to include the enqueuez and
dequeuez instructions. The enqueuez instruction reads the
Isb of this memory location (flag — byte) and pushes it into
the queue. The dequeuez instruction pops a bit from the
queue and sets the zero flag. We then use the jz instruc-
tion, irrespective of the original branch instruction, in the
helper thread. This optimization is illustrated in the last
two columns of Fig. 3.

2.3 Fail-Safety

When an attack is detected, it is important that the main
thread is notified as soon as possible. Thus, if the helper
thread runs slower compared to the main thread, then the
exception may be reported much later, presenting a time
window during which the program can be compromised.
The size of this window is not expected to be large because of
two reasons. First, the dynamic number of instructions ex-
ecuted in the helper thread are almost similar to the those
executed by the main thread. Moreover, the types of in-
structions for performing DIFT are similar, sometimes even
simpler, compared to the original instructions and several
instructions in the main thread (eq. increment) do not re-
quire DIFT to be performed. For example, the original move
instructions have corresponding moves. But the costly mul-
tiply instructions are replaced by the cheap or instructions,
since we just need to propagate the taint-values. Further-
more, several instructions in the main thread do not require
DIFT performed. (eg. increment instructions). Second,
even if the helper thread trails the main thread, it is not
allowed to do so indefinitely. It is restricted by the queue
size, since the main thread stalls if the queue happens to
become full. Thus we can control the window size indirectly
by changing the size of the queue.

Nevertheless, it may be desirable to have the fail safety

Main - Orig. | Helper - Orig Main- Fail-stop | Helper-Fail-stop | Main- Relaxed | Helper-Relaxed
Fail-stop Fail-stop
cmp eax, $01h cmp eax, $01h cmp eax, $01h
jnzL; etz flag_byte jnzL,
raise exception raise exception
(update?) | enquelshlag_byte
Yoeax > Yoeax)
jmp %eax IIreceive Yoeax val dequeuez enqueuez jmp %eax JIreceive Yoeax val
Li:jmp %eax jnz exception Li:jmp %eax
Yoeax
jmp %eax //receveg/neax // dummy | synchronization
jmp %eax dequeuez enqueuez
/1 system call
int 0x80 int 0x80

Figure 4: Ensuring fail safety

property - a property which guarantees that the main thread
is notified before it deviates into a malicious control flow. We
accomplish this using two way communication. The helper
thread sends a bit of information before every vulnerable
control transfer instruction. This is shown in the middle
two columns of Fig. 4 where the helper-fail-stop thread en-
queues the taken/not-taken information. At the same time,
the main thread performs an dequeuez instruction before ev-
ery register indirect jump, raising an exception if the value
received is a high bit. Here, it is important to note that
the fail-safety property needs a bidirectional queuing sys-
tem, which results in additional hardware complexity. It
also comes at the expense of lower performance of DIFT, be-
cause the main thread should repeatedly synchronize with
the helper thread before every vulnerable control transfer
instruction, including register indirect jumps,calls and re-
turns.

2.3.1 Relaxed Fail-Safety

To reduce the performance penalty of ensuring fail safety,
we describe a relaxed fail safety implementation inspired
from system call monitoring. System call monitoring [27,
29] is a commonly used technique for intrusion detection.
The basic idea is that a compromised application can cause
real damage only through system calls and thus monitoring
system calls is a good technique to detect intrusions. Thus,
instead of the main thread synchronizing with the helper
thread before every vulnerable control transfer instruction,
the main thread synchronizes with the helper thread only
before system calls. Consequently, as shown in the final two
columns of Fig. 4 the helper thread performs an enqueuez
instruction before every system call and the main thread
performs a dummy dequeuez instruction before every sys-
tem call purely for the purpose of synchronization, in that
the dequeued value is not really used by the main thread.
However, this ensures that the main thread will proceed
executing the system call, if and only if the helper thread
reaches the corresponding execution point. Had there been
any malicious control flow in the original thread, the helper
thread would have detected this and raised an exception be-
fore the main thread gets a chance to execute the subsequent
malicious system call. Since the number of system calls exe-
cuted in a program is typically much lesser than the number
of register indirect control transfers and returns, the perfor-
mance penalty of ensuring relaxed failsafety is expected to
be lesser. In fact, in our experiments we found that we
were able to implement relaxed fail safety with negligible
overhead even if we performed the synchronization before

system calls using software shared memory. Thus we were
able to enforce relaxed fail safety with negligible overhead
with only unidirectional queue support.

2.4 Taint-values Management

In this section, we describe how the taint values, including
those for registers and memory, are managed in the helper
thread. As we discussed previously, we store the taint-values
for the registers in the main thread (except esp and ebp) in
the corresponding registers in the helper thread. Similarly
we store taint-values of memory locations of the original pro-
gram in a linear translated memory, which is specially allo-
cated. Similar to previous schemes [21, 17] we considered 1
bit taint values for every byte of memory. But this means for
every memory access we need to perform computations, in
the order of ten to fifteen instructions for locating the exact
bit from the memory and fetch/update that particular bit.
The fact that memory operations are very frequent in 86
programming model, compounds the problem. To eliminate
this problem, we use 2 bits as taint values as proposed in
earlier work [31]. The main advantage being word operations
in the original program are converted to byte operations as
opposed to the complex bit making and shifting operations.

We also experiment with allocation of a taint-value of one
word for every word of original memory for the purpose of
implementing the bug location via tracking. Note that this
is required in order to track the PC values for bug location.
Obviously we need to pay a price of 100% memory overhead.
But with the advent of 64 bit architectures, this additional
virtual memory requirement may not be a huge problem.
Moreover, since multicores have a separate L1 cache, the
cache effects of the additional memory requirement may be
mitigated. As our experiments later show, we find this is
the case for the SPEC integer benchmarks.

3. USING DIFT FOR BUG LOCATION

In this section, we discuss how the DIFT infrastructure is
effectively used to locate the bug that caused the vulnerabil-
ity in the first place. The general idea is to flow additional
information during tracking, so that at the time of detection
of the attack, we have useful information that can ultimately
lead to the location of bug. The first step in any attack is the

b. Store

Memory

Load | jmp %eax)
(Tainted data) Attack

a. Read i/]

Figure 5: Control Data Attack

corruption of memory with attacker crafted values. This is
accomplished using vulnerabilities like buffer overflow, for-
mat string or integer overflow etc. The goal of this work is
to exactly pin-point the statement in the user program that
causes this memory corruption. This can be very useful in
debugging and in several cases, this directly corresponds to
the root cause of the bug. To accomplish this, intuitively,
the following needs to be performed. Whenever there is a
write to a memory location, we first need to keep track of
the source code statement that causes the write. Then we

need to be able to track this information as it is used in com-
putations. Clearly, the pattern is very similar to operations
involved in DIFT itself and thus the DIFT infrastructure
can be used effectively for this purpose.

The steps of a control data attack are shown in Fig. 5.
The two common ways through which data is written to
the memory are either by calling the read/receive system
call or by executing a store instruction. Let us first con-
sider the read/receive system call, which is executed due to
the use of input statements in the original code. Insecure
statements like gets can cause a buffer overflow thereby cor-
rupting memory. Ideally, we want to identify this statement
when the attack is finally detected. To accomplish this, we
incorporate the following minor change to DIFT. Instead of
initializing the taint-value with a boolean high value, when
there is a read, we update it with the PC of the original
statement in the program that caused the read. Without
any other changes to DIFT, at the time of the attack, the
taint-value of the jump target will correspond to this original
PC. (and hence the faulty statement in the program).

Memory corruption can also take place due to a store in-
struction. For example, memory corruption due to use of
insecure statements like strepy and % n format string vul-
nerability are all caused finally by store instructions that
overwrite memory locations with tainted data. Note that
the store instruction is not the cause of tainted data — it
is still the user input which is the cause. We just want to
remember the identity of store instruction, just in case it is
part of a buggy statement (like strcpy) that is used by an at-
tacker to cause memory corruption. To handle this case, we
alter DIFT in the following manner. For every store instruc-
tions of the form store reg, addr, we check the taint-value
of reg; if it is indeed tainted, we update the taint-value of
addr with PCjsiore, so that we have a means of remembering
this store instruction. Here, we are making an inherent as-
sumption that the store that causes the memory corruption
is the final store to it, before the attack is detected. This is
almost always true, as control data is used as soon as it is
loaded into the CPU.

4. EXPERIMENTAL EVALUATION

As we already mentioned we used the StarDBT dynamic
binary translation infrastructure [1] to generate the required
code for performing tracking and communication. We im-
plemented the hardware queue part in the Simics full sys-
tem simulator [12]. All the experiments using the hardware
queue were performed in this simulator. The executables
targeted the IA32 architecture. The target machine is a
32 bit dual core machine with a shared 4 way L2 cache of
512KB size and a hit latency of 10 cycles and separate 2 way
L1 caches of size 16KB each with a hit latency of a cycle.
The memory latency was assumed to be 150 cycles. The
default queue size was assumed to be 512bytes with a com-
munication latency of 10 cycles. Our assumption of queue
latency is comparable with with prior work [16, 18] which
used latencies ranging from 1 cycles to 10 cycles. Also, in
our sensitivity analysis we study the effect of increased queue
latencies.

We conducted experiments with several goals in mind.
First and foremost, we wanted to study the execution time
overhead of performing DIFT in multicores. Our baseline for
this experiment is prior work with the most efficient imple-
mentation that is comparable [17]. As our technique hinges

on efficient communication between the cores, we also mea-
sured the communication bandwidth required for performing
tracking and whether the proposed optimizations are able to
reduce it. Here, we also evaluate the overhead of a shared
memory based communication. Then we evaluated the over-
head of enforcing both fail safety and relaxed fail safety. At
the same time we want to make sure our approach does not
produce false negatives /positives when tested with attack
programs. Finally, we study the efficacy of our proposed
debugging technique with real attacks.

4.1 Execution Overhead with h/w Queue

1

=
S

=)
S
L

=y
S
L

Per centage Over head.
= [=2)
= =

Normalized Execution Time
O FP N WA IO N0 OWOo
o
=

gL LIE

QO & & $ o4 & o QR &K

LRSI &g S ARSI G F DS
FIE e TF Q@&" %(\\0 PP &S ﬂé‘“ & o;\@
Figure 6: Execution Time Overhead and Break up
of Overheads

We implemented a dedicated hardware queue in Simics, a
full system simulator with ISA support for enqueuing and
dequeuing from the queue, with configurable size and la-
tency of the queue. We initially set the size of the queue to
be 512 bytes and set the latency to be 10 cycles. The base-
line for comparison is the LIFT technique. As we can see
from Fig. 6, the dedicated hardware queue is able to greatly
lower the overhead of DIFT from 4.6x to 48% overhead.

The second column shows the break up of the overhead.
A significant part of the overhead is due to the use of a dy-
namic binary translator. But this is a cost we have to pay
for transparent and secure implementation of DIFT. The
other major cause of overhead is due the cache effects due
to sharing of L2 cache by the main and the helper threads.
This cost is greatest for a memory intensive application like
mcf but generally pretty low. The final two overheads are
due to the hardware queue themselves. The first overhead
is because of the stalling of the main thread whenever the
queue becomes full. As we see from the results, this over-
head is very low confirming the fact that the helper thread
is able to keep up with main thread. This is not surpris-
ing as the DIFT operations are computationally similar to
the main threads operations. Finally, there is the overhead
of executing the extra enqueue and dequeue instructions,
which were modeled to have one cycle latency. (Note that
this is different from the queue latency).

4.2 Sensitivity Analysis

The extra taint values used for tracking could potentially
pollute the L2 cache since the L2 cache is a shared resource
in a CMP. We especially want to determine the effect of this
cache pollution in the debugging scenario where we allo-
cate a word of taint value for each original word in memory.
The results of cache sensitivity are presented in Fig. 7. The
first bar (512) refers to the normalized execution time of the
default configuration of 512 KB cache size. The second bar

(512:100) refers to the same cache size but an allocation pol-
icy of a word of taint value for each word in memory. The
third bar refers to the overhead of tracking with a 256KB
cache size. Note that this overhead is normalized to the
original application overhead with identical cache size. The
last bar refers the 128KB cache size. As we can see, there
is a very nominal degradation in performance as the cache
size is decreases. Surprisingly even under the 100% taint al-
location policy the degradation is only around 10% to 20%.
Thus the overhead of bug location using DIFT infrastructure
is also nominal.

25
° 0512 1.6 01024
£ m512:100% £ 14 Dot
Fooldmse | o 0128
5 s 512 f
3151 g
g g
x Woog
3 ! 7&3 0.6
g)
L :
£ 05 5 04
= z
2 0.2
0 0
NI S N S s ORI Y i &
EARMRS c,@\\ § 40(& Q‘D@@ "3& SR S o‘{;&& ey Qq’@m

Figure 7: Sensitivity on L2 Cache Size and Queue
Size

We conducted similar experiments by varying the queue
size. We tried smaller queue sizes of 128 bytes and 256 bytes
and also tried a larger queue size of 1024 bytes. Again we
see almost a linear variation in the execution times and the
variations are nominal.

We also conducted experiments by varying the queue la-
tency to values to greater values namely 20 cycles and 30
cycles. The detailed results of this experiment are not pre-
sented because we could not observe a perceptible change
in execution times as we varied the latency. This indicates
that there is a constant lag between the leading and trail-
ing threads, mainly because the trailing thread is able to
keep up with leading thread. In some sense, this vindicates
our approach of offloading tracking in another core. This
invariance to the queue latency makes it possible for us to
use the light weight queues proposed in [18] instead of a di-
rect hardware based structure. It is worth noting that the
above light weight scheme still uses ISA support in the form
of enqueue and dequeue instructions. As we shall see in the
next section, this ISA support is crucial for our performance,
without which we might have to execute a lot of instructions
to perform the enqueues and dequeues.

4.3 Communication Bandwidth and s/w Queue
Overhead

The communication bandwidth required by our technique
is an important parameter which potentially could affect
the hardware complexity of the hardware queue. As we al-
ready covered in detail, the main thread should communi-
cate memory addresses and branch outcomes to the helper
thread, to enable it to performing DIFT. We measure the
average bandwidth required for performing this communica-
tion. The unoptimized refers to the communication required
for the baseline implementation. The average bandwidth, as
we can see from Fig. 8 required is pretty high on the order of
3.1 bytes/cycle. OPT1 refers to our optimization in which
we maintain values of the stack pointer and base pointer in

7
‘ T
@ E 69 .
4] =
g 5
g &
£ =g
g f:
E 3 21
§ £,
o o
z
0 T T
.) LR ISP d I &S
SRS g F s FF IS SFES
SIS &Ao(@ & %&b SIS TEE s

Figure 8: Communication Bandwidth and Software
Queue Overhead

the helper thread to obviate their communication. As ex-
pected this optimization is very effective reducing the band-
width requirement by 50% across all benchmarks. OPT2a
refers to the optimization where we communicate only the
first 8 bits of the EFLAG register and communicate the over-
flow flag separately. This is able to reduce the bandwidth
by a further 20% and finally OPT 2b, the EFLAGS opti-
mization which is a hardware based optimization reduces it
further by 7%. Although the final bandwidth is reduced sig-
nificantly through the above optimizations the bandwidth is
still around 1.5 bytes per cycle. This means we are required
to perform communication very frequently. Perform this
communication through software translates into executing
lots of additional instructions for maintaining the circular
queue. To estimate the optimal performance of a software
queue, we conducted a simple experiment so as to simulate
the effects of the increases instruction count. In other words
we ran just the single thread simulating the extra instruc-
tions required for the software queue. Even in this case,
we observe from Fig. 8 that the overhead is 4.4x, though
marginally lesser than overhead of LIFT [17], is still ex-
tremely high for practical deployment. This basically serves
as additional motivation for the requirement of ISA support
in the form of enqueue and dequeue instructions for handling
the bandwidth needs of DIFT.

4.4 Fail-Safety

180
3@ B0]
S

= 1407 W10

v 120 Oori

3 100

(]

= 80

‘g 60 -

g 40

& 204 B
0 e
p . § N & & &S S
EARS & S Q&@ &

Figure 9: Overhead of enforcing Fail Safety

In this experiment, we evaluate the impact of the enforc-
ing fail safety where the leading thread is forced to verify
whether all indirect jumps are benign. Clearly this would
cause additional; overhead since the leading thread has to
necessarily stall. For this experiment we varied the commu-
nication latencies from the default value of 10 cycles through
20 cycles and 30 cycles. As we see from Fig. 9, the fail safety
condition causes an extra overhead of about 10% for the de-
fault case, which is tolerable. We observe an almost linear

increase in the performance with increase in the communi-
cation latency. This is in contrast to no observed variation
when fail safety was not considered. This is because with the
fail safety requirement the main thread is forced to wait for
acknowledgment and this wait is proportional to the com-
munication latency.

We also evaluated the impact of enforcing relaxed fail
safety in which the leading thread is made to synchronize
with the trailing threads before executing a system call.
For the SPEC benchmarks, we found that the main thread
needed to synchronize with the helper thread very infre-
quently (less than 1000 times per billions of instructions ex-
ecuted). This resulted in practically no additional overhead
for enforcing relaxed fail safety. We repeated the experi-
ment, now using shared memory for synchronization before
system calls and found that this still resulted in negligible
overhead (Performance overheads very small and hence not
shown). It is worth noting that relaxed fail safety could
thus be enforced with just unidirectional queuing support
between processors.

45 Attack Detection

In this experiment, we wanted to test if our implementa-
tion is able to correctly identify attacks without false nega-
tives or positives. A false negative is caused when the tech-
nique fails to detect a security attack and a false positive is
caused when the technique falsely raises an exception when
there is no attack. For these experiments we used a version
of multicore DIFT which provides protection against control
data attacks.

Table 1: Attack Detection False Negatives/Positives

| Program | Vulnerabiltites [Exception Raised |
return address
Attack Benchmarks [30] | function pointer Yes
long jump buffer
ncompress4.2.4 return address Yes
Polymorph0.4 return address Yes
SPEC None No

We tested our multicore DIFT with the 18 attack bench-
marks [30]. These synthetic benchmarks exercise various
types of buffer overflows including return address, long jump
buffer and function pointer, and have been commonly used
in prior art to test the efficacy of attack detection systems.
As shown in Table 1, our multicore DIFT implementation
was able to correctly raise an exception for each of the at-
tacks. We also tested our system with two real world vul-
nerabilities namely ncompress4.2.4 and polymorph0.4 [32],
each of which have buffer overflow (return address) vulner-
abilities. We first performed a remote code injection attack
in the latter two programs using malicious inputs that take
advantage of the vulnerabilities. We then performed the at-
tack with the multicore DIFT running in the background.
Here also, multicore DIFT was able to correctly identify the
attack. To test for false positives, we ran the SPEC integer
benchmarks, which do not have any known vulnerabilities.
For this experiment we considered file inputs to be tainted
and found that there were no exceptions reported. This is
the expected behavior, since the SPEC integer programs do
not have any known vulnerabilities.

4.6 DIFT Assisted Bug Location

In this experiment, we wanted to test the efficacy of our
DIFT infrastructure for locating the bugs that caused the
security vulnerability. We applied our technique to two real
world programs namely stack buffer overflow vulnerabilities
in ncompress4.2.4 and polymorph0.4.. In ncompress4.2.4,

File: compress42.c
void comprexx (char **fileptr)
{
int fdin;
int fdout;
char tempname[MAXPATHLEN];

/I buffer overflow happens here
strepy (tempname, *fileptr);

11 attack detected here
/[taint PC value points to strcpy
return;

Figure 10: Bug location for ncompress program

a stack based buffer overflow is caused when a file name of
length greater than 1024 characters is used as input. The
actual vulnerability is illustrated in Fig. 10 which shows the
comprezz function that contains the vulnerability. The vul-
nerability arises due to the improper use of the strepy func-
tion. Since the local variable, tempname is allocated only
1024 characters (the value of MAXPATHLEN is 1024), this
local variable is overflowed for inputs greater than 1024. We
carefully craft such an input so as to corrupt the return ad-
dress of the comprexz function.

We then executed ncompress using the above malicious
input, with our multicore DIFT with bug location support
turned on. Recall that with bug location support turned
on, we track PC values instead of 1 bit taint values. As
expected, our technique is able to detect the attack when
the control returns from comprezz. Furthermore, we found
that the propagated taint PC value for the return address
corresponds to the PC of the strcpy instruction inside the
comprexz function. Thus, our technique is able to success-
fully identify the buffer overflow causing statement, which
in this case, was the statement that is the root cause of the
security vulnerability. We obtain similar results for poly-
morph0.4, which also has a similar vulnerability.

5. RELATED WORK

There has been a lot of prior work done in the area of
information flow. They can be coarsely categorized into two
parts: information flow tracking for confidentiality [22, 13,
8, 9] and integrity [21, 15, 17, 31]. The former tracks infor-
mation flow, mostly statically, to make sure that a program
does not inadvertently transfer information from secure vari-
able into insecure variables. Fenton’s Data Mark Machine[9]
was one of the earliest systems that used information flow
tracking to enforce security policies. RIFLE [22] is a more
recent proposal that implemented information flow tracking
policies in hardware. The latter techniques can be thought
as a dual, and makes uses of information flow methods to
ensure that untrusted external inputs do not exert a mali-
cious influence on program’s execution. While in the former
information flow due to control flow is taken seriously, al-
most all the techniques in the latter neglect flows due to

control flow. This is based on the fact that it is considered
hard to construct attacks based on control flows. Our work
falls into the latter category.

At the same time, there have been a lot of other ap-
proaches to detect software attacks. These techniques can
be coarsely divided into static or language based techniques
[14] and dynamic techniques. The problem with the former
is that programs must be rewritten in a new language or
recompiled. Dynamic techniques can be further subdivided
into those that require compilation and those that do not.
Compiler patches such as Stackguard [4] and Stackshield [23]
have been developed to prevent stack based vulnerabilities.
Among the software techniques, Address randomization [2]
make it probabilistically unlikely to launch a successful at-
tack. But they need source code modifications and their
overhead is not tested for SPEC benchmarks. One impor-
tant problem with compiler patches are that they are not
applicable to library and legacy code.

The other dynamic techniques can be divided into hard-
ware and software approaches. We already discussed some of
the disadvantages of hardware based information flow track-
ing schemes [21, 6]. They mainly require specialized hard-
ware support in the form of changes to processor pipeline
and memory management. The dynamic software techniques
typically employ a dynamic translator. Dynamic Taint-
checking [15] has very high overhead in the order of 40 times
for SPEC integer programs. LIFT [17] reduces it consider-
ably and brings it to a more tolerable level of four times exe-
cution time overhead for Spec programs. This overhead may
still prove to be a hindrance for widespread use of informa-
tion flow tracking. With the advent of multicores, this work
which utilizes multicores effectively to reduce this overhead,
is an important step in that direction. One significant limi-
tation of the current dynamic techniques, including the cur-
rent work, is that they are not applicable for multithreaded
programs. However the current work is the first software
technique, as far as we know, that is capable of providing
protection against non-control data attacks and is able to
perform instruction taint checking.

The use of multicores for security has been proposed in
INDRA [20], where a dedicated core in the CMP is chan-
neled for the purpose of detection and recovery from soft-
ware attacks. For detecting a software attack, their work
uses a technique called introspection, which in turn is based
on Program Shepherding [10]. Program Shepherding, while
being effective against a variety of code injection attacks
with a low overhead may not be effective against attacks
that dont inject any new code but target existing code such
as return into libc attacks [15]. As their technique mainly
checks the code origin (ensures that code that has been mod-
ified is not executed), it may not be applicable for several
programs where it is legal to have an executable stack [21].

There has been prior work [15] that uses DIFT for recov-
ering against a software attack. While the main purpose of
the above work, is to generate signatures for the attack, we
are more concerned with the problem of identifying the bug
in the code that caused the vulnerability in the first place.
There has been a lot of recent work [11, 32, 19] that deals
with hardware support for debugging. BugNet [11] mainly
deals with hardware support for efficient tracing, so that the
program can be replayed and debugging can be performed.
AccMon [32] provides architectural support for the detection
of memory errors. It uses spurious dependencies effectively

to detect memory errors. Our technique does not consider
the problem of debugging as a whole, it only considers bugs
which could lead to a security attack. It is just a starting
point to show that information tracking infrastructure can
be an efficient mechanism for debugging also. We feel there
is a lot of scope of utilizing the hardware support utilized
in BugNet and AccMon along with information tracking in-
frastructure for efficiently performing debugging.

6. CONCLUSIONS

In this paper, we describe the design and implementation
of an information flow tracking infrastructure using multi-
cores. Since we use a dynamic binary translator, it is a trans-
parent mechanism that is applicable to legacy code and pro-
prietary code. Since the multicore design necessitates fine
grained communication, we use an inter-core communication
queue with added ISA support for sending and receiving. We
evaluated our system for correctness and performance and
found that the overhead of implementing DIFT in a multi-
core is only 48%. Since our performance overhead is tolerant
to inter-core communication latency, light-weight solutions
for enabling inter-core communication can be used. Finally,
we describe a novel application of the DIFT infrastructure
where it is used to assist in the debugging process.

7. REFERENCES

[1] E.Borin, C.Wang, Y.Wu and G.Araujo, “Software-Based
Transparent and Comprehensive Control-Flow Error
Detection,” CGO 2006

[2] S. Bhatkar, R. Sekar and D. C. DuVarney “Efficient
Techniques for Comprehensive Protection from Memory Error
Exploits,” 14th USENIX Security Symposium, Baltimore
MD, August 2005.

[3] D. Bruening “Efficient, Transparent and Comprehensive
Runtime Code Manipulation,” Ph.D. Thesis, MIT,
September 2004

[4] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S.
Beattie, A. Grier, P. Wagle, Q. Zhang, and H. Hinton.
“Stack- Guard: Automatic adaptive detection and prevention
of buffer-overflow attacks.”, In Proc. 7th USENIX Security
Symposium, pages 6378, San Antonio, Texas, Jan. 1998.

[5] S. Chen, J. Xu, E. Sezer, P. Gauriar, and R. Iyer,
“Non-control-data attacks are realistic threats”, In
Proceedings of the Useniz Security Symposium, pages
177-192, 2005.

[6] M.Dalton, H.Kannan, C.Kozyrakis, “Raksha: A Flexible
Information Flow Architecture for Software Security,”
Proceedings of the 34th Intl. Symposium on Computer
Architecture (ISCA), San Diego, CA, June 2007

[7] M.Dalton, H.Kannan Hari, and C.Kozyrakis,
“Deconstructing Hardware Architectures for Security” The
5th Annual Workshop on Duplicating, Deconstructing, and
Debunking (WDDD) at ISCA, June 2006.

[8] D. E. Denning. “A lattice model of secure information flow”.
Communications of the ACM, 19(5):236243, 1976.

[9] J.S.Fenton, “Memoryless Subsystems”, The Computer
Journal 17,2 (May 1974), 143-147.

[10] V.Kiriansky, D.Bruening, and S.P.Amarasinghe, “Secure
Execution via Program Shepherding”, Proceedings of the 11th
USENIX Security Symposium, pp. 191-206, August 2002.

[11] S. Narayanasamy, G. Pokam, B. Calder, “BugNet:
Recording Application-Level Execution for Deterministic
Replay Debugging”, 32nd International Symposium on
Computer Architecture, June 2005

[12] P.Magnusson et al. “Simics: A Full System Simulation
Platform,” Computer, vol. 35, no. 2, pp. 50-58, Feb., 2002.

[13] A. C. Myers. “JFLow: Practical mostly-static information
flow control”. Principles of Programming languages, 1999.

[14] G. C. Necula, S. McPeak, and W. Weimer. “CCured:
Type-safe retrofitting of legacy code.” In Proceedings of the
29th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 2002.

[15] J.Newsome, and D.Song, “Dynamic Taint Analysis for
Automatic Detection”, Analysis, and Signature Generation of
Exploits on Commodity Software” Proceedings of the 12th
ISOC Symposium on Network and Distributed System
Security, pp. 221-237, February 2005.

[16] G. Ottoni, R. Rangan, A. Stoler, and D. I. August,

” Automatic thread extraction with decoupled software
pipelining” Proceedings of the 38th IEEE/ACM International
Symposium on Microarchitecture, November 2005.

[17] F.Qin, C.Wang, Z.Li, H.Kim, Y.Zhou, and Y.Wu, “LIFT:
A Low-Overhead Practical Information Flow Tracking System
for Detecting Security Attacks” Proceedings of the 38th
Igé%rnational Symposium on Microarchitecture, November

[18] R. Rangan, N. Vachharajani, A. Stoler, G. Ottoni, D.
August, and G. Cai “Support for High-Frequency Streaming
in CMPs”, Proceedings of the 39th IEEE/ACM International
Symposium on Microarchitecture, (MICRO), December 2006.

[19] R.Shetty, M.Kharbutli, Y.Solihin, and M.Prvulovic,
“HeapMon: A Helper-Thread Approach to Programmable,
Automatic, and Low-Overhead Memory Bug Detection”, IBM
Journal of Research and Development, Vol. 50, No. 2/3, 2006.

[20] W.Shi, H.Lee, L.Falk and M.Ghosh, “An Integrated
Framework for Dependable and Revivable Architecture Using
Multicore Processors”, Proceedings of the 33rd International
Symposium on Computer Architecture, June 2006.

[21] G.E.Suh, J.W.Lee, D.Zhang and S.Devadas, “Secure
program execution via dynamic information flow tracking”,
Proceedings of the 11th International Conference on
Architectural Support For Programming Languages and
Operating Systems, pp. 85-96, October 2004.

[22] N.Vachharajani, M.J.Bridges, J.Chang, R.Rangan,
G.Ottoni, J.A.Blome, G.A.Reis, M.Vachharajani and
D.I.August, “RIFLE: An Architectural Framework for
User-Centric Information-Flow Security”, Proceedings of the
87th International Symposium on Microarchitecture,
November 2004.

[23] Vendicator. “Stackshield: A stack smashing technique
protection tool for linux”.
hitp://www. angelfire.com/sk/stackshield/.

[24] J.Xu, and N.Nakka, “Defeating Memory Corruption
Attacks via Pointer Taintedness Detection”, Proceedings of
the 2005 international Conference on Dependable Systems
and Networks, (Dsn’05) - Volume 00, June 28 - July 01, 2005.

[25] A. Smirnov and T. Chiueh, “DIRA: Automatic Detection,
Identification, and Repair of Control-Hijacking Attack”, 12th
Annual Network and Distributed System Security
Symposium, 2005.

[26] M. B. Taylor, W. Lee, S. P. Amarasinghe, and A. Agarwal,
“Scalar operand networks”, IEEE Transactions on Parallel
and Distributed Systems, February 2005.

[27) D.Wagner and D. Dean, “Intrusion detection via static
analysis”, IEEE Symp. on Sec. and Priv., pages 156169, 2001.

[28] C.Wang, H.S.Kim, Y.Wu, “Compiler-Managed
Software-based Redundant Multi-Threading for Transient
Fault Detection”, Accepted for publication at CGO 2007.

[29] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting
intrusions using system calls: Alternative data models”, IEEE
Symp. on Sec. and Priv., 1999.

[30] J. Wilander and M. Kamkar. “A comparison of publicly
available tools for dynamic buffer overflow prevention.”, In
Proceedings of the 10th Annual Network and Distributed
System Security Symposium, 2003.

[31] W. Xu, S. Bhatkar, and R. Sekar, “Taint-Enhanced Policy
Enforcement: A Practical Approach to Defeat a Wide Range
of Attacks,” 15th USENIX Security Symposium, Vancouver,
BC, Canada, August 2006.

[32] P.Zhou, W. Liu, L. Fei, S. Lu, F. Qin, Y. Zhou, S. Midkiff,
and J. Torrellas, “AccMon: Automatically Detecting
Memory-Related Bugs via Program Counter-Based
Invariants”, Proceedings of the 37th Annual IEEE/ACM
international Symposium on Microarchitecture, Portland,
Oregon, December 04 - 08, 2004.

[33] CERT/CC Statistics 1988-2006, http://www.cert.org/stats/

[34] National Vulnerability Database Statistics,
hitp://nvd.nist.gov/statistics.cfm

