
Identifying the Root Causes of Memory Bugs Using
Corrupted Memory Location Suppression

Dennis Jeffrey
Univ. of California, Riverside

jeffreyd@cs.ucr.edu

Neelam Gupta
guptajneelam@gmail.com

Rajiv Gupta
Univ. of California, Riverside

gupta@cs.ucr.edu

Abstract

We present a general approach for automatically isolat-
ing the root causes of memory-related bugs in software. Our
approach is based on the observation that most memory
bugs involve uses of corrupted memory locations. By itera-
tively suppressing (nullifying) the effects of these corrupted
memory locations during program execution, our approach
gradually isolates the root cause of a memory bug. Our ap-
proach can work for common memory bugs such as buffer
overflows, uninitialized reads, and double frees. However,
our approach is particularly effective in finding root causes
for memory bugs in which memory corruption propagates
during execution until an observable failure such as a pro-
gram crash occurs.

1. Introduction

Software programming is an error-prone activity. Mis-
takes and misunderstandings can translate to program
source code in the form of errors called bugs. These bugs
can affect the behavior of programs in potentially disastrous
ways. Due to the prevalence of software systems presently
in use – including those used in critical, life-or-death do-
mains – the task of locating and removing software bugs is
a necessity. This task is called Software Debugging. Debug-
ging involves a series of steps that can be slow, tedious, and
difficult. These steps include: locating bugs in the source
code; understanding the nature of the bugs; and modifying
the source code to eliminate the bugs without introducing
any new bugs. The task of debugging can be especially
challenging in large and complex software systems. Tech-
niques to help automate the debugging process can assist
developers in more efficiently eliminating bugs, resulting in
more robust and reliable software.

Memory-related bugs, such as buffer overflows and
uninitialized reads, are an important class of software bugs
that are particularly tricky to handle. This is because the
corrupted memory locations resulting from these bugs can

sometimes make it difficult to link an observed program
failure – such as a crash or corrupted value – to the root
cause. The effect of one corrupted memory location can
propagate (spread) to other memory locations during pro-
gram execution. By the time an observable program fail-
ure occurs due to some corrupted memory location, many
other memory locations could have already become cor-
rupted. Thus, the root cause of the bug may be far removed
from the point at which the bug becomes apparent. Also,
different kinds of memory-related problems can influence
each other even though they may all be due to a single root
cause. For instance, a program bug could lead to a buffer
overflow that unexpectedly corrupts the value of some vari-
able, yet does not immediately exhibit any obvious failure.
Later on, the corrupted variable may be used to read from an
uninitialized memory location containing an arbitrary value,
and that arbitrary value could then be passed to the function
“free” which may finally result in a program crash. In a
complex case such as this, it may take considerable effort to
sort through all of the memory-related problems to isolate
the root cause. Tools and techniques for debugging that do
not work well for memory bugs, or that specialize in detect-
ing only certain kinds of memory bugs, may therefore have
limited effectiveness in general at isolating the root causes
of memory bugs.

In this paper, we present a generalized approach that fo-
cuses on isolating the root causes of memory bugs. Our
approach views a memory-related bug as an instruction that
corrupts some memory location, which can in turn corrupt
other memory locations as the effect propagates arbitrar-
ily far during execution until an observable program fail-
ure occurs. The key assumption motivating our approach
is the following: if a program execution reveals a mem-
ory bug and the effect of the root cause of that bug is sup-
pressed (nullified) during program execution, then all re-
sulting memory corruption will be avoided and no memory-
related failure will occur. Based on this assumption, we
propose an approach that searches for the root cause of a
memory bug by repeatedly executing a program on the same
failing input; on each re-execution, we suppress the direct

cause of an observed memory failure and all of its direct
and indirect effects in the execution. This will ensure that
the same program failure will be avoided. If the suppression
only captures some of the memory corruption but not all of
it, then it is assumed that the remaining corrupted memory
will lead to a later failure. We therefore repeat this process
until finally a particular memory location suppression re-
sults in no observed memory-related failures during execu-
tion. The statement associated with this latest suppression
is then highly likely to be the root cause of the memory cor-
ruption. Essentially, our approach isolates the root cause of
a memory bug by gradually suppressing all of the instruc-
tions involving corrupted memory locations during execu-
tion. Our approach is applicable to any kind of memory-
related errors that involve corrupted memory locations.

The rest of this paper is organized as follows. The next
section describes our general approach for isolating the root
causes of memory bugs. Section 3 describes some empirical
results obtained by using our implemented approach on a
set of benchmark programs. Related work is described in
Section 4, and our conclusions and plan for future work are
summarized in Section 5.

2. Isolating root causes of memory bugs

2.1. Motivation

There are a variety of types of memory-related bugs that
can be present in software. Buffer overflows occur when
memory locations are accessed that are outside of buffer
boundaries. This can cause unexpected corruption of pro-
gram data and can potentially result in a program crash.
Stack smashing occurs when the return address for a called
function on the call stack is overwritten. When this occurs,
the program may crash upon the function return when pro-
gram control tries to jump to an illegal address. In more
dangerous situations, the value used to corrupt the function
return address may be carefully chosen by an attacker so
that program control passes to malicious code. Uninitial-
ized reads occur when a memory location is loaded prior to
any store of a proper value into that location. This may lead
to memory corruption due to an unexpected, arbitrary value
being loaded. Double frees occur when a call to function
“free” is made on a particular location that has already been
previously freed. This situation represents a mishandling
of allocated memory, and leads to an abort of the executing
program within the call to “free.”

Memory bugs often manifest themselves in the form of
symptoms that are observed during program execution, such
as a program crash or a corrupted (unexpected) value. How-
ever, in general the root cause of a bug can be far removed
from the points at which problems are observed during ex-
ecution. This can make it difficult to isolate the root cause

when the symptom of a memory bug is observed.
We observe that there is one common trait that memory

bugs generally share: they involve corrupted memory loca-
tions. When the root cause of a memory bug is traversed
during program execution, this leads to a corrupted mem-
ory location whose effects can propagate arbitrarily far into
the execution, corrupting other memory locations along the
way. Eventually, one of these corrupted locations may re-
sult in a failure such as a program crash. Intuitively, we can
expect that if these corrupted memory locations were ac-
tually not corrupted during execution of the program, then
the program would have proceeded normally without expe-
riencing any memory-related failures. This intuition moti-
vates the key idea of our approach: to suppress (nullify) the
effects of the instructions exercised during a program ex-
ecution that we know involve corrupted memory locations.
The assumption is that if one memory location becomes cor-
rupted during execution of a program, and the effects of this
corruption propagate to subsequent statements that lead to
further memory corruption, then identifying and suppress-
ing the initial corruption and its effects will avoid all subse-
quent memory corruptions. This will prevent any memory-
related failures from occurring during program execution.
The point at which the initial corruption occurred is then
highly likely to be the root cause of the memory bug.

Example. We constructed the example in Fig. 1 to show
how a single memory bug can lead to memory corruption
that propagates through multiple statements before a pro-
gram crash occurs. This example involves a piece of code
in which there exists an error at line 4. This type of error
can happen due to a copy of lines 1 and 2 and a subsequent
paste into lines 3 and 4. In this case, the developer forgets to
change variable x into variable y at line 4. The effect of this
error is that pointers p2 and q2 mistakenly refer to the same
memory location. As a result, when a value is stored in lo-
cation ∗q2 at line 8, then this clobbers the value originally
stored there at line 6. Any subsequent uses of the value at
location ∗p2/∗q2 then make use of a corrupted memory lo-
cation, which can lead to further corruption at other memory
locations (lines 9, 10, and 11). Essentially, the initial bug at
line 4 can lead to corruption that propagates through multi-
ple locations until eventually an observable failure such as
a program crash occurs (potentially at lines 12, 13, and 15).

Suppose the code in Fig. 1 is exercised on some input.
This is represented pictorially in Fig. 2 (A). Initially, pointer
q2 is corrupted at line 4 since it points to the incorrect mem-
ory location. That memory location is then corrupted at line
8, when the value previously stored at that location is mis-
takenly overwritten. Then, the definition at location a (line
9) is corrupted since it uses the corrupted value from lo-
cation ∗p2/∗q2. The definition for location b (line 10) is
similarly corrupted. This further results in corruption of lo-

Let x and y be pointers to two malloc’ed memory
regions, each able to hold two integers.

Let intArray be a heap array of integers.
Let structArray be a heap array of pointers to

structs with a field f .

1: int * p1 = &x[1];
2: int * p2 = &x[0];
3: int * q1 = &y[1];
4: int * q2 = &x[0]; // copy-paste error:

// should be &y[0]
5: *p1 = readInt();
6: *p2 = readInt(); // gets clobbered at line 8
7: *q1 = readInt();
8: *q2 = readInt(); // clobbers line 6 definition
9: int a = *p1 + *p2; // uses corrupted *p2/*q2
10: int b = *q1 + *q2; // uses corrupted *p2/*q2
11: int c = a + b + 1; // uses corrupted a and b
12: intArray[c] = 0; // buffer overflow
13: structArray[*p2]−>f = 0;

// NULL dereference
14: free(p2);
15: free(q2); // double free

Figure 1. Example code.

cation c (line 11). Now, suppose that the program crashes
at line 12 due to corrupted array index c accessing an ille-
gal address outside the bounds of array intArray. This is
a buffer overflow error. When the buffer overflow error is
observed at line 12, identifying the root cause at line 4 is not
obvious since in practice we do not know all of the memory
locations that are corrupted. If we only know that the ar-
ray index c at line 12 is overflowing buffer intArray, then
there are potentially many possibilities for the root cause.
For instance, line 12 itself can be in error. Or, if we as-
sume that variable c has a corrupted (incorrect) value, the
problem can be at any earlier statement that influenced the
value of variable c at line 12 (such as statements 9, 10, or
11). Or, it is possible that variable c has the correct value
but buffer intArray is actually the wrong size. In general,
our example shows that it may be very difficult to identify
the root causes of memory-related bugs, if the bugs lead to
corruption that propagates through many statements before
a failure is observed.

As a first step to begin searching for the root cause
of the program crash at line 12, we re-execute the pro-
gram while suppressing the memory corruption we cur-
rently know about that directly causes this crash. This is
depicted in Fig. 2 (B). To do this, we notice at line 12 that
the value at location c is used. Since location c (assumed
to be corrupted) was last defined at line 11, then we re-
execute the program on the same input, but during execu-

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

3rd suppression run

(D)

p1:

p2:

q1:

1

2

3

5

6

7

8

9

10

11

12

13

14

2nd suppression run

(C)

p1:

CRASH!

q1:

4q2:

p1:

p2:

q1:

p1:

p2:

q1:

15

p2:

1

2

3

5

6

7

11

12

1st suppression run

(B)

p1:

CRASH!

q1:

4q2:

p1:

p2:

q1:

13

p2:

8

9

10

p2, q2:

a:

b:

1

2

3

5

6

7

Original run

(A)

p1:

CRASH!

q1:

4q2:

p1:

p2:

q1:

12

p2:

8

9

10

p2, q2:

a:

b:

11c:

(D)(C)(B)(A)

Action:

suppress def of

“c” at stmt 11

and its effects in

the next run

Action:

suppress def of

“ p2” / “ q2” at

stmt 8 and its

effects in the

next run

Action:

suppress def of

“q2” at stmt 4

and its effects in

the next run

Action:

none – root

cause has been

found

Figure 2. The original run and 3 suppression
runs for the code in Fig. 1. Solid circles are
executed statements, and dotted circles are
suppressed statements. Statements defining
a memory location are annotated with infor-
mation showing whether the location is cor-
rupt (x) or not corrupt (check).

tion we suppress the definition at line 11 by not performing
the store to location c. Accordingly, execution of any sub-
sequent statements directly or indirectly influenced by this
definition of c is also suppressed. In our example, only lines
11 and 12 are suppressed when the program is re-executed.
However, suppose that now the program gets to line 13 and
another crash occurs. This is possible since corrupted loca-
tion ∗p2 is used as an index into an array of struct pointers.
In our example, suppose that structArray[*p2] is actually
NULL. Then line 13 will result in a segmentation fault since
NULL is dereferenced. The root cause of this fault is still
line 4. However, it is yet again not obvious to identify the
root cause because the corrupted location ∗p2 used at line
13 does not appear to be related to the actual erroneous line
4. To recognize the root cause, one would need to realize
the fact that lines 2 and 4 assign the same memory location
to both p2 and q2.

We re-execute the program again to suppress the newly-
revealed memory corruption directly involved in the crash
at line 13. This is depicted in Fig. 2 (C). This time, we
suppress the last definition of location ∗p2 – which is at line
8 – plus the other statements that are directly or indirectly
influenced by the definition at line 8. Note that line 8 is the
appropriate last definition, since pointer q2 actually refers to
the same location as p2. In our example, during execution

input:
Program P and test case t causing a

memory-related failure.
output:

Stmt identified as root cause for the memory failure.
algorithm SearchForMemoryFailureRootCause
begin
1: Sdef := “undefined”;
2: Ssupp := {};
3: while an observable memory failure f occurs during

execution of P using t do
4: Suse := the stmt instance at which f occurs;
5: L := the used mem location causing f at Suse;
6: Sdef := the stmt instance defining L prior to its

use at Suse;
7: re-execute P using t while suppressing

(1) stmt instances in Ssupp;
(2) the def of L at Sdef ; and
(3) any subsequent stmt instances directly or
indirectly influenced by the def of L at Sdef ;

8: augment set Ssupp with the additional stmts
suppressed at line 7 above;

endwhile
9: report the stmt associated with the latest Sdef ;
end SearchForMemoryFailureRootCause

Figure 3. General approach to identify the
root cause of a memory-related bug.

we therefore suppress lines 8, 9, 10, 11, 12, and 13. Note
that lines 14 and 15 are not suppressed since the corrupted
location defined at line 8 (which happens to be pointed to by
both p2 and q2) does not actually influence the locations of
the pointers p2 and q2 themselves used at lines 14 and 15.
With these new suppressions, however, the program crashes
yet again. The problem here is that at line 15, the program
aborts due to a double free of the same memory location.

Finally, we re-execute the program a third time as shown
in Fig. 2 (D). Here, we further suppress the definition of
pointer q2 at line 4, plus its subsequent use at line 15. In
total, we therefore execute only lines 1, 2, 3, 5, 6, 7, and 14.
In this case, the program proceeds normally (without any
crash) since the uses of all corrupted memory locations have
been suppressed during execution. In other words, only the
statements involving non-corrupted memory locations are
exercised. As a result, we conclude that the most-recently
suppressed statement – line 4 – must be the root cause of all
the memory corruption that led to the program crashes.

2.2. General approach

Our general approach for identifying the root causes of
memory-related bugs is described in Fig. 3. The input to
our approach is a program and an associated test case from

Original execution:

1st re-execution:

2nd re-execution:

Def(L1)

Def(X)
Use(L1) Use(X) Use(L1)

Failure!

Def(L2) Use(L2)

suppressed suppressed

Failure!

suppressed suppressed

No Failure

Root
Cause

Figure 4. Example showing an abstract view
of running our approach using a total of three
executions.

which an observable memory failure occurs. Our approach
then iteratively searches for and reports the root cause of the
failure. The main loop comprising our approach is shown
in lines 3 – 8 in Fig. 3. This loop iterates when an ob-
served memory failure occurs. On each iteration, the cor-
rupted memory location and associated instruction instance
causing the program failure are identified (lines 4 and 5).
Then, the statement instance that last defined this corrupted
memory location is identified (line 6). The key step of our
approach is then performed (line 7). In this step, the pro-
gram is re-executed on the same input, but the effects of
the statement instances directly or indirectly involving the
corrupted definition identified at line 6, are suppressed. Ad-
ditionally, any statement instances suppressed in prior loop
iterations (if any) are also suppressed in this step. The effect
is as if the suppressed statement instances are not executed.
Finally, we update a set that is maintained to keep track of
which statement instances have been suppressed thus far
(line 8). If another failure is observed in the suppressed
program execution, then the loop iterates again. On each
loop iteration, at least one additional statement instance is
suppressed during program execution. Thus, the loop will
eventually terminate when the program execution produces
no observed memory failures (in the extreme case, an empty
program execution will not produce any memory-related
failures). The statement associated with the last identified
corrupted memory location definition is then reported as the
likely root cause for the memory bug (line 9).

Fig. 4 is an example showing three program executions
involved when running our approach to isolate the root
cause of a memory bug. In the original execution (top hori-
zontal line), a memory-related failure occurs due to access-
ing corrupted locationL1. This location is last defined at the
point labeled “Def(L1),” which also directly influences the
point labeled “Def(X),Use(L1)” and indirectly influences
the point labeled “Use(X).” Thus, when the program is re-
executed (middle horizontal line), the effects at all four of
these program points are suppressed. However, another fail-
ure is observed due to accessing another corrupted location
L2, which is last defined at the point labeled “Def(L2).” On

the next re-execution (bottom horizontal line), the effects
of these two program points are then suppressed in addi-
tion to the other four suppressions performed in the previ-
ous re-execution. This leads to the result that no failures are
observed. The statement associated with the most recent
corrupted memory definition that is suppressed, “Def(L2),”
is then identified as the root cause of the memory bug.

Our approach for identifying the root causes of memory
bugs assumes that during program execution, suppressing
the root cause of a memory bug – as well as all of its di-
rect and indirect effects – will prevent the memory-related
failure from occurring as it will avoid the propagation of
the memory corruption leading to the failure. Assumedly,
if the root cause of a bug is not suppressed but only a
portion of the total corrupted memory is suppressed, then
the non-suppressed portions of corrupted memory would
lead to other subsequent memory failures. Our approach
takes advantage of these subsequent memory failures to
gradually isolate the root cause. We believe this approach
is promising because in general, root causes can propa-
gate corrupted memory in a distributed fashion – with each
corrupted memory location potentially influencing multiple
other memory locations – rather than in a straight-line fash-
ion. Thus, even though suppressing some corruption may
avoid one failure, there is a chance that any remaining cor-
ruption would still lead to subsequent failures.

One observation to make about our approach is that it
is general and can be used to isolate root causes for a va-
riety of memory bugs. This is because it views memory
bugs in terms of accesses to corrupted memory locations
during program execution, and this trait is shared by most
memory bugs. One notable exception to the generality of
our approach, however, is memory leak bugs. For mem-
ory leaks, memory locations may actually not be corrupted;
the only problem may be that certain memory locations are
not freed when they should be. As a result, our abstraction
of viewing memory bugs as accesses to corrupted memory
locations does not directly apply to memory leaks.

Another observation about our approach is that it can be
effective even when multiple independent memory bugs ex-
ist in a program. This is because when our approach is per-
formed, it will eventually identify the root cause for some
memory bug in the program (even though suppressions may
be performed for multiple corrupted locations associated
with different distinct bugs). Once this first identified root
cause is corrected, our approach can then be run again if
necessary to identify other remaining root causes.

2.3. Applications by example

Our approach can be effective for isolating the root
causes of different kinds of memory bugs that involve cor-
rupted memory locations. To show this, we now describe a

...
167: # define MAX PATH LEN 1024

...
233: char ifname[MAX PATH LEN];

...
1009: strcpy(ifname, iname); // potential overflow

...
1719: free(env), env = NULL; // potential crash

Figure 5. Buffer overflow bug in gzip-1.2.4.

few examples of real memory bugs found in software, and
illustrate how our approach can be used to identify the root
causes of the bugs.

Buffer Overflow Example. Program gzip-1.2.4
contains a known bug in which a global buffer overflow can
occur if a specified file name is unexpectedly too long. The
overflow occurs at a call to function “strcpy” at line 1009 in
file gzip.c. However, in one execution instance, an observ-
able failure is not observed until the program crashes later
on in a call to “free” at line 1719 in gzip.c. The relevant
code is illustrated in Fig. 5.

In this code at line 1009, source buffer iname is a
string containing an inputted file name. In the event that
this file name is >= 1024 characters, then the destination
buffer ifname will be overflowed, thereby corrupting cer-
tain global memory locations. Suppose the faulty program
is executed and the specified file name iname is actually
1107 characters long. When line 1719 is exercised, an at-
tempt is made to free global variable env. However, this
results in a program crash due to a corrupted value in env
resulting from the overflow at line 1009.

When running our approach to isolate the root cause of
the program crash, it is observed that the accessed memory
address env that causes the crash, is last defined within the
call to “strcpy” at line 1009 due to the buffer overflow at
that point. The program is then re-executed on the same
input while suppressing this particular definition into loca-
tion env within the “strcpy” function call, plus any direct or
indirect uses of that corrupted location (including the call
to “free” at line 1719). This prevents the original program
crash from occurring. However, in general a buffer over-
flow may corrupt many memory locations. In this particular
example, a 1107-character string (not including the trailing
NULL) is written into a 1024-character buffer, and so there
are nearly 100 memory locations that could have been cor-
rupted. Any of these other corrupted memory locations may
lead to other program crashes which we would further sup-
press during subsequent program re-executions. This pro-
cess may continue until eventually the entire buffer over-
flow is suppressed, at which point no failure related to the
overflow will occur. At that point, the root cause at line

...
974: if (dir name != NULL)
975: free (dir name); // potential double free

...
983: if (dir len > 0 && dir[dir len - 1] == ’/’)
985: {

...
989: return;
990: }

...
992: dir name = xmalloc (

strlen (server temp dir) + dir len + 40);

Figure 6. Double free bug in cvs-1.11.4.

1009 would be reported. In this case, the fix would be to
either check the size of string iname prior to performing
the “strcpy” at line 1009, or else to use a safer string copy
function such as “strncpy.”

Double Free Example. Program cvs-1.11.4 con-
tains a known bug in which a double free can occur. The
relevant code from file server.c is shown in Fig. 6. At lines
974 – 975 in this code, a pointer dir name is freed if it is
non-NULL. The pointer is then subsequently re-assigned to
point to a new allocated memory region at line 992. How-
ever, in-between these two program points, there is a con-
ditional check at lines 983 – 990 which can return from the
current function. In the event that pointer dir name is freed
at line 975 and then the condition at line 983 subsequently
evaluates to true, the function will return before dir name
is re-assigned to another memory chunk. In other words,
dir name will still contain the old memory address that
was previously freed. If the given function is invoked again,
the condition at line 974 will be true since dir name still
contains the non-NULL, previously-freed address. This will
lead to a double-free error at line 975, in which case the pro-
gram will abort (crash).

This particular bug is interesting because the root
cause is that of a missing statement. Here, the problem
is that dir name may contain a stale value which could
be subsequently used, when in fact that stale value should
be “cleared” by being set to NULL. Essentially, at the
point of the double-free at line 975, the pointer dir name
is corrupted because it contains stale data. When our
approach is run using an execution of this program that
exhibits the double free, it is observed that the corrupted
data in location dir name used at line 975 is last defined in
the call to “xmalloc” at line 992. Upon re-execution, when
this assignment to dir name is suppressed along with all
direct and indirect uses of the pointer (including the uses in
the call to “free” at line 975), then the double-free failure
is avoided. As a result, the root cause identified by our
approach is the definition of the pointer in question at line
992. Although the actual root cause is a missing statement,

our approach identifies the closest match from among the
statements actually present. This is because the statement
identified by our approach is an assignment statement to
pointer dir name, which is the same kind of statement
that is missing from the program and is the root cause of
the bug. The assigned value to pointer dir name at line
992 actually becomes corrupted at the point at which the
value becomes stale and the program fails to overwrite that
stale value. Given line 992 as identified by our approach
and information about the observed failure that originally
occurred at line 975, a developer can then figure out the
missing statement that will correct the bug.

As demonstrated by the above examples, our general ap-
proach can be effective at isolating root causes for different
kinds of memory bugs. Due to space limitations, we can
only discuss the above few examples in detail. However,
we have also successfully applied our approach to a variety
of other memory bugs identified in real software. The next
section provides implementation details and then summa-
rizes the results of our experience in applying our approach
to a set of benchmark programs.

3. Experimental study

3.1. Implementation

Our approach is implemented based on the high-level
system design shown in Fig. 7. Our implementation con-
sists of three main components: the Valgrind Core; the Sup-
pression Execution Tool; and the Memory Bug Root Cause
Isolator.

Memory Bug

Root Cause
Isolator

Suppression

Execution

Tool

Valgrind

Core

Figure 7. High-level system design for the
implementation of our approach. The bi-
directional arrows represent interactions be-
tween the system components.

Valgrind Core. The Valgrind infrastructure [18] pro-
vides a synthetic CPU in software and allows for dynamic
binary instrumentation of an executable program. Valgrind
includes a set of tools that perform certain profiling and de-
bugging tasks, but new tools can be added to the infrastruc-
ture to perform customized instrumentation tasks.

Suppression Execution Tool. We created the Suppres-
sion Execution Tool as a new tool for Valgrind. The tool
takes as input an executable program with a test case caus-
ing a memory failure, and a set of (possibly empty) instruc-
tion instances whose effects should be suppressed during

execution (called “suppression points”). The tool then per-
forms the execution while simultaneously carrying out two
tasks required by our approach: tracing and suppression.
The tracing is required to see which memory locations are
accessed and when. The suppression is required to nullify
the effects of the instructions during execution that involve
corrupted memory, when searching for the root cause of a
memory bug.

For tracing during a given execution, the tool records a
trace of the memory locations accessed (loaded from and
stored to) during the execution. To do this, the tool in-
struments each non-suppressed load and store instruction to
record the current program counter, its associated instance
number, the type of instruction (i.e., load or store), and the
address of the accessed memory location. This informa-
tion makes it possible to identify which accessed memory
location directly caused a memory failure, and which in-
struction instance last defined that memory location. The
identified instruction instance can then be specified as one
of the suppression points for the next execution (i.e., for the
next invocation of the Suppression Execution Tool).

For suppression during a given execution, the Suppres-
sion Execution Tool performs “suppression information
flow tracking” at all instructions, as well as “actual suppres-
sion” at the appropriate load and store instructions. To do
the suppression information flow tracking, we associate ev-
ery memory location and register with a shadow location
that contains information about whether or not the associ-
ated location needs to have its effects suppressed. Initially,
all shadow locations are marked as “not suppressed.” At an
instruction, if at least one of the used memory locations or
registers is marked as “suppressed,” then any defined mem-
ory locations or registers are also marked as “suppressed.”
On the other hand, if none of the used locations are marked
as suppressed, then any defined locations are marked as “not
suppressed.” Tracking this information during execution
ensures that any instructions which directly or indirectly use
a suppressed location can have their effects suppressed as
well. Memory locations are initially marked as suppressed
when they are used in an instruction instance that is speci-
fied as a suppression point.

Besides tracking suppression information, “actual sup-
pression” is performed at memory load and store instruc-
tions. At a store instruction instance that uses a suppressed
location, the effect of the store is suppressed by not writing
to the destination location. The effect is as if the store never
occurred and the destination location retains whatever value
was originally contained there. Similarly, for a load instruc-
tion instance that uses a suppressed location, the load is sup-
pressed by not reading from the source location. The effect
is as if the load never occurred and the destination regis-
ter being loaded into retains whatever arbitrary data was
originally contained there. This arbitrary data will never

be used since anything affected by it will be suppressed as
well. Note that under this approach, any program output
affected by known corrupted/suppressed memory will also
be suppressed (avoided). However, this is fine because the
feedback for our algorithm is any observable failure involv-
ing previously-unknown corrupted memory, such as a new
program crash or a corrupted output value that was previ-
ously not known to be corrupted.

There are a few special considerations to make when
suppressing. If a corrupted location is used in a conditional
check, then we must decide how the control-flow of the ex-
ecution should be affected when we “suppress” it. In our
current implementation, we chose the simple solution of
merely bypassing the entire conditional structure involving
the corrupted location. For example, we would bypass an
entire “if/else” structure or an entire loop if the associated
condition used a corrupted location. This simple solution
seemed to work well in the benchmark programs we stud-
ied. An alternative solution may be to force the program
to take a particular conditional outcome, perhaps based on
profiling data taken from other test executions. Special con-
sideration must also be made for corruption of the return
address of a function call. This must be specially handled
because we cannot avoid the function return (it would likely
not be helpful to simply terminate execution), and we can-
not simply jump to an arbitrary address upon function re-
turn. Instead, we use profiling data from the current and
other test executions to cause the function to return to a
known, valid address. Finally, corrupted input to system
calls must also be handled. To do this, we simply refrain
from making system calls when they involve at least one
corrupted input value. The same approach can be used to
handle library calls if desired, although we have not cur-
rently implemented this.

Memory Bug Root Cause Isolator. This is the main
driver module for our approach that manages the suppres-
sion re-executions and identifies the suppression points.
Given a faulty program and test case causing a memory-
related failure in the program, this module first invokes the
Suppression Execution Tool using an empty set of suppres-
sion points to record memory access tracing information
from the test case execution. From this, a first suppression
point is identified which is passed as input to a second in-
vocation of the Suppression Execution Tool. If another pro-
gram failure occurs, then another suppression point is iden-
tified and another re-execution is performed. Eventually, no
memory-related failure will occur and the latest identified
suppression point is reported as the likely root cause.

3.2. Programs, results, and discussion

We selected a variety of real programs with known mem-
ory bugs to study the effectiveness of our approach in iso-

lating the root causes. These subject programs are taken
from [15, 16, 25] and are described in Table 1. We selected
only single-threaded programs for our analysis, and chose
programs representing a variety of memory bugs that in-
volve corrupted memory locations. We did not select any
programs with memory leak bugs since this type of mem-
ory bug is not currently handled by our approach. Lines of
code were measured using the SLOCCount tool [10].

Program Lines of Bug Type Root Cause
Name Code Location
gzip-1.2.4 6304 GO gzip.c, line 1009
ncompress-4.2.4 1436 SS compress42.c, line 886
polymorph-0.4.0 1061 GO/SS polymorph.c, line 118
tar-1.13.25 28366 ND incremen.c, line 180
bc-1.06 10704 HO storage.c, line 176
tidy-34132 35883 ND parser.c, line 856
man-1.5h1 10750 GO man.c, line 979
cvs-1.11.4 104086 DF near server.c, line 992

Table 1. Overview of benchmark programs
containing real memory bugs. In the “Bug
Type” column, the following abbreviations
are used: global overflow (GO), heap overflow
(HO), stack smash (SS), NULL dereference (ND),
and double free (DF).

In our experiments, we considered an “observable fail-
ure” of a program execution to be a program crash. The
results of running our approach on the subject programs
are given in Table 2. For each subject program, this table
shows: the total number of program executions required, in-
cluding the initial execution with no suppression (“# Exec.
Req.”); the source code statement identified by our ap-
proach as the likely root cause (“Identified Statement”); and
the dependence-edge distance from the identified statement
to the actual root cause (“Dep. Dist. to Root Cause”), which
is 0 when the identified statement is precisely the root cause.

Besides programs gzip and cvs that were previously
discussed in detail in Section 2.3, programs ncompress,
polymorph, tar, and tidy all result in our approach
precisely identifying the root cause of the memory bugs.

Programs ncompress and polymorph involve
unchecked calls to “strcpy” that can overflow stack and
global memory buffers, respectively. For ncompress, a
segmentation fault does not occur until a later call to func-
tion “perror.” The memory location directly involved in
the crash turns out to be last defined in the faulty “str-
cpy.” When this definition and its subsequent effects are
suppressed during execution, program control reaches the
return point of the current function call and then crashes
again. This is due to the stack overflow corrupting the return
address of the function call. When this corruption is sup-
pressed and the function is able to return to a known valid
address, then one more segmentation fault occurs upon
function return due to another corrupted stack location re-

Program # Exec. Identified Dep. Dist. to
Req. Statement Root Cause

gzip-1.2.4 2 gzip.c, line 1009 0
ncompress-4.2.4 4 compress42.c, line 886 0
polymorph-0.4.0 3 polymorph.c, line 118 0
tar-1.13.25 2 incremen.c, line 180 0
bc-1.06 2 storage.c, line 177 1
tidy-34132 2 parser.c, line 856 0
man-1.5h1 3 manfile.c, line 243 2
cvs-1.11.4 2 server.c, line 992 0

Table 2. Experimental results when searching
for root causes using our approach.

sulting from the same faulty “strcpy.” On the next suppres-
sion execution, no memory failures are observed. The faulty
“strcpy” is then successfully identified by our approach as
the root cause. For polymorph, a program crash occurs
within the faulty “strcpy” itself, due to an attempted write
to an unmapped memory region. When this store is sup-
pressed, program control continues and eventually crashes
again with a segmentation fault in a call to “strlen.” The
accessed memory location causing this crash is again last
defined in the faulty “strcpy.” Upon further suppression, the
execution is able to complete without any memory failures,
and the faulty “strcpy” is identified as the root cause.

For tar and tidy, segmentation faults occur due to
NULL pointer dereferences. In both cases, the last defi-
nitions of the accessed memory locations containing NULL
are identified as suppression points. This causes both exe-
cutions to run to completion without exhibiting any failures.
The statements causing the pointers to be NULL are then
identified as the root causes of the bugs.

For program bc, our approach identifies a statement that
is one dependence edge away from the root cause of the bug.
In this case, a heap buffer overflow occurs due to an incor-
rect variable used in a loop condition. This causes corrup-
tion of the loop control variable that is used as an index into
the overflowed buffer. However, a failure is not observed
until the program crashes later on in a call to “malloc.” The
suppression point identified in this case happens to be as-
sociated with the statement at which the buffer overflow
occurs. Upon suppression, the program executes without
exhibiting any memory failures. As a result, the statement
associated with the buffer overflow is identified as the likely
root cause. However, this is actually one dependence edge
away from the actual root cause, which is the surrounding
loop condition that is ultimately responsible for the buffer
overflow. The reason our approach is not able to precisely
identify the root cause here is because the remaining corrup-
tion remains “hidden,” since the program does not exhibit
any failures even while this corruption remains.

For program man, an erroneous condition within a loop
can prevent control from breaking out of the loop when nec-
essary, resulting in a global buffer overflow. Unlike for most
of the other subject programs, memory corruption actually

propagates quite a bit during execution before a failure is
observed in this case. A segmentation fault first occurs in a
location far removed from the original root cause, through
multiple dependences and in a completely separate source
file. The corresponding identified suppression point is also
in the separate file. Upon suppression, program control pro-
ceeds until another segmentation fault occurs due to another
corrupted memory location that is still present. Another
suppression point is identified, and finally execution is able
to terminate without exhibiting any failures. However, in
this case the identified root cause is actually two depen-
dence edges away from the actual root cause, since addi-
tional corrupted memory locations remained even though
no memory failure was observed during the latest suppres-
sion execution. Given the high degree of memory corrup-
tion propagation that occurs in this program, however, our
approach is still quite effective because it identifies a state-
ment only two dependence edges away from the root cause.

As seen in Table 2, each benchmark program required
between 2 and 4 total executions to isolate the root cause.
Although instrumentation when executing within Valgrind
causes the program to slow down considerably as compared
to executing normally outside of Valgrind, each program
execution within Valgrind in our experimental study never
took more than a few seconds. As a result, our approach
was able to isolate the root cause of the memory bug for
each of our benchmark programs in time on the order of
seconds. We believe these timing results to be reasonable
given a debugging context.

Overall, the results of our experimental study suggest
that our approach can be quite effective for precisely iden-
tifying the root causes of a variety of memory bugs. This is
true in relatively simple cases when a failure may be directly
linked to the root cause via a dependence edge, and also in
more complex cases where significant memory corruption
propagation may occur prior to an observed program fail-
ure.

4. Related work

Fault Detection. Detecting the presence of bugs in soft-
ware is a topic that has been extensively studied. Eclat [19]
infers an operational model of correct program behavior and
identifies inputs that violate this model. ESC/Java [6] iden-
tifies certain programming errors at compile-time using an
annotation language. Check ’n’ Crash [4] derives error con-
ditions statically and then attempts to generate test cases
to dynamically verify the existence of errors. Daikon [5]
and DIDUCE [8] automatically extract program invariants
and monitor for violations during execution. AccMon [25]
also uses an invariant-based approach that identifies pro-
gram instructions that typically access different memory lo-
cations. Other bug-finding approaches are designed for spe-

cific kinds of bugs. CP-Miner [14] searches for copy-paste
bugs in large-scale software systems. EXPLODE [22] iden-
tifies data integrity bugs in storage systems. Other tools
such as Valgrind [18], Purify [9], and CCured [17] identify
particular kinds of memory-related bugs.

Fault Localization. As illustrated by the approach pro-
posed in this paper, the task of locating bugs in program
source code is performed once a bug has been exposed.
Fault localization is the process of automatically narrowing
or guiding the search for program bugs to help developers
identify erroneous statements more quickly. The following
techniques have been proposed to help isolate bugs in pro-
grams. Static Slicing [21] identifies a subset of program
statements that may influence the value of a variable at a
particular program location. The related concepts of Dy-
namic Slicing [1, 13, 24] and Relevant Slicing [2, 7] have
also been studied. In general, slicing identifies all state-
ments that influence or are influenced by a variable at a pro-
gram point. This set of statements can potentially represent
many chains of dependences in a program. Thus, slicing
may identify a relatively large set of statements, only one of
which may be a root cause (and slicing alone provides no
way to distinguish between the identified statements). Our
approach, on the other hand, seeks to pinpoint precisely the
single root cause of a memory bug. Our approach can effec-
tively identify the appropriate dependence chain containing
the root cause, and then isolate the point along that chain at
which the root cause is located.

Predicate Switching [23] attempts to isolate erroneous
code by identifying “critical” predicates whose outcomes
can be altered during a failing run to cause it to become
successful. However, critical predicates may not be found
in all cases. Moreover, once a critical predicate is found,
then it may still be difficult to pinpoint the root cause of a
bug based upon the critical predicate. A critical predicate
may be used to identify a subset of statements that might be
likely to contain the root cause, but like for slicing, this set
of statements may not uniquely identify the root cause. Our
approach does not rely on searching for critical predicates,
and seeks to identify a single statement that is highly likely
to be a root cause.

In Delta Debugging [3], failure-inducing input is identi-
fied that allows for the computation of cause-effect chains
for failures, which can in turn be linked to faulty code. This
involves substituting state (the values of variables) between
passing and failing runs. A related Value Replacement idea
was proposed [11] that attempts to replace the values used
at certain statement instances with alternate sets of values;
if any value replacement causes a failing run to become
successful, then the statement associated with the value re-
placement may be erroneous. The Nearest Neighbor ap-
proach [20] compares the spectra for two similar executions
(one successful and one failing) to identify the most sus-

picious parts of a program. Tarantula [12] is a statistical
approach that ranks program statements according to sus-
piciousness values determined by how many failing versus
passing tests exercise each statement. In general, these ap-
proaches analyze the information from multiple test cases
to try to prioritize the program statements according to their
likelihood of being faulty. Our approach, in contrast, uses
only a single failing test case and tries to isolate the root
cause of a memory bug by repeatedly suppressing more and
more instruction instances in the test case execution until
the failure is avoided.

5. Conclusions and future work

We have presented a general approach for automatically
identifying the root causes of memory-related bugs by
suppressing the effects of corrupted memory locations
during a faulty program execution. Our approach is
designed to work for any memory errors that involve
memory corruption, particularly those in which memory
corruption propagates arbitrarily far during execution until
an observable memory-related failure occurs. This includes
– but is not limited to – common memory errors such
as buffer overflows, stack smashes, uninitialized reads,
and double frees. We presented an empirical study in
which our approach was able to isolate the root causes of
memory bugs found in several real software systems. In
the future, we hope to enhance our approach to handle
other kinds of memory bugs such as memory leaks. We
also hope to conduct a more extensive empirical study to
better understand the benefits of our approach on software
systems containing memory bugs.

Acknowledgements. We would like to thank the anony-
mous reviewers for their valuable feedback. This research
is supported by NSF grants CNS-0751961, CNS-0751949,
CNS-0810906, and CCF-0753470 to UC Riverside.

References

[1] H. Agrawal and J. R. Horgan. Dynamic program slicing.
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, pages 246–256, June 1990.

[2] H. Agrawal, J. R. Horgan, E. W. Krauser, and S. London.
Incremental regression testing. International Conference on
Software Maintenance, pages 348–357, September 1993.

[3] H. Cleve and A. Zeller. Locating causes of program failures.
Intl. Conf. on Software Eng., pages 342–351, May 2005.

[4] C. Csallner and Y. Smaragdakis. Check ’n’ Crash: Combin-
ing static checking and testing. International Conference on
Software Engineering, pages 422–431, May 2005.

[5] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to sup-
port program evolution. IEEE Transactions on Software En-
gineering, 27(2):99–123, February 2001.

[6] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B.
Saxe, and R. Stata. Extended static checking for java. ACM
SIGPLAN Conference on Programming Language Design
and Implementation, pages 234–245, June 2002.

[7] T. Gyimothy, A. Beszedes, and I. Forgacs. An efficient rele-
vant slicing method for debugging. Foundations of Software
Engineering, pages 303–321, September 1999.

[8] S. Hangal and M. S. Lam. Tracking down software bugs us-
ing automatic anomaly detection. International Conference
on Software Engineering, pages 291–301, May 2002.

[9] R. Hastings and B. Joyce. Purify: Fast detection of memory
leaks and access errors. Proceedings of the USENIX Winter
Technical Conference, pages 125–136, 1992.

[10] http://www.dwheeler.com/sloccount.
[11] D. Jeffrey, N. Gupta, and R. Gupta. Fault localization using

value replacement. International Symposium on Software
Testing and Analysis, July 2008.

[12] J. A. Jones and M. J. Harrold. Empirical evaluation of the
tarantula automatic fault-localization technique. Intl. Conf.
on Automated Soft. Eng., pages 273–282, November 2005.

[13] B. Korel and J. Laski. Dynamic program slicing. Informa-
tion Processing Letters, 29(3):155–163, October 1988.

[14] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: Find-
ing copy-paste and related bugs in large-scale software code.
IEEE Trans. on Soft. Eng., 32(3):176–192, March 2006.

[15] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou. Bug-
Bench: Benchmarks for evaluating bug detection tools.
Workshop on the Evaluation of Software Defect Detection
Tools (co-located with PLDI), June 2005.

[16] S. Narayanasamy, G. Pokam, and B. Calder. BugNet: Con-
tinuously recording program execution for deterministic re-
play debugging. International Symposium on Computer Ar-
chitecture, pages 284–295, June 2005.

[17] G. C. Necula, S. McPeak, and W. Weimer. CCured: type-
safe retrofitting of legacy code. Symposium on Principles of
Programming Languages, pages 128–139, January 2002.

[18] N. Nethercote and J. Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. Conf. on
Prog. Lang. Design and Impl., pages 89–100, June 2007.

[19] C. Pacheco and M. D. Ernst. Eclat: Automatic generation
and classification of test inputs. Object-Oriented Program-
ming, 19th European Conf., pages 504–527, July 2005.

[20] M. Renieris and S. Reiss. Fault localization with nearest
neighbor queries. International Conference on Automated
Software Engineering, pages 30–39, October 2003.

[21] M. Weiser. Program slicing. IEEE Transactions on Software
Engineering, 10(4):352–357, July 1984.

[22] J. Yang, C. Sar, and D. R. Engler. EXPLODE: A lightweight,
general system for finding serious storage system errors. Op-
erating Sys. Design and Impl., pages 131–146, Nov. 2006.

[23] X. Zhang, N. Gupta, and R. Gupta. Locating faults through
automated predicate switching. International Conference on
Software Engineering, pages 272–281, May 2006.

[24] X. Zhang, N. Gupta, and R. Gupta. Pruning dynamic slices
with confidence. SIGPLAN Conf. on Programming Lan-
guage Design and Implementation, pages 169–180, 2006.

[25] P. Zhou, W. Liu, L. Fei, S. Lu, F. Qin, Y. Zhou, S. P. Mid-
kiff, and J. Torrellas. AccMon: Automatically detecting
memory-related bugs via program counter-based invariants.
Intl. Symp. on Microarchitecture, pg. 269–280, Dec. 2004.

