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ABSTRACT
Recent generations of GPUs and their corresponding APIs
provide means for sharing compute resources among multi-
ple applications with greater efficiency than ever. This ad-
vance has enabled the GPUs to act as shared computation
resources in multi-user environments, like supercomputers
and cloud computing. Recent research has focused on maxi-
mizing the utilization of GPU computing resources by simul-
taneously executing multiple GPU applications (i.e., concur-
rent kernels) via temporal or spatial partitioning. However,
they have not considered maximizing the utilization of the
PCI-e bus which is equally important as applications spend
a considerable amount of time on data transfers.

In this paper, we present a complete execution framework,
CuMAS, to enable ‘data-transfer aware’ sharing of GPUs
across multiple CUDA applications. We develop a novel
host-side CUDA task scheduler and a corresponding run-
time, to capture multiple CUDA calls and re-order them
for improved overall system utilization. Different from the
preceding studies, CuMAS scheduler treats PCI-e up-link &
down-link buses and the GPU itself as separate resources.
It schedules corresponding phases of CUDA applications so
that the total resource utilization is maximized. We demon-
strate that the data-transfer aware nature of CuMAS frame-
work improves the throughput of simultaneously executed
CUDA applications by up to 44% when run on NVIDIA
K40c GPU using applications from CUDA SDK and Ro-
dinia benchmark suite.

1. INTRODUCTION
General purpose GPU (GP-GPU) computing has had a re-

markable impact on the evolution of scientific applications
over the past decade. Various SW and HW improvements
like unified memory access in CUDA 6 and dynamic par-
allelism in Kepler architecture [17] have enabled develop-
ers to utilize GPUs for a wide range of application classes
with moderate programming effort. The introduction of con-
current kernel execution [27] and simultaneous work queues
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(i.e., hyper-Q) has enabled GPUs to be shared across mul-
tiple applications; hence acting more like general purpose
processors rather than dedicated accelerators. Therefore,
researchers have started focusing more on efficient sharing
of GPUs across different applications.

The research on executing multiple kernels simultaneously
on GPUs spans both SW and HW based approaches. Early
works [21, 3] have focused on efficient execution of kernels
by identifying best matches based on their compute and
memory intensiveness to prevent any resource conflict that
may occur during runtime. Some spatial multitasking solu-
tions [1, 19] have been proposed to improve SM utilization
by executing multiple small kernels. Sajjapongse et al. [23]
developed a SW runtime that employs a multi-GPU ker-
nel scheduler to decrease the device idle times in the pres-
ence of unsatisfied inter-kernel dependencies. More recent
works [20, 26] have improved the GPU Thread Block sched-
uler by supporting various pre-emption policies in HW to
enable a CPU-like multi process execution.

While the attempts to improve concurrent kernel perfor-
mance in various scenarios has been beneficial, they do not
address execution phases other than kernel call(s); in par-
ticular, CPU↔GPU data transfer(s) phases also account for
considerable portion of the execution time. Figure 1 shows
the execution time breakdown of applications among three
phases: device-to-host (D2H) memory transfers, host-to-
device(H2D) memory transfers, and kernel execution (KE).
This data corresponds to stand alone executions of 12 Ro-
dinia benchmark suite [6] applications on NVIDIA K40C
GPU. The breakdown shows that data transfers occupy a
considerable portion of a CUDA application’s lifetime.

Data transfer over the PCI-e bus is a major performance
bottleneck for GP-GPU computing. Although general I/O
improvement techniques like zero copy DMA transfer and
WC buffers have been adopted by some GPUs [4], architec-
ture and application specific software and hardware tech-
niques are also necessary to use them. Overlapping data
copy operations with kernel execution has been one of the
most popular software solutions to hide the transfer latency.
There have been some application-specific studies [25, 9];
however, only a few researchers were able to generalize their
techniques beyond a limited class of applications [15, 10].
These approaches either require significant programming ef-
fort involving adaptation of libraries and changes to the pro-
grams [3] or are capable of handling a very limited set of ap-
plications with accompanying HW modifications (e.g., [15]
allows only regular and linear data accesses).

On shared GPU systems, data transfers introduce an ad-



ditional challenge beyond the problem of computational re-
source sharing. Kernel executions and two-way memory
copy operations of the applications sharing the GPU should
be overlapped to maximize the utilization of both the PCI-e
bus and GPU. However, the high disparity between trans-
fer and execution time ratios of different GP-GPU applica-
tions, and the dynamically changing characteristics of scien-
tific workloads, makes the overlapping on shared GPU sys-
tems highly complex. The aforementioned concurrent kernel
execution related works simply disregard memory transfers.
They either assume that the data is already in the mem-
ory [1] or it is fetched on demand via device mapped/pinned
host memory [21].

The open problem addressed in this work is ‘how to sched-
ule multiple applications sharing the same GPU to improve
overall system throughput ’ via data-transfer/kernel-execution
overlapping while supporting a wide range of applications,
without requiring any code modifications. A notable study
in recognizing the importance of data-transfer in GPU shar-
ing is carried by Sengupta et al. [24]. The authors propose
a runtime framework, Strings, to auto-balance the load be-
tween multiple servers with GPUs and exploit automated
transfer/execution overlapping for each server/GPU. When-
ever applications request different type of GPU operations
(i.e., D2H, KE, or H2D) around the same time, Strings
scheduler tries to execute these calls concurrently on the
corresponding resources, if they are idle. Strings was shown
to improve the overall system throughput when compared
to the case where no overlapping exists. However, the suc-
cess of exploiting overlapping between three types of calls
depends on:
• Arrival order of same type of operations belonging to dif-

ferent applications
• Idleness of the corresponding resource (PCI-e uplink &

download and the GPU itself)
Currently, to the best of our knowledge, neither Strings [24]

nor the latest CUDA runtime API take the above two fac-
tors into account while scheduling different type of GPU
operations on a single shared device. To better understand
the impact of these limitations, let us consider an experi-
ment involving the shared execution of the subset of Rodinia
benchmarks introduced in Figure 1. Figure 2(a) shows the
execution where concurrent D2H, KE, and H2D calls are
overlapped based upon a random call issue order of CUDA
applications while Figure 2(b) shows how total execution

Figure 1: Execution time breakdown of 12 NVIDIA
SDK and Rodinia applications.

Figure 2: (a) On the top, an overlapping example
exploited on a subset of Rodinia applications using
a random arrival ordering; and (b) On the bottom, a
data transfer-aware re-ordering of the same subset.

time can be minimized by simply re-arranging the call ex-
ecution order of the CUDA applications. Thus, we can see
that by changing the execution order of different applica-
tions, much higher resource utilization and thus performance
can be achieved. If the call scheduler is made aware of the
utilization of each underlying resource as well as the execu-
tion time of the issued device calls, the re-ordering can be
performed to increase overlapping for higher resource uti-
lization.

In this paper, we present CuMAS, a data-transfer aware
CUDA call scheduling framework to efficiently overlap trans-
fer/execution phases of multiple applications on a shared
GPU. CuMAS captures CUDA API calls and re-schedules
them to minimize the total execution time. The theoreti-
cal roots of finding such an optimal execution sequence is
studied under ‘open-shop problems’ [5] and ‘multi-operation
sequencing models’[13]. In this work, we represent the GPU
multi-application scheduling as a ‘flow-shop problem’ by treat-
ing CUDA calls as jobs while uplink/downlink PCI-e chan-
nels and the GPU as machines that process the jobs. The
processing time of each job is dependent on the size of the
job (i.e., data to be transferred, thread blocks in a kernel)
and the processing speed of the resources. Multi-machine
flow-shop scheduling has been proven as NP-hard by Leung
et al.[14]; however, approximate solutions based on dynamic
programming [7] exist for more generalized versions of the
problem.

CuMAS run-time uses profiling and timing models to es-
timate durations for data transfers and kernel executions.
Our run-time dynamically attaches to existing programs and
it does not require any changes to the programs’ source
code. CuMAS operates on a queue of CUDA requests issued
by multiple applications each having arbitrary number of
data transfer (H2D and D2H) and kernel launch (KE) calls.
CuMAS ensures computation accuracy by preserving the ex-
ecution order of calls belonging to the same application while
improving the performance by re-ordering requests across



applications. CuMAS employs a novel CUDA call sched-
uler to find the optimal execution sequence of queued GPU
operations. The scheduling decision involves estimated ker-
nel execution and data transfer times for each application
and delays occurring across applications due to resource
waiting. The CuMAS scheduler utilizes a novel technique
called Re-Ordering Windows (ROW) to control the gran-
ularity of transfer-execution overlapping while limiting the
elapsed time between application’s initial request and the
actual execution of the CUDA call.

The key contributions of this paper are as follows:

• We propose CuMAS, a complete scheduling framework to
exploit automatic data transfer and kernel execution over-
lapping for multiple applications sharing the same GPU.
• We design a novel CUDA call scheduler to find an execu-

tion ordering of a given list of pending calls to minimize
the total execution time.
• We implement a run-time library that intercepts CUDA

calls from existing applications, estimates duration of calls
and re-issues them to improve overall system utilization.
• We support a wide range of applications including the

ones with irregular data structures and non-linear access
pattern, without requiring any additional programming
effort.
• We show that CuMAS framework improves the through-

put of multiple kernel executions by up to 44% when run
on NVIDIA K40c GPU using applications from CUDA
SDK and Rodinia benchmark suite.

The remainder of this paper is organized as follows. We
first give a background on CUDA and shared application
execution on GPUs in Section 2. Then we introduce the
main idea (request re-ordering) of our proposed framework
in Section 3. We focus on CuMAS scheduling algorithm in
Section 4 and give details about our runtime in Section 5.
We present evaluation of CuMAS in Section 6 and finish the
paper with related work and conclusion sections.

2. GPU SHARING IN CUDA
In this section we first provide an overview of mechanisms

used for sharing of NVIDIA GPUs across multiple CUDA
applications including time and space sharing for concurrent
kernel execution, CUDA streams, and Hyper-Q. We then
elaborate on the considerations to solve transfer/execution
overlapping problem.

Concurrent CUDA Kernel Execution: NVIDIA’s
Fermi architecture has enabled simultaneous execution of
kernels to better utilize SMs (Streaming Multiprocessors) in
a GPU. NVIDIA thread block (TB) scheduler allows con-
current kernel execution if not enough TBs remain from the
prior kernel to utilize all idle SMs. Further advanced time
and space sharing of SMs are possible via non-conventional
CUDA programming techniques [23].

CUDA Streams and Hyper-Q: CUDA API provides
streams to enable concurrent execution of multiple GPU ap-
plications. Streams are analogous to threads in conventional
CPU programming and they may represent different appli-
cations or different phases of the same CUDA application.
A command is created for each CUDA call and queued into
the stream specified in the call (the default 0 stream is used
if none is specified). Commands queued in the same stream
are serially executed whereas commands in different streams
may be executed in parallel if corresponding resources (e.g.,

Figure 3: Multi server GPU Sharing and per-server
CUDA call queues in a typical cloud computing en-
vironment.

PCI-e bus, SMs on the GPU) are available. CUDA Ker-
nel calls are asynchronous and memory transfers (i.e., cu-
daMemcpy() and cudaMemcpyAsync()) can be either syn-
chronous or asynchronous. Synchronization between asyn-
chronous CUDA calls is achieved via events.

Overlapping Kernel Execution and Data Trans-
fers: Tesla and Quadro family of NVIDIA GPUs employ
dual DMA copy engines [18] to enable simultaneous H2D
and D2H data transfers. An ideal multi-kernel execution
maximizes the use of both channels while keeping the GPU
always busy. In a shared environment, with pending transfer
and execution jobs, the scheduling order of jobs impacts sys-
tem utilization. Currently, CUDA API schedules transfers in
the order the calls are received from the applications (FIFO).
In a shared environment, the applications may issue trans-
fers at any time, hence appearing in a random order in the
CUDA call queue. However, this may lead to performance
degradation since the runtime is unaware of transfer times
and execution times. If these times can be estimated prior to
execution, a smarter scheduling decision can be made lead-
ing to improvements in utilization well beyond the default
FIFO scheme.

Efficient sharing of GPUs across multiple applications re-
quires each of the following issues to be handled carefully:
- Maximization of overall resource utilization: Individual

and cumulative idleness of the resources –including the 2-
way PCI-e links and the GPU itself– should be minimized.

- User transparent execution: The shared execution should
seamlessly take place without requiring any code modifi-
cations or interventions from the users of the environment.

- Support for various application classes: Data access, data
transfer, and execution patterns of an application should
not limit the efficiency of sharing.
To address the issues listed above, we propose CuMAS

(CUDA Multi-Application Scheduling), a host-side CUDA
call scheduling framework, to enable efficient sharing of GPUs
by multiple applications. CuMAS employs a scheduler and
an accompanying run-time to enable on-the-fly integration
to existing applications with no source modifications.

3. CUMAS: TASKS AND CALL ORDERING
CuMAS is based on the idea of re-ordering CUDA calls to

improve the overall system throughput. In this section we
will explain this novel idea in detail.

In a typical shared execution environment (e.g., cloud
computing), a high level load balancer will distribute in-
coming user requests across servers, as depicted in Figure 3.
Each server queues incoming requests (e.g., CUDA calls)



and executes them on their own GPU(s). In this paper we
assume that the user applications are already assigned to a
GPU and we focus on how requests from multiple applica-
tions are retrieved from the server queue and executed on
the GPU.

3.1 CuMAS Tasks
We logically group the CUDA calls in the server queue

into CuMAS tasks, which will be inputs to our scheduling
algorithm in the later phase. CuMAS tasks are comprised
of a series of H2D, KL and D2H calls all of which should
belong to the same application. A typical CUDA application
typically consists of multiple data transfer and kernel launch
phases and thus we end up with multiple tasks being created
for each application. A CuMAS task spans the CUDA calls
which can be continuously executed without requiring any
control on the execution flow.

From the application’s perspective, CuMAS forces all CUDA
API calls (except the last one of each CuMAS task) to act
like asynchronous calls (i.e. they are immediately returned
to the calling function). Whenever the last CUDA call is
reached by the user program, all calls captured and grouped
under the same task are issued on the real hardware. Since
tasks are created dynamically as the application issues re-
quests, at most one task per application can exist at any
given time. Once all CUDA calls belonging to a task are
processed, the caller application is unblocked and allowed to
resume issuing CUDA calls.

To build tasks from a series of CUDA calls , we use the
state diagram given in Figure 4(a). We group the calls into
CuMAS tasks such that KE and D2H call in a task come
after all H2D calls and similarly, D2H calls come after all
KE calls. In our state diagram, any sequence of CUDA
calls that breaks the ordering of H2D → KE → D2H causes
current task creation to be finalized and a new task to be
formed. Also, any occurrence of D2H at any time finalizes
the creation of current task, due to possible control flow
changes on the host side based upon the data received from
the GPU. In addition to data transfer and kernel execution
calls, cudaDeviceSync() calls also cause a new task to be
formed.

Existence of multiple tasks in the same stream implies a
dependency between different phases of an application and

Figure 4: (a) On the left: The state diagram to
decide whether create a new task based on the op-
eration flow (b) On the right: An example stream
showing the grouping of CUDA calls into tasks ac-
cording to the state diagram given on the left.

such tasks must be executed in the order of the operations.
Figure 4(b) depicts the break down of a sample CUDA ap-
plication into multiple tasks (T1 to T3) based on the order
and type of the operations that it contains. The dependen-
cies between tasks are shown with arrows and they imply
a serial execution for the CUDA calls from the same appli-
cation. For most CUDA applications, the dependent tasks
are not created until the previous task is finished and new
CUDA calls are captured. On the other hand, since there are
no dependencies between the tasks of different applications,
CuMAS exploits overlapping across the calls belonging to
such tasks.

3.2 Re-Ordering Window (ROW)
As CUDA calls are captured, tasks corresponding to the

calls in each application’s stream are created on-the-fly us-
ing the state diagram described in the previous sub-section.
Similar to the queue of CUDA calls shown in Figure 3, tasks
from all streams that are yet to be processed form a task
queue.

We introduce Re-Ordering Window (ROW) to retrieve
CuMAS tasks from the queue in batches and re-order them
using our scheduling algorithm. Re-Ordering Window al-
lows CuMAS to exploit better overlapping by allowing the
tasks to be executed in different order than the arrival or-
der while limiting the maximum distance that a task can be
moved ahead or back in the queue.

Figure 5 shows a scenario where five artificial CUDA ap-
plications (A to E) are scheduled by CuMAS using ROW.
Figure 5(a) depicts the initial state of the queue at time t0,
where applications have already issued CUDA calls around
same time and corresponding CuMAS tasks (e.g. A1 cor-
responds to the first task of application A) are created and
placed in the queue in the original arrival order. In this ex-
ample the size of ROW is set to three, which forces the last
two ready to execute tasks, D1 and E1, to wait in the queue.

The tasks in a ROW are reordered using our scheduler
(which is explained in the next section) and the CUDA calls
in these tasks are issued in the order given by the sched-
uler. Figure 5(d) shows the HW pipeline for the execution
of H2D, KE and D2H calls of the ordered tasks on the corre-
sponding resources. The execution order of the tasks are dif-
ferent than the initial placement of tasks in the queue due to
the re-ordering applied by the CuMAS scheduler. However,
re-ordering remains only within the ROW, and the execu-
tion order of tasks across different ROWs is maintained. As
CUDA calls grouped by the tasks in ROW are executed, cor-
responding applications are sent responses to continue their
execution, which in turn generates new tasks, if any.

As soon as all the H2D calls of the tasks in a ROW are
issued on the PCI-e device, ROW is shifted to cover the next
available set of tasks, without waiting for the KE and D2H
calls of the tasks in the prior window to finish. Figure 5(b)
shows the time step t1, where H2D calls of A1, B1 and C1

are completed and up-link PCI-e bus has just become idle.
At this moment, CuMAS shifts the ROW to next set of tasks
in the queue. Since all CUDA calls in task A1 are finished
before t1 and the application A has given chance to issue
new calls, the ROW now covers a new task A2 for these new
calls in addition to the already existing tasks D1 and E1.
On the other hand, the second task B2 of application B is
yet to be created due to unfinished calls remaining in B1 at
time t1. Similarly, at time t2 shown in Figure 5(c), only two



Figure 5: (a) CuMAS task creation, queuing and re-
ordering for different applications at initial time t0,
(b) t1, and (c) t2. (d) On the bottom: View of the
HW pipeline of tasks after re-ordering.2

tasks, B2 and D2 are included in ROW and A3 is yet to be
created after calls in A2 finish execution.

3.3 Scheduler Invocation
CuMAS is designed for shared GPU environment; there-

fore we assume there is a continuous flow of CUDA API call
requests from existing or new applications sharing the sys-
tem. The scheduler is invoked in two situations, whichever
arises earlier:

• PCI-e uplink occupation of the H2D calls in a previously
scheduled window is about to finish; and
• Total number of tasks ready to execute reaches the ROW

size.

The first case is necessary to keep the resources busy as
long as there are more tasks to process. In the second case,
the window size w is to control the trade-off between the
room to exploit better overlapping and per-task re-ordering
distance. If w is kept large, the scheduler will have more op-
portunities for re-ordering, hence allowing a higher transfer-
execution overlap. On the other hand, if w is smaller, then
the wait time between initial call issue and actual execution
will vary less due to smaller distance of task re-ordering.
Also, larger w values will increase runtime overhead due to
the complexity of the scheduling algorithm. We evaluate the
effects of ROW size w in detail in Section 6.

4. CUMAS: SCHEDULER
Scheduler is the core component of CuMAS and it takes

a set of ready-to-execute CUDA applications as its input.
We assume that the underlying architecture has three con-
current resource channels: up-link PCI-e bus, GPU compu-
tation, and down-link PCI-e bus. The goal of the scheduler

2In the figure, for the sake of simplicity, calls are shown with
rectangles of same size, although their execution times may
actually vary.

is to find an ordering that minimizes total execution time
by maximizing the overlap between kernel executions and
two-way data transfers of successive applications.

CuMAS scheduler takes the tasks in the re-ordering win-
dow (ROW) as input and produces a sequence between the
tasks as output. The sequencing decision is based on the
estimated duration of the tasks in current window and the
tasks in the previous window which are still executing. The
search space of the optimal ordering is limited to the pos-
sible permutation of the tasks in current ROW and such
problems are proven to be NP-Hard [7]. Next, we discuss
how CuMAS scheduler models and solves the problem of
finding an optimal sequence for the tasks in a given ROW.

Our scheduler follows the ‘flow shop’[5] sequencing model,
which is well studied in applied mathematics literature. In
this model, there are n jobs and m machines with differ-
ent processing times pij . Jobs consist of a sequence of op-
erations ok with precedence constraints and each operation
must be processed on a single machine. The goal is minimize
the maximum job completion time (Cmax). The sequencing
triple to identify the problem in the literature is represented
with F |prec|Cmax.

We establish the correspondence between our proposed
scheduler and the flow shop problem as follows. Each CUDA
application correspond to a series of tasks (i.e., jobs) where
each CUDA call represents an operation of a task. We map
machines m to resources S, P and R, which represents host-
to-device (H2D) PCI-e bus (i.e., send), GPU itself (i.e., pro-
cess), and device-to-host (D2H) PCI-e bus (i.e., receive),
respectively. Each operation in a task is one-to-one mapped
to the machines (i.e., S, P and R) and these operations have
a precedence constraint S → P → R.

We define an operation as an atomic GPU call, a stream
as an ordered series of operations, and task as a consecu-
tive subset of operations belonging to the same stream. In
CUDA terminology, operations correspond to CUDA API
calls such as memcpy() and kernel launches. A stream rep-
resents the entire CUDA application 3 and it is analogous
to CUDA streams which guarantees the serial execution of
the CUDA API calls issued by the owner application. A
task represents a consecutive subset of the operations from
a stream. A stream is composed of one or more tasks. Tasks
are the basic unit of scheduling in CuMAS, and only one task
from a given stream can be scheduled and run at a given
time. Each operation has an associated estimated duration
of completion and each task maintains the cumulative sums
of execution time for each operation type (i.e., S, P, and R)
that it contains.

4.1 Scheduling Considerations
In a real-life scenario, the scheduling algorithm will be

repeatedly run on a queue as new tasks arrive. We refer to
each of these iterations as a ‘a scheduling round ’ and the
goal of the scheduler is to minimize the total time for an
execution round. Our scheduler treats the three resource
channels (S, P and R) as pipeline stages for a task, but
tasks may run in parallel as long as there is only one task
executing on a channel at a given time.

3In this work, we assume that the CUDA application does
not use multiple streams, which is the default case for the
majority of the applications in the two popular benchmark
suites, Rodinia and CUDA SDK, that we use in our evalua-
tion.



The scheduler finds an ordering between ready to execute
tasks so that overall system utilization is maximized. To
achieve this, the scheduling decision must be based on: the
durations of S, P, and R operations in each task; the delays
occurring in S, P, and R channels due to resources being busy
with operations from previous tasks; and the total memory
usage requirement of the set of tasks that will be occupying
at least one of the resource channels at any given time.

4.2 Formulating the Total Execution Time
The total execution time Ttotal for a given order of N tasks

can be represented as a function of the time to send the data
for all N tasks; the time to wait for each resource S, P and
R to become available (i.e., delays); and the time required
to process and receive data for the last task.

Let a task i be defined as a triple of the execution times of
send, process and receive operations: τi = [si, pi, ri]. Send
channel (S) can be assumed to have no delays, since S is
always the first operation in each task and is not dependent
on completion of prior operations in the same task. However,
P and R channels may include some delays due to stalls in
previous operations belonging to the same or previous tasks.
The delays that need to be inserted right before executing
p and r operations of ith task are represented by positive
definite functions δpτi and δrτi , respectively, and they can be
expressed with equations given in 1 and 2.

δpτi = δpτi−1
+ pi−1 − si (1)

δrτi = δrτi−1
+ ri−1 − pi − δpτi−1

(2)

The processing of a task i cannot start until either of the
following finishes: sending operation si of current task or
processing operation pi−1 of previous task. However, if there
are any delays δpτi−1

before pi−1, then P resource will not be
available until the larger of the following two finishes: si or
pi−1 + δpτi−1

. If si takes longer than pi−1 + δpτi−1
, then we

should not insert any delays for p, therefore δpτi is a positive
definite function.

The receive delay δrτi is similar to processing delay, but it
also takes into account of the processing delay δpτi−1

of the
previous task due to propagated P resource idleness to the
R channel.

Using the delay equations, total time can be expressed
as the summation of total send time, δPτi and δRτi for the
last task as well as the the duration for processing P and R
operations of the last task, pN and rN respectively:

Ttotal =

N∑
i=1

si + δpτN + pN + δrτN + rN (3)

4.3 Finding a Solution
Due to recursive conditionals in equations 1 and 2, a closed

form solution could not be obtained for the total time given
in Equation 3. Moreover, since our scheduling decision is in-
deed an ordering problem and we are not looking for values
of variables, a closed form solution will not help in finding
the optimal ordering. Therefore, the complexity of calculat-
ing total time of a given ordering is O(N), due to a single
iteration over N tasks.

A brute force search on the total execution times across
all possible task permutations would give us the optimal

execution time, hence the schedule. However, complexity
of such a search is O(NN !) which becomes impractical for
large values of N.

An approximate solution to the problem can be obtained
via dynamic programming (DP) in exponential time, which
is much faster than the factorial time for larger values of N.
The DP approach relies on the incremental representation of
total execution time based on a subset of the solution space
and can be described as follows.

Let T = {τ1, τ2, ..., τN} be the set of tasks to be sched-
uled and let U be a subset of T, U ∈ T . We define the
‘near-optimal’ completion time C(U) of a given subset U as
follows.

{
C({τi}) = c(τi, {∅}), if |U | = 1

C(U) = minτi∈U
[C(U − {τi}) + c(τi, U − {τi})], if |U | > 1

(4)

where the incremental cost function c(ti, U) is defined as:{
c(τi, {∅}) = si + pi + ri, if|U | = 0

c(τi, U) = δrτi + ri, if |U | > 0
(5)

Equation 4 finds the task τi ∈ U , which minimizes the
total execution time when appended to the end of the near-
optimal ordering of subset U − {τi}. The completion time
C(U) of the set U relies on the minimum completion time
of subset U −{τi} plus the cost c(τi, U −{τi}) of appending
τi to the end of a the set U − {τi}.

Equation 5 defines the cost function c(τi, U), which is ba-
sically the receive operation ri plus the receive delay δτi
required before the operation. As described previously, the
calculation of δτi relies on the ordering of the elements in
the set U . The base case for c(τi, U) is when U is empty and
it equals to the summation of all operations (si + pi + ri).
Since overlapping is not possible for the first element, s1
and p1 operations of the first task directly contributes to
the total execution time, whereas the execution time is in-
cremented by only ri + δτi when there are other tasks in U
which overlap with si and pi.

The dynamic programming approach starts with the mini-
mum possible subsets where |U | = 1 and grows these subsets
by iteratively appending tasks τi. The ordering of the sub-
sets giving the minimum cost is saved and used in future
iterations. We employ this DP approach in our scheduling
algorithm.

4.4 Scheduling Algorithm
The CuMAS scheduling algorithm given in Algorithm 1

finds an ordering of tasks using the method described above.
The algorithm is invoked by the run-time as the conditions
given in the previous Section are satisfied. [Lines 1-2] The
scheduling algorithm takes the set T of all tasks as input and
outputs a near-optimal ordering Ωmin(T ) of T . [Line 3] The
algorithm iterates through the smallest to largest subset size
i. [Line 5] For every subset size i, we look all subsets U ∈ T
that has size i. [Line 5-6] We want to find the minimum
completion time Cmin(U) and an ordering Ωmin(U) which
gives Cmin(U). [Line 7-10] If |U | = 1 then Cmin(U) is simply
the cost c(τk, {∅}) of the only task τk. [Line 12] Otherwise,
we iterate through all tasks τk ∈ U . [Line 13] If any τk
is exceeding the memory requirements when appended to
the end of the minimum ordering of Ωmin(U-{τi}), then we
do not consider this ordering as minimum. [Line 16] We



Figure 6: CuMAS framework, highlighted in the middle with shaded box.

calculate the completion time C(U) of subset U where τk is
the last element. [Line 17-19] If the new C(U) is less then
the Cmin(U) found so far, then we save both the minimum
completion time and ordering for the case where τk is the
last element.

The last iteration of the outer loop has only one subset
where U = T . In this iteration, the Ω(Umin) found after the
most inner loop will be the output Ωmin(T ).

4.5 Complexity
The outer loop in Line 3 is iterated N times and the selec-

tion of subsets U with size i results in the loop at Line 5 and

the innermost loop to be iterated

(
N

i

)
and

∑N
i=1 i

(
N

i

)
times, respectively, resulting in a complexity of O(N22N−1).
Although this complexity is still exponential, it grows much
slower than O(NN !).

DP solution is faster than the brute force solution for any
large N, however, it may not always yield to the optimal
schedule. The recursive equation in (4) relies on the as-
sumption that the minimum cost solution for a set U will
always include the subset U − {τj}. However, this may not

Algorithm 1 CuMAS Scheduling Algorithm

1: Input: Task set T = {τ1, τ2...τN}
2: Output: Minimal ordering Ωmin(T ) = (τω1 , τω2 ...τωN )
3: for i = 1 to N do
4: for each U ∈ T where |U | = i do
5: Cmin(U) =FLOAT MAX
6: Ωmin(U) = {∅}
7: if |U | = 1 then
8: C(U) = c(τk, {∅}) where U i = {τk}
9: Set Cmin(U) = C(U)

10: Set Ω(Umin) = {τk}
11: else
12: for each τk ∈ U do
13: if MaxMem(Ωmin(U-{τi})∪{τi}) then
14: continue
15: end if
16: C(U) = Cmin(U − {τk}) + c(τk, U − {τk})
17: if C(U) < Cmin(U) then
18: Set Cmin(U) = C(U)
19: Set Ωmin(U) = Ωmin(U − {τk}) ∪ {τk}
20: end if
21: end for
22: end if
23: end for
24: end for

always be true. We will evaluate the effectiveness of our
proposed algorithm in the evaluation section.

5. CUMAS: FRAMEWORK AND RUNTIME
CuMAS framework is composed of several components as

shown in Figure 6. Call Interception library dynamically
captures CUDA calls issued by the applications assigned
to the server. Duration Estimation component uses offline
profiling results to estimate kernel execution times and a
data-transfer model for estimating durations for D2H and
H2D calls. Task Generator creates tasks from the captured
calls and queues them. The scheduler, which is the core
framework, re-orders the tasks in the ready-queue to im-
prove overall utilization via transfer-execution overlapping.
Once proper events and timers are inserted by Stream&OPs
Timer, CUDA Call Generator re-issues CUDA calls in the
given scheduling order. CuMAS also employs an offline pro-
filer to measure standalone kernel execution times that are
required by the scheduler. We elaborate on the details of
these components in the rest of this section.

5.1 Call Interception
The entry point of CuMAS framework is Call Intercep-

tion which employs wrapper functions for a subset of the
original CUDA API. CuMAS is attached to any existing
CUDA C++ binary via the interception library through
LD PRELOAD flag, hence requiring no modifications to
the user code. Each application is allocated a dedicated
CUDA stream and as the interceptor captures new calls a
new operation is created for each call, along with all config-
uration parameters, and added to the application’s stream.

Our library intercepts kernel launches, memcpy() and cu-
daDeviceSync() calls. H2D cudaMemcpy and kernel launches
(KE) are immediately returned to the caller, regardless of
whether they are synchronous or asynchronous. This is nec-
essary to keep the applications continue issuing their CUDA
API calls so that larger tasks are created with as many oper-
ations as possible to maximize overlapping in the generated
schedule. On the other hand, synchronous D2H cudaMem-
cpy calls are not immediately returned to user and the call-
ing procedure is blocked until all queued operations plus the
last D2H call for the stream have been converted to a task,
scheduled, and executed. D2H cudaMemcpy calls are al-
ways treated as blocking (i.e., synchronous) to prevent any
miscalculation of conditional statements that depend on the
retrieved GPU results.



5.2 CuMAS Runtime - HW Interaction
Using the task order returned by the scheduling algorithm,

we issue CUDA API calls for each operation in the task list.
Figure 7 illustrates the how CUDA calls are captured by
CuMAS and scheduled for execution when the PCI-e bus
and GPU becomes available.

CuMAS runtime is a daemon process which communicates
with applications via CuMAS interceptor. Whenever the
interceptor captures a CUDA call, it lets the runtime using
a public POSIX message queue (m queue). Upon the receipt
of first message from each application, the runtime creates a
private m queue with the process id of the caller and tells the
interceptor either block the call or continue collecting calls
until a task is created for the caller. In the given example,
both applications are instructed to continue for the H2D
and kernel calls.

When the runtime receives D2H call for an application, it
instructs the interceptor to block the caller and wait for the
scheduling decision for that specific application. The run-
time daemon constantly monitors the events corresponding
to previously called CUDA calls so that it can call the sched-
uler whenever resources are idle. Once a schedule is deter-
mined, the runtime messages the caller applications to issue
their collected calls. Here, it is important to note that, col-
lected CUDA calls are called by the same process, to prevent
any inaccessible host memory pointers due to inter-process
security restrictions.

If the CUDA call does not specify any streams, the inter-
ceptor creates a CUDA stream and modifies cudaMemcpy()
and kernel call arguments accordingly. Also, to enable over-
lapped execution, the host memory locations pointed by cu-
daMemcpy() calls are converted into pinned memory using
cudaHostRegister() call. CuMAS assumes that the kernels
do not use any mapped pointers to host memory.

Figure 7: Activity diagram showing the interaction
between CUDA application, CuMAS framework and
the GPU. (The spacing and the length of rectangles
do not represent actual timings.)

5.3 Duration Estimation & Profiling
Accurate estimation of transfer and kernel execution times

is crucial for our scheduler to produce an optimal schedule.
CuMAS uses both profiling data and mathematical model
to estimate durations for S, P and R type of operations of
the tasks in the ROW.

Data transfer time (s and r) is dependent on the size and
direction of the data to be transferred. Data transfer time is
a linear function of the total data size plus a constant, and
the data transfer rate can be modeled with the following
equation where x is the data size while a and b are device
constants:

y = x/(ax+ b) (6)

The constants a and b are measured through experiments
and linear curve fitting. The details of the measurement are
given in the evaluation section.

Kernel execution time (p), on the other hand, is depen-
dent on the kernel and the size of the input data, hence total
thread block (TB) count, on which the kernel operates. Es-
timating p is harder since it varies across applications there-
fore CuMAS requires an offline run on a fraction of input
data and obtain msecs/TB metric for each profiled kernel.
We maintain a database of profiled kernels associated with
the corresponding msecs/TB metric for future executions.

Later, during runtime, we use the dimension of the grid
(i.e., TB count) specified during kernel launch and we lin-
early scale the metric up to estimate the execution time of
the intercepted kernel. The accuracy of this simple estima-
tion technique relies on the following factors:
• Same number of threads per TB is used for the profiling

kernel and the actual execution.
• Total number of TBs used for the profiling kernel are large

enough to utilize all SMs at a given time.
• There is a linear correlation between the grid size and

kernel execution time.
If no profiling information is provided on the first execu-

tion of a specific kernel, CuMAS does not re-order the tasks
containing such kernels and immediately issues them to the
CUDA API call queue. If that kernel is encountered again
in the future, initial execution time is pulled up from DB.

6. EVALUATION
In this section we first describe the details of our experi-

mental setup and then present our results.
Architecture: We evaluate CuMAS on NVIDIA’s Tesla

K40c series GPU attached to an AMD Opteron 6100 based
system. The GPU supports PCI-e v3.0 and it has 15 SMX
units each having 192 CUDA cores accessing 12GB of global
DDR3 memory. K40c has a shared L2 cache size of 1.5MB.
Host has 64 cores organized as 8 NUMA nodes connected
with AMD’s HyperTransport interconnect. For optimal PCI
bandwidth we only use the cores in the NUMA node 5, which
is directly connected to the GPU via the south-bridge.

Applications: We use a total of 12 applications from
Rodinia Benchmark suite and CUDA SDK samples. Ta-
ble 1 lists total number of H2D and D2D calls along with
the transfer size, number of kernel calls and tasks created
for each application. To evaluate a mixed load of long and
short running CUDA applications, we have adjusted the in-
put sizes so that total runtimes vary between 500 msecs and
2 seconds.

Although some of the applications (BlackScholes, lud, nw,



Figure 8: Total execution time with varying number of ROW sizes.

gaussian and particlefilter) in our test-bed issues many num-
ber of kernel executions, they do not end up in creation
of multiple CuMAS tasks. Our task scheduler merges con-
secutive kernel calls into fewer CuMAS tasks based on the
state diagram given in Figure 4. This is mainly due to ei-
ther redundant computations or statically scheduled kernel
launches by the application programmer and the merge does
not affect the accuracy of the computation.

Methodology: In our evaluation, we have assumed that
first tasks of each application arrive the CuMAS task queue
around same time. To achieve this behavior, we initially
force our runtime to keep collecting CUDA calls until it cap-
tures at least one task from each CUDA application. In our
experiments, we have measured data transfers and kernel
executions only and excluded the time spent on host-side
data and device initialization, cudaMalloc() and cudaFree()
calls from our analysis.

We have made all 12 applications run to finish and used a
round robin policy to insert the new tasks that are created
dynamically as applications progress. Other common poli-
cies like fair scheduling were not used because current GPU
architecture does not support preemptive kernel execution.
Due to many possible permutations of 12 applications, the
total executions times are largely affected by the order in
which the initial tasks of each application are issued. There-
fore, we have performed 25 runs and in each run we started
with a randomly selected permutation of the given applica-
tions. For each run, we have varied Re-Ordering Window
(ROW) size from 2 to 10.

6.1 Execution Time
In our experiments we compare CuMAS with the only

(to the best of our knowledge) multi-application automatic

Application H2D# D2H# KE# Task#
b+tree 15 (402 MB) 1 (40 MB) 2 2
backprop 5 (1568 MB) 1 (830 MB) 2 2
BlackScholes 3 (1200 MB) 2 (800 MB) 256 1
gaussian 3 (19 MB) 3 (19 MB) 3070 1
hotspot 2 (1212 MB) 2 (606 MB) 1 1
lavaMD 4 (43 MB) 3 (18 MB) 1 1
lud 1 (205 MB) 1 (205 MB) 670 1
nw 2 (1072 MB) 1 (536 MB) 511 1
particlefilter 6 (1043 MB) 1 (1 MB) 77 2
pathfinder 2 (2139 MB) 3 (1 MB) 3 1
srad v2 2 (1073 MB) 1 (1073 MB) 4 2
vectorAdd 2 (1608 MB) 3 (804 MB) 1 1

Table 1: Total data transfer sizes and operation/task
counts for each application.

transfer/execution overlapping technique, Strings [24]. As
described in the introduction, Strings exploits overlapping
only if two different type of CUDA calls are issued around
same time. On the other hand, for CuMAS, we have used
two scheduling algorithms; CuMAS-BF, which uses brute
force search over all possible permutations of the tasks in
the ROW and CuMAS-DP, which uses the faster dynamic
programming based heuristic as described in subsection 4.

We have grouped 25 initial permutations of 12 applica-
tion into 5 permutation sets, A to E, to better understand
the execution discrepancies across different sets. The results
given in Figure 8 show the average total execution time for
each permutation set as well as the global average. x axis
corresponds to different sizes of ROW and y axis denotes the
total execution time in milliseconds. ROW size differences
only affect CuMAS and Strings results remain same, since
Strings relies solely on the incoming call order and does not
involve re-ordering.

The results show that the benefits of re-sequencing CUDA
calls is significant even with a window size of 2. In most of
the permutation sets, increasing ROW sizes reduce the total
execution time up to 14% on average and up to 44% percent
when compared to the execution of Strings with the worst
case initial permutation.

For small ROW sizes (2-6) CuMAS-DP performs better
than CuMAS-BF due to the way we implement the two
techniques. For DP, while calculating the schedule for the
current ROW, cost calculation recursively depends on the
tasks from previous ROWs, therefore the finish times of the
CUDA commands in those tasks are taken into account as
well. On the other hand, in BF, we find the optimal execu-
tion time of a given ROW by only looking at the tasks inside
the current ROW regardless of the task execution times in
the previous ROW. This causes possible resource idleness
between the bordering tasks in consecutive ROWs.

For larger ROW sizes (8-10), we observe that CuMAS-BF
performs better than CuMAS-DP since the target permu-
tation set grows significantly larger than the heuristic algo-
rithm can efficiently address. Despite the high overhead of
BF technique for these ROW size, the resulting schedule is
fast enough so that the total execution time is still less than
the heuristic (DP). Moreover, since the scheduler is invoked
right after the send operation of the last task in the ROW,
algorithm execution overlaps with the remaining P and R
operations of the last task, hence the overhead is partially
hidden. However, for ROW sizes larger than 10, BF schedul-
ing overhead is enormously high (as explained in sub-section
6.3) and is not compensated neither by the overlapping be-
tween pipeline stages nor the performance gain.



Figure 9: Idle time observed two resource channels:
P[GPU] on the left (a) and R[D2H] on the right (b)

ROW size of 10 is evaluated for the sake of analysis only
and it is not a practical value for real systems. Although
CUDA supports up to 32 concurrent SW streams, latest gen-
eration of NVIDIA GPUs employ only 8 HW stream con-
trollers. Any ROW size value, hence total stream count,
above 8 is subject to serialization in HW.

It is also important to note that the execution times shown
in Figure 8 are the combined outcome of the speedup pro-
vided by the scheduling techniques and their overhead. Since
there is no straightforward way to clearly isolate the effects
of possible overheads on the total time in pipelined execu-
tion schemes, we will evaluate overheads separately in the
rest of this section.

6.2 Resource Idleness
To better understand how CuMAS improves the total

execution time, we have measured the idle time spent by
P(GPU) and R(D2H) resources. These times correspond to
the sum of non-busy periods between the first and last KE
call and D2H call, respectively, across the scheduled tasks in
a ROW. We have excluded the idle time for S(H2D) chan-
nel, because we send the data for the next task as soon as
the H2D operations in the previous window finish. There
is no accumulated delay or idleness for S resource channel,
provided that there is always a ready to execute task in the
task queue.

The results given in Figure 9 show that both BF and DP
approaches manage to keep the idleness lower than Strings.
Another observation is that the idle times are more signif-
icant in R channel, which are also affected by the accumu-
lated delays in the P channel. Also, the idleness difference
between the Strings and CuMAS scheduling becomes less

Figure 10: CuMAS scheduling overhead.

significant as the ROW size increases. However, although
resource idleness gives an overall idea on the reasons for
speedup, call overlapping and cumulative resource utiliza-
tion are hard to quantify and the overall speedup cannot be
directly related with the idleness values given here.

6.3 Scheduling Overhead
The cost of scheduling for dynamic frameworks like CuMAS

is crucial for higher system utilization and it corresponds to
the majority of runtime overhead. We measure how much
serial CPU time is taken to perform the scheduling for vary-
ing ROW sizes – the results are shown in Figure 10.

As stated previously in Section 3, there is a tradeoff be-
tween the increased overlapping benefits and the scheduling
overhead as the ROW size is incremented. Although the
brute force search approach (CuMAS-BF) provides the best
speedup as shown in Figure 8, the overhead of enumerating
all task permutations in the window becomes considerably
larger as ROW size exceeds 6. It takes 12 and 972 millisec-
onds in total for CuMAS-BF to search the best ordering for
the tasks in a window of size 8 and 10, respectively. On
the other hand, CuMAS-DP manages to keep the overhead
at 2 and 12 milliseconds, respectively, for the same window
sizes. For a ROW size of 12 tasks, CUMAS-BF takes con-
siderably longer (168 seconds), which is not acceptable for a
runtime solution. On the other hand CuMAS-DP overhead
(61 msecs) still remains under practical limits.

A ROW size of 8 ends up in negligible overhead, which is
under 0.5%, for both CuMAS scheduling approaches. Con-
sidering the HW stream controller limit, 8, we may conclude
that even with the exponential and factorial scheduling com-
plexities, both CuMAS call re-ordering policies (DP and BF)
are practical enough to be deployed in real systems.

6.4 Data Transfer and Kernel Execution Time
Estimation

Estimating transfer and kernel execution times accurately
is essential for CuMAS to exploit maximum resource utiliza-
tion. We build a linear model for data transfer times whereas
we use a profiling based approach to estimate kernel times.

For data transfer time estimation we have executed H2D
calls with data sizes varying from 4KB to 100KB and plotted
the execution time (solid line) in Figure 11. We have fitted
(dashed line) our measurement to the linear model given
in Equation 6 and obtained architecture specific parameters
a = 0.0002 and b = 0.0072.

To estimate kernel execution times, we have profiled each
application using kernels with thread block (TB) counts

Figure 11: Data transfer times (solid) and corre-
sponding curve fitting (dashed).



Figure 12: Kernel duration estimation accuracy for
varying TB count factors.

equaling to 1/8th of the kernels, which are to be used in
the experiment. We have calculated a msecs/TB value for
each profiled kernel and we have compared these estimated
values with the real kernel runs. We have doubled the TB
count at each run until we reach the TB count of the kernel
in the actual experiment. Figure 12 plots estimation accu-
racies for 8 different kernels. The kernels used in the initial
profiling with 1/8th TB count are taken as baseline with
estimation accuracy of 1.0.

The verification results showed that the msecs/TB metric
we acquired by running the kernels with a fraction of the
actual TB counts, estimated the execution times for larger
kernels with a maximum error rate of 15% and an average
rate of 4%. Such a high rate of estimation accuracy enabled
CuMAS to exploit maximum overlapping between CUDA
calls.

It is also important to note that, although simple interpo-
lation works for most of the applications in Rodinia bench-
mark suite and CUDA SDK, the estimation will be incor-
rect if the correlation with the TB count is not linear (e.g.
quadratic equations, kernel bodies with arbitrary loop it-
erations). In the future, CuMAS profiler can be extended
to have more accurate estimation for such applications via
compiler analysis or runtime performance profiling. Such
techniques would require derivation of non-linear estima-
tion curves by using multiple execution time-TB count data
points obtained during training phase. More information
about the literature on GPU performance estimation are
given in the next section.

7. RELATED WORK
Concurrent kernel execution: Ravi et al.[21] identified

and proposed SW based concurrent kernel execution mech-
anisms using spatial and temporal sharing. They character-
ized several kernels and paired them using the two sharing
methodologies. Adriaens et al.[1] have implemented HW
based spatial sharing solutions to improve utilization in the
existence of smaller kernels with less thread blocks. Elastic
kernels proposed in [19] use different concurrency policies
for various classes of kernels. The study in [26] developed
two HW based preemptive execution policies, context switch

and drain, to replace a running thread block with another.
Chimera [20] has improved the pre-emption with an addi-
tional policy, flush, allowed dynamic selection of policies de-
pending on the load characteristics. Jog et al.[11] have stud-
ied the on-GPU memory system to improve throughput in
the existence of concurrent kernels.

Multi application scheduling: The researches in [10]
and [3] have proposed SW runtime environments to han-
dle data allocation and transfers on-the-fly by keeping track
of dependencies across kernel executions. Using a similar
technique, Sajjapongse et al.[23] distributed kernels to mul-
tiple GPUs, to reduce the wait times on kernel dependencies.
TimeGraph [12] is a driver-level GPU scheduler for graph-
ics APIs and it supports various priority-aware scheduling
policies.

Data transfer / kernel execution overlapping: Huynh
et al.[9] proposed a transfer/execution overlapping enabled
framework for streaming applications written using StreamIt
language. Similarly, GStream[25] provides a graph process-
ing methodology to handle overlapping. Among the few gen-
eral purpose automatic overlapping work, Lustig et al.[15]
proposed HW extensions to enable the detection of the trans-
ferred bits so that the kernel can start execution as soon as
the required data arrives. PTask [22] is an OS task sched-
uler extension and uses existing OS scheduling policies and
an API to exploit transfer/execution overlapping. However,
this work does not employ task re-ordering. Helium [16] fo-
cuses on the task graph of a single application and performs
a compiler-based DAG analysis to exploit any overlapping if
possible. However the optimizations in this work are limited
to a single application.

Kernel performance estimation: Hong et al.[8] have
built an analytical model to estimate the overall execution
time of a given kernel based on the number of parallel mem-
ory requests issued within a warp. A later study by Bagh-
sorkhi et al.[2] has proposed an adaptive performance model
to identify the bottlenecks in execution flow by taking bank
conflicts, control divergence and uncoalesced memory ac-
cesses into account, in warp level. Both studies have used
average warp execution times to find thread block execution
times and scale them to the total number of TBs. A more
recent study[28] have proposed machine learning techniques
for scalable performance estimation on varying architectures
and applications. They employ a runtime that collects per-
formance counters and feeds them to a neural network that
decides which scaling curve should be applied to properly
estimate the execution time based on the application char-
acteristics and number of SMs employed by the GPU.

8. CONCLUSION
In this paper, we have proposed CuMAS, a scheduling

framework, to enable data-transfer aware execution of mul-
tiple CUDA applications in shared GPUs. CuMAS improves
overall system utilization by capturing and re-organizing
CUDA memory transfer and kernel execution calls, with-
out requiring any changes to the application source code.
CuMAS is evaluated on an NVIDIA K40c GPU, using a
suite of 12 CUDA applications and it is shown to improve
the total execution time by up to 44% when compared to
best known automatic transfer/execution overlapping tech-
nique.
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