BugFix: A Learning-Based Tool to Assist Developers in Fixing Bugs

Dennis Jeffrey*
jeffreyd@cs.ucr.edu

Min Feng*
mfeng @cs.ucr.edu

guptajneelam @gmail.com

Neelam Gupta Rajiv Gupta*

gupta@cs.ucr.edu

*University of California, CSE Department, Riverside, CA

Abstract

We present a tool called BugF ix that can assist devel-
opers in fixing program bugs. Our tool automatically ana-
lyzes the debugging situation at a statement and reports a
prioritized list of relevant bug-fix suggestions that are likely
to guide the developer to an appropriate fix at that state-
ment. BugFix incorporates ideas from machine learn-
ing to automatically learn from new debugging situations
and bug fixes over time. This enables more effective pre-
diction of the most relevant bug-fix suggestions for newly-
encountered debugging situations. The tool takes into ac-
count the static structure of a statement, the dynamic values
used at that statement by both passing and failing runs, and
the interesting value mapping pairs [I7] associated with
that statement. We present a case study illustrating the effi-
cacy of BugFix in helping developers to fix bugs.

1. Introduction

Software Debugging is the process of fixing program
bugs. This is an important and necessary step of soft-
ware development, because programming is a complicated,
human-intensive activity that is prone to error. Unfortu-
nately, debugging can be a difficult task. Locating an er-
ror from among hundreds, thousands, or even millions of
lines of source code can be daunting without any automated
assistance. When an error is located, it may still take con-
siderable time for a developer to fully understand the prob-
lem so that an appropriate fix can be made. Techniques to
help automate the debugging process can assist developers
in more efficiently producing robust and reliable software.

Most prior research in automated software debugging
has focused on fault localization, narrowing or guiding the
search for bugs to help developers identify faulty statements
more quickly. Dynamic Program Slicing [2, 23, 30, 35, 36]
can be used to compute a subset of program statements that
directly or indirectly affect the erroneous output produced
by a program during a failing execution. Delta Debug-
ging [6, 32, 33] can analyze differences in program state
between successful and failing executions to isolate the er-

ror that caused a failure. Other approaches [17, 21, 24, 25]
use runtime information to rank program entities in the or-
der of their likelihood of being faulty.

Techniques to help developers understand program be-
havior can also help them to debug more efficiently. Ko
and Myers [22] developed a debugging tool called The
Whyline to help developers better understand program be-
havior. This tool allows developers to select a question con-
cerning the output of a program, and the tool then uses a
combination of static and dynamic analysis techniques to
search for possible explanations.

To our knowledge, there is very little prior work that
focuses specifically on assisting developers in changing
programs to fix bugs. He and Gupta [13] developed an
approach to automatically generate program modifications
that can correct an erroneous statement in a function. Their
approach requires that a formal precondition and postcon-
dition be specified for the function in terms of first-order
theory formulas. Abraham and Erwig [1] developed a de-
bugging tool for spreadsheets in which a user can specify
the expected value for a cell that contains an incorrect value;
the tool then identifies change suggestions that can correct
the error. In general, suggestions for modifying program
code (which we call bug-fix suggestions) have the potential
to guide developers to appropriate fixes more quickly. Our
goal in the current work is to automatically generate such
suggestions using a machine-learning approach that consid-
ers knowledge gained from previous bugs that have already
been identified and fixed. We implemented our approach in
a tool called BugFix.

BugF ix requires as input a faulty program and a corre-
sponding test suite containing at least one failing test case.
The goal of our tool is to compute and report a prioritized
list of bug-fix suggestions for a given debugging situation
at a program statement that is suspected of being faulty. A
debugging situation can be thought of as a characterization
of the particular static and dynamic details of a suspicious
statement being debugged (described in detail in Section
3.1). A bug-fix suggestion is a textual description of how
to modify a given statement such that a bug in the statement

is likely to be fixed. An actual fix performed by a developer
is textually represented by a bug-fix description.

Our tool is built upon concepts from the machine learn-
ing community, which allow the tool to learn about new
debugging situations and their corresponding bug fixes that
are encountered over time. Through continued use, the abil-
ity of the tool to report highly relevant bug-fix suggestions
for new debugging situations is expected to improve. This is
accomplished by maintaining a database of bug-fix scenar-
ios describing the different debugging situations and cor-
responding bug-fix descriptions previously encountered by
the tool. From this database, a machine-learning algorithm
for learning association rules can be applied to automati-
cally generate a knowledgebase of rules, mapping different
(general and specific) debugging situations to correspond-
ing bug-fix descriptions. Each rule is also associated with a
confidence value indicating how likely the rule is to be cor-
rect (i.e., how likely a particular debugging situation should
indeed map to the given bug-fix description).

Given a new debugging situation, our tool automatically
analyzes it in conjunction with the knowledgebase of rules
to compute and report a prioritized list of relevant bug-fix
suggestions. Once the appropriate fix is made by the devel-
oper, then this new information about the current debugging
situation and corresponding bug fix is added to the database
of bug-fix scenarios. This enables a revised set of rules to
be computed that can lead to more effective results when
the tool is used again in the future. We believe that our tool
has the potential to help a developer more quickly discover,
apply, and verify the appropriate fix for a bug.

There are two main contributions of this paper.

1. A new machine-learning tool to assist developers in
fixing program bugs, which complements prior work
on locating and understanding bugs.

2. A case study demonstrating the efficacy and potential
of our tool in helping developers properly fix bugs.

In the next section, we describe some background infor-
mation that is necessary to understand BugFix. The tool
itself is then described in detail (Section 3). The efficacy
and potential of the tool is illustrated through a case study
(Section 4). Related work is presented (Section 5), and fi-
nally we conclude (Section 6).

2. Background Information

BugFix makes use of two concepts that we first de-
scribe: (1) association rule learning; and (2) interesting
value mapping pairs [17].

2.1. Association Rule Learning

In the machine-learning community, association rule
learning [4] is a popular method for discovering the rela-
tionship between variables in databases. It has been widely

used in many diverse application areas, such as marketing,
intrusion detection, genetic engineering, and (in the current
work) software debugging.

Let I = {i1,42,...,%n} be a set of n attributes called
items, and T' = {t1,t2,...,tn} be aset of m transactions
comprising the database. Each transaction in 7" is a sub-
set of the items in I (a set of items is commonly referred
to as an itemset). Association rules are derived from these
transactions in the database. An association rule is defined
inthefom X — Y where X, Y CTand X NY =0. X
and Y are called the antecedent and the consequent, respec-
tively. A rule intuitively means that if the items in set X are
present/true, then it is probable that the items in set Y are
also present/true. For example, an association rule in the
supermarket domain could be {eggs, bread} — {milk},
which implies that if a customer buys eggs and bread, then
the customer probably buys milk as well.

The notion of confidence has been introduced to measure
the significance of a rule. The confidence conf of a rule
X — Y is defined as follows:

conf(X —Y) = supp(X UY)/supp(X)

where supp(X) is the support of itemset X, which is equal
to the fraction of transactions in the database containing
X. This confidence can be interpreted as an estimate of
the probability P(Y|X). It allows one to select a subset of
the most interesting rules from a set of all possible rules.

A variety of techniques have been developed for learning
association rules. apriori [5] is the most popular algo-
rithm. Given a database of transactions, apriori identi-
fies association rules through two key steps.

Step 1. Find the frequent itemsets. These are sets of
items for which the associated support values are at least
a specified minimum value. The algorithm iteratively gen-
erates candidate itemsets and prunes out those containing
subsets of items that are known to be infrequent.

Step 2. Generate association rules from the frequent
itemsets. For each frequent itemset X, apriori enu-
merates all non-empty subsets of X. For each such sub-
set Y C X, the algorithm calculates the confidence of rule
Y — (X —Y) and outputs the rule if the associated confi-
dence value is larger than a specified minimum confidence.

BugFix uses the apriori algorithm to identify
rules mapping debugging situations to bug-fix descriptions.
These rules are then analyzed in conjunction with a newly-
encountered debugging situation to identify the most rele-
vant bug-fix suggestions from among the bug-fix descrip-
tions currently known.

2.2. Interesting Value Mapping Pairs

In our prior work [17], we showed how effective fault
localization could be performed using a technique called
value replacement, which involves replacing the set of val-
ues used at a statement instance in a failing run with an al-

Suspicious Statement:

// assume that ‘<’ should actually be ‘<=’
if (x < vy)

Three Possible IVMPs:

ORIGINAL: {x=1, y=1, branch=FALSE}

1
1) ALTERNATE: {x=3, y=5, branch=TRUE}

ORIGINAL: {x=8, y=8, branch=FALSE}

(2) ALTERNATE: {x=1, y=2, branch=TRUE}

ORIGINAL: {x=3, y=3, branch=FALSE}

(3) ALTERNATE: {x=12, y=82, branch=TRUE}

Figure 1. Example IVMPs at a statement.

ternate set of values, then checking to see whether the fail-
ing run changes to become passing. If so, then this value
replacement is represented by an interesting value mapping
pair IVMP), showing the original set of values used at the
statement instance, and the corresponding set of alternate
values that can be substituted to cause the failing run to pass.

Fig. 1 shows three possible IVMPs for a given suspicious
statement. The suspicious statement in this case is an if
condition in which the < operator is mistakenly used in-
stead of <=. The effect of this error is that whenever the
operand values x and y are identical, then the condition will
erroneously evaluate to false when it should have evalu-
ated to true. As a result, all original sets of values in the
IVMPs have identical values for x and y, and the condition
evaluating to false. However, all alternate sets of values
have different values for « and y that instead cause the con-
dition to evaluate to the expected outcome of true. These
alternate values can cause a failing run to pass (assume that
neither z nor y are subsequently referenced and that there
are no other bugs in the program).

IVMPs, besides being useful for locating faulty state-
ments [17], can exhibit patterns that provide hints about
how to fix bugs. Such patterns among the IVMPs occur-
ring at a suspicious statement are useful as one way to help
describe a particular debugging situation.

3. BugFix: A Tool for Debugging Assistance

Our BugFix tool assumes that an existing fault localiza-
tion technique — such as the IVMP-based approach we pre-
viously proposed [17] — is first used to locate a suspicious
statement that is likely to be faulty. Once such a statement
is found, then our tool can be used to assist a developer in
fixing a bug at that statement. This is accomplished by per-
forming the main steps shown in Fig. 2.

In the first step of our tool, the current debugging sit-
uation is analyzed and characterized in terms of both static
(structure of the statement) and dynamic (patterns in the val-
ues associated with the statement) information. In the sec-
ond step, a knowledgebase of rules mapping various debug-
ging situations to relevant bug-fix descriptions is queried.
Based on the current analyzed debugging situation and the

STEP 1: CHARACTERIZE THE DEBUGGING SITUATION

Determine the static and dynamic debugging situation for the
statement currently being debugged

STEP 2: PRIORITIZE/REPORT BUG-FIX SUGGESTIONS

Compute and report a prioritized list of bug-fix suggestions for the
current debugging situation

|

STEP 3: LEARN FROM THE DEBUGGING SCENARIO

After the bug is fixed, update the knowledgebase with new
information from this debugging scenario

Figure 2. The three main steps of BugFix.

confidence values associated with each rule in the knowl-
edgebase, a prioritized list of bug-fix suggestions relevant
to the current debugging situation is computed and reported
to the user. In the third step, once the user fixes the bug in
the statement, the knowledgebase of rules is updated with
new information concerning the most recently-encountered
debugging situation and the corresponding bug fix. We now
describe each of these three main steps in detail.

3.1. Analyzing the Debugging Situation

A debugging situation is a characterization of a particu-
lar suspicious statement that is being examined during de-
bugging. It is represented by a set of atomic entities that
describe certain static and dynamic details of the state-
ment. We call these entities situation descriptors. Intu-
itively, when two debugging situations are similar to each
other, then they will have similar sets of situation descrip-
tors. These situation descriptors represent a way to auto-
matically characterize and compare different debugging sit-
uations to see how similar they are.

Situation descriptors can be either static or dynamic, and
we consider three types in the current work: (1) those as-
sociated with the static structure of the given statement; (2)
those associated with patterns in the IVMPs [17] associated
with the statement; and (3) those associated with patterns in
the values used at the statement by failing and passing runs.
We now define each of these types of situation descriptors.

Statement structure situation descriptors. The de-
scriptors pertaining to statement structure are derived from
the (unordered) tokens comprising the statement, as ob-
tained by tokenizing the statement according to the pro-
gramming language. To limit the total number of possi-
ble descriptors, some tokens are represented abstractly as
general situation descriptors. For example, there are an infi-
nite number of different variable names and constant values,
so we represent these with general descriptors such as “int-
VAR” or “char-CONST”. Other tokens such as keywords
and operators come from a limited set of possibilities for the
given language, so we represent these as situation descrip-
tors named after the keywords/operators themselves. Fi-
nally, comments and formatting tokens such as semicolons,
parentheses, and curly braces are ignored.

(o] How to Treat
Structure Examples as Situation | sjtuation Descriptor
Entity Descriptor
keyword if switch for case |useasis (the keyword itself)
while default return
operator + - */ && Il & |useasis (the operator itself)
~<=1 > .
ref / deref & * rename REF DEREF
variable foo bar i j sum generalize VAR x-VAR (x is the
name total average max variable type)
constant 17 “rabbit” ‘y’ 4 |generalize CONST x-CONST (x is
value 321 0 ‘2 -3 the constant type)
function call | foo() bar(x, 53) generalize FUNC_CALL
fprintf(‘“‘res: %d”, a)
array access | x[10] foo[a+7] a[3] |generalize ARRAY_ACCESS
cast (int)a (char)(2+c) generalize CAST
format s (s 1)1 ignore (none)
tokens

Other general situation descriptors:
ASSIGN_STMT (for assignment statements)
COND_STMT (for conditional statements)
DECL_STMT (for declaration statements)

Figure 3. Deriving situation descriptors from
various C program structure entities.

Fig. 3 describes different C program structure entities
and how they are treated as situation descriptors by our tool.
From this figure, notice that for variable names and constant
values, we actually associate two general situation descrip-
tors each: one without a type specifier, and one with a type
specifier. This is because, for example, even if two different
situations use constants of different type, then they should
still be regarded as “slightly similar” because they both at
least involve constant values. On the other hand, if both sit-
uations use constants of the same type, then they should be
regarded as “very similar”. The reference and dereference
operators “&” and “*” need to be renamed as situation de-
scriptors to avoid conflicts with the bitwise-and and multi-
plication operators, respectively. There are also general de-
scriptors for assignment statements, conditional statements,
and declaration statements. Since C allows for user-defined
types, we specify such types as “user-defined” for situation
descriptors that require a type to be specified.

Fig. 4 shows an example of some C statements and how
they are represented by situation descriptors. The middle
column shows how the C statement is tokenized into de-
scriptors from left-to-right. The right-most column shows
the final, unordered set of descriptors obtained by remov-
ing duplicate descriptors. In structures such as casts, func-
tion calls, and array references, the tokens contained within
these structures are tokenized into descriptors as well.

IVMP pattern situation descriptors. These situation
descriptors are derived from patterns that are observed in
the IVMPs associated with the given statement. Our tool
uses available test cases to search for IVMPs at the current
statement [17]. Then, the IVMPs are analyzed for patterns
that can be represented by situation descriptors. We con-

C Statement Tokenized/Converted into | Final Set of
Situation Descriptors Descriptors
intx=a+b; ASSIGN_STMT, int, VAR, | ASSIGN_STMT, int,

int-VAR, =, VAR, int-VAR, | VAR, int-VAR, =, +
+, VAR, int-VAR

¢ =(char)(2 + *y); | ASSIGN_STMT, VAR,
char-VAR, =, CAST, char,

ASSIGN_STMT, VAR,
char-VAR, =, CAST,

CONST, int-CONST, +, char, CONST,
DEREF, VAR, int*-VAR int-CONST, +, DEREF,
int*-VAR

if (foo(x) + a[3] < 0) | COND_STMT, if,
FUNC_CALL, VAR,
int-VAR, +,
ARRAY_ACCESS, VAR,
int*-VAR, CONST,
int-CONST, <, CONST,
int-CONST

COND_STMT, if,
FUNC_CALL, VAR,
int-VAR, +,
ARRAY_ACCESS,
int*-VAR, CONST,
int-CONST, <

Figure 4. Example of C situation descriptors
(assume type “int” when unspecified).

sider a pattern to occur when corresponding values in the
IVMPs compare to each other in the same way across all
IVMPs at a statement. The previous example in Fig. 1 in-
volved a pattern in which the two used values are always
the same in the original sets of values in the IVMPs. An-
other pattern occurs when a particular original value always
corresponds to a larger alternate value in the [VMPs.

To identify patterns in the IVMP values, we consider
how pairs of values compare to each other in terms of
whether they are less than, greater than, or equal to each
other. We do this by looking at pairs of values in three
different ways: (1) within just the original sets of values
in the IVMPs; (2) within just the alternate sets of values;
and (3) between corresponding values in the original and
alternate sets of values. Fig. 5 shows an example of how
these pairs of values are compared in the three columns la-
beled “Value Comparisons”. These comparisons are com-
puted for each IVMP associated with a statement (there are
three [IVMPs shown in Fig. 5). If corresponding compar-
isons match across all IVMPs at the statement, then it is
considered to be a pattern and is therefore designated as a
situation descriptor (these are highlighted in Fig. 5). We
use general names to represent the IVMP values, such as
origDef or altUse2, so that the names in the descriptors
do not vary among different statements or programs. We
also look for three additional patterns in IVMPs that we
represent with “special” descriptors: descriptor OTHER-
BRANCH when a branch outcome always changes to the
alternate outcome in the IVMPs; descriptor ONE-TO-ANY
when a single unique value in the original value sets always
changes to some other value in the alternate value sets; and
descriptor ANY-TO-ONE when some original value always
changes to a single unique alternate value. In Fig. 5, none
of the “special” situation descriptors applied.

Value pattern situation descriptors. These situation
descriptors represent patterns in the values involved at a

IVMPs

Value Comparisons

Def Usel Use2

orig: 5 4 1
8 5 3

Original

origDef > origUsel
origDef > origUse2
origUsel > origUse2

Alternate

laltDef > altUsel
altDef > altUse2
altUsel > altUse2

Corresponding

origDef < altDef
origUsel < altUsel
origUse2 < altUse2

orig: 10 3 7
alt: 11 10 1

origDef > origUsel
origDef > origUse2
origUsel < origUse2

laltDef > altUsel
laltDef > altUse2
l@ltUsel > altUse2

origDef < altDef
origUsel < altUsel
origUse2 > altUse2

origDef > origUsel
origDef = origUse2
origUsel < origUse2

laltDef > altUsel
laltDef = altUse2
laltUsel < altUse2

origDef < altDef
origUsel = altUsel
origUse2 < altUse2

Exercised Value Sets

Value Comparisons

Failing Runs Passing Runs

Failing Runs

Passing Runs

Def Usel Use2|Def Usel Use2

failDef = failUsel
failDef < failUse2
failUsel < failUse2

passDef < passUsel
passDef < passUse2
passUsel = passUse2

failDef < failUsel
failDef < failUse2
failUsel > failUse2

passDef < passUsel
passDef < passUse2
passUsel > passUse2

failDef < failUsel
failDef < failUse2
failUsel > failUse2

passDef = passUsel
passDef = passUse2
passUsel = passUse2

passDef < passUsel

origDef > origUsel
altDef > altUsel
origDef < altDef

Patterns (situation descriptors) found:

Figure 5. Example of identifying patterns (sit-
uation descriptors) in IVMPs.

given statement when exercised by both passing and failing
runs. Our tool uses executions of the available test cases to
identify the various sets of values used at the given state-
ment, and these value sets are classified into two groups:
those coming from failing runs, and those coming from
passing runs. We search for patterns among these values
in a similar way as was done for the IVMP pattern situa-
tion descriptors. First, for each set of values exercised by
failing runs, we see how pairs of values compare to each
other and then determine which comparisons are consis-
tent across all failing-run value sets; the consistent rela-
tionships are designated as situation descriptors. Next, we
do the same for the passing run value sets. Finally, we
check for four additional patterns that we represent using
the following “special” situation descriptors: descriptors
ALL-FAIL-SMALLER and ALL-FAIL-LARGER if a partic-
ular value from the failing run value sets is respectively al-
ways smaller or always larger than the corresponding value
from the passing run value sets; descriptors ONE-FAIL-
VALUE and ONE-PASS-VALUE if a particular value is the
same in all failing run value sets or in all passing run value
sets, respectively.

Fig. 6 shows an example with three exercised value sets
from failing runs, and four exercised value sets from pass-
ing runs. The comparisons between all pairs of values in the
failing and passing value sets are shown. In this case, one
value comparison pattern is consistent across all failing runs
and is represented by a situation descriptor, and the special
ONE-FAIL-VALUE situation descriptor applies as well be-
cause value Use2 in all the failing runs is 2.

3.2. Prioritizing Bug-Fix Suggestions

Once the set of situation descriptors to characterize the
current debugging situation has been determined, BugFix
queries a knowledgebase of rules that map various debug-
ging situations to bug-fix descriptions. The result of this
query is a prioritized list of bug-fix suggestions that is rel-
evant to the current debugging situation. We first describe
this knowledgebase of rules, and then we show how it can

passDef < passUse2
passUsel > passUse2

Patterns (situation descriptors) found:
Special patterns (situation descriptors) found:

failDef < failUse2

ONE-FAIL-VALUE

Figure 6. Example of identifying patterns (sit-
uation descriptors) in exercised value sets.

be used to compute a prioritized list of bug-fix suggestions
relevant to the current debugging situation.

The knowledgebase of rules. The knowledgebase of
rules is derived from a database of bug-fix scenarios that
is maintained by our tool. This database is initially created
through training data composed of some set of known de-
bugging situations and their corresponding bug-fix descrip-
tions. Each time our tool encounters a new debugging sit-
uation and its corresponding bug fix, this new scenario is
added to the database. Whenever the database is altered, it
is passed as input to the apriori association rule learn-
ing algorithm [5] (described previously in Section 2.1) to
compute a revised knowledgebase of rules.

Each rule in the knowledgebase maps a particular debug-
ging situation to a corresponding bug-fix description. We
showed in the previous section that a debugging situation is
represented by a set of atomic situation descriptors. A bug-
fix description is simply an atomic textual description of
how to modify a statement to fix a bug. Note that a particu-
lar bug fix can be described in more general or more specific
terms. For example, changing an operator from < into <=
can be described generally as an “operator mutation”, and
more specifically as “change < into <=". To account for
this, we allow a developer to describe a bug fix using mul-
tiple bug-fix descriptions. This allows the tool to be more
versatile in reporting the most relevant bug-fix suggestions
for a debugging situation: sometimes, a more general bug-
fix suggestion may be appropriate, while a more specific
suggestion may be misleading.

The apriori algorithm also associates a confidence
value with each rule, indicating how likely it is that a rule
properly maps a debugging situation to an appropriate bug-
fix description.

The knowledgebase of rules is such that if a rule R ex-
ists that has a particular debugging situation .S and bug-fix
description F, then other rules will exist in which various
subsets of .S map to the same F'. However, the confidence
values associated with these other rules must be less than
or equal to the confidence of rule R. For example, assume

Statement: if (a < b) // assume “<” should be “<="

‘ Current debugging situation: A B D F

(Debugging Situation) RULE PRIO-1 PRIO-2 RULE PRIO-1PRIO-2
* A -> a (33%) 4 8 * AD ->a (100%) 1 2
Statement structure descriptors: IVMP pattern descriptors: * A -> ¢ (33%) 2 8 AE —> c (100%)
< -int—VAR -if altDef < altUse2 || altDef < altUsel * A -> e (34%) 3 6 B C —> a (100%)
‘ - H - ‘ * B —> a (14%) 6 11 ||* BD -> a (71%) 2 3
[origUsel = origUsez | * B -> b (12%) 7 12 _|[* BD -> b (29%) 5 9
. - — * B -> c (33%) 4 8 B E —> b (12%)
Value pattern descrlptors.‘faxlUsel = faxlUseZ‘ B = d (1%) s 13 B E - o (33%)
* B -> e (34%) 3 6 BE ->d (55%)
RULE LES C - a (100%) CD > a (100%)
RULE 2 * D -> a (71%) 2 4 D E -> b (100%)
E -> b (12%) * ABD ->a (100%) 1 1
90% E —-> d (55%) A BE —-> c (100%)
E -> c (33%) ACD -> a (100%)
‘comparison operator mutation‘ * A B -> a (33%) 4 7 B CD ->a (100%)
* A B —> c (33%) 4 7 BDE -> b (100%)
70% * A B —> e (34%) 3 5 ABCD —> a (100%
) . . . AC —> 100%
(Bug-Fix Descriptions with Rule Confidence Values) al)

Figure 7. Example of 3 rules (one debugging
situation mapped to 3 bug-fix descriptions).

that a person who buys eggs and bread almost certainly also
buys milk. Then if a person does indeed buy eggs and bread,
we would have high confidence that the person will also buy
milk. However, if another person buys only eggs, then that
person may also buy milk but we would have less confi-
dence that this will be the case.

Fig. 7 shows an example of what three rules might look
like in the knowledgebase of rules for a conditional state-
ment. In the figure, there is a single debugging situation
composed of 9 situation descriptors that is mapped to three
different bug-fix descriptions (from more general to more
specific), each with a different confidence value.

Prioritizing the bug-fix suggestions. Given a current
debugging situation, our tool prioritizes the bug-fix descrip-
tions in the knowledgebase of rules by performing four
steps: (1) identifying rules to consider; (2) sorting rules
by confidence values; (3) breaking ties by number of sit-
uation descriptors; and (4) reporting the prioritized bug-fix
descriptions as suggestions.

Identifying rules to consider. First, the subset of rules
to be considered for prioritization is identified. These rules
are those in which the debugging situation associated with
the rule is a subset of the current debugging situation. Only
these rules are considered because any rule that is not a sub-
set will involve at least one situation descriptor that does not
apply to the current debugging situation.

Fig. 8 shows an abstract example in which there are 35
rules in the knowledgebase, and the bug-fix descriptions are
ranked with respect to a current debugging situation. In the
figure, each rule is shown with capital letters to represent
situation descriptors, and lower-case letters for bug-fix de-
scriptions. Confidence values are in parentheses after each
rule. An asterisk (*) before a rule indicates that the rule
is considered for prioritization since its set of situation de-
scriptors is a subset of the current debugging situation.

Sort rules by confidence values. The rules being con-

‘ Prioritized list of bug-fix suggestions (w/o duplicates): a e ¢ b d ‘

Figure 8. Example of prioritizing bug-fix sug-
gestions for a given debugging situation.

sidered are ranked in decreasing order of confidence value.
In Fig. 8, the computed ranking is shown in the columns
labeled “PRIO-1” (rank value 1 is the highest rank).

Break ties by number of situation descriptors. Any ties
are broken by ordering rules in decreasing order of situation
descriptor set size. Our rationale for breaking ties in this
way is the following: if two rules have the same confidence
value, then the rule that has more situation descriptors in
common with the specified debugging situation is likely to
be associated with a more-relevant bug-fix description. In
Fig. 8, the ranking computed in this step is shown in the
columns labeled “PRIO-2”.

Report prioritized bug-fix descriptions as suggestions.
Finally, the bug-fix descriptions are reported as suggestions
in order of their associated prioritized rules. If there are du-
plicate bug-fix descriptions, then only the first occurrence
of each one in the sorted list is reported.

3.3. Learning from the Debugging Scenario

Once a developer fixes a bug in the current statement, the
final step of our tool is to learn from this newly-encountered
debugging situation and the corresponding bug fix. This is
done by allowing the developer to describe the bug fix in
terms of one or more bug-fix descriptions, and then adding
a new entry representing the current debugging scenario to
the database of bug-fix scenarios. The database is then
passed as input to the apriori algorithm, which computes
arevised knowledgebase of rules.

BugFix is designed so that it can become more effec-
tive over time at accurately predicting the most relevant bug
fixes for debugging situations. It is fully automated except
for the step of actually making the proper bug fix at a faulty
statement and specifying that bug fix in terms of bug-fix de-
scriptions. The tool currently assumes that a bug can be
fixed by modifying a single source code statement.

4. Case Study

We now present a case study illustrating the use of our
BugFix tool. This case study is designed to show the po-
tential benefit of BugFix; we leave a thorough experimen-
tal evaluation for future work. In this study, we show how
our tool can be used to derive helpful bug-fix suggestions
for several debugging situations (assuming that the faulty
statement has been located). We used an implementation
of the apriori association rule learning algorithm ob-
tained from [15]. For the faulty programs to be debugged,
we used a subset of the Siemens benchmark programs [16]
described in Table 1. We selected these faults because they
can be easily and clearly described in detail, and because
they highlight interesting aspects of our approach that show
the potential benefit of BugF ix. To enable identification of
IVMP and value pattern situation descriptors for the debug-
ging situations, we associated a branch-coverage adequate
test suite with each faulty program consisting of at least 5
failing runs and 5 passing runs, selected from test case pools
associated with each Siemens program.

Prog. LOC | Program Faulty Versions
Name Description Used

tcas 138 altitude separation v6, v9, v20
totinfo | 346 statistic computation | v16

sched 299 priority scheduler v3

sched2 | 297 priority scheduler v7

replace | 516 pattern substituter vl, v23

Table 1. Siemens benchmark programs used
in our case study.

Initial training. Our tool is designed to become more ef-
fective over time at reporting the most relevant bug-fix sug-
gestions for a given debugging situation. However, initially
the tool must be trained using a set of known debugging
situations and their corresponding bug fixes. This ensures
that an initial knowledgebase of rules will exist. With more
training, the tool is expected to perform more effectively
on new debugging situations. To illustrate training in our
case study, we used the following faulty programs and their
known bug fixes: tcas v6, replace vl, schedule V3,
and totinfo v16. For tcas v6, we show the full in-
formation (faulty statement, debugging situation, and bug-
fix descriptions) in Fig. 9. For the remaining training pro-
grams, we show only the faulty statements and correspond-
ing bug-fix descriptions in the figure. Notice in the figure
that for tcas v6, the IVMP pattern situation descriptors
“origDef < altDef” and “origDef > altDef” seem
contradictory. This is because IVMPs are computed with
respect to binary instructions in our implementation, and we
include IVMP patterns from different binary instructions if
they are associated with the same program statement.

To learn from the four debugging scenarios in Fig. 9, we
create four different itemsets — one for each of the four de-

tcas v6:
Faulty line 104:
return (Own_Tracked_Alt <= Other_Tracked_Alt);
(operator <= should actually be <)
Debugging Situation
Statement Structure Descriptors:
ASSIGN_STMT H return H VAR H int-VAR H <= ‘

IVMP Pattern Descriptors:
origDef = origUsel H origDef < origUsel H origDef < altDef H om:.—'ro—mn‘

origUsel = origUse2 H origUsel < altUsel H origUsel > alr.!!sel‘

altDef < altUsel H altDef = altUsel H origDef > altDef ‘ ‘ ANY-TO-ONE ‘

Value Pattern Descriptors:
[passpet < passses |

failUsel = failUse2
Bug-Fix Descriptions

‘ operator mutation H comparison operator mutation H change <= into <

< passUsel H ONE-FAIL-VALUE ‘

replace v1:

Faulty line 107: if (src[*i] == ESCAPE)
(index *i should actually be *i-1)

Bug-Fix Descriptions

‘add term to expression H decrease variable value ‘

‘ add -1 term to expression ‘

schedule v3:

Faulty line 209: n = (int) (count * ratio + 1.1);
(constant 1.1 should actually be 1.0)

Bug-Fix Descriptions

‘ constant mutation ‘ ‘ decrease constant value ‘

totinfo v16:

Faulty line 99: if (info >= 0.1)
(constant 0.1 should actually be 0.0)
Bug-Fix Descriptions

‘ constant mutation H decrease constant value ‘

Figure 9. Four faulty program debugging sce-
narios used to train our tool.

bugging scenarios — by taking the union of the debugging
situation descriptors and the bug-fix descriptions. Then
we simply pass these four itemsets (comprising the cur-
rent database of bug-fix scenarios) to the apriori algo-
rithm [5] so that the rules can be automatically derived.
When invoking apriori, we instruct the algorithm to only
report rules in which antecedents are comprised of only sit-
uation descriptors, and consequents are each comprised of
a single bug-fix description. This ensures that all rules map
debugging situations to bug-fix descriptions. We do not
limit the considered rules based on support value, but we
do limit the considered rules to those with confidence value
at least 80% (this value was found to yield good results in
our case study, based on the training data).

Table 2 shows the bug-fix descriptions known to our tool
for this case study. Each description has an abbreviation as
specified in the “Abbrev” column. The “When Learned”
column describes when the corresponding description is
learned by the tool (either during initial training, or else
through the remainder of this case study as new debugging
situations are encountered).

Encountering new debugging situations. Based on the
knowledgebase of rules obtained from the initial training,
we are now ready to see how our tool behaves when encoun-
tering a new debugging situation. For this, we will look at
four new debugging scenarios, described in Fig. 10 (the as-

Bug-Fix Description Abbrev. | When Learned
operator mutation opm training
comparison operator mutation | copm training
change <= into < <=| < | training
change >= into > >=|> | new situation
add term to expression e+t training
decrease variable value v— training
increase variable value v+ new situation
add -1 term to expression e—1 training

add +1 term to expression e+1 new situation
constant mutation c+ — training
decrease constant value c— training

Table 2. Bug-fix descriptions known during
this case study.

sociated situations descriptors in the figure are omitted due
to space limitations). Notice that tcas v9 and tcas v20
have faulty statements that look identical, but they are ac-
tually distinct statements occurring at two different source
code lines in the program.

tcas v9. This faulty program involves a bug in which
a comparison operator >= at line 90 should actually be
>. For this debugging situation, we identify the situa-
tion descriptors and then query the (trained) knowledgebase
to obtain a prioritized list of relevant bug-fix suggestions.
BugFix reports the prioritized list [<= | <, copm, opm,
e—1,v—,e+t, c—, c+ —], with associated rank values [1,
1,1,2,2,2,3, 3] (in other words, the first 3 suggestions are
tied for rank 1, the next 3 suggestions are tied for rank 2, and
the last 2 suggestions are tied for rank 3). These results im-
ply that potential bug-fixes <= | <, copm, and opm should
be considered first by a developer. Suggestions copm and
opm are indeed effective, since the current situation does re-
quire a comparison operator mutation. Suggestion <= | <
is less effective, but it is similar to the expected fix (the fix
in this case, changing >= into >, is not yet known to the
tool). We believe these results can quickly guide a devel-
oper to the appropriate fix in this faulty statement. After the
fix is made, suppose the developer describes the bug fix with
three descriptors: operator mutation, comparison operator
mutation, and change >= into >. The tool then learns from
this current debugging scenario.

tcas v20. This faulty statement looks identical to the
one just seen in tcas v9, but since it is a distinct statement
at a different source code line, it turns out that the debug-
ging situation is slightly different due to some differences
in the IVMP patterns. However, we expect that the knowl-
edge just learned from scenario tcas v9 should be ben-
eficial in helping the tool to report highly relevant bug-fix
suggestions for this new situation. Indeed, the prioritized
bug-fix suggestions reported by our tool for this new situa-
tion are [>= | >, copm, opm, <= | <], with associated
rank values [1, 1, 1, 2]. In this case, the other bug-fix de-
scriptions contained in the knowledgebase are not reported

tcas v9:
Faulty line 90:
upward_preferred = Inhibit Biased Climb() >= Down_Separation;
(operator >= should actually be >)

tcas v20:
Faulty line 72:
upward_preferred = Inhibit_Biased Climb() >= Down_Separation;
(operator >= should actually be >)

replace v23:
Faulty line 74: if (s[*i] == ENDSTR)
(index *i should actually be *i+l)

schedule2 v7:
Faulty line 292:
if (ratio < 0.0 || ratio >= 1.0) return (BADRATIO);
(operator >= should actually be >)

Figure 10. Four new debugging scenarios af-
ter the initial training.

in the prioritized list because their associated rules all have
confidence values less than the specified minimum thresh-
old. All 3 suggestions with highest rank in the prioritized
list precisely match the expected fix to make at this faulty
statement. Thus, this demonstrates how the results reported
by BugFix can improve over time as more knowledge is
automatically learned through continued use of the tool.

replace v23. In the faulty statement associated with
this faulty program, an array index *:¢ should actually be
*7 4 1. This bug has some similarities to replace vl that
was involved during training of our tool. The prioritized list
of bug-fix suggestions in this case turns out to be [e — 1,
v—, e+t, >=| >, copm, opm, c—, ¢+ —], with associated
ranks [1, 1, 1, 2, 2, 2, 3, 3]. The highest-ranked sugges-
tions (e — 1, v—, and e + t) are, as might be expected, the
same three bug-fix descriptions associated with the similar
scenario replace vl encountered during training. In this
case, suggestion e + t is appropriate because a term should
be added to the array index expression. However, sugges-
tions e— 1 and v— are not quite consistent with the expected
fix, since here, the value of a variable should actually be in-
creased by adding a +1 term to the index expression. On
the other hand, these expected bug-fix suggestions (v+ and
e + 1) are not yet known to the tool, and therefore could
not have been reported by the tool. However, after the bug
is fixed, bug-fix suggestions v+ and e + 1 will henceforth
be known to the tool, so more effective suggestions can be
reported in a similar situation in the future.

schedule2 v7. Here we encounter a debugging sit-
uation in a completely new subject program that has not
yet been encountered by our tool. Although the bug in this
case (comparison operator >= erroneously used instead of
>) is familiar, the statement itself is rather unique as com-
pared to what has been previously encountered. Based upon
all knowledge learned from the previously-encountered de-
bugging scenarios, our tool reports for the current scenario

the following prioritized list of bug-fix suggestions: [c—,
c+ —, >=| >, copm, opm, <= | <, e — 1, v—, e+ 1,
e + 1, v+], with associated ranks [1, 1, 2, 2, 2, 3, 3, 3, 3, 4,
4]. In this case, it seems the expected fix is represented by
suggestions >= | >, copm, and opm, which are all given
rank 2. However, unexpectedly for us, we discovered that
rank-1 suggestion ¢ + — also implies another possible fix:
mutating the constant value 1.0. Indeed, instead of changing
the predicate ratio >= 1.0 into ratio > 1.0 (the expected
change), it may also be appropriate to instead mutate the
constant so the predicate becomes ratio >= 1.001 (an un-
expected change). It turns out that with the latter change, all
available test cases pass. However, the latter change is not
semantically equivalent to the former expected change. A
developer must determine whether such a change is indeed
appropriate, given the specification of the program.

5. Related Work

Fixing bugs. The focus of our current work is to auto-
matically generate suggestions for modifying source code
to fix bugs. He and Gupta [13] developed an approach that
uses the notion of path-based weakest preconditions to au-
tomatically generate program modifications to correct an
erroneous statement in a function. Unlike their approach
which requires a formal specification for a function, our
tool requires only a faulty program and at least one failing
test case. Abraham and Erwig’s debugging tool [1] identi-
fies change suggestions for users to correct errors in spread-
sheets. Our tool, on the other hand, is implemented to work
on general C programs and can be adapted to handle other
programming languages as well.

Locating Bugs. Bugs must first be located in program
code before they can be fixed.

Slicing-based approaches. Static Slicing [31]
identifies a subset of program statements that may influence
the value of a variable at a program location. The related
concepts of Dynamic Slicing [2, 23, 30, 35, 36] and Rel-
evant Slicing [3, 10] have also been studied. Slices can
be used to identify a subset of statements that are likely
to contain a faulty statement. The Whyline debugging
tool [22] uses a combination of slicing and other analysis
techniques to help explain program output.

State-altering approaches. In the Delta De-
bugging framework, failure-inducing input is identified [33]
that allows for the computation of cause-effect chains for
failures [32] which can in turn be linked to faulty code [6].
This is accomplished by swapping program state (the values
of variables) between a successful and failing run. Mish-
erghi and Su [26] recently proposed an improved Delta De-
bugging algorithm for minimizing failure-inducing inputs.
Predicate Switching [34] attempts to isolate erroneous code
by identifying predicates whose outcomes can be altered
during a failing run to cause it to become passing. Value Re-

placement [17] involves searching for the suspicious state-
ments at which values can be replaced during the execution
of a failing run to cause the run to become passing. Suppres-
sion [18] can be used to isolate the root causes of memory
bugs by iteratively suppressing the effects of known cor-
rupted memory locations during program execution.

Statistical approaches. Approaches based on
statistical analysis [20, 21, 24, 25] use dynamic information
obtained from test case executions to rank program state-
ments according to likelihood of being faulty. Jiang and
Su [19] proposed a context-aware approach that constructs
faulty control flow paths linking bug predictors together, to
help explain bugs. Nearest Neighbor [29] searches for a
correct execution that is most similar to an incorrect exe-
cution, compares the spectra for these two executions, and
identifies the most suspicious parts of the program.

Revealing bugs. Check 'n’ Crash [7] derives error con-
ditions statically and then generates concrete test cases to
dynamically verify whether a bug truly exists. Eclat [28]
infers an operational model of the correct behavior of a
program and identifies inputs whose operational execution
patterns differ from the model in particular ways; these in-
puts are likely to be fault-revealing. The Extended Static
Checker for Java [9] looks for common programming er-
rors at compile-time by way of an annotation language in
which a developer can formally express design decisions.
Daikon [8] and DIDUCE [11] can be used to find bugs
through invariant detection. Valgrind [27] and Purify [12]
can be used to detect certain kinds of memory bugs. The
FindBugs tool [14] automatically detects bug patterns in
Java programs.

6. Conclusions and Future Work

We have presented a learning tool called BugFix that
can automatically assist developers in fixing bugs, which
identifies a prioritized list of bug-fix suggestions that are
relevant to a given debugging situation. Through a machine
learning technique, the tool learns about new debugging sit-
uations and their corresponding bug fixes as they are en-
countered, thus increasing the effectiveness of the tool over
time. We also presented a case study illustrating the effec-
tiveness and potential of our tool. Our next step is to con-
duct a detailed empirical evaluation of BugFix to analyze
its performance and effectiveness in helping programmers
fix buggy software. We also plan to improve the characteri-
zation of debugging situations by incorporating information
about (1) the failure manifested by the system; and (2) the
context of the faulty statement being analyzed, such as the
block of code containing the faulty statement.

Acknowledgements. We would like to thank the anony-
mous reviewers for their valuable feedback. This research
is supported by NSF grants CNS-0751961, CNS-0751949,
CNS-0810906, and CCF-0753470 to UC Riverside.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]
[16]

(17]

(18]

R. Abraham and M. Erwig. Goal-directed debugging of
spreadsheets. Symposium on Visual Languages and Human-
Centric Computing, pages 37-44, September 2005.

H. Agrawal and J. R. Horgan. Dynamic program slicing.
Conference on Programming Language Design and Imple-
mentation, pages 246-256, June 1990.

H. Agrawal, J. R. Horgan, E. W. Krauser, and S. London.
Incremental regression testing. International Conference on
Software Maintenance, pages 348-357, September 1993.
R. Agrawal, T. Imielifiski, and A. Swami. Mining associa-
tion rules between sets of items in large databases. Proc. of
the 1993 ACM SIGMOD International Conference on Man-
agement of Data, 22(2):207-216, 1993.

R. Agrawal and R. Srikant. Fast algorithms for mining as-
sociation rules in large databases. International Conference
on Very Large Data Bases, pages 487-499, 1994.

H. Cleve and A. Zeller. Locating causes of program fail-
ures. 27th International Conference on Software Engineer-
ing, pages 342-351, May 2005.

C. Csallner and Y. Smaragdakis. Check 'n” Crash: Combin-
ing static checking and testing. International Conference on
Software Engineering, pages 422-431, May 2005.

M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to sup-
port program evolution. /[EEE Transactions on Software En-
gineering, 27(2):99-123, February 2001.

C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B.
Saxe, and R. Stata. Extended static checking for java. Con-
ference on Programming Language Design and Implemen-
tation, pages 234-245, June 2002.

T. Gyimothy, A. Beszedes, and I. Forgacs. An efficient rele-
vant slicing method for debugging. Foundations of Software
Engineering, pages 303-321, September 1999.

S. Hangal and M. S. Lam. Tracking down software bugs us-
ing automatic anomaly detection. International Conference
on Software Engineering, pages 291-301, May 2002.

R. Hastings and B. Joyce. Purify: Fast detection of mem-
ory leaks and access errors. Proc. of the USENIX Winter
Technical Conference, pages 125-136, 1992.

H. He and N. Gupta. Automated debugging using path-
based weakest preconditions. Fundamental Approaches to
Software Engineering, pages 267-280, March 2004.

D. Hovemeyer and W. Pugh. Finding bugs is easy. ACM
SIGPLAN Notices, 39(12):92-106, December 2004.
http://www.borgelt.net/apriori.html.

M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Ex-
periments on the effectiveness of dataflow and controlflow-
based test adequacy criteria. International Conference on
Software Engineering, pages 191-200, May 1994.

D. Jeffrey, N. Gupta, and R. Gupta. Fault localization using
value replacement. International Symposium on Software
Testing and Analysis, pages 167-178, July 2008.

D. Jeffrey, N. Gupta, and R. Gupta. Identifying the root
causes of memory bugs using corrupted memory location
suppression. IEEE International Conference on Software
Maintenance, pages 356-365, September 2008.

[19]

(20]

(21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]
(31]

(32]

(33]

(34]

(35]

(36]

L. Jiang and Z. Su. Context-aware statistical debugging:
From bug predictors to faulty control flow paths. Proc. of the
22nd IEEE/ACM International Conference on Automated
Software Engineering, pages 184-193, November 2007.

J. A. Jones and M. J. Harrold. Empirical evaluation of the
tarantula automatic fault-localization technique. Proc. of
the 20th IEEE/ACM International Conference on Automated
Software Engineering, pages 273-282, November 2005.

J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of
test information to assist fault localization. International
Conference on Software Engineering, pages 467-477, May
2002.

A. Ko and B. Myers. Debugging reinvented: Asking and an-
swering why and why not questions about program behav-
ior. Proc. of the 30th International Conference on Software
Engineering, pages 301-310, May 2008.

B. Korel and J. Laski. Dynamic program slicing. Informa-
tion Processing Letters, 29(3):155-163, October 1988.

B. Liblit, M. Naik, A. Zheng, A. Aiken, and M. Jordan. Scal-
able statistical bug isolation. Conference on Programming
Language Design and Impl., pages 15-26, June 2005.

C. Liu, X. Yan, L. Fei, J. Han, and S. Midkiff. SOBER:
Statistical model-based bug localization. European Soft-
ware Engineering Conf. held jointly with Intl. Symposium
on Foundations of Software Engineering, pages 286295,
September 2005.

G. Misherghi and Z. Su. HDD: Hierarchical delta debug-
ging. Proc. of the 28th International Conference on Software
Engineering, pages 142-151, May 2006.

N. Nethercote and J. Seward. Valgrind: A framework
for heavyweight dynamic binary instrumentation. Confer-
ence on Programming Language Design and Implementa-
tion, pages 89-100, June 2007.

C. Pacheco and M. D. Ernst. Eclat: Automatic genera-
tion and classification of test inputs. Object-Oriented Pro-
gramming, 19th European Conference, pages 504-527, July
2005.

M. Renieris and S. Reiss. Fault localization with nearest
neighbor queries. International Conference on Automated
Software Engineering, pages 30-39, October 2003.

F. Tip. A survey of program slicing techniques. Journal of
Programming Languages, 3(3):121-189, September 1995.
M. Weiser. Program slicing. IEEE Transactions on Software
Engineering, 10(4):352-357, July 1984.

A. Zeller. Isolating cause-effect chains from computer pro-
grams. [0th International Symposium on the Foundations of
Software Engineering, pages 1-10, November 2002.

A. Zeller and R. Hildebrandt. Simplifying and isolating
failure-inducing input. /EEE Transactions on Software En-
gineering, 28(2):183-200, February 2002.

X. Zhang, N. Gupta, and R. Gupta. Locating faults through
automated predicate switching. International Conference on
Software Engineering, pages 272-281, May 2006.

X. Zhang, N. Gupta, and R. Gupta. Pruning dynamic slices
with confidence. Conference on Programming Language
Design and Implementation, pages 169—180, June 2006.

X. Zhang and R. Gupta. Cost effective dynamic program
slicing. Conference on Programming Language Design and
Implementation, pages 94—106, June 2004.

