SENSS: Security Enhancement to Symmetric Shared
Memory Multiprocessors

Youtao Zhangt Lan Gao!

fComputer Science Department
University of Texas at Dallas
Richardson, TX 75083

Jun Yang*

Xiangyu Zhang* Rajiv Gupta*

‘Computer Science and Engineering Department
University of California at Riverside

Riverside, CA 92521

*Computer Science Department
University of Arizona
Tucson, AZ 85721

ABSTRACT

With the increasing concern of the security on high performance
multiprocessor enterprise servers, more and more effort is being in-
vested into defending against various kinds of attacks. This paper
proposes a security enhancement model called SENSS, that allows
programs to run securely on a symmetric shared memory multipro-
cessor (SMP) environment. In SENSS, a program, including both
code and data, is stored in the shared memory in encrypted form
but is decrypted once it is fetched into any of the processors. In
contrast to the traditional uniprocessor XOM model [10], the main
challenge in developing SENSS lies in the necessity for guarding
the clear text communication between processors in a multiproces-
sor environment.

In this paper we propose an inexpensive solution that can effec-
tively protect the shared bus communication. The proposed schemes
include both encryption and authentication for bus transactions. We
develop a scheme that utilizes the Cipher Block Chaining mode of
the advanced encryption standard (CBC-AES) to achieve ultra low
latency for the shared bus encryption and decryption. In addition,
CBC-AES can generate integrity checking code for the bus com-
munication over time, achieving bus authentication. Further, we de-
velop techniques to ensure the cryptographic computation through-
put meets the high bandwidth of gigabyte buses. We performed
full system simulation using Simics to measure the overhead of the
security features on a SMP system with a snooping write invali-
date cache coherence protocol. Overall, only a slight performance
degradation of 2.03% on average was observed when the security
is provided at the highest level.

1. Introduction

Today, computer systems built as symmetric shared memory mul-
tiprocessors (SMPs) are widely used as servers which run most
popular but also vulnerable operating systems such as Windows,
Linux, and Solaris. SMP servers provide superior performance for
critical commercial and scientific applications (e.g., banking, air-
line ticketing, and web services). Unfortunately, many such servers
are constantly the targets of both software and hardware security
attacks. Often the OS is tampered with to enable meddling with
the normal execution of a user program. Sensitive information can

*Authors are supported by NSF grants CCF-04299867, CCF-
0430021% CCR-0324969*, CCR-0220334", and CCR-0208756" .

be stolen that may bring significant financial loss. Consequently,
it is important to design a tamper-resistant environment for soft-
ware that is executed on an SMP machine. Tamper-resistance of
software encompasses two aspects: confidentiality which refers to
maintaining the secrecy of the code and the data during execution,
and integrity which refers to neither the code nor the data being
changed illegitimately during execution.

Maintaining the confidentiality and the integrity of a program has
been studied on uniprocessors intensively [7, 10, 24, 25, 29, 30].
The essential idea is to treat the processor as the only trusted entity
but not other components such as the memory modules, buses, and
the co-processors. The reason is that values stored in memory, or
the transactions between the processor and the surrounding compo-
nents could be monitored or tampered with at a modest cost by an
adversary [9, 14]. The OS is also viewed as a potential adversary
as it could be broken into and used as a tool to tamper with any user
program execution.

It is natural to adopt the similar security model for SMPs since
the off-chip components are also subject to similar attacks as in
uniprocessors. In other words, we assume that the only trusted en-
tities in an SMP are the processor nodes, and all other components
are vulnerable especially the main memory and the buses. To pre-
serve the program confidentiality, the program itself as well as its
dynamic data are encrypted whenever they are sent off-chip, and
decrypted whenever they are fetched on-chip as in [10, 24]. To pre-
serve the program integrity, a one-way cryptographic hash value is
computed to reflect every valid update to the memory. If the mem-
ory is corrupted, the new hash value from the memory will not
match with the corresponding value stored in the processor, and
thus any physical and software tampering that can alter the behav-
ior of the program execution is detected [7, 24, 25].

However, directly applying memory encryption and integrity check-
ing as in uniprocessors is not sufficient in SMPs. Besides the com-
munication between processor caches and the memory, there is an-
other dimension of communication — the cache-to-cache data ex-
change for maintaining the cache coherence — that is unique to
SMPs. While the cache-to-memory traffic can be encrypted as be-
fore, the cache-to-cache traffic is still in clear text and cannot be
encrypted in the same way (we will show how it could be easily
broken). Not protecting the cache-to-cache traffic implies expos-
ing data in memory indirectly, nullifying the memory encryption.

Therefore, the confidentiality and the integrity of the bus data trans-
fers should be maintained just as the data and code stored in the
memory.

In this paper, we propose a fast and inexpensive Security EN-
hancement to SMP Systems, or SENSS, for ensuring both bus con-
fidentiality and integrity. We introduce a bus encryption scheme for
securing cache-to-cache (bus) data transfers. This scheme inherits
the merits of both one-time-pad (OTP) and cipher block chaining
encryption of a block cipher such as AES (CBC-AES), which en-
sures low overhead of encryption latency for every bus transaction.
In addition, the message authentication code (MAC?) of a sequence
of bus transfers is also generated using the same algorithm with a
different initial vector. The bus authentication is enforced period-
ically or on per-transaction basis by checking the consistency of
MACs on all communication participating processors. Our authen-
tication scheme has the advantage that under heavy bus load where
the system cannot afford to authenticate on per-transaction basis, it
is still guaranteed that all bus transfers are authenticated surpassing
a scheme where randomly selected transactions are authenticated.
We further develop a technique to match the AES unit through-
put with the bus bandwidth at its peak transfer rate. Necessary ar-
chitectural augmentations of the SENSS and its interactions to the
cache-to-memory protection are also discussed.

We have implemented the proposed designs using a full system
SMP simulator - Simics [11]. We measured the impact of having
SENSS on the overall system performance as well as the additional
bus traffic increase on the system bus. On average, the performance
slowdown is less than 2.03% and the bus traffic increase is less
than 34% when the security is provided at the highest level. For
careful evaluation, we also integrated recently proposed techniques
for uniprocessors [7, 10, 25, 29]. When integrated with CHash [7]
and fast memory traffic encryption [25, 29], both slowdown and
bus traffic only have small increases.

The rest of the paper is organized as follows. Section 2 briefly
introduces the security model of uniprocessor systems. Section 3
motivates our work with real world examples of attacks. Section 4

elaborates the design of the SENSS system: encryption/authentication

algorithms and how to match encryption with high bus bandwidth.
Section 5 describes the architecture design in support of SENSS.
Section 6 discusses how SENSS encompasses the cache-to-memory
protection including memory encryption and integrity checking.
Section 7 presents our experimental results. Section 8 discusses
the related work and the last section concludes this paper.

2. Secure Uniprocessor Model

In this section, we discuss the uniprocessor security models in
[10] and [24]. Since those models are quite comprehensive in na-
ture, we will address only those issues that are relevant to the design
of SENSS.

2.1. Encryption model

In a secure uniprocessor, the hardware requirement for security
purpose is mainly a public-private key pair (K., K,), where K,
is public and K, is private, and a fast on-chip crypto engine that
performs encryption and decryption whenever necessary. K, is
sealed inside the chip and cannot be seen by any outside parties
such as the OS while K, is known to public. All the information
flowing between the memory and the processor is encrypted and

1A' MAC function is a one-way keyed encryption function that can
be easily produced but is difficult to reverse.

stays encrypted in memory. The information includes the program
itself and the data that is brought in and sent out of the chip during
execution. The encryption is performed using a symmetric cipher
with key K. This key is chosen by the program distributor to
generate the encrypted program.

To communicate K5 to the processor, the distributor encrypts
it using K, and ships the ciphered key along with the program.
Upon receiving and executing the program, the processor uses K,
to decrypt Ks and stores it in an on-chip private register. K is
later on used to encrypt and decrypt program data transferred across
chip boundary. This means that the instruction and the data in the
internal caches are all plaintext. The data is only encrypted when it
is written off-chip to the memory.

As one can see, such an encryption model imposes significant
performance overhead. Every memory write must be preceded by
encryption and every memory read is followed by decryption be-
fore the data can be used. To reduce the impact of long latency
crypto operations, a fast encryption algorithms were developed by
Suh et al.[25] and Yang et al.[29]. The idea is to overlap encryption
with memory accesses so that the ciphertext is not data dependent
on the plain text or vice versa. In such a scheme, encryption is
achieved by XORing the data value with a pad which is a crypto-
graphic randomization of the address of the data. Therefore, the
pads can be generated in parallel with the memory reads. Note that
the pads for the data in the same address should be different every
time the data is written into the memory. Otherwise the ciphertext
would appear regular if the data is changed regularly over time.
Therefore, an on-chip pad cache or buffer was used to remember
the latest pad for a memory block. This improvement can reduce
the performance slowdown from 17% to 1.3% with a 64KB on-chip
pad cache [29]. Due to such performance advantage, we will use
this encryption technique, referred to as “fast memory encryption”
in later sections, in our SENSS for cache-to-memory transfers.

2.2. Integrity checking

The traditional method of memory integrity checking is to cre-
ate and store MACs for memory blocks. However, such a method
cannot defend the replay attack in which the adversary replaces a
new memory block with an old one and its valid MAC, as pointed
out by Gassend et al. [7]. To solve this problem, a tree of crypto-
graphic hash values is created for the memory in which the leaves
are the memory data, the internal nodes are hashes of their children
and the root is the unique signature of the entire memory. The root
is stored internally and can be updated only by the processor to be
safe. The rest of the tree can reside partially in L2 cache depending
on its available capacity. The part stored in the memory needs to be
validated if it is acquired by the processor, similarly to that of any
data. Once a node resides in L2, it is considered to be secure.

To check the integrity of a memory block (either leaf or internal
node), its hash should be computed and compared against the one
stored in its parent node. A mismatch indicates an integrity vio-
lation. If the parent is not in L2 cache, it should be fetched and
checked for integrity. This procedure repeats until an internal node
is found in L2.

Even though caching the hash tree is advantageous to the pro-
gram performance, it is still reported to result in a 25% slowdown
on average [7]. A lazy verification approach is later introduced by
Suh et al. [25] to further reduce the overhead of integrity check-
ing. Instead of checking each memory access strictly, they propose
to cluster a sequence of memory accesses and then check them to-
gether at a later time. A multiset hashing function is used to support

this checking in a small amount of trusted on-chip storage. The
performance overhead is significantly reduced to 5% compared to
25% slowdown in [7]. In addition, the memory requirements for
integrity checking are also reduced.

3. Vulnerabilitiesin SMP and Poten-
tial Attacks

Although the security models for uniprocessors have been exten-
sively developed, they are not sufficient for SMPs. In this section,
we will explain where the models would break in both confidential-
ity and integrity of a program executing on an SMP.

3.1. Uniprocessor encryption method will not
wor k

One might ask: since the traffic between the processors and the
memory is already encrypted as in the uniprocessor model, we
could just use the same ciphertext for cache-to-cache traffic. In
fact, such a simplified scheme is not as secure as before. To see
this, let us analyze the situation where the fast memory encryption
is used. This scheme is superior to direct encryption from the per-
formance perspective as discussed in Section 2.1.

Assume that now the cache-to-cache traffic is encrypted using
the same pad P as the cache-to-memory traffic for the same data
D. Suppose that D is encrypted as P & D in the memory, and D
is currently exclusively owned by a processor A. Thus, A can keep
updating D in its local cache without the necessity of changing P.
Now, if another processor B wants a most recent read copy of D,
D would be sent as P ¢ D. Later on A modifies D to D’ and
B requests again, D’ would be sent as P @ D’. An observer can
simply XOR the two ciphertext to get D @& D’ which is obviously
not good. Therefore, different encryption method should be used
for bus (cache-to-cache) transactions.

3.2. Potential attacks on the shared bus

In addition to encrypting the bus transactions, we also need to
develop schemes to authenticate them since they could be tam-
pered with just as memory contents. There have been a number
of techniques and devices targeting at tapping or tampering a bus
to change program behavior [9, 14]. For example, Sony Playsta-
tion and Microsoft Xbox can be hacked by “modchips” which can
be soldered to the buses on the motherboard and allow the console
to play pirated games. A clean machine always checks the digi-
tal signature and media flags from a registered CD by executing
a small code in BIOS. A modchip reads, measures and times the
busses to block the code from the BIOS and injects spoofing code
at the right time. The hacked machine now executes the new code
that skips authorization checks. Such a chip is only around $60 and
very easy to install [14].

Although attacking an SMP system is more involved than a game
machine, it is reasonable to foresee that such tampering of a system
is possible. We should thus develop authentication techniques to
defend against as many imaginable attacks on the bus as possible
to maintain the integrity of cache-to-cache transfers. The different
types of attacks include:

(Type 1) message dropping which means a message destined to a pro-

cessor is blocked illegally.

(Type 2) message reordering which means the messages are mis-ordered,

e.g., swapped, on the bus.

(Type 3) message spoofing which means a fake message is generated

to fool some processors to receive them as legal messages.
Examples are message insertion or replaying.

A normal authentication algorithm will not be able to catch all
of the above attacks and thus needs to be augmented as we will
explain later.

4. TheDesign of SENSS

In SMP systems, each processor contains its own local caches
(typically L1 and L2) and all processors share a centralized main
memory that is accessed through an external bus®. Both cache-to-
cache and cache-to-memory transfers use this external bus, and the
former occurs in executing certain cache coherence protocols. We
will first give an overview of the SENSS model and then elaborate
the security algorithms.

41. SENSS overview

Program dispatching. The procedure of preparing a program on
an SMP is similar to that on uniprocessors, except that there are
multiple processors now. Each processor is assigned a public se-
cret key pair (s;,t:), ¢ = 0,1,--- ,n. These key pairs should be
distinct across all the processors to prevent cascading breakdowns
if one processor’s private key is compromised. The programs that
are dispatched to such an SMP are encrypted by the distributor us-
ing a symmetric key cipher with key k. k is then encrypted using
all processors public keys (s;’s) and bundled with the encrypted
program and dispatched to the machine. This is illustrated in the
“Program package” drawing in Figure 1.

Application, Application,
CPU, cPU, cpu, cPy,
(Sp, to) (53, t) (S t)| |)T (S t)

SHU SHU SHU SHU
—L———1 P> a————— L—Bus
RSA(S,, A) r
RSA(s,, R) Encrypted .

program using main

symmetric key &,

RSA(s,, R
Program package

Figure 1: SENSS overview.

Processor grouping. The program distributor has the freedom to
specify a subset of trusted processors on the target machine since
it may have a good reason to suspect certain processors (e.g. those
that are dedicated to processing network protocol stack). We term
this subset a group. Thus, &k can only be decrypted on group mem-
ber processors, not on others. In Figure 1, we show examples of
two applications 1 and 2 which use processors (0, 1, 2) and (2, 3,
-+, n), where n is the maximum processor id (PID), as their group
members respectively. Each group is assigned a unique group id
(GID) which will be used in secure communication.

Message tagging. To protect communication of a group from be-
ing tampered with by another group we must meet the following
requirements. The first requirement is that a message belonging to
a group should not be read by another group. Thus, the GID should

2Distributed shared memory multiprocessor systems where direc-
tory based cache coherence protocols are used are not considered
in this paper.

be used to tag each message so that each processor only picks up
its own group messages. Second requirement is that it should not
be possible for other messages to tamper with group messages. We
design an encryption and authentication algorithm that incorporates
the PID into each message. Hence, the PIDs need to be sent on the
bus also. These activities are ensured by a security hardware unit
(SHU) (Figure 1) which is solely controlled by hardware and can-
not be accessed even by the OS. When a message is put on the bus,
SHU automatically tags it with its GID and PID. When a message
appears on the bus, the SHU only picks up the message for the GID
that it maintains. With the message tagging, the original bus needs
to be augmented with an additional bus that transfers PID and GID.
We will describe additional hardware maintained by the SHU in
Section 5.

The SHU also contains the en/decryption engine, the public-
secret key pair, and a private memory similar to that in XOM [10].
In addition, it contains more hardware to maintain the group infor-
mation in order to protect the group’s communication on the bus.

4.2. Encryption scheme

Our goal is to design an encryption scheme that is both secure
and fast. The proposed algorithm has the flavor of both one-time-
pad (OTP) [22] encryption and Cipher Block Chaining mode of a
symmetric block cipher such as AES (CBC-AES). We utilize OTP
for its fast encryption speed, and CBC-AES [17] for its high se-
curity level and its capability in message authentication, especially
the chaining feature that distinguishes it from a non-chained au-
thentication algorithm. We will show later that using the CBC-
AES MAC in SMP can defend attacks that would be transparent
to a pure hash based authentication scheme. Another advantage is
that for the same data transferred on the bus at different time, CBC-
AES will generate different ciphertext strengthening the protection
of data. In authentic OTP encryption, the ciphertext is the XOR of
the data and a random key (termed pad). To decrypt a ciphertext,
the same pad is used to XOR with the ciphertext and retrieve the
plaintext. OTP based encryption can be done rapidly as the gener-
ation of the pads can be done off the critical path. Encryption and
decryption involves only one XOR operation which is usually only
one processor cycle. We use this property in conjunction with the
CBC mode of AES.

CBC-AES Busencryption
1st | ¢ = Data ® myast | ¢ = Data @ mygst
Encryption || 2nd m = AES(k,c) send ¢
3rd send m m = AES(k,c)
1st receive m receive ¢
Decryption || 2nd | ¢ = AES™I(k,m) | Data = c® myqst
3rd | Data = ¢ ® myqqt m = AES(k,c)

Table 1: Adapting CBC-AES to the shared bus.

The algorithm. In the CBC-AES, the input to the AES at time ¢
is the XOR of the data at time ¢ and the cipher attime ¢ — 1, m;qs¢
(see the “CBC-AES” column in Table 1). The output of the AES
then updates m;,s: and is sent out as the cipher of Data. On the
decryption side, m is first decrypted into ¢, and ¢ is XOR’ed with
Mmiast 10 get Data. In SENSS, sending m onto the bus means that
it cannot be produced until hundreds of cycles (due to AES delay)
after Data is ready. Similar reasoning applies to the receiving end
for computing Data. Thus, we send ¢ onto the bus since it can be
computed just one cycle after Data is ready (see the “Bus encryp-
tion” column). We then update m in the background to get ready

for the next round of transfer. On receiving ¢, a processor simply
XOR’s it with the m; 4+ to compute Data, and then updates m for
the next transfer.

Originating Processor Snooping Processors

R P, P, I3
PID PID
------ »Ea D~ (e nes |-
GID A ® ® A GID
l Data Bu: T
PID, GID Bu o

Figure 2: Bus encryption scheme.

This procedure is illustrated in Figure 2 where we use “mask”
to represent the m’s. The message originating from a sender pro-
cessor is encrypted in step 1 and 2, and decrypted in step 3 and 4
on the receiver side. On both sides, the mask should be available
from the last bus transfer. After that, the mask is updated from AES
unit which takes inputs PID and ¢ (the necessity of PID will be ex-
plained later). The update paths are shown by dotted lines in the
figure.

Initialization. In the above bus encryption scheme, it is very im-
portant that all group members start with the same initial vector
mo SO that all processors are correctly synchronized. This can be
carried before the application starts execution. A designated pro-
cessor, e.g. the one with the smallest PID, is responsible for broad-
casting a randomly generated initial vector to all group members
(this action is performed in the SHU of the processor). The random
vector can be obtained from the AES unit with an arbitrary input.
The broadcasting process should be encrypted and authenticated
using the secret key of the program. Since this is only required at
the beginning of execution, spending some time in initialization is
acceptable. Also, in every invocation of the same program, it is
necessary to generate different m so that each run produces differ-
ent mask traces and it is more difficult for any opponent to analyze
the program.

Maintaining the mask. There are multiple groups running in the
SENSS and each group maintains its own mask across all group
members. The masks are updated during the lifetime that the group
is active even if no active thread from that group is on the proces-
sor. In this way, when a thread from an active group is scheduled
to execute, the mask is ready for use. When an existing group is
swapped out, all processes on all processors are stopped and the
contexts are encrypted before being written out to the memory.

4.3. Authentication

The algorithm. Using the CBC mode of a block cipher in SENSS
has an additional advantage: it can generate MAC to authenticate
the bus transfers. This algorithm has been pervasively used in inter-
national and U.S. standards [6]. The principle is that if a message
has ¢ blocks, which is divided according to the underlying block
cipher input width, then its MAC is the s-bit prefix (16 < s < n)
of mac; where

macy = AESy(--- AESk(blocky) @ blocks) - - - @ block:) (1)

In SENSS, if each bus transfer is a block and we treat a fixed num-
ber of bus transfers as a big message, then the m. can authenticate
the whole sequence of transfers in one shot. In other words, m.

reflects the entire history of messages up to time ¢. When using
this scheme for every processor, the message history seen by every
processor should be exactly the same. This implies that it can au-
thenticate the broadcasting behavior of the bus while a non-chained
authentication scheme may not be able to even though each indi-
vidual message is authenticated. We will show an example of this
argument.

There are some other benefits in doing so: 1) If the applica-
tions on an SMP generate heavy bus traffic, the system may not
be able to afford authentication on every bus transfers. Check-
ing on a sequence of transfers can greatly reduce the performance
overhead yet not losing a single transfer that should be authenti-
cated. 2) A typical crypto hash function can compute the hash only
after the entire message is available, whereas CBC can compute
the MAC block by block as they are generated. This attribute has
promoted its usage even in real-time applications [16]. 3) The se-
quence length can be adjusted by the system. When it is set to one,
the authentication is carried on every bus transfer providing maxi-
mum integrity protection. This feature allows the system to choose
different authentication levels according to the varying security re-
quirements and the application characteristics without changing the
algorithm. The authentication procedure is the following.

All processors use the data block and its originating PID as in-
puts to the algorithm, i.e., the sender assembles the block and its
own PID as the input, and the receiver takes them from the decryp-
tion path. Each processor sets a counter in the SHU as the authen-
tication sequence length. This counter counts the number of bus
transfers since the last authentication. All the group members have
exactly the same view of its counter at any time. Once the counter
saturates, an initiating processor starts an authentication transac-
tion and sends the MAC onto the bus. Since the counter is updated
synchronously, all member processors are expecting at this time the
MAC on the bus. They compare the received MAC with their own
copies. If a mismatch happens, a global alarm is raised indicating
an authentication failure and the program is halted. Note that any
tampering of masks during authentication will also result in failure
since a mismatch would occur. The initiating processor should be
decided in a round-robin fashion to avoid a single member failure
in a group.

Defending Type 1 attacks. Type 1 attacks refer to data block
droppings. In such a scenario, the sender sends out a block but
the receiver did not get it. What’s unique in SMP is that once
one processor sends out a data block, all group members must re-
ceive it. Otherwise the bus transfer’s integrity is violated. In a
normal bus authentication scheme, a hash value is sent along with
the block so that the receiver can verify the integrity of the re-
ceived block [20]. This would be correct if the communication
is point-to-point, but not in case of broadcasting in which all mem-
bers should maintain consistent MACs at all times. Using a bus
sequence number, hoping that the processors being blocked would
have stale sequence numbers since the block did not reach them
and so the sequence numbers did not increment, cannot solve this
problem unfortunately.

Imagine processor A intends to send data Dap to B in the ¢
bus transaction and C' intends to send data D¢p to D in the (i +
1)*". Both transactions should be seen by all processors, so the
final sequence numbers on them should be ¢ + 2. However, if the
i*" data block was dropped from C and D and the (i + 1)*" was
dropped from A and B. All sequence numbers are incremented to
i + 1, and most of all none of the processors can detect this attack

th

since each data block they receive is a valid one. In our scheme we
can detect such a split within group members since the MACs take
the data block and its originator as the inputs. Thus, A and B would
update their MACs using Dag and PID 4, and C and D would
take Deop and PIDc. Even though the following bus transactions
are not messed up, the i*" transaction has been different between
{4, B}, and {C, D}. And this inconsistency will propagate until
the next authentication since the MACs are all chained up from the
very beginning.

Defending Type 2 attacks. Equation (1) for authentication must
take a different initial vector (I1') than the one used in encryption
so that the mac;’s are different from the masks. In the original
algorithm (1), a zero I'V is used to eliminate the need of I'V initial-
ization on every message. We will use a different IV every time
the program is invoked, and the initialization can be carried with
the encryption’s initial mask mg. Using different 7V’s for encryp-
tion and authentication is necessary since using the masks directly
cannot defend the Type 2 attacks. To see this, let us assume a swap-
ping attack in which the adversary swaps the first and second bus
transfers. Defending other misordering attacks can be derived in a
similar manner.

Assume that the sender processor sends out m1 = mo @ block,
ma = AESk(m1) @ blocks, and ms = AESk(m2) @ blocks
onto the bus, but the receiver received ms, m1, and ms, out of the
original order. Using the masks shown in Figure 2 will result in
a mask sequence of AESy(m1), AESk(m2), and AESy(ms) on
the sending processor, but AE Sk (m2), AESk(m4), and AESy(ms)
on the receiving processors. And we can see that starting from ms
the masks will be consistent again, i.e., the algorithm has recov-
ered from an attack which is not desired. By using the algorithm in
equation (1), the sequences of the MACs are:

sender : MAC1 = AESy(blocky),
MACy; = AES,(MAC: & blocks),
MAC3 = AESR(MAC, @ blocks),
receiver : MAC] = AES(block}) = AESy(mo & ma2),
MAC), = AESy(MAC] ® block})
= AESL(MAC| & mi & AES)(m2)),
MAC, = AES,(MAC) @ blocky)
= AESk(MAoé e ms3 EBAESk(Wu))

It’s easy to see that the MACs at two ends are different, and the fu-
ture MAC:s at the receivers will continue to differ from the senders’.

Implications. Using a different IV for authentication implies that
the AES needs to be invoked twice for every data block. For a
highly pipelined (i.e. high throughput) AES unit nowadays, the au-
thentication can follow the encryption in the immediate next AES
pipeline stage. Therefore, the latency due to authentication can
be mostly overlapped with the encryption. There are also newly
developed algorithms that can provide encryption and fast MACs
calculation involving only one invoking of AES such as the GCM
[13] algorithm. In that case, the MACs are calculated using Galois
Field GF'(2'2®) multiplication that takes the outputs of the counter
mode of AES as inputs.

Defending Type 3 attacks. The use of the PID in the encryption,
as shown in Figure 2, is to let the encryption include the PID and
pass it on to the authentication path. This is to detect the Type 3
attack (message spoofing) as listed in Section 3.2.

Assume that the adversary is so powerful that a spoofed message
with valid GID g and PID p can be injected onto the bus. Then pro-

cessor p will identify this spoofed message immediately and raise
an alarm since it tries to snoop every message that belongs to g but
not with PID p (p should not receive its own message from the bus).
Let us further assume that the adversary is intelligent enough to sin-
gle out p with a message tagged with g and p’ where p’ is also a
valid member of g. At this time, no member in g can recognize this
spoofed message since everybody gets valid GID and PID. How-
ever, the MAC updated by p is different from the rest since it uses
PID p’ instead of p in AES! And this inconsistency will propagate
till the next bus authentication, detecting the spoofing attack.

4.4. Rapid busencryption

One mask for unidirectional traffic. Although the lengthy crypto
computation is moved off from the critical path in our encryption
scheme, the mask generation can still be a bottleneck under high
volume of bus traffic. To see this, let us assume the bus is trans-
ferring data at its peak rate. If the flow of data is unidirectional
(i.e. receiving or sending, but not interleaved), the AES unit has
to generate new masks fast enough so that the incoming data from
the bus is absorbed in time or the outgoing data is sent out timely
without delay. This would require that the throughput of AES be
the same as the bandwidth of the bus. Fortunately, modern AES’s
throughput can be designed to match with the gigabyte buses [8,
26].

Two masks for bidirectional traffic. Now consider a bidirec-
tional flow of data. Suppose a processor snoops a message at time
t, and decrypts it at time ¢ 4 1. At this time it wants to send an out-
going message using the updated mask. However, the AES starts to
generate new mask at time ¢ but will not complete until ¢ 4 ¢ where
c is the encryption latency (~80 CPU cycles). Thus, the outgoing
message is blocked waiting for the mask calculation. This situa-
tion can happen quite often as the incoming and outgoing data are
usually interleaved on an SMP.

To solve this problem, we use a pair of masks to decouple the
mask dependency between back-to-back messages of opposite di-
rections. One mask is used solely for the odd numbered messages
(m.,) and the other for even numbered messages (m.). Here we uti-
lize the fact that there is a total order of the entire set of messages
generated from within a single group during its lifetime. Since ev-
ery message is snooped by every member, the total order is explic-
itly known to every member. Hence, every group member can keep
such a tuple (m,, m.). In this way, messages in a row will be en-
crypted using m, and m. alternately avoiding the wait in updating
the mask.

d2 d3 d3
v
[m,] [m,] [m.] [m] [m]
df “+—— -€d;on the-bus— —+
"t t+1 w2 ottt
time

Figure 3: Using a pair of mask to avoid waiting the latency of
mask update.

Figure 3 illustrates our mask pair scheme. Suppose both masks
are available initially. At time ¢, an incoming data d; is received
and thus the m,, is used for decryption. At¢+1, m,’s update begins
and thus it is not available for some time (shaded in the figure).
Meanwhile, an outgoing data d- arrives at this processor. Since m,

is not available, m. is used to encrypt dz. (In fact, since d- is an
even numbered message, m. should be used by default even if m,
is available.) At t + 2, both masks are undergoing updates, and
d» is being transmitted on to the bus. Suppose that the bus cannot
start next transaction until ¢ + s, i.e., its cycle time is s, and AES
latency is also s, then m, will become available at ¢ + s. If there
are any outgoing data, such as ds, that arrive between ¢ + 2 and
t + s, they should be delayed until ¢ + s even in course of normal
SMP operation. At t + s, since m, has come back to service, ds
can be encrypted with m, quickly. At¢+ s+ 1, m, is off again but
me IS now ready. As we can see, without the mask pair, d2 would
be delayed to ¢ + s.

Given above, it is possible that two processors try to send out
data to the bus simultaneously both thinking their data is an odd
(or even) numbered message, i.e., a race condition arises. How-
ever, since only one message can be sent on the bus at a time, the
competing processors are ordered with respect to each other from
the bus arbiter’s standpoint. Thus, we require that every sender first
obtain the bus from the arbiter and then XOR its data with the right
mask. Now that the competing processor will first receive the bus
data, it will decrypt it using m, and then send out its data encrypted
using me.

Note that we assume that the AES has a latency comparable to
the bus cycle time. Under this condition, two masks in a pair are
enough to remove all the possible delay in transferring messages.
Also remember that with the mask pair implementation, the authen-
tication now needs to be performed for both of them.

Multiple masks for higher bus speed. In the example shown in
Figure 3, if the bus cycle latency was shorter than the AES latency,
m, would not be ready at ¢t + s and d3 would be delayed. If more
masks were provided, e.g., a third mask was there, ds could be
encrypted in time. At the peak traffic volume of high throughput
buses, multiple requests may be sent to the bus back-to-back. Thus,
amask is consumed every bus cycle and a new mask is needed after
each bus cycle. While the AES throughput can achieve such a rate,
i.e., one mask being produced in every bus cycle, the mask will not
be available in many cycles. Thus, we need an array of masks to

saturate the AES throughput. The number of masks necessary is
’V AFES latency —‘

bus cycle time

5. HardwareRequirementsof theSHU

In the previous section, we elaborated on our bus encryption and
authentication algorithms. All the techniques are designed with
security and speed as the paramount priority. Besides the effort
in crafting the algorithms, we must provide hardware that is also
secure and fast as part of the design.

s SHU Ry
Encryption/
decryption (s t)
engine
PID ocp ctr
\ group, & [m. m,, ..
o [To group, rmym, .|
group, [1 I
group-processor Group info. table
bit matrix
:‘ private memory

Figure 4: Architecture of the SHU.

5.1. Group processor bit matrix

Recall that each data message on the bus is tagged with its GID
and PID. The SHU has to decide very quickly if it should read the
message. It should read only if the message belongs to a group
maintained on the host. Since the group information is dynamic
as programs start and exit, we use a “group-processor bit matrix”
shown in Figure 4 to maintain the information and perform lookup
in O(1). Itis indexed by the GID horizontally and PID vertically.
A bit at (g, p) being set means that processor p belongs to group
g, and unset otherwise. Thus, a row of the matrix indicates all
the member processors of a group and a column indicates all the
groups maintained on a particular processor. An exception is that
if a processor does not maintain group g, the ¢*” row in the matrix
should contain all zeroes. This means that a processor should not
know the information about a group which it does not belong to.

Thus, a processor snoops the GID and PID of the bus messages
and uses them to index the matrix. If the bit is set, the correspond-
ing key and masks are read out from the group information table
(introduced next), and used to decrypt the message. Otherwise, the
message is discarded.

5.2. Group information table

The other table, “group info. table” in Figure 4, is used to keep
the secret information for each group. The group entry contains
three fields: an “occupied” bit, the symmetric key &, and the masks.
When an application is first loaded into the SENSS, the OS must
assign it with a valid group ID (GID) which is used and non change-
able throughout the life time of this application. This GID is ob-
tained by inquiring the group information table for a free entry.
The “occupied” bit indicates whether the current entry has been
allocated. If all entries are occupied, the application is put into a
queue waiting for the next available GID which is reclaimed upon
completion of a program.

Once the GID is set up, the application passes its encrypted key
information to every member in the group. Each processor then de-
crypts the key using its own private key and then stores the plaintext
key k in the entry indexed by GID. The next field in the group in-
formation table is the mask(s) field. Each group uses distinct masks
that are generated from the communication among the group mem-
bers only. This is necessary because if different groups share a
common mask pair, it is very easy to leak information to other
groups as all bus transfers are encrypted using their masks. The
last field, “ctr”, stores the authentication interval for each program.

Once a GID is selected for a program, the corresponding table
entry in all processors must set their “occupied” bits even for non-
group members. This is to prevent the same GID from being used
between non-trusted applications. Since every message sent on the
bus is tagged with GID by the SHU, bus data with different GID
should be picked up by different groups. The difference is that
non-group members do not have the key and mask information as
the group members do. It is also consistent with its corresponding
null entry in the group processor bit matrix.

6. CombiningWith Cache-to-Memory
Protection

We now discuss the integration of SENSS and memory encryp-
tion/authentication. We will use the fast memory encryption [29,
25] and the hash tree technique for memory integrity check [7, 25]
since they are by far the most efficient techniques. Special con-
siderations have to be taken as we are adapting them to an SMP

architecture. The main concern is the consistency of the pads and
hash trees stored on-chip in each processors. Next, we discuss these
problems and how they can be solved in different cache coherence
protocols.

6.1. Memory encryption

When each processor performs fast memory encryption on its
own, the pads in their local caches may become inconsistent since
different processors have different memory access pattern (pads are
updated only on memory writes). For example, suppose initially
both processor A and B hold data D in their caches and D’s pad is
consistent in their pad caches. Later on, if A pushes D down to the
memory and updates D’s pad, B cannot use the local old pad for D
anymore.

As we can see that this problem is similar to traditional cache
coherence problem. Thus, we can either use a “write invalidate” or
a “write update” protocol to handle the changing of a pad. In “write
invalidate”, if a pad is changed in one cache, an invalidate message
is sent on the bus invalidating the pad’s other cached copies. Later
on if the pad needs to be used by other processor, a request message
is sent on the bus to acquire the latest copy. In “write update”,
every time a pad is changed in one cache, an update message is
generated on the bus to all other caches so that other copies are
always synchronized with the latest change.

6.2. Memory integrity check

When memory authentication is performed, its hash tree is par-
tially cached locally and each processor maintains its local part of
the tree. It is easy to see that tree node inconsistency among differ-
ent processors could happen, just as the pads explained before.

Using similar strategy, we can adopt either “write invalidate” or
“write update” protocol for newly modified data and its hash. The
complication lies in that multiple invalidate or update messages
may be invoked. Recall that the hash values of cache blocks are
stored in their parent nodes. When a cache line is evicted to mem-
ory, its parent node in hash tree may not be in the cache for hash
updating. If the parent node is in another cache, using either proto-
col can achieve a coherent update of the hash, and the process stops
here. If the parent node is in the memory, we need to fetch it as well
as initiate a second access to the grandparent node to authenticate
the parent node and change its hash in the grandparent node. When
the grandparent node is modified, its consistency needs to be han-
dled again. This procedure repeats until a node is hit in local cache
in which no further parent nodes need to be updated.

Since most of the SMPs adopt the “write invalidate” protocol for
its better performance, we also use this protocol for pad and hash
coherence in the SENSS.

7. Experimental Evaluation
7.1. Hardware overhead

Table sizes. There are two tables maintained in the SHU: group
information table and group processor bit matrix. The matrix needs
only 1024 entries x5 bits per entry = 640 bytes, assuming the max-
imum number of processors is 32. For each entry in the group
information table, the “occupied” field is 1 bit; the session key is
128 bits. The counter field can be from 0 to 32 bits. We chose 8 bits
in our experiment. The number of masks we store for each group is
8 for encryption and for authentication. These masks can perform
as good as as using infinite number of masks from our experiments.

The total bits per entry is 1161 bits, or 148.6KB for 1024 entries.

Encryption unit. We will need a fast encryption unit that can
provide sufficient throughput compared to the bus bandwidth, and
at reasonable latency. AES speed has been constantly improved
by recent research and industrial effort: ASICS.ws introduced an
AES IP core that needs 22-26 cycles at 266Mhz [3]; Schaumont
et al. [19] introduced an AES prototype that requires 14 cycles
at 154 Mhz. In accordance with these works, we model an AES
implementation that requires 80 cycles for 1GHz processor. The
throughput, however, needs to match the peak bus bandwidth which
is 3.2 GB/s in our experiments. Throughput is generally improved
by pipelining and logic duplication. In [8], the implementation of
128-bit AES unit can achieve 30~70 Ghit/s with 175~380K gates
using 0.18um CMOS technology. Thus, it is easy to match AES
throughput with the bus bandwidth.

Bus designs. To distinguish different messages on the shared bus,
the bus arbitrator needs to generate different message types for each
transaction. This may require extra lines on the command bus. In
SENSS, the following three additional types of transactions are dis-
tinguished:

e Type “00” indicates a bus authentication message.
e Type “01” indicates a pad invalidate message.
e Type “10” indicates a pad request message.

Hash invalidation and request do not need extra signals since the
hashes are stored in L2 cache, which follows normal coherence
protocol.

Besides the message type, PID and GID are sent along with
each cache-to-cache transfer message. For the machine we mod-
eled (SUN E6000 [26]), the PID is already there as “source ID” for
each message. Thus no extra lines are necessary. GID is 10 bits in
our design assuming the maximum groups simultaneously exist in
SENSS is less than 1024.

These bits increase the bus lines in the system by an amount
acceptable for modern SMP servers that adopt separate address and
data buses. SUN gigaplane bus used in E6000 [21], for example,
has a total of 378 bus lines (256 data lines, 41 address lines, and
many other control lines). SENSS model adds 11 extra bus lines: 1
bit for message type, and 10 bits for GID. This is a modest increase
of 2.9%.

Each bus message is XOR’ed with the mask before sending and
after receiving the message. It takes only one cycle at the sender
side since the mask is ready to use while it requires two cycles at
the receiver side: one cycle is to find the GID and its current mask
and the other cycle is to perform the XOR operation. Nevertheless,
it adds 3 cycles to the bus delay.

7.2. Simulation framework

We modeled SENSS using Simics [11], a functional full-system
multiprocessor simulator developed by Virtutech AB. We config-
ured Simics with SPARC V9 and Solaris 9 OS and the system pa-
rameters are similar to Sun E6000 (Figure 5). The MESI cache
coherence protocol is adopted. We selected the typical memory
and bus latency similar to [4]: when the DRAM access time is 80
ns, the memory access latency is about 180ns due to the extra con-
trol delay. The cache-to-cache transfer bus latency is 120ns when
there is no contention. The bus throughput is 3.2 GB/s which is
comparable to a high speed Gigaplane bus [21].

The benchmarks we used are unmodified binary codes for SUN
Solaris. We chose programs from SPLASH2 benchmark suite [27].

Architectural Parameter [Vaue

Processor clock frequency 1Ghz

Separated L1 |- and D-cache || 64KB, 2-way, 32B line
L1 hit latency 2 cycle

Integrated L2 Cache 4-way, 64B line

L2 hit latency 10 cycle

Hashing throughput 3.2GB/s

Hashing latency 160 cycles
Cache-to-cache latency 120 cycles (uncontended)
Cache-to-memory latency 180 cycles

Shared bus 3.2 GB/s, 100MHz, 32B line
AES latency 80 cycle

AES throughput 3.2GB/s

Figure 5: Architectural parameters.

We ran them with their typical setting as indicated in [1, 27] and
used the same method as in [4] to collect statistics. The metrics
we experimented are performance degradation, typical mask num-
ber necessary for a program, bus traffic increase, performance vari-
ation with different authentication intervals, and the performance
changes when we integrate SENSS with cache-to-memory encryp-
tion and authentication.

7.3. Performance slowdown

To study the performance impact of SENSS, we compare it to a
normal SMP machine with no security features. A “naive” imple-
mentation of bus encryption and authentication (direct encryption
and MAC authentication) is of less interest because of its perfor-
mance penalty. Here we do not include the overhead of cache-to-
memory protection to see the net effect of securing the bus only.

Write-Invalidate Model + 1M Write Back L2 Cache

0.14

0.12

o
-
.

0.08 -
0.06 -
0.04 -

Percentage Slowdown (%)

0.02 -

fft radix barnes lu ocean average

Write Invalidate Model + 4M Write Back L2 Cache

0.2
0.18 4
0.16 -
0.14 4
0.12 4

0.1 4
0.08 -
0.06 -
0.04 +-
0.02 +-

Percentage Slowdown (%)

fft radix barnes lu ocean average

Figure 6: Performance comparison.

Figure 6 shows the performance slowdown using a 1MB and
4MB write back L2 cache on 2, and 4 SMPs. In the experiment,
we set the authentication interval to 100 cache-to-cache bus trans-
actions. That is, a mask consistency check is performed on every
100 bus transactions.

From the graph we can see that the performance degradation in
general increases with the number of processors, and using a larger

L2 cache incurs relative larger slowdowns. This is not because us-
ing more processors and larger caches are not good, but because
the number of cache-to-cache transfers also increases. In fact, us-
ing either 4 processors or 4M L2 machines does speed up the pro-
grams. The SENSS impacts more on configurations that introduce
more cache-to-cache transfers. Sometimes the results are counter-
intuitive, e.g. the performance of r adi x in 2-processor is worse
than in 4-processor with 1M L2. This is due to the variability in a
full system simulation. This phenomenon happens throughout the
experiments we have performed. In section 7.8, we will explain in
details why such a situation can occur.

The overhead in SENSS comes from two sources: the encryp-
tion/decryption delay and the extra authentication messages. The
former has a flat impact on the system and the latter is not on the
critical path. When the bus is not saturated (in our case), it does
not degrade the performance much. As we can see, the maximum
slowdown is only 0.18% which is very minimal.

7.4. Number of masks needed

The previous experiment assumed a perfect supply of masks, i.e.,
a mask is always ready for use when it is needed. As we discussed
in Section 4.4, the maximum number of masks required is a mask
update latency (AES latency) divided by bus cycle time. A bus
cycle indicates how frequently a message can be loaded onto the
bus. We are modeling CPUs at 1GHz and the bus at 100MHz. Thus,
one bus cycle is 10 CPU cycles. Consequently, the maximum mask
number for this configuration is [80/10] = 8.

Write Invalidate Model + 4M Write Back L2 Cache

\D Perfect @4 masks 02 masks 01 mask\

-

T
fft radix barnes lu ocean average

Percentage Slowdown (%)
o
0]
|

Write Invalidate Model + 4M Write Back L2 Cache

O Perfect @4 masks 02 masks 01 mask

Bus Activity Increase (%)

radix barnes lu

Figure 7: Impact with different number of masks.

However, maintaining 8 masks in the group information table is
expensive in space. The table will grow to 148.6KB, larger than a
normal L1 cache. In fact, 8 masks are only necessary when bursts
of messages appear frequently. For the benchmarks we tested, 2~
4 masks are enough to handle back-to-back messages. Figure 7
shows this result. Using the same configuration as the previous
experiment, we limited the mask supplies to the benchmarks. The
results show that using 2 masks is generally satisfactory and using
4 masks is as good as the perfect case. Again, the odd behavior of

some benchmarks such as f f t will be explained in 7.8.

7.5. Bustraffi cincrease

Write Invalidate Model + 1M Write Back L2 Cache

Bus Activity Increase (%)

fft radix barnes lu ocean average

Write Invalidate Model + 4M Write Back L2 Cache

Bus Activity Increase (%)

fft radix barnes lu ocean average

Figure 8: Bus traffic increase.

The periodically performed bus authentication adds additional
traffic on the bus. We measure the percentage of the bus traffic
increase in Figure 8. Here the authentication interval is still 100
transactions. We can see that the increase in the bus traffic is also
very small: 0.46% at maximum. The total bus transactions include
both cache-to-cache and cache-to-memory transfers. The authen-
tication is added only to the cache-to-cache transfers. That is why
nearly all the results are well below 1%.

7.6. Varying authentication interval

The frequency with which we perform the authentication has
some impact on both performance and bus traffic. We varied the in-
terval from 1, 10, 32, to 100 bus transactions and measured the per-
formance degradation and the bus traffic increase in Figure 9. Set-
ting the interval to 1 transaction means that every cache-to-cache
transfer is authenticated; thus, providing the maximum security
level. Here we used 4-processor configuration and each processor
is configured with a 4M L2 cache.

We found that even for short authentication interval, the perfor-
mance degradation is still modest, the maximum is 3.4% when the
interval is 1 bus transaction. Increasing the interval can restrain
the performance loss but we feel the difference is not worth the de-
crease in security level. Short authentication interval does increase
the bus traffic as we can see the maximum increase is 46% for 1-
transaction interval. The numbers are actually the proportion of the
cache-to-cache transactions within the total bus activity which also
includes the cache-to-memory transactions.

7.7. Integrated system

As discussed in Section 6, extra messages are necessary when
we integrate cache-to-memory protection into SENSS. Encrypting
memory data uses the same encryption logic while additional hash-
ing hardware is required for integrity check.

Write Invalidate Model + 4M Write Back L2 Cache

@100 transactions M 32 transactions O 10 transactions O 1 transaction
4

w
3]
.

= N
,ooN O W
T R

ercentage Slowdown (%)

P

o

o
\

o
I

fft radix barnes lu ocean average

Write Invalidate Model + 4M Write Back L2 Cache

@100 transactions W32 transactions 010 transactions 01 transaction
50

Bus Activity Increase (%)

B R NNW®WSS
o U1l O Ul o Ul O U O U
T S S S S

T T T T T T
fft radix barnes lu ocean average

Figure 9: Impact with different authentication intervals.

We integrated the fast memory encryption in [25, 29] and CHash
memory authentication [7] algorithm. The memory encryption is
relatively independent from our work, so we used a perfect se-
quence number cache (SNC) for simplicity since the difference be-
tween a perfect SNC and large SNC is small [29]. The resulting
performance slowdown and bus traffic increase are shown in Fig-
ure 10. Here we used a 1M bytes L2 cache. On average, we see
a 12% degradation in performance, lower than what was reported
in [7] (~25%) because of different benchmarks and experimental
platform we are using. The performance penalty mainly comes
from the polluted L2 cache due to the hash tree and the increased
bus contention. The bus traffic is increased by 58% on average. The
major reason is due to the multiple hash tree fetching requests for a
newly fetched memory block and the hash tree coherence mainte-
nance among different processors. The LHash algorithm presented
in [25] gave much better performance than the CHash algorithm
and thus will also be very effective in SENSS.

7.8. Simulation variability

An important note about the simulation results presented here
is that they are only close estimates. As pointed out in [4], full
system architectural simulations of multithreaded workloads incur
both time and space variability. Small timing variations could cause
runs starting from the same initial state to follow different execution
paths, leading to performance variation. Thus multiprocessor sim-
ulations are not deterministic when system parameters are changed.

In our experiments, every bus transaction delay is increased by
at least 3 cycles. This small increase affects the number of instruc-
tions executed on different processors in multiple runs of the same
workload. It also changes the order of memory accesses, causing
the same cache block to be accessed at different times. Cache co-
herence accesses in a multiprocessor environment complicates the
problem. We use an example to illustrate how such a situation hap-
pens in Figure 11. The left timing diagram shows an access order in
the base system, the right graph shows the same accesses with dif-
ferent order in the SENSS model. This example is extracted from

Write Invalidate Model + 1M Write Back L2 Cache

O SENSS B SENSS+Mem_OTP_Chash

Percentage Slowdown (%)

fft radix barnes lu ocean average

Write Invalidate Model + 1M Write Back L2 Cache

O SENSS BSENSS+Mem_OTP_Chash

Bus Activity Increase (%)

fft radix barnes lu ocean average

Figure 10: Comparison of the integrated system.

a real program trace observed on Simics.

In original SMP In SENSS
Write Hit Write Hit Write Hit Write Hit
CPUO

CPUo Read Read Read Read Read Read

Miss Miss Hit Hit Hit Miss
CPU1 \ \ J CPU1 \

1 1 1 1 1 time 1 L 1 time
tL 2 3 t4 5 2’ 4t 15 3

Figure 11: Reordered memory accesses in SENSS.

Suppose CPUO and CPU1 need to access the same cache block
B, and the initial state of B is shared between these two processors.
In SENSS, if CPUOQ spent more time waiting for some event such as
the readiness of the masks, its first write hit may be delayed till even
after CPU1 executes its first two reads. In such a case, not only the
order of the accesses to the same block but also their hit/miss status
have been changed. As a result, this program in SENSS might be
faster than in the base case since it has fewer misses now. Also,
the cache-to-cache transfers are reduced from 2 to 1. This scenario
happens when CPUO and CPUL are false sharing block B, i.e., they
access different words in B. Thus, reordering the write and read
from different processors does not affect the correctness of the pro-
gram but it does affect the timing.

Therefore, one might notice that some of the programs run faster
and have less buss traffic than the base case. Since we are only try-
ing to prove that the SENSS model has relatively little performance
impact, we feel that our conclusions still hold.

8. Redated Work

Section 2 discussed the background as well as the research that
is most closely related to ours [7, 10, 25, 29]. In this section, we
discuss some additional related work.

Shi et al. have proposed a security design for a multiprocessor
environment [20]. In the proposed scheme, the bus was encrypted

using OTP incorporating a bus sequence number, and authenticated
using a hash function SHA256. The MAC is sent along with the
data on each bus transaction. Unlike SENSS, the MACs generated
every time were not chained as CBC MACs. Moreover, the data
originator (PID) was not included in each bus transaction. There-
fore, the aforementioned message dropping and spoofing (Type 1
and 3) attacks could not be detected by their scheme. The detailed
analysis can be found in section 4.3.

Hardware supported protection can provide security at different
levels. Fast secure co-processors [5, 28] have been proposed for
efficiently supporting various cryptographic functions. Techniques
developed for securing smart card [23] employ multi-phase encryp-
tion for small application, such as protecting credit card, etc. How-
ever they are not applicable to large applications and general pur-
pose processors.

Securing network communication through an insecure channel
has similarity to cache-to-cache data transfers in SMP systems.
Both have to ensure confidentiality through encryption and data
integrity through validation. However, network security focuses
on securing long streams of data and is sensitive to encryption
throughput. The design goal is to match the increasing line speed.
In SENSS for SMP systems, the data access pattern and transfers
are relatively random. The design goal thus is to speed up the pro-
cessing of each single request. In the design, we take advantage of
the shared snooping bus which does not generally exist in a large
network. On the other hand, network security is more general and
covers topics such as denial of service attacks that are not addressed
in our secure computation model.

9. Conclusions

In this paper, we propose SENSS model - a secure computation
model for symmetric shared memory multiprocessors. For securing
cache-to-cache data transfers, we take advantage of the snooping
bus and propose an efficient encryption scheme. We discuss its
design and implementation in an SMP system. Our preliminary
experiments show that the design is fast, low cost and results in
modest overhead for the system.

10. REFERENCES

[1] A.R. Alameldeen, M. K. Martin, C. J. Mauer, K. E. Moore, M. Xu, D.
J. Sorin, M. D. Hill and D.A.Wood, “Simulating a $2M commercial
server on a$2K PC,” IEEE Computer, Vol. 36, No. 2, pp.50-57, 2003.

[2] AlphaServer 4000/4100 systems.

[3] http://www.asics.ws/doc/aes_brief.pdf, ASICS.ws Technical Report.

[4] A.R.Alameldeen and D.A.Wood, “Variability in architectural
simulations of multi-threaded workloads,” the 9th International
Symposium on High Performance Computer Architecture, pp. 7-18,
2003.

[5] J. Burke, J. McDonald, and T. Austin, “Architectural support for fast
symmetric-key cryptography,” the 9th Architectural Support for
Programming Languages and Operating Systems, pp. 178-189, 2000.

[6] “FIPSPUB 113, Federal Information Processing Standards
Publication, May 30, 1985.

[7] B. Gassend, E. Suh, D. Clarke, M. van Dijk, and S. Devadas, “Caches
and merkle trees for effi cient memory authentication,” the 9th
International Symposium on High Performance Computer Architecture,
pp. 295-306, 2003.

[8] A.Hodjat, I. Verbauwhede, “Minimum area cost for a 30 to 70 Ghits/s
AES processor,” |EEE Computer Society Annual Symposiumon VLS,
pp. 83-88, 2004.

[9] M.G.Kuhn, “Cipher instruction search attack on the bus-encryption
security microcontroller DS5002FP” | EEE Transactions on Computers,
Vol. 47, No. 10, pp. 1153-1157, 1998.

[10] D. Lig, C. Thekkath, P. Lincoln, M. Mitchell, D. Boneh, J. Mitchell,
M. Horowitz, “Architectura support for copy and tamper resistant

software,” the 9th Architectural Support for Programming Languages
and Operating Systems, pp. 168-177, 2000.

[11] PS.Magnusson, et al., “Simics: A full system simulation platform,”
|EEE Computer, Vol. 35, No. 2, pp. 50-58, 2002.

[12] M.K. Martin, D.J. Sorin, A. Ailamaki, A. R. Alameldeen, R. M.
Dickson, C. J. Mauer, K. E. Moore, M. Plakal, M. D. Hill, and D. A.
Wood, “Timestamp snooping: an approach for extending SMPs;” the
9th Architectural Support for Programming Languages and Operating
Systems, pp. 25-36, 2000.

[13] D. A. McGrew, J. Viega, “The Balois/Counter Mode of Operation,”
http: //www.csrc.nist.gov/CryptoTool kit/modes/proposedmodes/

[14] http://www.maodchip.comy/.

[15] D.S. Nikolopoulos, and C.D. Polychronopoulos, “Adaptive
scheduling under memory pressure on multiprogrammed clusters,” the
2nd International Symposium on Cluster Computing and the Grid, pp.
22-29, May 2002.

[16] E. Petrank, C. Rackoff, “CBC MAC for Real-Time Data Sources,”
Journal of Cryptology: the journal of the International Association for
Cryptologic Research, pp. 315-338, 2000.

[17] N.I. of Science and Technology. FIPS PUB 197: Advanced
Encryption Standard (AES) , November 2001.

[18] R.L.Rivest, A. Shamir, and L.A. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Communications of
the ACM, Vol. 21, No. 2, pp. 120-126, 1978.

[19] P.R.Schaumount, H.Kuo, and |.M. Verbauwhede, “Unlocking the
design secrets of a 2.29 gb/srijndel processor,” Design Automation
Conference, 2002.

[20] W. Shi, H. S. Lee, M. Ghosh, and C. Lu, “Architectural support for
high speed protection of memory integrity and confi dentiality in
multiprocessor systems,” the International Conference on Parallel
Architecture and Compilation Techniques, pp.123-134, 2004.

[21] A. Singhal, D. Broniarczyk, F. Cerauskis, J. Price, L. Yuan, C.
Cheng, D. Doblar, S. Fosth, N. Agarwal, K. Harvey, E. Hagersten, and
B. Liencres, “Gigaplane: A high performance bus for large SMPs;”
|EEE Hot Interconnects 1V, pp. 41-52, 1996.

[22] W. Stallings, “Cryptography and network security, principles and
practices” 3rd Ed., Prentice Hall, 2003.

[23] I1SO/IEC 7816-3 Identifi cation cards - Integrated circuit(s) cards with
contacts, 1st Ed., September 15, 1989.

[24] E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas,
‘AEGIS: Architectures for tamper-evident and tamper-resistant
processing,” the 17th International Conference on Supercomputing, pp.
160-171, 2003.

[25] E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas,

“Effi cient memory integrity verifi cation and encryption for secure
processors,” the 36th International Symposium on Microarchitecture,
pp. 339-350, 2003.

[26] SUN Enterprise 6000 Series. http://www.sun.comy/.

[27] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta, “The
SPLASH-2 programs. characterization and methodological
considerations,” the 22nd International Symposium on Computer
Architecture, pp. 24-36, 1995.

[28] L.Wu, C. Weaver, and T. Austin, “ CryptoManiac: A fast fexible
architecture for secure communication,” the 28th International
Symposium on Computer Architecture, pp. 110-119, 2001.

[29] J.Yang, Y. Zhang, and L. Gao, “Fast secure processor for inhibiting
software piracy and tampering,” the 36th International Symposium on
Microarchitecture, pp. 351-360, 2003.

[30] X.Zhuang, T. Zhang, S. Pande, “HIDE, an infrastructure for
effi ciently protecting information leakage on the address bus.” the 11th
International Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 72-84,2004.

