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By analyzing the behavior of a set of benchmarks, we demonstrate that a small number of distinct
values tend to occur very frequently in memory. On an average, only eight of these frequent values
were found to occupy 48% of memory locations for the benchmarks studied. In addition, we demon-
strate that the identity of frequent values remains stable over the entire execution of the program
and these values are scattered fairly uniformly across the allocated memory. We present three dif-
ferent algorithms for finding frequent values and experimentally demonstrate their effectiveness.
Each of these algorithms is designed to suit a different application scenario. Since the contents of
memory exhibit frequent value locality, it is expected that frequent values will be observed in data
streams that flow across different points in the memory hierarchy. We exploit this observation for
developing two low-power designs: a low-power level-one data cache and a low-power external data
bus. In each of these applications a different form of encoding of frequent values is employed to
obtain a low-power design. We also experimentally demonstrate the effectiveness of these designs.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles—cache memories;
B.7.1 [Integrated Circuits]: Type and Design Styles—input/output circuits
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1. INTRODUCTION

Recent research has demonstrated that values produced by executing instruc-
tions exhibit a high degree of value locality, that is, multiple executions of the
same instruction often produce the same value [Gabbay and Mendelson 1997;
Lipasti et al. 1996]. Value locality has been exploited in the design of value
reuse and prediction mechanisms for superscalar processors.

In this article we show that another kind of locality, which we refer to as the
frequent value locality, is also quite prevalent in programs. The first aspect of
the frequent value locality phenomenon is that if we track the values involved
in memory accesses, we observe that at any given point in the program’s exe-
cution, a small number of distinct values occupy a large fraction of these refer-
enced locations. In fact, we observed that on an average, in fifteen of the Spec95
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programs, eight distinct values occupy 48% of all allocated memory locations
throughout the execution of the program. This observation was first reported
by us in Zhang et al. [2000] and has also been independently made by Larin
[2000]. The second aspect of this phenomenon is that the set of frequent values
remains quite stable throughout the execution of the program. The third and
final aspect of frequent value locality is that frequent values are scattered fairly
uniformly throughout the memory.

Although the frequent value locality phenomenon is related to the recent
concepts of value locality and value prediction [Gabbay and Mendelson 1997;
Lipasti et al. 1996], there are important differences between them. Frequent
value locality characterizes the behavior of values present across the memory
allocated to the program, throughout the execution of the program. In contrast,
value locality and prediction characterize the behavior of values encountered
during multiple executions of specific instructions in the program. As a con-
sequence, the type of applications that can exploit these phenomenon are also
quite different. Value locality is exploited for carrying out value prediction and
thus, speculative execution of instructions to speed up a program’s execution.
Frequent value locality can be exploited in designing the memory hierarchy to
achieve better power or performance behavior.

The three major contributions and the organization of this article are out-
lined below.r We present experimental evidence for establishing the existence of frequent

value locality phenomenon in many programs in Section 2.r We present three different algorithms for finding frequent values in Section 3.
Each of the algorithms is shown to be effective and appropriate for use in a
different real-life setting.r We discuss two applications that are able to successfully exploit the frequent
value phenomenon by using the various frequent value finding algorithms in
Section 4. These applications are low-power designs of a data cache and an
external data bus that are suitable for the embedded systems domain.

2. FREQUENT VALUE LOCALITY

The frequent value locality phenomenon characterizes the behavior of values
being held in live memory locations of running programs. The following three
properties of the values characterize frequent value locality. We demonstrate
these properties by analyzing the behavior of 15 Spec95 benchmarks when run
on reference inputs.

2.1 Frequent Value Occurrence in Memory

A small number of frequently occurring values, called frequent values, occupy
a substantial fraction of memory locations allocated to an executing program.

To establish the above property we ran the benchmarks and examined the
values in memory locations every 10 million instructions and averaged the
frequencies of the values over the entire set of collected samples. During each
sampling point, we scanned through the entire memory space and ranked every
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Fig. 1. Amount of memory occupied by top 8 frequent values.

distinct value according to its occurrence frequency. The memory locations that
were considered at a given point included those that were of interest to the pro-
gram. In particular, we considered currently allocated stack-and-heap memory
locations. After the completion of the program’s execution, for each encountered
value, we computed its average frequency across all sampling points. The re-
sulting average frequencies of all values were sorted in descending order. Values
at the top of the list are more frequent than the values that appear later in the
list. We spent a significant amount of time collecting this data as the program
runs typically involved execution of billions of instructions.

Figure 1 shows that 12 out of 15 benchmarks exhibit this property, and on an
average around 48% of memory locations are occupied by top eight frequently
occurring values in the 15 Spec95 benchmarks that were used in this study.
The top eight frequent values are also listed in Figure 2. Examination of these
values shows that there is a mix of small values (that can be represented using
16 bits) and large values (which require more than 16 bits). While the same
small values (e.g., zero) are often observed across different programs, the same
is not true for large values. This is because the large values are often memory
addresses or string constants. Figure 3 shows what fraction of locations were
occupied by small frequent values and large frequent values. In some programs
the large values occupy a substantial number of locations.

2.2 Frequent Value Distribution in Time

The set of frequently occurring values remains fairly stable over a program
run, which implies that frequent values can be identified and exploited during
a program run.
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Fig. 2. Frequently occurring values ordered by decreasing frequency.

Fig. 3. Amount of memory occupied by small vs. big values.
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To observe this property, we studied the occurrences of frequent values
throughout the program execution. The graphs in Figures 4 and 5 show the be-
haviors of the benchmarks over the entire execution. To generate these graphs,
we first found the top ten frequent values using the experiment already de-
scribed above. Next, we ran the programs again, and during these runs, at each
sampling point, for each of the top ten frequent values, we make note of the
number of memory words that contain the frequent value.

We plotted the above data in the graphs where the X-axis represents time
and the Y -axis represents the memory occurrence characteristics of the vari-
ous frequent values. To make the graphs more readable, we did not plot these
graphs for the entire execution of the program but, instead, carefully reduced
the duration of a period in the middle of the program’s execution. However,
when we narrowed the scope of the data presented, we first examined the data
for the entire execution and only narrowed the duration for which the data
is presented if the behavior of the program was similar for the remainder of
the execution. In these graphs, the topmost line represents the total number
of allocated memory locations. The subsequent curves give us an idea of how
many locations correspond to the top ten most frequently occurring values. The
difference between the first (topmost) and second curves is the number of lo-
cations with the topmost frequent value. The difference between the first and
third curves is the number of locations containing the top two frequent values
and so on. From the results we can see that the fraction of allocated locations
occupied by a given number of frequent values remains fairly stable through-
out the program execution. This is because the same values continue to occur
frequently over the entire execution of the program.

2.3 Frequent Value Distribution in Memory

The frequent values are distributed fairly uniformly throughout memory, which
implies that no matter which part of memory is accessed, we are likely to en-
counter these values.

To establish the above property, we plotted the distribution of frequently
occurring values in memory as shown in Figures 6 and 7. The data in these
graphs represent the snapshot of memory at a point when the programs were
nearly halfway through their execution. The referenced memory was broken
into blocks of 800 consecutive locations each and the percentage of frequent
values in each block of 800 locations was plotted as a point in the graph. We
have selected a threshold of top eight frequent values in these graphs. As we
can see, for nearly all of the programs, the frequent values are scattered across
the memory, and for many programs the distribution of frequent values across
the memory is quite uniform.

3. FINDING FREQUENT VALUES

The data in Figure 2 showed that the large frequent values always vary from
program to program and small frequent values can also differ across programs.
Since there is no universal set of frequent values, we must develop methods for
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Fig. 4. Stability of frequent values over program execution.
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Fig. 5. Stability of frequent values over program execution.
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Fig. 6. Distribution of frequent values across memory (heap and stack).
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Fig. 7. Distribution of frequent values across memory (heap and stack).
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identifying these values. Before we describe the different methods for finding
frequent values, it is useful to understand the nature of applications that will
make use of these methods.

While we have discussed frequent value locality in context of the memory
contents of a program over its entire execution, the observations have much
broader implications. Given that frequent values are observed across the mem-
ory, it is also expected that these values would be frequently encountered at
all points in the memory hierarchy. For example, in the on-chip data cache,
on the data bus that brings data into the on-chip cache, and of course in the
main memory itself. At different points in the memory hierarchy at which fre-
quent value locality is being exploited, different types of frequent value finding
methods may be appropriate.

In this section we discuss a number of different approaches, ranging from
software profiling techniques to hardware profiling techniques that can be used
to find frequent values. Different methods are suitable for different applica-
tions, depending on the constraints under which the application must operate.
We describe the following three scenarios for finding frequent values in this
section and evaluate their effectiveness.r Find Once for a Given Program. This method finds a fixed frequent value set

through a profiling run which is then used by the application in all later exe-
cution runs. This is a purely software-based approach. Thus, once the values
are known, they must be communicated to any hardware-based application,
either through compiler-generated code or operating-system support. More-
over, if the frequent value set is sensitive to the program input, this approach
will cause loss in performance.r Find Once Per Run of the Program. This method finds a fixed frequent value set
during each execution run of the program. The set of values is found through
limited online profiling during the initial execution of the program, after
which the values are fixed and profiling ceases. These values are then used
by the application during the remainder of the execution. In other words,
the fixed frequent value set is found during each execution, and therefore
the frequent value set being sensitive to program input is not a problem
for this method. This approach uses specialized hardware for finding the
values. Therefore, no compiler or operating system support is required to
communicate the values to the hardware.r Continuously Changing During Program Run. This method maintains a
changing frequent value set by carrying out continuous profiling of the pro-
gram during each execution run. Moreover, profiling is carried out by special-
ized hardware. In this method, an application can benefit from adaptation of
the frequent value set during a given run.

The two low-power applications that we consider later in this article, and the
manner in which they fit into the above scenarios, are briefly described later
to further motivate the need for algorithms that fit the above scenarios. As we
can see, these two applications operate at different points along the memory
hierarchy.
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r Low-Power Frequent Value Cache. We present the design of a low-power data
cache which stores frequent values in encoded form to reduce the dynamic
activity in the data cache. This application must use a fixed set of frequent
values because the encoding must remain fixed for the duration of the pro-
gram. This is because a change in encoding would require at a minimum that
we flush the cache. Moreover, here we are interested in finding frequently
occurring values in the data stream between the CPU and the data cache,
which we will refer to as the frequently accessed values.r Frequent Value Encoding for Low-Power Data Bus. We also describe the de-
sign of a bus encoding technique which is aimed at reducing the switching
activity on the external data bus of the CPU. This application can take ad-
vantage of a continuously changing set of frequent values since the encoding
is localized to the data bus, that is, no other part of the system has to be
aware that encoding is being carried out prior to sending a value across the
data bus, and decoding is performed immediately after receiving the value
at the other end of the data bus. Moreover, here we are interested in finding
frequently occurring values in the data stream between the on-chip cache
and off-chip memory, which we will refer to as frequently transferred values.

Note that since the data streams relevant to the above applications flow across
different points in the memory hierarchy (between the CPU and the on-chip
data cache and between the on-chip cache and the off-chip memory), they cor-
respond to values stored in a program’s allocated memory. Therefore, we expect
these data streams to exhibit frequent value locality. In other words, we expect
to find the presence of frequently accessed values and frequently transferred
values.

Given the above applications, it is clear that the first two scenarios for find-
ing frequent values are relevant for finding frequently accessed values, whereas
the third scenario can be used for finding frequently transferred values. There-
fore, in the remainder of this section, after describing our algorithms for finding
frequent values under the three scenarios, we evaluate them in the appropriate
context of frequently accessed values or frequently transferred values. All eval-
uations in this paper are based upon 15 programs from the Spec95 benchmark
suite which were run on the reference inputs, unless stated otherwise.

3.1 Find Once for a Given Program

The method for finding frequent values that we use under this scenario is sim-
ple but time consuming. Since this process is performed only once for a given
program, we can justify spending a significant amount of time on finding fre-
quent values. We instrument the program to intercept all data values involved
in load and store instructions, as these are the values that constitute the data
stream between the CPU and the data cache. We maintain a hash table in
which we store all encountered values along with the frequencies with which
they are encountered. The hash table size is not allowed to grow beyond an
upper limit, which was 300 MB in our implementation. For some programs,
this was large enough to hold all values encountered during the execution, but
for others this was not the case. When the hash table reached its limit, we
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Fig. 8. Access percentage attributed to top 128 frequent values.

removed two-thirds of the least frequently occurring values from it and then
continued processing future accessed values. The values discarded have a max-
imum occurrence count of 200, which is less than 10−4% of total accesses at
the time. Therefore, it is highly unlikely that any frequent values would be
discarded.

The results of implementing this method and applying it to Spec95 programs
are described next. Consider the data in Figure 8, which shows what percentage
of total accesses involve frequently accessed values—we consider a maximum
set size of 128 values during program runs based upon reference inputs. As
we can see, the data stream of accessed values, contains frequently occurring
values, as on an average 128 values account for over 50% of all accesses.

The data presented above is ideal data, since in collecting the above data
both the profiling runs and the execution runs were carried out using the same
inputs (reference inputs). Since the frequently accessed values will be found by
running the program once on some input and used later during program runs on
other inputs, we wanted to see how much is lost due to the sensitivity of frequent
values to program inputs. Therefore, we next carried out an experiment in
which the profiling run on train inputs was used to identify frequently accessed
values. Then, accesses to these values were measured during program run on
reference inputs. The results are shown in Figures 9 and 10. For a varying
number of frequent values, the accesses to frequent values as a percentage of
total accesses during a program run on reference inputs is plotted. One curve is
based on the use of frequent values found from the profiling run on train inputs
and for comparison, the other ideal curve used the reference inputs during the
profiling run. As we can see, for most programs this approach does quite well,
as the real curve is close to the ideal curve.
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Fig. 9. Finding in profiling run for use in later execution runs.
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Fig. 10. Finding in profiling run for use in later execution runs.
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Fig. 11. Value table entry.

3.2 Find Once Per Run of the Program

As mentioned earlier, the algorithm for finding frequently accessed values dur-
ing each program run is meant for implementation in hardware. Therefore we
use a small table of frequent values in this method. To find the top n values,
we use a table of 2n entries each having a value field and a counter field, as
shown in Figure 11. The value field stores the data value encountered during
monitoring and the counter field contains a c bit saturating counter.

Each time a data value is involved in an access by the CPU, we update the
table of values as follows. If the value is already present in entry i, then the
counter at entry i is incremented by one. When the counter saturates, the entry
i is swapped with entry i− 1. The purpose of this activity is to let frequent
values gradually percolate to the top half of the table. When a new value is
encountered, and there is no free entry in the table, a victim entry in the table
needs to be selected to free up space. An entry is freed from the bottom half of
the table with the smallest counter value because the bottom half is expected
to contain values seen less often in comparison to values in the top half of the
table.

Our method is inspired by the conventional software value profiling tech-
nique in Calder et al. [1997]. However, the algorithm in Calder et al. [1997]
does not use swapping. It simply maintains frequency counts for values in
the table and periodically clears half of the table to allow new values to enter
into the table. When half of the table is cleared, the values are sorted accord-
ing to their associated frequency counts and half of the values with counts
lower than the other half are removed. The sorting operation makes this ex-
isting technique unsuitable for hardware implementation. Our algorithm does
not require sorting. Instead it uses swapping to approximate the effect of sort-
ing. The swapping process approximately sorts the list such that bottom half
contains less frequently seen values. When replacing a value from the bottom
half, the counter value is used to free up an entry corresponding to a less fre-
quently seen value from among the values in the bottom half of the table.

Our approach to approximating sorting is very effective in practice, as our
experiments comparing conventional value profiling with our hardware value
profiling show. We compare the two algorithms by comparing the quality of
their frequently accessed value sets, which is measured in terms of accesses
that can be attributed to the values in the set. In the experiments, we varied the
swapping interval by varying the counter width c from 1 bit to 3 bits. A longer
interval means frequent values climb up in the table at a slower pace, and a
shorter interval leads to faster convergence but may cause excessive swapping
between two entries which already contain frequent values. From Figure 12, it
is interesting to see that counter lengths of 1 and 2 bits give nearly the same
results; however, a 3-bit counter degrades a little. This is because the interval
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Fig. 12. Comparison of value profiling technique and our hardware method for capturing 32, 64
and 128 frequent values.

between swaps is longer, causing a slower pace for frequent values to move
up. Therefore, in the rest of the experiments, we chose a 2-bit counter which
achieves the same results as a 1-bit counter without introducing unecessary
swaps. When compared with the value profiling technique [Calder et al. 1997],
our algorithm produces nearly the same results as the conventional algorithm,
and in many cases performs even better (e.g., for 129.compress, 132.ijpeg,
124.m88ksim, 102.swim, and 103.su2cor).

Next we show how effective this method is in finding frequently accessed
values. The effectiveness of this algorithm depends upon the degree of profil-
ing. One can expect that a greater amount of profiling will usually be more
effective. However, the more profiling we do, the less time the program has left
for exploiting the frequently accessed values. Therefore, in our experiments
we varied the amount of profiling from 1 million to 800 million instructions
for most programs of moderate size. The results are presented in Figures 13
and 14. For each benchmark we present a set of curves corresponding to differ-
ent profiling levels, which are specified in terms of number of instructions, and
in parenthesis we indicate what fraction of total program execution was spent
on profiling. Even though in our experiments we varied the profiling levels be-
tween 1 and 800 million instructions, the profiling periods displayed in these
plots were selected to show interesting areas of the graph. In some cases, many
short profiling intervals are shown while in others longer profiling intervals
are shown.

The results in Figures. 13 and 14 show that the programs can be divided into
two categories. For many of the programs, the degree of profiling makes only
a small difference (e.g., 124.m88ksim). In other words, the frequently accessed
values can be identified using a small amount of profiling and greater amounts
of profiling are not necessary. The reason for this behavior is that, usually, a
very small subset of frequently accessed values account for most of the frequent
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Fig. 13. Finding and using in each execution run.
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Fig. 14. Finding and using in each execution run.
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value accesses, and these values are so frequent that they are seen immediately
as execution begins. For example, in Figure 8, we can see that in the case
of 124.m88ksim, the top 128 values account for 92% of all accesses; however,
the topmost value alone accounts for 74% of all accesses. For other programs,
increasing the profiling interval beyond a certain threshold makes a significant
difference (e.g., 129.compress). This is because, for these programs, typically
a larger number of frequent values need to be identified accurately because
they all account for a significant number of accesses. The larger the number of
important frequent values, the longer it may take to find them, as some of these
values may show up a bit later in the execution. For example, Figure 8 shows
that in case of 129.compress, whereas the top 128 values account for nearly
27% of all accesses, the topmost value accounts for only 5% of accesses. In fact,
to get close to 27% of accesses, it is important to accurately identify the top 32
frequently accessed values for 129.compress.

3.3 Continuously Changing During Program Run

Let us now consider the hardware algorithm for maintaining a continuously
changing set of frequent values. A table with as many entries as the number
of frequent values that are to be identified is maintained. We use the LRU
replacement policy for filling and updating the frequent value table. To gain
time ordering information, we use a reference bit and an n-bit timestamp for
each value recorded in the coder. The reference bit is set when the value appears
at the input. At regular intervals, the reference bit is shifted right into the high-
order bit position of the n-bit timestamp, causing all bits in the timestamp also
to be shifted right and the lowest-order bit in the timestamp being discarded.
This operation is performed for all entries in the two tables and at the same
time that all the reference bits are reset. Thus, the timestamp keeps the history
of value occurrences for the last n time periods. For example, the timestamp
of 000 means this value did not appear during the last three time intervals,
timestamp 100 means it was seen only in the last interval, and the timestamp
000 with reference bit set means it is encountered in the current time slot. When
an entry is required and a value is to be evicted, the entry that is selected is
the one with the smallest timestamp and clear reference bit. The new value is
put in with a fresh reference bit and timestamp (all 0’s) in this selected entry.

Since we use the above approach for the bus encoding application, we evalu-
ated it in context of data stream between on-chip cache and off-chip memory. We
measured the percentage of data traffic that could be attributed to the chang-
ing set of 32 frequently transferred values found using the above algorithm.
Figure 15 shows the results of this experiment. On an average, 32% of the traf-
fic was attributed to the frequently transferred values. It is interesting to note
that in the case of the 129.compress benchmark, when a fixed set of frequently
accessed values was used, it did not account for a substantial number of ac-
cesses; but when a changing set of frequently transferred values was used, it
accounted for nearly 68% of the total traffic. Therefore, while for some bench-
marks a fixed set of frequent values may be adequate, for others, a changing
set may provide better results.
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Fig. 15. Data bus traffic due to 32 frequent values.

4. APPLICATIONS

4.1 Frequent Value Cache

In this section, we demonstrate how the frequent value phenomenon can be ex-
ploited in designing a cache that trades off performance with energy efficiency.
We propose the design of the frequent value cache (FVC) in which storing a
frequent value requires few bits, as they are stored in encoded form while all
other values are stored in unencoded form using 32 bits. The data array is
partitioned into two arrays such that if a frequent value is accessed, only the
first data array is accessed, while for nonfrequent values both data arrays must
be accessed. Since frequent values are encountered quite often, this approach
greatly reduces the energy consumed by the data cache. The reduction in en-
ergy is achieved at the cost of an additional cycle needed to access nonfrequent
values. Therefore, FVC design represents a trade-off between lower energy con-
sumption for frequent value accesses and higher access times for nonfrequent
value accesses.

From the perspective of the frequent value cache, data values are divided
into two categories: a small number of frequent values, say n, that typically
range from 4 values to 128 values and all remaining values that are referred
to as nonfrequent values. The frequent values are stored in encoded form, and
therefore can be stored in log2n number of bits, which range from 2 bits for 4
frequent values to 7 bits for 128 frequent values. The nonfrequent values are
stored in unencoded form in 32 bit words. The set of frequent values remains
fixed for a given program run.

The cache data array is partitioned so that one array contains log2n bits
corresponding to each word and the other contains the remaining 32 − log2n
bits (see Figure 16). Frequent values are stored in encoded form in the low-bit
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Fig. 16. Partitioning the data array.

array while nonfrequent values use the space in both data arrays. An additional
bit corresponding to each word in a cache line is needed to indicate whether the
word contains an encoded frequent value or an unencoded nonfrequent value.
Therefore, an N word cache line needs N additional bits. These bits are stored
along with every word in the low-bit array so that its word width becomes
log2n+ 1.

When reading a word from the cache, initially we simply read from the low-
bit array. Since the bits read out contain a flag bit, we examine it to determine
what comes next. If the bit is set, which means the value was stored in encoded
form, we need not read any additional bits and must proceed to decode the
value. In this case we have greatly reduced the activity in the data cache. On
the other hand, if the value is stored in unencoded form, we proceed to access
the remainder of the word from the second data array.

Since the retrieval of log2n bits from the low-bit array and that of 32 −
log2n bits from the high-bit data array is serialized, it takes longer to read a
nonfrequent value from the FVC than it would have taken to read the same
value from a conventional data cache. Let us assume that upon a hit it takes
a single cycle to read a value from a conventional data cache. In contrast, for
FVC, a frequent value is read in one cycle while a nonfrequent value is read
in two cycles. In other words, in the first cycle, the log2n bits from the low-bit
array are accessed and if the value is a nonfrequent one, in the second cycle the
remaining bits from the high-bit array are accessed.

We developed a detailed model for the FVC design. The details of the de-
sign are shown in Figure 17. As we can see, instead of one data array in a
conventional cache, there are two data arrays—a low-bit array of log2n + 1
bits per word and the high-bit array of 32 − log2n bits per word. In a realis-
tic cache implementation, the entire line is first read out from the data array,
then the appropriate subset of bits corresponding to the word being accessed
are selected at the time it reaches the output multiplexer. If the same scheme
is used in the FVC design, the decoding of frequent values cannot begin un-
til the required word is selected out, which is the very end of a cache access.
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Fig. 17. The FVC design.

Therefore, decoding will increase the cache access time, which is not desirable.
Hence, we adopt the subbanking scheme proposed by Villa et al. [2000] and
Ghose and Kamble [1999], in which the subbank containing the target word
can be read independently. So we drive only those bitlines of the local wordlines
that are required. In that way, they perform early selection of proper words from
the line that are outputs from the low-bit array. Once a code is selected, it is
passed to a frequent value register file that contains the frequent value. The
code is used to index the register file to retrieve the corresponding 32-bit fre-
quent value. Reading a frequent value is done after the 32-bit flows through the
output multiplexer. However, if the flag bit is clear, indicating a nonfrequent
value, it turns off the decoder letting the partial data value flow to an internal
latch where the remaining part of the value is filled from reading the high-bit
array in the second cycle. The full value is obtained by concatenating the two
parts completing an infrequent value read.

The hardware for encoding during cache write operations is designed as a
CAM that can match an incoming frequent value and output its CAM index in
binary form. The encoding of a frequent value to be written is carried out before
the cache access, since the value to be written may be known as early as the
decode/operand fetch stage.

We have modified XCACTI 2.0 [Huang et al. 2001; Reinman and Jouppi 1999]
to incorporate a model of the above FVC design. Accessing a frequent value
differs from conventional access in that the word width is narrowed down to code
size plus one. Accessing an infrequent value increases each word width by one.
For the frequent value register file, we adopted the register file model in Brooks
et al. [2000], using the same technology. We used those models to compare the
access time and energy behavior of the FVC for a range of configurations for a
conventional cache and FVC—including varying associativity, cache size, line
size, and the number of frequent values. Next, we present some details of this
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Fig. 18. Use frequent values found from train input.

Fig. 19. Use frequent values found in first 5% program run.

study to demonstrate the feasibility and effectiveness of our FVC design. All
the data presented in this paper is for 0.18 µm technology. In all experiments
performed for this paper we used our FAST simulation system [Onder and
Gupta 1998].

In our experiments, we considered two cache configurations: 8 Kbyte–16
bytes per line–4-way set associative cache and 64 Kbyte–32 bytes per line–8-
way set associative cache. We verified that the access times of the conventional
cache and the FVC were the same. Further, we considered configurations for
FVC where log2n was varied from 4 bits to 6 bits (i.e., number of frequent values
was varied from 16 to 64). The results in the form of energy-delay product
and power reduction are shown in Figures 18 and 19. Two sets of results are
presented according to the two different methods for finding frequent values.
In the first case, we found the frequent values using train inputs and used
them during the reference input run. In the second case, we found the frequent
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values by monitoring at runtime the values accessed during the first 5% of the
program’s execution and then using them for the remainder of the run. For
the 64 Kbyte cache, which uses 64 frequent values, the average reductions in
energy-delay product and power are nearly 33%. These reductions fall slightly if
fewer frequent values are used or the size of the cache is smaller (i.e., 8 Kbyte).

4.2 Frequent Value Encoding

Because the I/O pins of a CPU are a significant source of energy consumption,
work has been done on developing encoding schemes for reducing switching ac-
tivity on external data buses [Stan and Burleson 1995; Benini et al. 1999]. How-
ever, existing techniques provide only modest amounts of reduction in switching
activity. This is because existing techniques are general purpose in nature and
do not exploit the characteristics of data transmitted over the data bus. This
is because until now no special characteristic of data streams transmitted over
the CPU’s external data bus has been identified.

The phenomenon of frequently occurring values is a characteristic that is
highly suitable for exploitation by a bus encoding technique for achieving re-
ductions in switching activity. In fact, for the benchmarks used in this paper,
we observed that frequent values account for over 32% of transmissions over
the external data bus. Therefore we designed a simple new encoding scheme,
called FV encoding, that is significantly more effective than prior techniques.

Our overall approach is as follows. The frequent values are transmitted over
the bus in encoded form while the nonfrequent values are transmitted in their
original unencoded form. The set of frequent values is kept in a table imple-
mented as a CAM by both the encoder and the decoder. This table is searched,
and if the value to be transmitted is found in it, then the value is regarded
as a frequent value which is then transmitted in encoded form. In order to
ensure that the decoder can determine whether the transmitted value is in
encoded form or not, additional control signals must be sent from the encoder
to the decoder in some situations. By using the same method for maintain-
ing frequent values at the two ends of the bus, we ensure that the contents
of the frequent value tables at both the encoder and the decoder are always
identical.

Our method for encoding frequent values has the flavor of one-hot encod-
ing, with one important difference. Our encoding scheme overcomes the major
drawback of one-hot encoding in that it does not require 2n wires, where n
is the number of bits representing the value, to transfer the data. Instead,
it achieves low switching activity by using the same number of wires as the
data bus width. In this work, we assume that this number is 32. We are able
to achieve the above goal as follows. The “hot” wire generated from the en-
coder is not used to represent the true value being transferred but, rather,
it indicates in which entry of the frequent value table in the encoder or de-
coder the frequent value can be found. In other words, if the ith entry in the
frequent value table is found to contain the same value as the one being trans-
mitted, then the ith output wire is set to 1 and all the remaining wires are
set to 0. This is how a one-hot code is formed and sent over the data bus,
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completing the coding process. When the decoder receives the code from the
bus, it reads out the value from the ith entry indicated by the code. Under the
above scheme, if frequent values are transmitted back-to-back, then at most two
bits switch while all other bits remain zero. This is how switching activity is
reduced.

The nonfrequent values are transmitted in unencoded form. If a value to
be transmitted is a nonfrequent value, it cannot be found in the encoder CAM.
Thus, the encoder does not attempt to generate a code. Instead, it simply passes
the original value onto the data bus. When the decoder receives the value and
finds more than one hot wire in it, it concludes that the transmitted value is
not encoded.

It is possible that a nonfrequent value being transmitted in unencoded form
contains a single high bit and all of its remaining bits are zeros. We ensure
that the decoder does not erroneously decode this value by sending a single bit
control signal from the encoder, telling the decoder to skip decoding. Our ex-
perimental results also include the switching overhead resulting from sending
the control signal.

The base encoding scheme reduces switching to at most 2 bits if a frequent
value being transmitted is also preceded by a frequent value. While our base
encoding scheme gives good performance when frequent values are encountered
back to back, a pattern of intervening frequent and nonfrequent values is not
favorable to our base scheme. We measured the percentage of traffic due to
frequent values that are also preceded by frequent value transmissions. On an
average, this number is 16%. We also know that, on an average, the frequent
values account for 32% of the overall traffic. Therefore, on an average, 16%
of transmitted values are frequent values that are preceded by nonfrequent
values.

We further reduce switching between nonfrequent and frequent value trans-
missions by using a decorrelator described in Benini et al. [1999]. If we
take the XOR of the current value to be transmitted (Coden) and the previ-
ously transmitted value (Sendn−1), then this has the effect of flipping only
those wires of the bus that are high in Coden. Therefore, if Coden corre-
sponds to a frequent value, it contains only 1 high bit, and therefore no mat-
ter whether it is preceded by a frequent value or a nonfrequent value (i.e.,
Sendn−1 is frequent or nonfrequent), the switching activity is only 1 bit. In
other words, transmission of a frequent value always results in switching off one
bit.

Experiments show that FV encoding of a changing set of 32 frequent values
yields an average reduction of 30% in data bus switching activity for our bench-
marks (see Figure 20). The figure also shows that if a fixed set of frequent values
is used, the reductions would be around 20%. Furthermore, Figure 21 shows
that the reduction in switching achieved by FV encoding is 2 to 4 times the
reduction achieved by the bus-invert [Stan and Burleson 1995] coding scheme,
and 1.5 to 3 times the reduction achieved by the adaptive method in Benini
et al. [1999]. In all of the above experiments, the CPU we used also had on-
chip instruction and data caches. If these caches are removed, the reductions
in switching activities increase even further.
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Fig. 20. External data bus switching reduction using FV encoding.

Fig. 21. Comparison with bus-invert and adaptive encoding.

5. CONCLUSIONS

In this article we presented experimental evidence that shows that most pro-
grams exhibit frequent value locality, according to which small number of dis-
tinct values are encountered very frequently in memory. As a consequence,
frequent values are also observed in data streams at various points in the

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002.



Frequent Value Locality • 105

memory hierarchy. We discussed two low power applications of frequent value
phenomenon that are important for the domain of embedded systems. The
frequent value data cache provides significant reductions in dynamic energy
consumed by the cache and the frequent value encoding results in significant
reductions in switching activity on an external data bus of a CPU. We pre-
sented three algorithms for finding frequent values under different settings
and demonstrated that they are highly effective in practice.
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