Dynamic Slicing Long Running Programs through
Execution Fast Forwarding

Xiangyu Zhang Sriraman Tallam Rajiv Gupta
Department of Computer Science
The University of Arizona
Tucson, Arizona 85721

{xyzhang,tmsriram,gupta}@cs.arizona.edu

ABSTRACT

Fixing runtime bugs in long running programs using traceedas
analyses such as dynamic slicing was believed to be profeilyit
expensive. In this paper, we present a n@&cution fast forward-
ing technique that makes this feasible. While a naive solusdpo i
divide the entire execution by checkpoints, and then apyphachic
slicing enabled by tracing to one checkpoint interval atraetiit is
still too costly even with state-of-the-art tracing teaues. Our
technique is derived from two key observations. The first isne
that long running programs are usually driven by eventsclvhias
been taken advantage of by checkpointing/replaying tectas to
deterministically replay an execution from the event lohe Bec-
ond observation is that all the events are not relevant fayem a
particular part of the execution, in which the programmespsats
an error happened. We develop a slicing-like techniqueddwate
used to prune irrelevant events from the event log. Drivethiey
reduced log, the replayed execution is now traced for fandad
tion. This replayed execution has the effect of fast fonivagdi.e
the amount of executed instructions is significantly redugighout
losing the accuracy of reproducing a failure. Our evaluasbows
that skipping irrelevant events can reduce the space esqaint for
dynamic slicing by factors ranging from 72 to 44490. We alse d
scribe how checkpointing and tracing enabled dynamicraieire
combined, which we believe is the first attempt to integrhese
two techniques. Finally, the dynamic slices of a set of riegmbbugs
for long running programs are studied to show the effectigsrof
dynamic slicing.

Categories and Subject Descriptors

D.2.5 [Software Engineering: Testing and Debugging-Bebug-
ging aids, Testing tools, Tracin®.3.4 [Programming Language$:
Processors-Bebuggers

General Terms
Algorithms, Measurement, Reliability, Verification

Keywords
debugging, checkpointing, event logging, replay, datarsji

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SIGSOFT'06/FSE-1&ovember 5-11, 2006, Portland, Oregon, USA.
Copyright 2006 ACM 1-59593-468-5/06/0011%$5.00.

1. INTRODUCTION

During the procedure of debugging, it is often the case tmat t
programmer is interested in a small part of the entire exacut
How to get to this region quickly has been haunting reseasche
since debugging long running programs became an issue.rdhe t
ditional debugging tactics, such as iteratively settingalipoints
and then restarting the program, hardly work because the&+ee
cutions consume enormous amount of time. More sophisticate
methods to tackle this problem includeacing and checkpoint-
ing/replaying

Tracing is a technique with a long history. It was invented for the
purpose of replaying an execution. More and more applinatio
have been developed such as performance analysis, sofeliare
bility, software understanding, and compiler optimizato While

in a classical debugging procedure breakpoints are setanolo-
gram is reexecuted many times till the bug is located, initigac
the execution traces are usually collected once and thearare
lyzed multiple times starting from selected points. Funthare a
wide variety of heavy duty analyses can be performed on drace
efficiently. As a result, software errors become much mocege
nizable if appropriate traces are gathered. For exampleardic
slicing, proposed by Korel and Laski [5], is a tracing basecht
nique to help programmers in the process of debugging. The dy
namic slice of a value computed at an execution point incdude
all those executed statements which were directly or iotlirén-
volved in computation of the value. Our prior work [23, 3, 25]
has demonstrated that dynamic slicing is quite effectivadto-
matically isolating the cause effect chain from the rootsesio the
failed point. Unfortunately, tracing based techniques atsnale to
long executions even though state-of-the-art technigaesichieve
the space efficiency of 0.1 - 4 bits per instruction [22, 1].ikyde
task as starting Mozilla and browsing a html page may creates
with the size of a few Gigabytes.

Checkpointing/replaying is a very attractive technique, the merit
of which is the capability of replaying from the intermedigioints
of an execution once checkpoints are created. It was ingdeote
facilitate debugging parallel and distributed programs, [20]. It
quickly gained popularity in debugging general applicasig14,
15]. Alot of research has been carried out on how to reduo®gs
[19, 8] and how to improve its usability [17]. Most of the etiigy
checkpointing techniques focus on how to faithfully repdayexe-
cution. They rarely discuss what to do with replayed exeastior
simply suggest that replayed executions can be debuggbdyesit
eral debuggers such as gdb. However, these debuggers aily usu
much less powerful than tracing based tools.

Execution with
Event Logging

Execution with
Dependence Tracing

1]

Fast Forwarded Execution
with Dependence Tracing

Dynamic

Event Log

- Dependence

\ 4

Meta slicing ——
8
—— 1

I

I

I

I

I

I

I

Graph (DDG) I
I

I

I

N VN '
I

I

Normal Execution /w Tracing

Fast Forwarded Execution /w Tracing

Figure 1: Execution Fast Forwarding.

Our goal is to apply dynamic slicing, a tracing based tealmjq
to long running programs. A natural question to ask@afi we
combine tracing and checkpointingat seems tracing and check-
pointing are complementary. Checkpoints divide the whale- e
cution into intervals. Tracing can be applied to one inteataa
time, usually the one that interests the programmer. Horvévis
solution is not as simple as it appears for two reasons. , Fiest-
ing requires instrumenting the original program. There tare
kinds of instrumentation techniques — static and dynami@tiS
instrumentation, in which a program is instrumented by a-com
piler, introduces non-trivial execution overhead as trgaiannot
be easily turned off. Dynamic instrumentation adaptivelgtiu-
ments a program. It can easily switch from executing theimaig
code to executing the instrumented code or vice versa. Ardima
instrumentation engine usually resides in an applicati@tegss’s
virtual space and manipulates the virtual memory intehgisech
that the status of the application process is substantizihged with
the instrumentation engine’s status. While checkpoingsadien
produced by taking snapshots of the virtual memory, it bezom
hard to discretely checkpoint the application processoSedrac-
ing can handle executions of up to a few seconds given thelspee
and storage capacity of modern workstations. Since chéutipg
usually produces virtual memory snapshots with the sizefefia
Megabytes, it is not something that we can afford to perforernye
second. Checkpoints are usually created in an interval oferar
less, minutes. The gap between seconds and minutes sutigests
it is still too costly to trace an entire checkpoint interval

In this paper, we present a noelecution fast forwarding (EFF)
technique that fills the gap between tracing and checkmpajntit
enables dynamic slicing of long executions. Figure 1 ilass
the basic idea. The left part illustrates that an executiwrpart
of an execution delimited by checkpoints, is usually heavistru-
mented for the purpose of dependence tracing. The heawy-inst
mentation introduces very high runtime overhead and cocistra
huge dependence graph, which makes it impractical if thetexe
tion gets long. In the right part a fast forwarding technigakes
advantage of the characteristics of many long running pirogr
— being driven by events. More precisely, it first collectsuld f
event log from the original execution. Next, given a spegfict of
the execution that the programmer wants to replay, a metmgli
technique, which is analogous to dynamic slicing but penfmat on
logged events instead of executed instructions, is appligutune
the events irrelevant to the replay of desired executioioregrhe
reduced event log is used to drive the replay, which is alfeda
the fast forwarded executionCompared to the original run, the
fast forwarded execution is much smaller as the volume afitsve

passed to the program is significantly lower. As a result, allem
dependence graph is generated that can be collected thnaogh
ing. The contributions of our paper are summarized as falow

e \We propose a solution to debugging long running programs,
which consists of the steps of checkpointing and logging a
long execution, reducing the log file, replaying the examuti
with the reduced log, and dynamic slicing during replay.

e We develop a novel EFF technique that performs meta slicing
on an event log to eliminate the events that are not relevant
to replaying a specific part of execution. The reduced event
log is used to drive a replayed execution to achieve theteffec
of fast forwarding.

e To implement the EFF technique, we show how to combine
tracing and logging/checkpointing. Given the strengths of
these techniques, we believe integrating them has very high
potential to impact the existing debugging procedures.

e As the ultimate goal of EFF, dynamic slicing is applied on a
set of long running programs, which was not possible previ-
ously due to its extremely high cost. The results strongfy su
port our claim in the prior work -dynamic slicing is very ef-
fective in isolating the cause effect chain from the rootsgau
to the failure[23, 25].

The remainder of the paper is organized as follows. In sectio
2 we describe the EFF technique in detail. The system, wisich i
an integration of EFF, tracing and checkpointing, is introed in
section 3. The results of our experiments are presentecctiose
4. In section 5 we studied the effectiveness of dynamicralicn
long running programs. Related work is discussed in seéiand
conclusions are given in section 7.

2. EXECUTION FAST FORWARDING

Often when a program runs for a long time, it is not because
the program performs a very long and complicated task. &t
is often because the program processes a long sequencepé sim
tasks. For example, programs processing streaming daltaasuc
audio, video, and data packets usually carry out the sampwtam
tion (e.g., the FFT transformation) on a sequence of pacKéts
computation on each packet tends to be relatively lightiatedand
independent from the computation for other packets. Progtaat
require user interactions display similar propertiesséngrograms
spend most of their execution time in handling user actioms a
the computation dedicated for each user action is usuatiplsi
Server programs deal with thousands of requests, most cfveleit

Event Log

0: open fd=30 path=/usr/lib/...
1: fstat64 size=31202800 ...

2: mmap addr=0x40317000 ...
3: mmap addr=0x40517000 ...

594804: read len=5 data=’c’ N
594825: read len=5 data="H’
594838: read len=5 data="0’

594890: read len=5 data="\n’

595007: socket-write #bytes=24

Initialization

i

4898: read len=5 data="c’ 594804: read len=5 data="c’
;1.9.19: read len=5 data="1’ |::> .5.9.4825: read len=5 data="H’
;1'9'32: read len=>5 data="m’ .5.9.4838: read len=5 data="0’
;1'9.45: read len=5 data="a’ 594890 read len=5 data="\n’
- ;95007: socket-write #bytes=24

Reduced Event Log

0: open fd=30 path=/usr/lib/...
1: fstat64 size=31202800 ...

2: mmap addr=0x40317000 ...
3: mmap addr=0x40517000 ...

Press ‘c’ to change folder;
Folder name “imaps://xyzhang@..”;
Processing emails.

Press ‘c’ to change folder;
Folder name “Hello”;
Error message “Hello is not an ..."

Figure 2: Getting the same warning message by replaying theeduced log for Mutt 1.4.2.1i. The numbers mean the byte posans of

the corresponding events in the log.

off simple computations such as reading a file or retrievipieae

performs: loading of dynamic libraries, allocating viltnaemory,

of data from a database. A common feature of these programs isand initializing the program state. The shaded eventsirsgigrom

thatthey are driven by eventgvents divide a whole execution into
small tasks, each one of which corresponds to handling suemt.e
An event is defined as one interaction between the applicatiol

the OS. The interaction could be in the forms of: system calth
asopen, read andmmap2 asynchronous or synchronous signals
such asill andsegfaultetc. These events are used to provide OS
services, such as reading/writing a file/socket, to theiegibn
program or to notify something has happened.

The EFF technique is derived from the following observation
all events do not need to be replayed in order to replay a pafar
part of execution Given an execution that is driven by events, we
may be able to shrink the replayed execution, and yet repethe
desired part, if we can prune the irrelevant events.

Figure 2 presents a motivating example. In the original the,
key 'c’ was first pressed in order to change the folder name after
Mutt, a text based mail user agent, was started; stiimgps://xyz-
hang@email.cs.arizona.edu/inBowas typed in as the email ac-
count, which was followed by the password. After logginghie t
account, a couple of email messages were accessed,dhgas
typed again, and stringHello” was provided as the new folder
name. SinceMello” was not a valid folder name, a warning mes-
sage was printed on the screen. The events were logged inaa file
shown on the left hand side of the figure. The first few thousanfid
events represent the startup phase of the execution, whaatiym

byte position 4898 to position 594803 correspond to the i@t
related to accessing the email account. Events starting5@1804
contribute to entering the invalid folder name and the waymes-
sage was printed by the event at 595007. Let us assume the pro-
grammer is interested in reproducing the warning messagpaA
ently, replaying the entire execution with the full log is aption
but not the optimal one. For the event at 595007 to be coyrectl
replayed, we need to replay events at 594804, 594825, 48989
Events from 4898 to 594803 are actuathglevantto replaying the
event at 595007. We construct a new log by removing all thed-irr
evant events and then drive the replay with the reduced Idge T
same warning message is successfully reproduced. Thetmxecu
was actuallyfast forwardedto the desired point by skipping the
irrelevant part.

The EFF technique poses two challenges. The first challenge
is the identification and removal of irrelevant events. Taeosnd
challenge is to develop a replay mechanism that works witka r
duced event log. The following subsections describe how ave h
dle these issues.

2.1 Event Dependence Graph

In dynamic slicing, given a value that is observed to be irexr
by the programmer (incorrect value may correspond to arriaco
output or a value that causes the program to crash), a setcdiexd

statements that contributed to the incorrect value are atedpas
its dynamic slice. The executed statements not in the dynslice
are not relevant to the investigated value. An analogoumique
can be applied to executed events to identify the set of aatev
events for replaying a given execution region.

Computation of dynamic slices normally consists of two step
building the dynamic dependence graph (DDG) for a failed exe
cution (where dependences include both data and contr@ndep
dences); and then traversing the dynamic dependence grapmt
pute the dynamic slice of the wrong value. To simplify thecigs
tion, we assume the execution starts from the beginning. We w
discuss how to deal with executions starting from checkgaim
later sections.

DEFINITION 1. The Dynamic Dependence Graphof a pro-
gram run, DDG@N, E), consists of a set of nodé¢ and a set of
directed edgesw where: each node,; € N corresponds to the
it" execution instance of statementin the program; and each
edgem; — n; € E corresponds to a dynamic data dependence,
dynamic control dependence, or potential dependence of‘the
execution instance of statemenbn the;** execution instance of

statemenin.

Ina DDG, an executed statement is abstractes} &5, D) which
denotes thg*” instance of statemert and wherel/ denotes the
set of values used b§; and D denotes the set of values defined.
For example, the execution of statemestdte r1, [r2]” can be
abstracted as ".L{ = {r1,r2}, D = {[r2]}", in which [rz] repre-
sents the memory location addressed-hyA data dependence ex-
ists between two executed statements iftheet of one statement
overlaps theD set of the other. A control dependence is introduced
if the execution of one statement depends on the valuésahthe
other statement, usually a predicate statement. One exkstate-
mentS; potentially dependsn another executed statement, usually
a predicate, if and only if the value of the executed staté¢mmend
have changed if the predicate had taken a different branabre M
details about potential dependence can be found in [4, 23].

We already discussed how an executed statement is abdtracte
As an event usually corresponds to multiple executed stxtenit
is important to understand how we deal with events during DDG
construction. Since system calls are usually handled éntie
OS kernel, a tracing engine which runs in the applicatiorcepa
is not able to trace into the kernel. Hence the dependendégwi
a system call are not captured. Our solution is to summahige t
execution of a system call, or an event, into the same abstrac
tion, E;(U, D), according to the specifications of events. For in-
stance, eventri=read(fd, Buf, siz€)can be abstracted as "LI(=
{ fd, seekpointer(fd), size, Buf, D = { seekpointer(fd), Buf[0],
Buf[1], ... Buf[n-1] }. Note that only the firsi: elements oBuf
are defined according to the specification of evead This event
both defines and uses the seek pointer offtile

An analogous dependence gragkient Dependence Graph (EDG)
can be constructed to reveal the dependences between, evieiats
can be later on used to prune irrelevant events.

DEFINITION 2. TheEvent Dependence Graplof a program
run, EDGN, E), consists of a set of nodes and a set of di-
rected edgesw where: each nodei; € N corresponds to the
it" execution instance of eventin the program; and each edge
m; — n; € E denotes that there exists a dependence path from
m; to n;, and there are no other executed events thgnandn;
on the path.

Figure 3 presents an example to illustrate DDG and EDG. The
left hand side presents the DDG. Statement executerend4;

1, inFd = open (..., '1”);

2, read (inFd, inBuf, ...);

3, strepy (outBuf, inBuf); ‘

4, read (inFd, inBuf, ...);

5, n=atoi (outBuf[0]) ; ‘
[E4,]

Figure 3: An example of Dynamic Dependence Graph (DDG)
and Event Dependence Graph (EDG).

6, printf (“n=%d", n);

data depend oft; because they use the file descriptor defined at
1;. 4, data depends a&y because; changes the file seek pointer.
The graph on the right hand side shows the EDG. Event executio
E3; depends orE'2; because of the dependence path— 4;.
Event executionv4; depends orZ2; due to the dependence path
21 — 31 — 51 — 61. Note that theread eventsE2 and E3

are considered as different events because they occurfextetif
program locations.

Control dependence between statements can also lead to-depe
dence between events as demonstrated by another examjde in F
ure 4, where evenk'3; depends on everif2; as the result 080,
control depending or21; and21; data depending 080;. The
dependence betwedrR, and E'3; belongs to control dependence
as the execution of?3; is due to the result oE'2;. However, in
EDGs we do not distinguish data dependence and control depen
dence edges.

Precisely constructing an EDG requires accurately traeangh
data/control/potential dependence. According to our Bgpee,
exactly tracing each data/control dependence on the flgdriga
slow down of up to two orders of magnitude. Potential depaode
is even more expensive to trace hence it is usually impleeteas
a post-mortem analysis. Thus, building a precise EDG is a lux
ury that becomes worthy only when the cost can be amortized by
a large number of replays. Otherwise, programmers woulfkpre
to replay the entire log, which is equivalent to doubling #xe-
cution time, rather than endure the two orders of magnitlole s
down in the first place and attain speed up in replays laterTon.
address this issue, we have to be conservative by consiguati
approximate EDG, in which one event depends on the othedif an
only if they are related by staticdependence path. In other words,
we only demand a static dependence graph, instead of a dynami
one, together with the event log to build an approximate EDi&&
only runtime overhead is caused by event logging, whichgsibi
icantly lower than tracing each dependence. Because depeesi
between events are usually simpler than dependences lrehoee
mal statements, which can be highly complicated due to point
aliasing, being conservative in EDG construction intragumuch
less imprecision compared to being conservative in bugl@DG.

2.2 Meta Slicing on Event Log

Similar to dynamic slicing, given an EDG and an event, which
the programmer wants to reproduce, meta slicing on the ED& co
putes the set of events that are needed in order to replayivite g
event.

DEFINITION 3. GivenEDGN, E), an event dependence graph,
the Meta Sliceof e; € N denoted by M&:;) is the subgraph of
EDG(N, E) which includeg; as well as all other nodes and edges

from whiche; is reachable, i.e.

MS(e;) = ({ei},{ele=m; —e; € E})U U MS(m;)

Vm—e;

For example in Figure 3, M¥'41) = {E11, E21, F41}. Note
that we ignore the edges in MS for simplicity. We need to re-
play E1,, which opens a file, and’2;, which reads some data
from the file, in order to correctly replak4,, which prints some
value resulted from computation over the input data. In gy
MS(E3:) = {E11, E21, E3:}. E2; has to be replayed otherwise
the control would not flow tdZ3;.

10, inFd = open (pathl, “r”);
20, n = read (inFd, buf, size);

21, if (n!=size) {
30, inFd = open (path2, “r”);

40 S1;

Figure 4: Another example of Event Dependence Graph.

We have discussed how to find the set of relevant events im orde
to replay a given event. However, in reality it could be a #pec
executed statement; that the programmer wants to replay. In this
case, we need to find out the set of closest events reachabte fr
n; in the DDG, denoted as EQuit;), and then compute meta slices
on these events. For example in Figure 4, EQut) = {20, }, the
corresponding meta slice M30;) = {10y, 20, }. Intuitively, both
E1, andE2; need to be replayed in order to replay statenfént

THEOREM 1. The events in M&ECut(n;)) are sufficient to re-
playn;.

Proof. Let us assume there is an eveptnot in MS(ECut(n;)),
ande; needs to be replayed in order to replay. We infer there
must exist an executed statement, event or non-exens.t. n; is
reachable fromm; andm; is reachable fronz,. In other words,
n; directly/indirectly depends om; andm; directly/indirectly de-
pends ore... Otherwise, executing; would not require executing
es. If there are no executed events along the path- m; — n;
other thane., e, € ECut(n;), which is contradictory to the as-
sumption; if there exists some executed event other ¢hasong
the path, let us assunag is the executed event closesttpon the
path s.t.e;, € eCu(n;), e € MS(e;,) according to the definitions
of EDG and meta slicing. It is a contradiction to the assuampti
This completes the proof.

Note that in practice ECut has to be conservatively compased
we do not have dynamic dependence information. Our experien
shows that this is not a problem because the events in EGlitaen
be very close to the desired statement instance in the depead
graph such that very limited number of spurious dependeares
brought in during the computation of ECut.

2.3 Replaying with A Reduced Event Log

We have described how meta slicing can be applied to identify
a set of events that are relevant to replaying a given parkexie
tion. However, meta slicing is not yet an ultimate solutidwven

though the events in a meta slice are sufficient to replay medes
part of execution, the meta slice per se is often not a legigm
log to drive an execution. For example, in Figure 3, M8,) =
{F11, E2:, E4,}. Replaying with the meta slice fails because
E3: was expected when the control flows to statemgant This
suggests that some events, even though irrelevant to iegléye
desired part of the execution, cannot be pruned due to thieaton
flow structure. In this subsection, we are going to descriye &én
event log is reduced with regard to a meta slice and the gitrin
control flow structure of an application.

5 gettimeofday() Event Log

5, gettimeofday
10 while (1) {

20, getchar
31, printf (“..A..”)
20 switch (¢ = getchar()) { 20, getchar
80, open
30 case ‘a’: 20, getchar
31 printf (“case A\n”); 31, printf (“..A..”)
...... 20, getchar
50 case ‘c’: 51, printf (“..C..”)
51 printf (“case C\n”); 20 getchar
...... 91, read
80 case ‘0”: 20, getchar
81 fd = open (..., “1”); 51, printf (“..C..”)
...... 20, getchar
90 case ‘r’: 51, printf (“..C..”)
91 n =read (fd, buf, size); 20, getchar
92 if (n!=size) { 91, read
93 gettimeofday() 93, gettimeofday
94 printf (“Error: ...\n”); 94, printf (“Err...")

}
}
}

Figure 5: An example on reducing the event log. The shaded
events are those in M$94,).

Before we present the algorithm, let us first study an example
that clearly explains how it is made possible to reduce a litigout
losing validity. In Figure 5, the program displayed in thé tol-
umn takes user commands fratdin Different actions are taken
based on different commands. For instance, messages atedori
on the screen ifd’/’ ¢’ is pressed; a file is opened i§”is pressed,;
the opened file is read if’ is read; if the data read does not match
the size required, an error message is delivered. The exgfid a
particular execution is presented in the right column. Baithe
execution, a file is opened and then read for twice; the second
read does not satisfy the size wanted such that an error geessa
is printed at94,; in between of these events, a humber of events
happen as the results af'/’ ¢’ being pressed. Let us assurdé;
is the event we want to replay. M$!:) is denoted as the shaded
events in the log. Apparently, the meta slice is not legitarfar
replay as everf, (gettimeofday, which is not in the meta slice, is
expected at the beginning of the replayed execution. Whiles
not removable, event20; and31; can be removed without any
problem. The important observation here is tb@ and20, are
compatibleand thus20. can be moved up to repla@é; such that
the event in betwee3 1, is pruned.

DEFINITION 4. An event execution; is compatible with an-
other event executiogy; iff their calling contexts are identical and
they occur at the same program point.

Here the calling context of; represents the application’s call
stack where; is executed. All the even0,, in Figure 5 are com-

patible to each other. This example suggests we are abléetoaal
replayed execution by replacing an event with its compatiaer.

only data dependence, is quite effective for memory typeugsb
Therefore, we only compute data slices in this paper duectfeitt

The algorithm to reduce a log given a meta slice is presented that crashes are usually the type of bugs reported for longing

as follows. Gemextevent() gets the next event from the log file;

programs. In the remaining part of the paper, we mean dynamic

getnextmarkedevent() gets the next event belongs to the meta data slices when we mention dynamic slices. Note that dymami
slice, which we assume is precomputed, in the log file. These slicing in this phase is different from meta slicing mengdrear-
two methods share the same file seek pointer, which can beg set b lier: meta slicing is performed on an event dependence gaagh

setfile_pointer(...).

Input: the original log Log
Output: thereducedog RLog
Initialize: RLog « ¢
while (e;,=getnextmarkedevent(Log))!=EOFRo
e=getnextevent(Log)
for each e from e to e,, in Log do
if e¢.context= e, .contextthen
goto Ly
endif
Rlog — Rlog- e
endfor
Ly
Rlog — Rlog- e,
setfile_pointer(Log,em)
endwhile

The basic idea of the algorithm is that given a marked ewgnt
an event in the meta slice, we find the earliest compatibleteyen
betweere ande,, such that moving... up to replace; maximizes
the savings. All the events betweeande; includinge are copied
to the new log to satisfy the control flow structure confinem&he
events betweea, ande,,, are discarded.

Table 1 presents the reduction procedure of the examplegin Fi
ure 5. As shown in the table, during iteration oie,is the first
event retrieved from the log, arad, is the first marked evenf0,
can be moved up to repla@®; such thats; and20. are the two
events appended to the new log. During the second iteraion,
is the next event and also the next marked event such thatiihis
ply copied to the new log. In iteration three, movi@gs up to
replace20s results in cutting the events frofs to 50, . The final
reduced log is shown in the last row of the table. The reduge lo
can be used to drive the replayed execution to reproducertbe e
message &4, .

Table 1: Computation table for figure 5.

Iteration | e em | RLOg

1 51 202 | 51 202

2 801 | 801 | 51 202 80;

3 203 | 205 | 51 202 8071 205

4 91; | 911 | 51 202 807 205 911

5 206 | 208 | 51 202 807 205 911 20g

6 912 | 912 | 51 202 807 205 911 205 912

7 931 | 941 | 51 202 801 205 917 208 912 9371 944

2.4 Dynamic Slicing during Replay

Dynamic slicing was believed to be too expensive to apply for
long executions. With sophisticated compression tectasda2]
we can achieve the space efficiency of four bits per executed i
struction, which is still not powerful enough for executothat
run for minutes, hours, or days. The EFF technique can repeod
a failure without going through most of the irrelevant pafrttte
execution. As a result, dynamic slicing becomes feasihiddst
forwarded executions. According to our previous study [213}
namic data slicing, in which slices are computed by consider

generates a reduced log; dynamic slicing is performed osttte-
ment level dynamic dependence graph that is constructedgdar
fast forwarded replay.

3. THE EFF SYSTEM

As we mentioned earlier, tracing can handle an executiorpof u
to a few seconds, whereas checkpoints are usually creatbcwi
interval of minutes. The ultimate goal of EFF is to fill the gap
between tracing and checkpointing such that dynamic glicam
be applied. We have discussed how EFF fast forwards an ésmcut
from the beginningby replaying a reduced log. However, there
is nothing fundamental that prevents EFF from being appited
executions resumed from checkpoints. Therefore, in thit@se
we are going to describe how EFF, checkpointing, and traaieg
integrated together. The composed system can be used tg debu
long running programs.

binary, input

Instru 1 bb

events

Logging/
Checkpointing

basic block (bb)

Dynamic

virtual memory| . Slicing
Instrumentation

reduced mappings

log

defs, uses

checkpoints

output

Figure 6: System infrastructure.

The system is presented in Figure 6. It consists of four cempo
nents: dynamic instrumentatioecomponent, whose primary duty
is to provide the infrastructure for tracintpgging/checkpointing
componentslicing component; anéEFF component. The system
works as follows. In the original run, the slicing componisrdeac-
tivated to reduce runtime overhead. The dynamic instruatiemt
engine traps each system call and forwards it to the cornetipo
handler in the logging model, which in turn logs the evente€
points are created occasionally until a crash happens.dplayed
run, a smaller log file produced by EFF is supplied to driverthe
play; in the mean time, the slicing component is turned omaoet
the exercised data dependences till the crash point. Trstrooted
dependence graph is studied to identify the root cause dfuada

Dynamic Instrumentation. The dynamic instrumentation engine
is adapted fronvalgrind [18], which takes a x86 binary and before
executing any new (never instrumented) basic blocks isdak
instrumentation function provided. The instrumentatiandtion
instruments the given basic block and returns a new basidk o
valgrind. Valgrind executes the instrumented basic blockead
of the original one. The instrumented basic block is copma t
new code space and thus it can be reused without calling the in
strumenter again. The instrumentation is dynamic in theesd¢mat
the user can enforce the expiration of any instrumenteat lisck
such that the original basic block has to be instrumentethdge.,
instrumentation can be turned on and off as desired). In ase,c
we can easily turn on/off the slicing component for the sakmeo-
formance or for certain part of the code, e.qg. library code.

Logging/Checkpointing. Our logging component is modified from
jockey[17], which is an industry-strength checkpointing/rejitay
library executed in the application’s space. Compareddatieck-
pointing techniques executed in the kernel space, jocksysha
perior usability. Setting LCLIBRARY _PRELOAD-=libjockey.so
is the only command required to activate jockey. Once loaded
jockey calls an initialization method before the applicatgains
control. During the initialization, jockey scans throughthe bi-
naries including the libraries loaded by the applicatiooking for
any system call sites. Those system calls are redirectantkey
in order to log the corresponding events or, during the fepk
trieve the events from the log file without actually passimgn on
to the OS. Checkpoints can be created by setting a timer,thath
the application is not even aware of the existence of jockepy
making a library call to jockey inside the application. Iretlat-
ter case, the application has to include jockey’s headey ditel be
explicitly linked with the library. On receiving a checkpting re-
quest, jockey obtains the layout of the application’s \dttspace,
which is the jockey’s space as well, by parsipgoc/self/mapsA
checkpoint is created by dumping all the virtual memory sexgis
that do not belong to jockey.

Slicing. The slicing component is inherited from our prior work
[23]. The main difference is that we do not trace control aepe
dence in this system because according to our study [23hgac
only data dependence is powerful enough to capture the anses
of memory bugs, which are the ones usually reported for long r
ning programs. Another difference is that we augment thepoem
nent such that it stops at the execution points where illegah-
ory accesses occur, for example a write to an unallocatedtssld
These points are usually earlier than the actual crashgoint

EFF. The EFF component implements the technique described in
the previous section. It takes an event log file dumped bydge |

served by valgrind for tracing. Our solution is to make thewase
of the existence of each other by separating the applicatami
dress space into two parts — the valgrind’'s space and they&ck
space. The application is actually executed within the nadis
space. The second issue is about adjusting the system ayadl tr
ping mechanism in jockey. Jockey traps system calls by tijrec
overwriting the application’s code. As a result, valgrinaces into
jockey and tries to instrument the jockey code, which is sirde
able. Our solution is to avoid any direct interactions beméhe
application code and the jockey code. Jockey can only iterf
with valgrind. More precisely, we use valgrind to trap systealls
and then call the jockey event handlers inside valgrind. thire
issue is to discretely checkpoint the execution. A naiveitsmh
only checkpoints the application’s program status. Théityeis
that the application’s program status is so mixed up withvide
grind’s status that valgrind fails to resume from checkoituring
replay if only the application’s status has been checkpdinOur
solution is to treat the valgrind’s status as part of the iapfibn’s
status such that it is checkpointed as well. Some of the ivalgr
status should be excluded such as the valgrind’s log filergiesg
which should be reopened at the beginning of a replay. There a
some other minor issues in order to make both valgrind aricejoc
run correctly such as some of the valgrind’s sanity checke ha
be turned off.

4. EXPERIMENTATION

We need to address a few issues in order to carry out experi-
ments. The first issue is that of selecting benchmarks to muse i
the experiments. The programs we select should be able to run
for a long time. We looked at the set of bugs studied in [7, 13,
12] and picked the programs that can execute for a long tirae. T
ble 2 presents the set of programs we selected. Most of them ar
user interactive programs. We ignorgplchesinceapachecreates

ging model and then computes the meta slice for a given set of Multiple processes while our logging model can handle onlg o

events. The meta slice is used to prune the event log. Thiingsu
smaller event log is used to drive the replayed executioe. cim-
putation of meta slice requires a static dependence grabithw
is created by profiling the executed dependences in a fewlipgpfi
runs due to the lack of an implementation of points-to anslie
x86 binaries.

One of the key challenges is to integrate logging/checkpan
model into the dynamic instrumentation engine. The intignas
very meaningful because of the following reasons. Dynanstri-
mentation is becoming more and more widely used in recemtyea
Not only is it attractive for the purpose of adaptive profilfmacing,
but also performance improvement can be achieved by exgcati
regular application on a dynamic instrumentation enginamaBy
translation, a very promising technique that is derivednfrdy-
namic instrumentation, can virtually execute an architextspe-
cific binary on a different architecture. Logging/checkgirig, on
the other hand, has already been very popular for faultdoks,
debugging, etc. We believe logging/checkpointing shoedome
a standard functionality of a dynamic instrumentationasfruc-
ture. Therefore, the issues we are addressing here may beagen
to the integration of tools with similar functionality. Tliest issue
is the separation of the virtual space. Both valgrind anéggare
residents in the application’s space. They both assumiectmtérol
over the virtual space such that they reserve certain asldmsce
for their own purposes. The reservations conflict each other
instance, jockey reserves 0x7200000-0x7800000 for itp,hie

mapping of the log file, etc. The same address space is also re-

process at the current stage. The second issue is that weheeed
input that can drive the execution for a long time and thesttra
On the other hand, the execution should not be so long that it b
comes too heavy a task for us to collect the data. Unfortiypake
input coming with the selected bugs usually leads to verytshe
ecutions. Given the fact that most benchmarks are intesatie
constructed a long input by first performing a sequence af aise
tions and then applying the failure inducing input —the immmes
with the benchmarks. For examplenmutt we took the following
actions: (i) open an email account; (ii) go through all theags
one by one, the total is about six hundreds; (iii) try to stvitc an
invalid folder; repeat steps (ii) and (iii) two more timesopide the
failure inducing input and hence crash the program. We cte
the user time as the performance indicator since the real tivay
significantly differ each time depending on the user’s b&rav

Table 2: Description of the benchmarks

[Benchmark | Description | LOC | BugType |
bc-1.06 interactive calculator | 14.4K | heap overflow
mc-4.5.55 file manager 86.2K | stack overflow
mutt-1.4.2.1i emalil client 453.6K | heap overflow
pine-4.44 emalil client 211.9K | stack overflow
pine-4.44 emalil client 211.9K | heap overflow
squid-2.3 | web proxy cache servef 93.5K | heap overflow

We investigated four execution scenariosg. denotes the orig-
inal execution;traced denotes the original execution plus the de-

Table 3: Performance comparison of different execution sgerios.

[Benchmark [Orig. (sec.)| Traced (sec.) Traced/Orig.[| Logged (sec.)] Logged/Orig. || EFF (sec.)[Traced/EFF]
bc-1.06 13.6 2040.4 150.6 16.2 1.19 0.05 40808.8
mc-4.5.55 10.28 417.8 40.64 13.47 1.31 0.05 8356

mutt-1.4.2.1i 19.7 3237.7 164.5 26.1 1.32 0.06 53960.8
pine-4.44(stack) 14.4 2088.4 1451 36.8 2.55 0.12 17403.6
pine-4.44(heap) 13.9 2102.2 1515 344 247 0.20 10510.9

squid-2.3 14.6 1131.6 77.3 25.6 1.75 0.17 6656.4

pendence tracindoggedrepresents the original execution plus log-
ging; EFF represents the fast forwarded execution plus the depen-

Table 5: Comparison of the dependence graphs.

[Benchmark | # of dep. in Orig.| # of dep. in EFF| Orig./EFF |

dence tracing. In the logged run, an event log is created.ERte bc-1.06 2.18 x 1010 4.9 x 10° 44489.8
technique is applied to reduce the log. The statement iostae mc-4.5.55 0.69 x 1019 9.6 x 107 718
want to replay is where the crash happened. The EFF techisique mutt-1.4.2.1i] 4.86 x 10 4.21 x 107 1154.4
able to reproduce the crash in a much shorter execution. dihet pine-4.44 1.95 x 10™ 2.68 x 107 721.6
complexity of our system, our implementation is not sounthat pine-4.44 | 2.78 x 101100 1.55 x 10: 179.4
current stage. Some times we have to hard code a few event-depe squid-2.3 1.1x 10 1.93 X 10 5699.5

dences, otherwise the reduced log is not valid to drive théaye
which is manifested as an event missing when it is expectdiaeor
presence of an extra event.

Table 3 compares the performance under the four scenaries. W
can see the original runs, which were terminated by crastues, RUNNING BUGS

sume user time ranging from 10.2 to 19.7 seconds, whichcorre The performance of a set of long running bugs has been studied
sponds to the real time of a few minutes. They are not long by in the last section. As the original motivation, dynamicisig is

simply looking at the raw numbers, but they well exceed thEeea applied and evaluated to show the effectiveness.
bility of our dependence tracing technique. We can easitgrek
5.1 Mutt

the executions by repeating the user actions. The sidet éffére
increased difficulty of collecting the execution time in tinaced Mutt [27] is a text based mail user agent (MUA) for Unix based
scenario. Note that even though checkpointing is suppantedr Operating Systems. It has many features including custsity
system, the original execution does not last long enoughide t POP3 and IMAP sﬁpport and ability to handle multiple ma'(’lbo
ger it. Fortunately, it does not affect the evaluations & BFF formats. According to [28j mutt version 1.4 has a known mgmo
technique and the effectiveness of dynamic §Iicing on "“'“.@"”9 bug which is as follows. 'i'he Mutt Mail User Agent (MUA) has
programs. From Table 3, we have the following observations. support for accessing remote mailboxes through the IMAROpro
o Dependence tracing introduces 40.64 to 164.5 times slow col. When mutt has to convert the name of the folder from iisrin
down. A programmer may accept it for a short run but highly nal UTF-8 representation to UTF-7 it calls the functidfB_to_utf7
unlikely for a long run. in moduleimap/utf7.c When this function does the conversion, it
miscalculates the length of the output string. To conducesper-
e The slow down factor of logging ranges from 1.19 to 2.55, iment, after Mutt is executed for a long time, we supply a US'F-
which is significantly smaller than the tracing slow down-fac folder name that contains some Specia| characters. TheUumD
tor. For user interactive programs, the overhead is not huma s overflowed and a segmentation fault is flagged. We redue th
noticeable. event log using EFF and then replay the execution with the new
log. Dynamic slicing is activated in the replayed executiBigure
7 shows the computed dynamic slice.
As we mentioned earlier, our slicing component also mositor
for any attempt for illegal memory access. After detectingite to
a memory region not allocated at line numiég, we now inspect
the data slice to find the root cause. We find that the lastriosta

5. DYNAMICSLICING ONASETOFLONG

e EFF can greatly shorten an execution such that the overhead
of dependence tracing becomes acceptable.

Table 4: Comparison of the event logs.
[Benchmark | # of events in Orig.| # of events in EFF| Orig./EFF |

bc-1.06 340509 7 48644.0 of line 199 is data dependent on lir92 and vice-versa through
mc-4.5.55 322172 16020 20.1 variable p’. The arrows indicate the data dependence. The data
mutt-1.4.2.1i 262559 489 536.9 dependence chain in the slice leads us to the first instankieeof
pine-4.44 7365830 3028 2432.6 199 which is data dependent on lin®2 and this in turn is data
pine-4.44 8707316 27279 319.2 dependent on liné52, which is the root cause of the bug as there
squid-2.3 1620988 95 2038.9 is an error in calculating the buffer length at this point. Méeded

Table 4 compares the numbers of events before and after eventtO inspect jusB static statements before getting to the root cause,
reduction. We can see the reduction factor ranges from 20.1 t and the dependence chain provides a very clear explanatitineo
48644.0, which well explain why the fast forwarded exemsio cause effect relations.
become so short. Table 5 presents the numbers of the exercise .
data dependences in the original and the fast forwardedigzas. 5.2 Pine
We want to point out that these numbers are collected after th Pine [31] is a popularly used application for reading, segdi
intra-basic-block optimization [22] which eliminates cigterable and managing email messages and is distributed with thexLinu
redundant dependences. We can tell that the numbers foashe f operating system. Pine version 4.44 has two buffer overfloarg
forwarded executions are much smaller. The constructedrdep One is a stack overflow and the other is a heap overflow. We look
dence graphs can be stored even without further comprefagn at both errors in the following subsections.

File : utf7.c
utf8 to utf7 (... size_t u8len) {
152

p=buf=safe malloc(u8len * 2 + 1);
while(u8len) {

if (ch <0x20 || ch >= 0x7f) {
if(!base64) {
192 *ptt+=&’;

}

199 *pt++ = B64Chars[b | ch >>k];

for(; k>=0; k -=6)
*p++ = B64Chars[b | ch >> k];

C)

202

Figure 7: Mut 1.4.2.1i

5.2.1 Pine Stack Overflow

According to [32] pine has a stack overflow error. Pine calls a
error prone API when it accesses mailboxes. By asking pine to
handle a mailbox that has some special characters this lugeca
triggered causing pine to crash.

We are able to capture the root cause of the bug again using dy-
namic slicing. Our tracking infrastructure reports angiemem-
ory access at line numbag9 of file mail.c, where the statement is
"for (...;(c=*t++)!1="";) {". We look at the slice at this point and
find that there is a loop carry self dependence. This linede al
the root cause of the BUG as variable 't', which is the poiritea
string, is incremented beyond its allocated region (onk3téi¢he
provided string does not have the end quote. We needed tednhsp
3 static statements to nail the root cause.

5.2.2 Pine Heap Overflow

According to [33] pine has a bug that when triggered can over-
flow the heap memory causing a potential crash. This can occur
when pine processes the "From” field of email headers. Certai
special characters in the header can cause the bug. Fighe8 s
the code where the bug is present.

There is an illegal heap access detected by our infrasteietu
line number260 in file rfc822.c However, the root cause of the
bug is at line number269 of file bldaddr.c The bufferdest in
rfc822 cat is allocated inaddr_list_string. The size of the alloca-
tion is miscalculated iestsizebecause it does not consider special
characters. The figure shows the dependences that we trazked
get to the root cause from the error point. This is an exampleres
the root cause and the symptom are in different functionshside
to examinel 0 static code statements to get to the root cause.

5.3 Midnight Commander

Midnight Commander (mc) [29] is an open source file manager
for free operating systems. It has high degree of portgtalid can
be compiled and run on a number of operating system including
Linux. We used mc version 4.5.55 for our experiment. Thisiger
has a known buffer overflow error. According to [30], the beg i
triggered when midnight commander is used to process symbol
links in tgz archives. Absolute symbolic links in the archives are
translated into links relative to the start of ttgz file. The buffer

File : bldaddr.c
int est_size(a) {

7269 cnt += ...

return(max(cnt,50));

}

File : bldaddr.c
char *addr list string(...) {

7126 list = (char *) fs_get(...est_size(adrlist))D

7128 rfc822 write address decode(list, ...);

}

File : rfc822.c
void rfc822 cat (char *dest, ...) {
dest += strlen(dest);

g *dest++=

for(;s = strpbrk (src,”\\?); ...
strncpy (dest, ...); ?

dest +=1;

* ?
dest++ = “\\’; ?

*dest++ = *s;

260

Figure 8: Pine 4.44 heap overflow.

File : direntry.c
vfs_s entry * vfs_s resolve symlink(...) {
char buffMC_MAXPATHLEN], *linkname;

f;r(;;p++) {
if(1p) |

strcat(buf,q);
break;

385

}

398 return (MEDATA->fifid entry) (...);
}

Figure 9: Mc 4.5.55

that is used to form the relative link is never initializeciamence
can be overflowed inside ttstrcatprocedure. Figure 9 shows the
code corresponding to the bug.

We use our infrastructure to determine the root cause ofibe b
A segment fault occurs at line numb&9¥8. Now, when we look at
the slice at this point we find an abnormal data dependeneebat
line 398 and line385. We conclude that a stack buffer overflow
happened at 1in885, which is the root cause of the bug, such that
it corrupted one of the variables used at IB#8. We just needed
to inspect static statements to get to the error.

5.4 Squid

Squid [34, 7] is a fully featured web proxy cache that support
proxying and caching of HTTP, FTP and other URLSs. Itis des@gn
to run on Unix based systems. We use squid version 2.3 for our
experiment. It has a known heap buffer overflow error. When an
input request contains some special characters, squicltigates
the length of the heap buffer that is used to hold the requést.
a result, the buffer is overflowed and then the server crajB&$
explains it in more details. Figure 10 shows the portion efdbde
that contains the bug.

File : ftp.c
static void
ftpBuildTitleUrl(FtpStateData * ftpState) {

1 len = 64
1006 + strlen(ftpState->user) ...

1 t=xcalloc(len,1);

i‘f(.strcmp(.)R

1024 strcat(t, rfc1738 escape_part(ftpState->user));

Figure 10: Squid 2.3

On running squid using our infrastructure we find that there i
a heap buffer overflow at line numb&624. Inspecting the slice
at this point leads us to the root cause of the bug at line nhumbe
1005, at which the extra padding space of size 64 is not enough to
accommodate the special characters. We had gone thfosigtiic
statements before we reached the root cause.

55 bc

Bc [26] is a numeric processing language that supportsrarpit
precision numbers. It is generally distributed along wité Linux
operating system and is a part of the GNU project. We used@-1
for our experiment. This version has a known heap overfloarerr

In [6, 7] the bug that is triggered in bc is described. A certai
heap buffer is not declared wide enough and overflows. The cod
corresponding to the error is shown in Figure 11. The heayarr
arraysdeclared at line numbdi67 is overflowed.

Our tracking infrastructure detects a heap memory viatatib
line number177. Looking at the slice at this point we see that the
root cause of the bug is at line numhle7. This is becausa_count
entries have been declared hutountentries are accessed. We
needed to inspect just the3astatements to find the root cause.

File : storage.c
void
more_arrays() {
167 ays=(bc_var_array **) bc_malloc(
a_count * sizeof(bc_var_array *);

76 for(; indx <v_count; indx++)
17 arrays[indx] = NULL; P

Figure 11: Bc-1.06

usually require examining a few static statements befozerdlot
cause is located. Two conclusions can be drawn: dynamiaglic
is very effective to handle memory type of bugs even in theglon
running programs examined; the real challenge is to isthat@art

of the execution that is relevant to the error and hence dimam
slicing can be applied. The EFF technique is designed foptine
pose. According to our experience in [23, 3, 24], most nomAoTy
bugs still have very good locality even though not as appaasn
memory bugs. We firmly believe EFF plus dynamic slicing will
still be highly effective for non-memory bugs in long rungipro-
grams. Unfortunately, most bugs that are reported andesiudr
those programs are memory bugs. We plan to mine some software
repositories of long running programs to get more intengstion-
memory bugs in the future.

6. RELATED WORK

The work that is very closely related to ours is the delta debu
ging technique [21]. Delta debugging is similar to our wonk i
terms of their ability to reduce a failed execution withagihg the
capability of reproducing the failure. Delta debuggingssentially
a systematic search algorithm which can minimize failudaging
input and, if given both a successful run and a failed rudatedhe
minimal failure inducing input difference between these twns.
The basic idea is to use a binary search alike algorithm terges
different combinations of input and then re-execute thegmm
with these input to see if the failure can be reproduced. 1j,[2
Zeller et al. also treated the interactions between an eatjpin
and the user as input and applied delta debugging to idethtiy
minimal sequence of failure inducing interactions. In [10tso et
al. capture the interactions between different softwarepanents
such as method calls, and then apply delta debugging tafigléme
minimal sequence of failure inducing interactions befaay. In
[2], Choi et al. applies delta debugging to isolate the failimduc-
ing thread schedule difference.

The difference between delta debugging and our work is that
delta debugging is a black box technique while our technéglapts
a white box strategy which tries to reduce an execution hysos
ing dependences between events. If the execution is sippitiag
delta debugging to the captured events may perform bettee si
reexecuting the program takes very little time. Howeveihéf exe-
cution is long and thus the volume of events is high, a largetrer
of reexecutions, which is the inevitable result of the seaised by
delta debugging, is not desirable. On the other hand, we\zli
delta debugging can be an addition to our technique. For exam

From the studies we find that these bugs are not as mystesous a ple, we found it is hard to disclose some data dependenceséet

they appear, under the micro-inspection of dynamic slicifigey

events without being conservative. However, being comgme/

implies that we often fail to remove certain irrelevant egetunder
such circumstances, a black box strategy such as delta gielgug
can be employed to systematically determine if these degreras
should be considered during reduction. Finally, the goabwf
technique is not merely execution reduction, but to makenhea
weight tracing technique as dynamic slicing feasible.

Another stream of related work includes [9, 16]. In thesekspr
all the interactions between a software unit and other pateom-
ponents are captured as events. As a result, the softwareami
be replayed based the log without the need to execute thaérrema
ing part of the software. These techniques are useful intesiing
while our technique is more general. Furthermore, we alsago
on locating errors through dynamic slicing.

7. CONCLUSIONS

We have enabled dynamic slicing on a set of long running pro-

grams by developing a novel execution fast forwarding tagken
Fast forwarding can be achieved by driving the replay witke-a r
duced event log file. Given a desired execution region, &lpoy-
tion of the events are not relevant to replaying it. Metaisgjds
designed to eliminate this redundancy in the log file. Wit éix-
ecution fast forwarding technique, the replayed execuimromes
substantially shorter and yet the wanted execution regopre-
cisely reproduced. The reduction factors of the sizes ofidyin

dependence graphs range from 72 to 44490. As a result, dgnami

slicing can be practically applied to isolate the causeceff@ain
leading to the failure. Our studies show that most of the ntego
memory bugs for long running programs are trivial to locatthw

dynamic slicing once the execution has been shortened té-an a

fordable level.

Acknowledgements
This work is supported by grants from Microsoft, IBM, and NSF

grants CNS-0614707, CCF-0541382, and CCF-0324969 to the Un

versity of Arizona.

8. REFERENCES

[1] S.Bhansali, W-K. Chen, S. de Jong, A. Edwards, R. Murkdy,
Drinic, D. Mihocka, and J. Chau, “Framework for instructilewel
tracing and analysis of program executiondftual Execution
Environments Conferenc®ttawa, Canada, June 2006.

[2] J. Choi and A. Zeller, “Isolating Failure-Inducing Tla@ Schedules”,
Proceedings of the International Symposium on Softwartnfeand
Analysis Rome, Italy, July 2002.

[3] N. Gupta, H. He, X. Zhang, and R.Gupta, “Locating Faulydé
Using Failure-Inducing Chops20th IEEE/ACM International
Conference on Automated Software Engineerpages 263-272, Long
Beach, California, Nov. 2005.

[4] T. Gyimothy, A. Beszedes, |. Forgacs, “An efficient relav slicing
method for debugging,7th European Software Engineering
Conference/ 7th ACM SIGSOFT International Symposium on
Foundations of Software Engineerintoulouse, France, 1999.

[5] B. Korel and J. Laski, “Dynamic program slicingfiformation
Processing Lettersvol. 29, No. 3, pages 155-163, 1988.

[6] B.Liblit, A. Aiken, A. X. Zheng, and M. |. Jordan, “Bug Idation via
Remote Program SamplingSIGPLAN Conference on Programming
Language Design and Implementatj@®an Diego, California, June
2003.

[7] S. Lu, Z.Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou, “BugBench
benchmark for evaluating bug detection tooMforkshop on the
Evaluation of Software Defect Detection TQ&605.

[8] R.H.B. Netzer and M.H. Weaver, “Optimal Tracing and lecrental
Reexecution for Debugging Long-Running PrograndsCM SIGPLAN
Conference on Programming Language Design and Implenientat
Orlando, FL, USA, pages 313-325, June 1994.

[9] A. Orso, and B. Kennedy, “Selective capture and replagrogram
executions”In Proceedings of the Third international Workshop on
Dynamic AnalysisSt. Louis, Missouri, May 17 - 17, 2005.

[10] A. Orso, S. Joshi, M. Burger, and A. Zeller, “Locatingu3as of
Program Failures"Proceedings of the 2006 International Workshop on
Dynamic AnalysisShanghai, China, May 2006.

[11] D.Z.Pan and M.A. Linton, “Supporting reverse execntaf parallel
programs,”ACM workshop on parallel and distributed debugging
Madison, WI, USA, May 1988.

[12] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou, “Rx: tnggaliugs as
allergies - a safe method to survive software failur¢isg, 20th ACM
Symposium on Operating Systems Princifdeghton, UK, pages
235-248, Oct. 2005

[13] M.C. Rinard, C. Cadar, D. Dumitran, D.M. Roy, T. Leu, ands.
Beebee, “Enhancing Server Availability and Security Thylou
Failure-Oblivious Computingthe Sixth Symposium on Operating
System Design and Implementati®an Francisco, California, pages
303-316, 2004

[14] M. Ronsse, K. De Bosschere, M. Christiaens, J.C. de &targeaux,
and D. Kranzlmller, “Record/replay for nondeterministiogram
executions”, Communication of the ACMI6(9), pages 62-67, 2003

[15] M. Ronsse, K. De Bosschere, and J.C. de Kergommeauwecliion
replay and debugging’Fourth Workshop on Automated and
Analysis-Driven DebuggindMunich, Germany, August 2000.

[16] D. Saff, S. Artzi, J.H. Perkins, and M.D. Ernst “Autoritatest
factoring for java”,In Proceedings of the 20th IEEE/ACM international
Conference on Automated Software Engineerirang Beach, CA,
USA, November 07 - 11, 2005.

[17] Y. Saito, “Jockey: a user-space library for recordiagpmebugging”,
Sixth International Symposium on Automated and Analysigeb
Debugging Monterey, California, September 2005.

[18] J. Seward et al. “Valgrind: A GPL'd system for debuggend
profiling x86-linux programs”http://valgrind.ked.org/2004.

[19] S.M. Srinivasan, S. Kandula, C.R. Andrews, and Y. Zhou,
“Flashback: a lightweight extension for rollback and detieistic
replay for software debuggingtSENIX Annual Technical Conference
Boston, MA, USA, June 1994.

[20] L.D. Wittie. “Debugging distributed C programs by remhe replay,”
ACM workshop on parallel and distributed debuggipgges 57-67,
Madison, WI, USA, May 1988.

[21] A. Zeller and R. Hildebrandt, “Simplifying and Isolag
Failure-Inducing Input”)EEE Transactions on Software Engineering
28(2), February 2002, pp. 183-200.

[22] X.Zhang and R. Gupta, “Whole Execution TracdEEE/ACM 37th
International Symposium on Microarchitectumgages 105-116, 2004.

[23] X. Zhang, N. Gupta and R. Gupta, “A Study of Effectivenes
Dynamic Slicing in Locating Real FaultsEmpirical Software
EngineeringJournal, August 2006.

[24] X. Zhang, N. Gupta, and R. Gupta “Locating Faults Thioug
Automated Predicate SwitchingEEE/ACM International Conference
on Software Engineeringhanghai, China, May 2006

[25] X. Zhang, N. Gupta, and R. Gupta “Pruning Dynamic Sli¢éth
Confidence,”ACM SIGPLAN Conference on Programming Language
Design and Implementatip®ttawa, Canada, June 2006

[26] GNU bc. http://www.gnu.org/software/bc

[27] Mutt Website. www.mutt.org

[28] Mutt Buffer Overflow.
http://www.securiteam.com/unixfocus/5FPOTOU9FU.html

[29] Midnight Commander. www.ibiblio.org/mc

[30] Midnight Commander exploit. www.securityfocus.cdnia/8658

[31] Pine Website. www.washington.edu/pine/

[32] Pine Stack Buffer Overflow Error.
http://www.xatrix.org/advisory.php?s=7408

[33] Pine Heap Buffer Overflow Error.
http://www.securityfocus.com/bid/6120

[34] Squid Website. http://www.squid-cache.org/

[35] Squid Buffer Overflow.
http://www.securiteam.com/unixfocus/5BPOP2A6AY.html

