
Dynamic Slicing Long Running Programs through
Execution Fast Forwarding

Xiangyu Zhang Sriraman Tallam Rajiv Gupta
Department of Computer Science

The University of Arizona
Tucson, Arizona 85721

{xyzhang,tmsriram,gupta}@cs.arizona.edu

ABSTRACT
Fixing runtime bugs in long running programs using trace based
analyses such as dynamic slicing was believed to be prohibitively
expensive. In this paper, we present a novelexecution fast forward-
ing technique that makes this feasible. While a naive solution is to
divide the entire execution by checkpoints, and then apply dynamic
slicing enabled by tracing to one checkpoint interval at a time, it is
still too costly even with state-of-the-art tracing techniques. Our
technique is derived from two key observations. The first oneis
that long running programs are usually driven by events, which has
been taken advantage of by checkpointing/replaying techniques to
deterministically replay an execution from the event log. The sec-
ond observation is that all the events are not relevant to replaying a
particular part of the execution, in which the programmer suspects
an error happened. We develop a slicing-like technique thatcan be
used to prune irrelevant events from the event log. Driven bythe
reduced log, the replayed execution is now traced for fault loca-
tion. This replayed execution has the effect of fast forwarding, i.e
the amount of executed instructions is significantly reduced without
losing the accuracy of reproducing a failure. Our evaluation shows
that skipping irrelevant events can reduce the space requirement for
dynamic slicing by factors ranging from 72 to 44490. We also de-
scribe how checkpointing and tracing enabled dynamic slicing are
combined, which we believe is the first attempt to integrate these
two techniques. Finally, the dynamic slices of a set of reported bugs
for long running programs are studied to show the effectiveness of
dynamic slicing.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Debug-
ging aids, Testing tools, Tracing; D.3.4 [Programming Languages]:
Processors—Debuggers

General Terms
Algorithms, Measurement, Reliability, Verification

Keywords
debugging, checkpointing, event logging, replay, data slicing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT’06/FSE-14,November 5–11, 2006, Portland, Oregon, USA.
Copyright 2006 ACM 1-59593-468-5/06/0011 ...$5.00.

1. INTRODUCTION
During the procedure of debugging, it is often the case that the

programmer is interested in a small part of the entire execution.
How to get to this region quickly has been haunting researchers
since debugging long running programs became an issue. The tra-
ditional debugging tactics, such as iteratively setting breakpoints
and then restarting the program, hardly work because the reexe-
cutions consume enormous amount of time. More sophisticated
methods to tackle this problem includetracing and checkpoint-
ing/replaying.

Tracing is a technique with a long history. It was invented for the
purpose of replaying an execution. More and more applications
have been developed such as performance analysis, softwarerelia-
bility, software understanding, and compiler optimizations. While
in a classical debugging procedure breakpoints are set and the pro-
gram is reexecuted many times till the bug is located, in tracing
the execution traces are usually collected once and then areana-
lyzed multiple times starting from selected points. Furthermore a
wide variety of heavy duty analyses can be performed on traces
efficiently. As a result, software errors become much more recog-
nizable if appropriate traces are gathered. For example, dynamic
slicing, proposed by Korel and Laski [5], is a tracing based tech-
nique to help programmers in the process of debugging. The dy-
namic slice of a value computed at an execution point includes
all those executed statements which were directly or indirectly in-
volved in computation of the value. Our prior work [23, 3, 24,25]
has demonstrated that dynamic slicing is quite effective inauto-
matically isolating the cause effect chain from the root cause to the
failed point. Unfortunately, tracing based techniques do not scale to
long executions even though state-of-the-art techniques can achieve
the space efficiency of 0.1 - 4 bits per instruction [22, 1]. A simple
task as starting Mozilla and browsing a html page may create traces
with the size of a few Gigabytes.

Checkpointing/replaying is a very attractive technique, the merit
of which is the capability of replaying from the intermediate points
of an execution once checkpoints are created. It was invented to
facilitate debugging parallel and distributed programs [11, 20]. It
quickly gained popularity in debugging general applications [14,
15]. A lot of research has been carried out on how to reduce itscost
[19, 8] and how to improve its usability [17]. Most of the existing
checkpointing techniques focus on how to faithfully replayan exe-
cution. They rarely discuss what to do with replayed executions or
simply suggest that replayed executions can be debugged with gen-
eral debuggers such as gdb. However, these debuggers are usually
much less powerful than tracing based tools.

�������

��	��
����

���	
������

�������������

��	��
������������

��������� ���������
������������ ���

�������������

�������������
�����������
�
����������

���
���	��
������������

����������������� ��������� �����������
�
����������� ���������

Figure 1: Execution Fast Forwarding.

Our goal is to apply dynamic slicing, a tracing based technique,
to long running programs. A natural question to ask is ”Can we
combine tracing and checkpointing?”. It seems tracing and check-
pointing are complementary. Checkpoints divide the whole exe-
cution into intervals. Tracing can be applied to one interval at a
time, usually the one that interests the programmer. However, this
solution is not as simple as it appears for two reasons. First, trac-
ing requires instrumenting the original program. There aretwo
kinds of instrumentation techniques – static and dynamic. Static
instrumentation, in which a program is instrumented by a com-
piler, introduces non-trivial execution overhead as tracing cannot
be easily turned off. Dynamic instrumentation adaptively instru-
ments a program. It can easily switch from executing the original
code to executing the instrumented code or vice versa. A dynamic
instrumentation engine usually resides in an application process’s
virtual space and manipulates the virtual memory intensively such
that the status of the application process is substantiallymixed with
the instrumentation engine’s status. While checkpoints are often
produced by taking snapshots of the virtual memory, it becomes
hard to discretely checkpoint the application process. Second, trac-
ing can handle executions of up to a few seconds given the speed
and storage capacity of modern workstations. Since checkpointing
usually produces virtual memory snapshots with the size of afew
Megabytes, it is not something that we can afford to perform every
second. Checkpoints are usually created in an interval of, more or
less, minutes. The gap between seconds and minutes suggeststhat
it is still too costly to trace an entire checkpoint interval.

In this paper, we present a novelexecution fast forwarding (EFF)
technique that fills the gap between tracing and checkpointing. It
enables dynamic slicing of long executions. Figure 1 illustrates
the basic idea. The left part illustrates that an execution,or part
of an execution delimited by checkpoints, is usually heavily instru-
mented for the purpose of dependence tracing. The heavy instru-
mentation introduces very high runtime overhead and constructs a
huge dependence graph, which makes it impractical if the execu-
tion gets long. In the right part a fast forwarding techniquetakes
advantage of the characteristics of many long running programs
– being driven by events. More precisely, it first collects a full
event log from the original execution. Next, given a specificpart of
the execution that the programmer wants to replay, a meta slicing
technique, which is analogous to dynamic slicing but performed on
logged events instead of executed instructions, is appliedto prune
the events irrelevant to the replay of desired execution region. The
reduced event log is used to drive the replay, which is also called
the fast forwarded execution. Compared to the original run, the
fast forwarded execution is much smaller as the volume of events

passed to the program is significantly lower. As a result, a smaller
dependence graph is generated that can be collected throughtrac-
ing. The contributions of our paper are summarized as follows.

• We propose a solution to debugging long running programs,
which consists of the steps of checkpointing and logging a
long execution, reducing the log file, replaying the execution
with the reduced log, and dynamic slicing during replay.

• We develop a novel EFF technique that performs meta slicing
on an event log to eliminate the events that are not relevant
to replaying a specific part of execution. The reduced event
log is used to drive a replayed execution to achieve the effect
of fast forwarding.

• To implement the EFF technique, we show how to combine
tracing and logging/checkpointing. Given the strengths of
these techniques, we believe integrating them has very high
potential to impact the existing debugging procedures.

• As the ultimate goal of EFF, dynamic slicing is applied on a
set of long running programs, which was not possible previ-
ously due to its extremely high cost. The results strongly sup-
port our claim in the prior work –dynamic slicing is very ef-
fective in isolating the cause effect chain from the root cause
to the failure[23, 25].

The remainder of the paper is organized as follows. In section
2 we describe the EFF technique in detail. The system, which is
an integration of EFF, tracing and checkpointing, is introduced in
section 3. The results of our experiments are presented in section
4. In section 5 we studied the effectiveness of dynamic slicing on
long running programs. Related work is discussed in section6 and
conclusions are given in section 7.

2. EXECUTION FAST FORWARDING
Often when a program runs for a long time, it is not because

the program performs a very long and complicated task. Instead, it
is often because the program processes a long sequence of simple
tasks. For example, programs processing streaming data such as
audio, video, and data packets usually carry out the same computa-
tion (e.g., the FFT transformation) on a sequence of packets. The
computation on each packet tends to be relatively lightweight and
independent from the computation for other packets. Programs that
require user interactions display similar properties: these programs
spend most of their execution time in handling user actions and
the computation dedicated for each user action is usually simple.
Server programs deal with thousands of requests, most of which set

����������������	
���
��������

��������	
�������������������

���������	����������������

���������	����������������

�����

�����

���������
��������	
	� !

�

���������
��������	
	� �

�

���������
��������	
	� "

�

���������
��������	
	� 	

�����

�����

�����������
��������	
	� !

�

�����������
��������	
	� #

�

�����������
��������	
	� $

�����

�����������
��������	
	� %�

���

���������������������&�'
�����

�����

�����

()��
�*$+

����������������	
���
��������

��������	
�������������������

���������	����������������

���������	����������������

�����

�����

�����������
��������	
	� !

�

�����������
��������	
	� #

�

�����������
��������	
	� $

�����

�����������
��������	
	� %�

���

���������������������&�'
�����

�����

�����

,��
!���()��
�*$+

-�����.! �
$�!�	�+���$����/

0$������	"��1�"	������'��	�+2��3/

-�$!�����+��"	����

-�����.! �
$�!�	�+���$����/

0$������	"��1#���$3/

(��$��"���	+��1#���$�����$
�	���4

5��
�	���	
�$�

Figure 2: Getting the same warning message by replaying the reduced log for Mutt 1.4.2.1i. The numbers mean the byte positions of
the corresponding events in the log.

off simple computations such as reading a file or retrieving apiece
of data from a database. A common feature of these programs is
thatthey are driven by events. Events divide a whole execution into
small tasks, each one of which corresponds to handling some event.
An event is defined as one interaction between the application and
the OS. The interaction could be in the forms of: system callssuch
asopen, read, andmmap2; asynchronous or synchronous signals
such askill andsegfaultetc. These events are used to provide OS
services, such as reading/writing a file/socket, to the application
program or to notify something has happened.

The EFF technique is derived from the following observation–
all events do not need to be replayed in order to replay a particular
part of execution. Given an execution that is driven by events, we
may be able to shrink the replayed execution, and yet reproduce the
desired part, if we can prune the irrelevant events.

Figure 2 presents a motivating example. In the original run,the
key ’c’ was first pressed in order to change the folder name after
Mutt, a text based mail user agent, was started; string ”imaps://xyz-
hang@email.cs.arizona.edu/inbox” was typed in as the email ac-
count, which was followed by the password. After logging in the
account, a couple of email messages were accessed, then ’c’ was
typed again, and string ”Hello” was provided as the new folder
name. Since ”Hello” was not a valid folder name, a warning mes-
sage was printed on the screen. The events were logged in a fileas
shown on the left hand side of the figure. The first few thousands of
events represent the startup phase of the execution, which mainly

performs: loading of dynamic libraries, allocating virtual memory,
and initializing the program state. The shaded events starting from
byte position 4898 to position 594803 correspond to the execution
related to accessing the email account. Events starting from 594804
contribute to entering the invalid folder name and the warning mes-
sage was printed by the event at 595007. Let us assume the pro-
grammer is interested in reproducing the warning message. Appar-
ently, replaying the entire execution with the full log is anoption
but not the optimal one. For the event at 595007 to be correctly
replayed, we need to replay events at 594804, 594825, ..., 594890.
Events from 4898 to 594803 are actuallyirrelevantto replaying the
event at 595007. We construct a new log by removing all the irrel-
evant events and then drive the replay with the reduced log. The
same warning message is successfully reproduced. The execution
was actuallyfast forwardedto the desired point by skipping the
irrelevant part.

The EFF technique poses two challenges. The first challenge
is the identification and removal of irrelevant events. The second
challenge is to develop a replay mechanism that works with a re-
duced event log. The following subsections describe how we han-
dle these issues.

2.1 Event Dependence Graph
In dynamic slicing, given a value that is observed to be incorrect

by the programmer (incorrect value may correspond to an incorrect
output or a value that causes the program to crash), a set of executed

statements that contributed to the incorrect value are computed as
its dynamic slice. The executed statements not in the dynamic slice
are not relevant to the investigated value. An analogous technique
can be applied to executed events to identify the set of relevant
events for replaying a given execution region.

Computation of dynamic slices normally consists of two steps:
building the dynamic dependence graph (DDG) for a failed exe-
cution (where dependences include both data and control depen-
dences); and then traversing the dynamic dependence graph to com-
pute the dynamic slice of the wrong value. To simplify the descrip-
tion, we assume the execution starts from the beginning. We will
discuss how to deal with executions starting from checkpoints in
later sections.

DEFINITION 1. The Dynamic Dependence Graphof a pro-
gram run, DDG(N, E), consists of a set of nodesN and a set of
directed edgesE where: each nodeni ∈ N corresponds to the
ith execution instance of statementn in the program; and each
edgemj → ni ∈ E corresponds to a dynamic data dependence,
dynamic control dependence, or potential dependence of theith

execution instance of statementn on thejth execution instance of
statementm.

In a DDG, an executed statement is abstracted asSj(U, D) which
denotes thejth instance of statementS and whereU denotes the
set of values used bySj andD denotes the set of values defined.
For example, the execution of statement ”store r1, [r2]” can be
abstracted as ”...(U = {r1, r2}, D = {[r2]}”, in which [r2] repre-
sents the memory location addressed byr2. A data dependence ex-
ists between two executed statements if theU set of one statement
overlaps theD set of the other. A control dependence is introduced
if the execution of one statement depends on the values inD of the
other statement, usually a predicate statement. One executed state-
mentSj potentially dependson another executed statement, usually
a predicate, if and only if the value of the executed statement could
have changed if the predicate had taken a different branch. More
details about potential dependence can be found in [4, 23].

We already discussed how an executed statement is abstracted.
As an event usually corresponds to multiple executed statements, it
is important to understand how we deal with events during DDG
construction. Since system calls are usually handled inside the
OS kernel, a tracing engine which runs in the application space
is not able to trace into the kernel. Hence the dependences within
a system call are not captured. Our solution is to summarize the
execution of a system call, or an event, into the same abstrac-
tion, Ej(U,D), according to the specifications of events. For in-
stance, event ”n=read(fd, Buf, size)” can be abstracted as ”...(U =
{ fd, seekpointer(fd), size, Buf}, D = { seekpointer(fd), Buf[0],
Buf[1], ... Buf[n-1] }. Note that only the firstn elements ofBuf
are defined according to the specification of eventread. This event
both defines and uses the seek pointer of filefd.

An analogous dependence graph,Event Dependence Graph (EDG),
can be constructed to reveal the dependences between events, which
can be later on used to prune irrelevant events.

DEFINITION 2. TheEvent Dependence Graphof a program
run, EDG(N, E), consists of a set of nodesN and a set of di-
rected edgesE where: each nodeni ∈ N corresponds to the
ith execution instance of eventn in the program; and each edge
mj → ni ∈ E denotes that there exists a dependence path from
mj to ni, and there are no other executed events thanmj andni

on the path.

Figure 3 presents an example to illustrate DDG and EDG. The
left hand side presents the DDG. Statement executions21 and41

�
��
���������	
����
������

�
��
��
��������
������
����

�
��
�����	���������
��������

�
��
��
��������
������
����

�
��
����������������� ���

!
��
�	�������"��#��
����

$�
�

$�
�

$�
�

$�
�

$�
�

$�
�

$�
�

$�
�

Figure 3: An example of Dynamic Dependence Graph (DDG)
and Event Dependence Graph (EDG).

data depend on11 because they use the file descriptor defined at
11. 41 data depends on21 because21 changes the file seek pointer.
The graph on the right hand side shows the EDG. Event execution
E31 depends onE21 because of the dependence path21 → 41.
Event executionE41 depends onE21 due to the dependence path
21 → 31 → 51 → 61. Note that theread eventsE2 andE3
are considered as different events because they occur at different
program locations.

Control dependence between statements can also lead to depen-
dence between events as demonstrated by another example in Fig-
ure 4, where eventE31 depends on eventE21 as the result of301

control depending on211 and 211 data depending on201. The
dependence betweenE21 andE31 belongs to control dependence
as the execution ofE31 is due to the result ofE21. However, in
EDGs we do not distinguish data dependence and control depen-
dence edges.

Precisely constructing an EDG requires accurately tracingeach
data/control/potential dependence. According to our experience,
exactly tracing each data/control dependence on the fly triggers a
slow down of up to two orders of magnitude. Potential dependence
is even more expensive to trace hence it is usually implemented as
a post-mortem analysis. Thus, building a precise EDG is a lux-
ury that becomes worthy only when the cost can be amortized by
a large number of replays. Otherwise, programmers would prefer
to replay the entire log, which is equivalent to doubling theexe-
cution time, rather than endure the two orders of magnitude slow
down in the first place and attain speed up in replays later on.To
address this issue, we have to be conservative by constructing an
approximate EDG, in which one event depends on the other if and
only if they are related by astaticdependence path. In other words,
we only demand a static dependence graph, instead of a dynamic
one, together with the event log to build an approximate EDG.The
only runtime overhead is caused by event logging, which is signif-
icantly lower than tracing each dependence. Because dependences
between events are usually simpler than dependences between nor-
mal statements, which can be highly complicated due to pointer
aliasing, being conservative in EDG construction introduces much
less imprecision compared to being conservative in building DDG.

2.2 Meta Slicing on Event Log
Similar to dynamic slicing, given an EDG and an event, which

the programmer wants to reproduce, meta slicing on the EDG com-
putes the set of events that are needed in order to replay the given
event.

DEFINITION 3. Given EDG(N, E), an event dependence graph,
the Meta Slice of ei ∈ N denoted by MS(ei) is the subgraph of
EDG(N, E) which includesei as well as all other nodes and edges

from whichei is reachable, i.e.

MS(ei) = ({ei}, {e|e = mj → ei ∈ E}) ∪
[

∀mj→ei

MS(mj)

For example in Figure 3, MS(E41) = {E11, E21, E41}. Note
that we ignore the edges in MS for simplicity. We need to re-
play E11, which opens a file, andE21, which reads some data
from the file, in order to correctly replayE41, which prints some
value resulted from computation over the input data. In Figure 4,
MS(E31) = {E11, E21, E31}. E21 has to be replayed otherwise
the control would not flow toE31.

��
�

��
�

���������

��
��
����	
����
����
�����������

���������

��
��
���������
����	
�������������

��
��
����������������

�

 �
�

��	
����
����
�����������

�

!�
�

"��

�

��������#

���������

�
�

Figure 4: Another example of Event Dependence Graph.

We have discussed how to find the set of relevant events in order
to replay a given event. However, in reality it could be a specific
executed statementnj that the programmer wants to replay. In this
case, we need to find out the set of closest events reachable from
nj in the DDG, denoted as ECut(nj), and then compute meta slices
on these events. For example in Figure 4, ECut(401) = {201}, the
corresponding meta slice MS(201) = {101, 201}. Intuitively, both
E11 andE21 need to be replayed in order to replay statementS1.

THEOREM 1. The events in MS(ECut(nj)) are sufficient to re-
play nj .

Proof. Let us assume there is an eventex not in MS(ECut(nj)),
andex needs to be replayed in order to replaynj . We infer there
must exist an executed statement, event or non-event,mi s.t. nj is
reachable frommi andmi is reachable fromex. In other words,
nj directly/indirectly depends onmi andmi directly/indirectly de-
pends onex. Otherwise, executingnj would not require executing
ex. If there are no executed events along the pathex → mi → nj

other thanex, ex ∈ ECut(nj), which is contradictory to the as-
sumption; if there exists some executed event other thanex along
the path, let us assumee′y is the executed event closest tonj on the
path s.t.e′y ∈ eCut(nj), ex ∈ MS(e′y) according to the definitions
of EDG and meta slicing. It is a contradiction to the assumption.
This completes the proof.

Note that in practice ECut has to be conservatively computedas
we do not have dynamic dependence information. Our experience
shows that this is not a problem because the events in ECut tend to
be very close to the desired statement instance in the dependence
graph such that very limited number of spurious dependencesare
brought in during the computation of ECut.

2.3 Replaying with A Reduced Event Log
We have described how meta slicing can be applied to identify

a set of events that are relevant to replaying a given part of execu-
tion. However, meta slicing is not yet an ultimate solution.Even

though the events in a meta slice are sufficient to replay a desired
part of execution, the meta slice per se is often not a legitimate
log to drive an execution. For example, in Figure 3, MS(E41) =
{E11, E21, E41}. Replaying with the meta slice fails because
E31 was expected when the control flows to statement41. This
suggests that some events, even though irrelevant to replaying the
desired part of the execution, cannot be pruned due to the control
flow structure. In this subsection, we are going to describe how an
event log is reduced with regard to a meta slice and the intrinsic
control flow structure of an application.

��������������	
��
��

��������

�� ��������
����

�����������

�� ������������
�����������
�����

��

�� ���������

�� ������ �	�
!�����"# $�%

����

�� ���������

�� ������ �	�
!�����&# $�%

����

'� ���������

'� ���	
������ �
((()�!�$�%

����

*� ���������

*� ��� ������
�
�	
)�+,)���-��%

*�������������	�
 .���-����

*������������������������	
��
��

*/ ���������� �	�
!0�������# $�%

���1

�����������1

�����1

�
�
�����������	
��

��
�
���������

��
�
����� �	�
!(("(($�

��
�
���������

'�
�
�����

��
�
���������

��
�
����� �	�
!(("(($�

��
/
���������

��
�
����� �	�
!((&(($�

��
�
���������

*�
�
�����

��
2
���������

��
�
����� �	�
!((&(($�

��
3
���������

��
�
����� �	�
!((&(($�

��
'
���������

*�
�
�����

*�
�
����������	
��

*/
�
����� �	�
!0���4�

05� ��6��

Figure 5: An example on reducing the event log. The shaded
events are those in MS(941).

Before we present the algorithm, let us first study an example
that clearly explains how it is made possible to reduce a log without
losing validity. In Figure 5, the program displayed in the left col-
umn takes user commands fromstdin. Different actions are taken
based on different commands. For instance, messages are printed
on the screen if ’a’/’ c’ is pressed; a file is opened if ’o’ is pressed;
the opened file is read if ’r’ is read; if the data read does not match
the size required, an error message is delivered. The event log for a
particular execution is presented in the right column. During the
execution, a file is opened and then read for twice; the second
read does not satisfy the size wanted such that an error message
is printed at941; in between of these events, a number of events
happen as the results of ’a’/’ c’ being pressed. Let us assume941

is the event we want to replay. MS(941) is denoted as the shaded
events in the log. Apparently, the meta slice is not legitimate for
replay as event51(gettimeofday), which is not in the meta slice, is
expected at the beginning of the replayed execution. While51 is
not removable, events201 and311 can be removed without any
problem. The important observation here is that202 and201 are
compatibleand thus202 can be moved up to replace201 such that
the event in between,311, is pruned.

DEFINITION 4. An event executionei is compatible with an-
other event executionej iff their calling contexts are identical and
they occur at the same program point.

Here the calling context ofei represents the application’s call
stack whenei is executed. All the events20x in Figure 5 are com-

patible to each other. This example suggests we are able to alter a
replayed execution by replacing an event with its compatible peer.

The algorithm to reduce a log given a meta slice is presented
as follows. Getnext event() gets the next event from the log file;
get next markedevent() gets the next event belongs to the meta
slice, which we assume is precomputed, in the log file. These
two methods share the same file seek pointer, which can be set by
set file pointer(...).

Input: the original log Log
Output: thereducedlog RLog
Initialize: RLog← φ

while (em=get next markedevent(Log))!=EOFdo
e=get next event(Log)
for each et from e to em in Log do

if et.context≡ em.contextthen
gotoL1

endif
Rlog← Rlog · et

endfor
L1:

Rlog← Rlog · em

set file pointer(Log,em)
endwhile

The basic idea of the algorithm is that given a marked eventem,
an event in the meta slice, we find the earliest compatible event et in
betweene andem such that movingem up to replaceet maximizes
the savings. All the events betweene andet includinge are copied
to the new log to satisfy the control flow structure confinement. The
events betweenet andem are discarded.

Table 1 presents the reduction procedure of the example in Fig-
ure 5. As shown in the table, during iteration one,51 is the first
event retrieved from the log, and202 is the first marked event.202

can be moved up to replace201 such that51 and202 are the two
events appended to the new log. During the second iteration,801

is the next event and also the next marked event such that it issim-
ply copied to the new log. In iteration three, moving205 up to
replace203 results in cutting the events from203 to 501. The final
reduced log is shown in the last row of the table. The reduce log
can be used to drive the replayed execution to reproduce the error
message at941.

Table 1: Computation table for figure 5.

Iteration e em RLog
1 51 202 51 202

2 801 801 51 202 801

3 203 205 51 202 801 205

4 911 911 51 202 801 205 911

5 206 208 51 202 801 205 911 208

6 912 912 51 202 801 205 911 208 912

7 931 941 51 202 801 205 911 208 912 931 941

2.4 Dynamic Slicing during Replay
Dynamic slicing was believed to be too expensive to apply for

long executions. With sophisticated compression techniques [22]
we can achieve the space efficiency of four bits per executed in-
struction, which is still not powerful enough for executions that
run for minutes, hours, or days. The EFF technique can reproduce
a failure without going through most of the irrelevant part of the
execution. As a result, dynamic slicing becomes feasible for fast
forwarded executions. According to our previous study [23], dy-
namic data slicing, in which slices are computed by considering

only data dependence, is quite effective for memory type of bugs.
Therefore, we only compute data slices in this paper due to the fact
that crashes are usually the type of bugs reported for long running
programs. In the remaining part of the paper, we mean dynamic
data slices when we mention dynamic slices. Note that dynamic
slicing in this phase is different from meta slicing mentioned ear-
lier: meta slicing is performed on an event dependence graphand
generates a reduced log; dynamic slicing is performed on thestate-
ment level dynamic dependence graph that is constructed during a
fast forwarded replay.

3. THE EFF SYSTEM
As we mentioned earlier, tracing can handle an execution of up

to a few seconds, whereas checkpoints are usually created with an
interval of minutes. The ultimate goal of EFF is to fill the gap
between tracing and checkpointing such that dynamic slicing can
be applied. We have discussed how EFF fast forwards an execution
from the beginningby replaying a reduced log. However, there
is nothing fundamental that prevents EFF from being appliedto
executions resumed from checkpoints. Therefore, in this section
we are going to describe how EFF, checkpointing, and tracingare
integrated together. The composed system can be used to debug
long running programs.

�������

��	
���
�
�
���

��������

��
������
���
��������	
	���

	�

����

�
���

���

�����������������������

������	
��
����

�
������
�

���
���

�
���
�

���

��
��
�����

����������
��

���
��

Figure 6: System infrastructure.

The system is presented in Figure 6. It consists of four compo-
nents: dynamic instrumentationcomponent, whose primary duty
is to provide the infrastructure for tracing;logging/checkpointing
component;slicing component; andEFF component. The system
works as follows. In the original run, the slicing componentis deac-
tivated to reduce runtime overhead. The dynamic instrumentation
engine traps each system call and forwards it to the corresponding
handler in the logging model, which in turn logs the event. Check-
points are created occasionally until a crash happens. In a replayed
run, a smaller log file produced by EFF is supplied to drive there-
play; in the mean time, the slicing component is turned on to trace
the exercised data dependences till the crash point. The constructed
dependence graph is studied to identify the root cause of a failure.

Dynamic Instrumentation. The dynamic instrumentation engine
is adapted fromvalgrind [18], which takes a x86 binary and before
executing any new (never instrumented) basic blocks it calls the
instrumentation function provided. The instrumentation function
instruments the given basic block and returns a new basic block to
valgrind. Valgrind executes the instrumented basic block instead
of the original one. The instrumented basic block is copied to a
new code space and thus it can be reused without calling the in-
strumenter again. The instrumentation is dynamic in the sense that
the user can enforce the expiration of any instrumented basic block
such that the original basic block has to be instrumented again (i.e.,
instrumentation can be turned on and off as desired). In our case,
we can easily turn on/off the slicing component for the sake of per-
formance or for certain part of the code, e.g. library code.

Logging/Checkpointing.Our logging component is modified from
jockey[17], which is an industry-strength checkpointing/replaying
library executed in the application’s space. Compared to the check-
pointing techniques executed in the kernel space, jockey has su-
perior usability. Setting LDLIBRARY PRELOAD=libjockey.so
is the only command required to activate jockey. Once loadedin,
jockey calls an initialization method before the application gains
control. During the initialization, jockey scans through all the bi-
naries including the libraries loaded by the application, looking for
any system call sites. Those system calls are redirected to jockey
in order to log the corresponding events or, during the replay, re-
trieve the events from the log file without actually passing them on
to the OS. Checkpoints can be created by setting a timer, suchthat
the application is not even aware of the existence of jockey,or by
making a library call to jockey inside the application. In the lat-
ter case, the application has to include jockey’s header files and be
explicitly linked with the library. On receiving a checkpointing re-
quest, jockey obtains the layout of the application’s virtual space,
which is the jockey’s space as well, by parsing/proc/self/maps. A
checkpoint is created by dumping all the virtual memory segments
that do not belong to jockey.

Slicing. The slicing component is inherited from our prior work
[23]. The main difference is that we do not trace control depen-
dence in this system because according to our study [23] tracing
only data dependence is powerful enough to capture the root causes
of memory bugs, which are the ones usually reported for long run-
ning programs. Another difference is that we augment the compo-
nent such that it stops at the execution points where illegalmem-
ory accesses occur, for example a write to an unallocated address.
These points are usually earlier than the actual crash points.

EFF. TheEFF component implements the technique described in
the previous section. It takes an event log file dumped by the log-
ging model and then computes the meta slice for a given set of
events. The meta slice is used to prune the event log. The resulting
smaller event log is used to drive the replayed execution. The com-
putation of meta slice requires a static dependence graph, which
is created by profiling the executed dependences in a few profiling
runs due to the lack of an implementation of points-to analysis for
x86 binaries.

One of the key challenges is to integrate logging/checkpointing
model into the dynamic instrumentation engine. The integration is
very meaningful because of the following reasons. Dynamic instru-
mentation is becoming more and more widely used in recent years.
Not only is it attractive for the purpose of adaptive profiling/tracing,
but also performance improvement can be achieved by executing a
regular application on a dynamic instrumentation engine. Binary
translation, a very promising technique that is derived from dy-
namic instrumentation, can virtually execute an architecture spe-
cific binary on a different architecture. Logging/checkpointing, on
the other hand, has already been very popular for fault tolerance,
debugging, etc. We believe logging/checkpointing should become
a standard functionality of a dynamic instrumentation infrastruc-
ture. Therefore, the issues we are addressing here may be general
to the integration of tools with similar functionality. Thefirst issue
is the separation of the virtual space. Both valgrind and jockey are
residents in the application’s space. They both assume total control
over the virtual space such that they reserve certain address space
for their own purposes. The reservations conflict each other. For
instance, jockey reserves 0x7200000-0x7800000 for its heap, the
mapping of the log file, etc. The same address space is also re-

served by valgrind for tracing. Our solution is to make them aware
of the existence of each other by separating the application’s ad-
dress space into two parts – the valgrind’s space and the jockey’s
space. The application is actually executed within the valgrind’s
space. The second issue is about adjusting the system call trap-
ping mechanism in jockey. Jockey traps system calls by directly
overwriting the application’s code. As a result, valgrind traces into
jockey and tries to instrument the jockey code, which is undesir-
able. Our solution is to avoid any direct interactions between the
application code and the jockey code. Jockey can only interface
with valgrind. More precisely, we use valgrind to trap system calls
and then call the jockey event handlers inside valgrind. Thethird
issue is to discretely checkpoint the execution. A naive solution
only checkpoints the application’s program status. The reality is
that the application’s program status is so mixed up with theval-
grind’s status that valgrind fails to resume from checkpoints during
replay if only the application’s status has been checkpointed. Our
solution is to treat the valgrind’s status as part of the application’s
status such that it is checkpointed as well. Some of the valgrind’s
status should be excluded such as the valgrind’s log file descriptor,
which should be reopened at the beginning of a replay. There are
some other minor issues in order to make both valgrind and jockey
run correctly such as some of the valgrind’s sanity checks have to
be turned off.

4. EXPERIMENTATION
We need to address a few issues in order to carry out experi-

ments. The first issue is that of selecting benchmarks to use in
the experiments. The programs we select should be able to run
for a long time. We looked at the set of bugs studied in [7, 13,
12] and picked the programs that can execute for a long time. Ta-
ble 2 presents the set of programs we selected. Most of them are
user interactive programs. We ignoredapachesinceapachecreates
multiple processes while our logging model can handle only one
process at the current stage. The second issue is that we needthe
input that can drive the execution for a long time and then crash.
On the other hand, the execution should not be so long that it be-
comes too heavy a task for us to collect the data. Unfortunately, the
input coming with the selected bugs usually leads to very short ex-
ecutions. Given the fact that most benchmarks are interactive, we
constructed a long input by first performing a sequence of user ac-
tions and then applying the failure inducing input –the input comes
with the benchmarks. For example inmutt, we took the following
actions: (i) open an email account; (ii) go through all the emails
one by one, the total is about six hundreds; (iii) try to switch to an
invalid folder; repeat steps (ii) and (iii) two more times; provide the
failure inducing input and hence crash the program. We collected
the user time as the performance indicator since the real time may
significantly differ each time depending on the user’s behavior.

Table 2: Description of the benchmarks

Benchmark Description LOC Bug Type

bc-1.06 interactive calculator 14.4K heap overflow
mc-4.5.55 file manager 86.2K stack overflow

mutt-1.4.2.1i email client 453.6K heap overflow
pine-4.44 email client 211.9K stack overflow
pine-4.44 email client 211.9K heap overflow
squid-2.3 web proxy cache server 93.5K heap overflow

We investigated four execution scenarios:orig. denotes the orig-
inal execution;traceddenotes the original execution plus the de-

Table 3: Performance comparison of different execution scenarios.

Benchmark Orig. (sec.) Traced (sec.) Traced/Orig. Logged (sec.) Logged/Orig. EFF (sec.) Traced/EFF

bc-1.06 13.6 2040.4 150.6 16.2 1.19 0.05 40808.8
mc-4.5.55 10.28 417.8 40.64 13.47 1.31 0.05 8356

mutt-1.4.2.1i 19.7 3237.7 164.5 26.1 1.32 0.06 53960.8
pine-4.44(stack) 14.4 2088.4 145.1 36.8 2.55 0.12 17403.6
pine-4.44(heap) 13.9 2102.2 151.5 34.4 2.47 0.20 10510.9

squid-2.3 14.6 1131.6 77.3 25.6 1.75 0.17 6656.4

pendence tracing;loggedrepresents the original execution plus log-
ging; EFF represents the fast forwarded execution plus the depen-
dence tracing. In the logged run, an event log is created. TheEFF
technique is applied to reduce the log. The statement instance we
want to replay is where the crash happened. The EFF techniqueis
able to reproduce the crash in a much shorter execution. Due to the
complexity of our system, our implementation is not sound atthe
current stage. Some times we have to hard code a few event depen-
dences, otherwise the reduced log is not valid to drive the replay
which is manifested as an event missing when it is expected orthe
presence of an extra event.

Table 3 compares the performance under the four scenarios. We
can see the original runs, which were terminated by crashes,con-
sume user time ranging from 10.2 to 19.7 seconds, which corre-
sponds to the real time of a few minutes. They are not long by
simply looking at the raw numbers, but they well exceed the capa-
bility of our dependence tracing technique. We can easily extend
the executions by repeating the user actions. The side effect is the
increased difficulty of collecting the execution time in thetraced
scenario. Note that even though checkpointing is supportedin our
system, the original execution does not last long enough to trig-
ger it. Fortunately, it does not affect the evaluations of the EFF
technique and the effectiveness of dynamic slicing on long running
programs. From Table 3, we have the following observations.

• Dependence tracing introduces 40.64 to 164.5 times slow
down. A programmer may accept it for a short run but highly
unlikely for a long run.

• The slow down factor of logging ranges from 1.19 to 2.55,
which is significantly smaller than the tracing slow down fac-
tor. For user interactive programs, the overhead is not human
noticeable.

• EFF can greatly shorten an execution such that the overhead
of dependence tracing becomes acceptable.

Table 4: Comparison of the event logs.

Benchmark # of events in Orig. # of events in EFF Orig./EFF

bc-1.06 340509 7 48644.0
mc-4.5.55 322172 16020 20.1

mutt-1.4.2.1i 262559 489 536.9
pine-4.44 7365830 3028 2432.6
pine-4.44 8707316 27279 319.2
squid-2.3 1620988 795 2038.9

Table 4 compares the numbers of events before and after event
reduction. We can see the reduction factor ranges from 20.1 to
48644.0, which well explain why the fast forwarded executions
become so short. Table 5 presents the numbers of the exercised
data dependences in the original and the fast forwarded executions.
We want to point out that these numbers are collected after the
intra-basic-block optimization [22] which eliminates considerable
redundant dependences. We can tell that the numbers for the fast
forwarded executions are much smaller. The constructed depen-
dence graphs can be stored even without further compression[22].

Table 5: Comparison of the dependence graphs.

Benchmark # of dep. in Orig. # of dep. in EFF Orig./EFF

bc-1.06 2.18× 10
10

4.9× 10
5 44489.8

mc-4.5.55 0.69× 10
10

9.6× 10
7 71.8

mutt-1.4.2.1i 4.86× 1010 4.21 × 107 1154.4
pine-4.44 1.95× 1010 2.68 × 107 727.6
pine-4.44 2.78× 10

10
1.55 × 10

8 179.4
squid-2.3 1.1× 1010 1.93 × 106 5699.5

5. DYNAMIC SLICING ON A SET OF LONG
RUNNING BUGS

The performance of a set of long running bugs has been studied
in the last section. As the original motivation, dynamic slicing is
applied and evaluated to show the effectiveness.

5.1 Mutt
Mutt [27] is a text based mail user agent (MUA) for Unix based

Operating Systems. It has many features including customizability,
POP3 and IMAP support, and ability to handle multiple mailbox
formats. According to [28], mutt version 1.4 has a known memory
bug which is as follows. The Mutt Mail User Agent (MUA) has
support for accessing remote mailboxes through the IMAP proto-
col. When mutt has to convert the name of the folder from its inter-
nal UTF-8 representation to UTF-7 it calls the functionutf8 to utf7
in moduleimap/utf7.c. When this function does the conversion, it
miscalculates the length of the output string. To conduct our exper-
iment, after Mutt is executed for a long time, we supply a UTF-8
folder name that contains some special characters. The heapbuffer
is overflowed and a segmentation fault is flagged. We reduce the
event log using EFF and then replay the execution with the new
log. Dynamic slicing is activated in the replayed execution. Figure
7 shows the computed dynamic slice.

As we mentioned earlier, our slicing component also monitors
for any attempt for illegal memory access. After detecting awrite to
a memory region not allocated at line number199, we now inspect
the data slice to find the root cause. We find that the last instance
of line 199 is data dependent on line202 and vice-versa through
variable ’p’. The arrows indicate the data dependence. The data
dependence chain in the slice leads us to the first instance ofline
199 which is data dependent on line192 and this in turn is data
dependent on line152, which is the root cause of the bug as there
is an error in calculating the buffer length at this point. Weneeded
to inspect just8 static statements before getting to the root cause,
and the dependence chain provides a very clear explanation on the
cause effect relations.

5.2 Pine
Pine [31] is a popularly used application for reading, sending

and managing email messages and is distributed with the Linux
operating system. Pine version 4.44 has two buffer overflow errors.
One is a stack overflow and the other is a heap overflow. We look
at both errors in the following subsections.

���������	
��

�

��	
������	
���� ��������
������

�

��� ����	���	����������
������������

�	�
���
������

���

������!�"�#$�#�%%��!�&��#$
	����

���'����()���

�*� �������+,-

���

.

�

�** �������/()0!�1�2��%��!�&&�34

�

�
�� �3�&��# �3�5��(�

�#� �������/()0!�1�2��%��!�&&�34

���

.

Figure 7: Mut 1.4.2.1i

5.2.1 Pine Stack Overflow
According to [32] pine has a stack overflow error. Pine calls an

error prone API when it accesses mailboxes. By asking pine to
handle a mailbox that has some special characters this bug can be
triggered causing pine to crash.

We are able to capture the root cause of the bug again using dy-
namic slicing. Our tracking infrastructure reports an illegal mem-
ory access at line number589 of file mail.c, where the statement is
”for (...;(c=*t++)!=’”’;) {”. We look at the slice at this point and
find that there is a loop carry self dependence. This line is also
the root cause of the BUG as variable ’t’, which is the pointerto a
string, is incremented beyond its allocated region (on stack) if the
provided string does not have the end quote. We needed to inspect
3 static statements to nail the root cause.

5.2.2 Pine Heap Overflow
According to [33] pine has a bug that when triggered can over-

flow the heap memory causing a potential crash. This can occur
when pine processes the ”From” field of email headers. Certain
special characters in the header can cause the bug. Figure 8 shows
the code where the bug is present.

There is an illegal heap access detected by our infrastructure at
line number260 in file rfc822.c. However, the root cause of the
bug is at line number7269 of file bldaddr.c. The bufferdest in
rfc822 cat is allocated inaddr list string. The size of the alloca-
tion is miscalculated inest sizebecause it does not consider special
characters. The figure shows the dependences that we trackedto
get to the root cause from the error point. This is an example where
the root cause and the symptom are in different functions. Wehad
to examine10 static code statements to get to the root cause.

5.3 Midnight Commander
Midnight Commander (mc) [29] is an open source file manager

for free operating systems. It has high degree of portability and can
be compiled and run on a number of operating system including
Linux. We used mc version 4.5.55 for our experiment. This version
has a known buffer overflow error. According to [30], the bug is
triggered when midnight commander is used to process symbolic
links in tgz archives. Absolute symbolic links in the archives are
translated into links relative to the start of thetgz file. The buffer

����������	��
��

�����
��
����	���

�

���� ��������

�

��������	������� ��!

"

����������	��
��

�	
���	��
���
��
�
��#�����

�

�$�� ��
������	
�����%
�#�������
��
����	�
��
���!

�

�$�&
%�&���'
����	��
�

����(�����
�����!

"

�������
%�&����

�
���
%�&����	� ��	
�����
�������

���

��
�����
�
������
��!

)��
������*+,!

�

�
��!
���
�
-�
.��

��+///+�!�����

�
��-0����
�����!

��
������!

��)��
������*//,!

)��
������)
!

"

"

Figure 8: Pine 4.44 heap overflow.

�����������	
���

�������	
������������������������	��������

��������������� �!"#$%&'����	�	(��)

*

����))+,,���

*

���-+���

./0 �
�
(
����'1�)

��	�
)

2

2

*

.3/ �	���
���$4�!�56��	���	
�����*�)

2

Figure 9: Mc 4.5.55

that is used to form the relative link is never initialized and hence
can be overflowed inside thestrcatprocedure. Figure 9 shows the
code corresponding to the bug.

We use our infrastructure to determine the root cause of the bug.
A segment fault occurs at line number398. Now, when we look at
the slice at this point we find an abnormal data dependence between
line 398 and line385. We conclude that a stack buffer overflow
happened at line385, which is the root cause of the bug, such that
it corrupted one of the variables used at line398. We just needed
to inspect2 static statements to get to the error.

5.4 Squid
Squid [34, 7] is a fully featured web proxy cache that supports

proxying and caching of HTTP, FTP and other URLs. It is designed
to run on Unix based systems. We use squid version 2.3 for our
experiment. It has a known heap buffer overflow error. When an
input request contains some special characters, squid miscalculates
the length of the heap buffer that is used to hold the request.As
a result, the buffer is overflowed and then the server crashes. [35]
explains it in more details. Figure 10 shows the portion of the code
that contains the bug.

���������	
�

����������	

��	�
��������������	��������������	��������

�

���� �������

���� !�"��������	�����#$
"���

������

��%� ��&����'�����(��)

�

�
�"���*	������

��% "�������(�����+,-.�"��	�.	������	�����#$
"����)

/

Figure 10: Squid 2.3

On running squid using our infrastructure we find that there is
a heap buffer overflow at line number1024. Inspecting the slice
at this point leads us to the root cause of the bug at line number
1005, at which the extra padding space of size 64 is not enough to
accommodate the special characters. We had gone through5 static
statements before we reached the root cause.

5.5 bc
Bc [26] is a numeric processing language that supports arbitrary

precision numbers. It is generally distributed along with the Linux
operating system and is a part of the GNU project. We used bc-1.06
for our experiment. This version has a known heap overflow error.

In [6, 7] the bug that is triggered in bc is described. A certain
heap buffer is not declared wide enough and overflows. The code
corresponding to the error is shown in Figure 11. The heap array
arraysdeclared at line number167 is overflowed.

Our tracking infrastructure detects a heap memory violation at
line number177. Looking at the slice at this point we see that the
root cause of the bug is at line number167. This is becausea count
entries have been declared butv count entries are accessed. We
needed to inspect just these3 statements to find the root cause.

From the studies we find that these bugs are not as mysterious as
they appear, under the micro-inspection of dynamic slicing. They

���������	
���
�

����

�	
���

�������

�

��� �

����������
��

��������������	��

���	����������	 ������
��

�����!

������

��� 	
�!���"#�$����	���!���"#%%�

��� �

���&��"#'���()**!

+

Figure 11: Bc-1.06

usually require examining a few static statements before the root
cause is located. Two conclusions can be drawn: dynamic slicing
is very effective to handle memory type of bugs even in the long
running programs examined; the real challenge is to isolatethe part
of the execution that is relevant to the error and hence dynamic
slicing can be applied. The EFF technique is designed for thepur-
pose. According to our experience in [23, 3, 24], most non-memory
bugs still have very good locality even though not as apparent as
memory bugs. We firmly believe EFF plus dynamic slicing will
still be highly effective for non-memory bugs in long running pro-
grams. Unfortunately, most bugs that are reported and studied for
those programs are memory bugs. We plan to mine some software
repositories of long running programs to get more interesting non-
memory bugs in the future.

6. RELATED WORK
The work that is very closely related to ours is the delta debug-

ging technique [21]. Delta debugging is similar to our work in
terms of their ability to reduce a failed execution without losing the
capability of reproducing the failure. Delta debugging is essentially
a systematic search algorithm which can minimize failure inducing
input and, if given both a successful run and a failed run, isolate the
minimal failure inducing input difference between these two runs.
The basic idea is to use a binary search alike algorithm to generate
different combinations of input and then re-execute the program
with these input to see if the failure can be reproduced. In [21],
Zeller et al. also treated the interactions between an application
and the user as input and applied delta debugging to identifythe
minimal sequence of failure inducing interactions. In [10], Orso et
al. capture the interactions between different software components
such as method calls, and then apply delta debugging to identify the
minimal sequence of failure inducing interactions before replay. In
[2], Choi et al. applies delta debugging to isolate the failure induc-
ing thread schedule difference.

The difference between delta debugging and our work is that
delta debugging is a black box technique while our techniqueadopts
a white box strategy which tries to reduce an execution by inspect-
ing dependences between events. If the execution is short, applying
delta debugging to the captured events may perform better since
reexecuting the program takes very little time. However, ifthe exe-
cution is long and thus the volume of events is high, a large number
of reexecutions, which is the inevitable result of the search used by
delta debugging, is not desirable. On the other hand, we believe
delta debugging can be an addition to our technique. For exam-
ple, we found it is hard to disclose some data dependences between
events without being conservative. However, being conservative

implies that we often fail to remove certain irrelevant events. Under
such circumstances, a black box strategy such as delta debugging
can be employed to systematically determine if these dependences
should be considered during reduction. Finally, the goal ofour
technique is not merely execution reduction, but to make heavy-
weight tracing technique as dynamic slicing feasible.

Another stream of related work includes [9, 16]. In these works,
all the interactions between a software unit and other external com-
ponents are captured as events. As a result, the software unit can
be replayed based the log without the need to execute the remain-
ing part of the software. These techniques are useful in unittesting
while our technique is more general. Furthermore, we also focus
on locating errors through dynamic slicing.

7. CONCLUSIONS
We have enabled dynamic slicing on a set of long running pro-

grams by developing a novel execution fast forwarding technique.
Fast forwarding can be achieved by driving the replay with a re-
duced event log file. Given a desired execution region, a large por-
tion of the events are not relevant to replaying it. Meta slicing is
designed to eliminate this redundancy in the log file. With the ex-
ecution fast forwarding technique, the replayed executionbecomes
substantially shorter and yet the wanted execution region is pre-
cisely reproduced. The reduction factors of the sizes of dynamic
dependence graphs range from 72 to 44490. As a result, dynamic
slicing can be practically applied to isolate the cause effect chain
leading to the failure. Our studies show that most of the reported
memory bugs for long running programs are trivial to locate with
dynamic slicing once the execution has been shortened to an af-
fordable level.

Acknowledgements
This work is supported by grants from Microsoft, IBM, and NSF
grants CNS-0614707, CCF-0541382, and CCF-0324969 to the Uni-
versity of Arizona.

8. REFERENCES

[1] S. Bhansali, W-K. Chen, S. de Jong, A. Edwards, R. Murray,M.
Drinic, D. Mihocka, and J. Chau, “Framework for instruction-level
tracing and analysis of program executions,”Virtual Execution
Environments Conference, Ottawa, Canada, June 2006.

[2] J. Choi and A. Zeller, “Isolating Failure-Inducing Thread Schedules”,
Proceedings of the International Symposium on Software Testing and
Analysis, Rome, Italy, July 2002.

[3] N. Gupta, H. He, X. Zhang, and R.Gupta, “Locating Faulty Code
Using Failure-Inducing Chops,”20th IEEE/ACM International
Conference on Automated Software Engineering, pages 263-272, Long
Beach, California, Nov. 2005.

[4] T. Gyimothy, A. Beszedes, I. Forgacs, “An efficient relevant slicing
method for debugging,”7th European Software Engineering
Conference/ 7th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, Toulouse, France, 1999.

[5] B. Korel and J. Laski, “Dynamic program slicing,”Information
Processing Letters, Vol. 29, No. 3, pages 155-163, 1988.

[6] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug Isolation via
Remote Program Sampling,”SIGPLAN Conference on Programming
Language Design and Implementation, San Diego, California, June
2003.

[7] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou, “BugBench: a
benchmark for evaluating bug detection tools”,Workshop on the
Evaluation of Software Defect Detection Tools, 2005.

[8] R.H.B. Netzer and M.H. Weaver, “Optimal Tracing and Incremental
Reexecution for Debugging Long-Running Programs”,ACM SIGPLAN
Conference on Programming Language Design and Implementation,
Orlando, FL, USA, pages 313-325, June 1994.

[9] A. Orso, and B. Kennedy, “Selective capture and replay ofprogram
executions”,In Proceedings of the Third international Workshop on
Dynamic Analysis, St. Louis, Missouri, May 17 - 17, 2005.

[10] A. Orso, S. Joshi, M. Burger, and A. Zeller, “Locating Causes of
Program Failures”,Proceedings of the 2006 International Workshop on
Dynamic Analysis, Shanghai, China, May 2006.

[11] D.Z. Pan and M.A. Linton, “Supporting reverse execution of parallel
programs,”ACM workshop on parallel and distributed debugging,
Madison, WI, USA, May 1988.

[12] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou, “Rx: treating bugs as
allergies - a safe method to survive software failures”,the 20th ACM
Symposium on Operating Systems PrinciplesBrighton, UK, pages
235-248, Oct. 2005

[13] M.C. Rinard, C. Cadar, D. Dumitran, D.M. Roy, T. Leu, andW.S.
Beebee, “Enhancing Server Availability and Security Through
Failure-Oblivious Computing”,the Sixth Symposium on Operating
System Design and ImplementationSan Francisco, California, pages
303-316, 2004

[14] M. Ronsse, K. De Bosschere, M. Christiaens, J.C. de Kergommeaux,
and D. Kranzlmller, “Record/replay for nondeterministic program
executions”,Communication of the ACM46(9), pages 62-67, 2003

[15] M. Ronsse, K. De Bosschere, and J.C. de Kergommeaux, “Execution
replay and debugging”,Fourth Workshop on Automated and
Analysis-Driven Debugging, Munich, Germany, August 2000.

[16] D. Saff, S. Artzi, J.H. Perkins, and M.D. Ernst “Automatic test
factoring for java”,In Proceedings of the 20th IEEE/ACM international
Conference on Automated Software Engineering, Long Beach, CA,
USA, November 07 - 11, 2005.

[17] Y. Saito, “Jockey: a user-space library for record-replay debugging”,
Sixth International Symposium on Automated and Analysis-Driven
Debugging, Monterey, California, September 2005.

[18] J. Seward et al. “Valgrind: A GPL’d system for debuggingand
profiling x86-linux programs”,http://valgrind.ked.org/, 2004.

[19] S.M. Srinivasan, S. Kandula, C.R. Andrews, and Y. Zhou,
“Flashback: a lightweight extension for rollback and deterministic
replay for software debugging”,USENIX Annual Technical Conference,
Boston, MA, USA, June 1994.

[20] L.D. Wittie. “Debugging distributed C programs by realtime replay,”
ACM workshop on parallel and distributed debugging, pages 57-67,
Madison, WI, USA, May 1988.

[21] A. Zeller and R. Hildebrandt, “Simplifying and Isolating
Failure-Inducing Input”,IEEE Transactions on Software Engineering
28(2) , February 2002, pp. 183-200.

[22] X. Zhang and R. Gupta, “Whole Execution Traces,”IEEE/ACM 37th
International Symposium on Microarchitecture, pages 105-116, 2004.

[23] X. Zhang, N. Gupta and R. Gupta, “A Study of Effectiveness of
Dynamic Slicing in Locating Real Faults,”Empirical Software
EngineeringJournal, August 2006.

[24] X. Zhang, N. Gupta, and R. Gupta “Locating Faults Through
Automated Predicate Switching,”IEEE/ACM International Conference
on Software Engineering, Shanghai, China, May 2006

[25] X. Zhang, N. Gupta, and R. Gupta “Pruning Dynamic SlicesWith
Confidence,”ACM SIGPLAN Conference on Programming Language
Design and Implementation, Ottawa, Canada, June 2006

[26] GNU bc. http://www.gnu.org/software/bc
[27] Mutt Website. www.mutt.org
[28] Mutt Buffer Overflow.

http://www.securiteam.com/unixfocus/5FP0T0U9FU.html
[29] Midnight Commander. www.ibiblio.org/mc
[30] Midnight Commander exploit. www.securityfocus.com/bid/8658
[31] Pine Website. www.washington.edu/pine/
[32] Pine Stack Buffer Overflow Error.

http://www.xatrix.org/advisory.php?s=7408
[33] Pine Heap Buffer Overflow Error.

http://www.securityfocus.com/bid/6120
[34] Squid Website. http://www.squid-cache.org/
[35] Squid Buffer Overflow.

http://www.securiteam.com/unixfocus/5BP0P2A6AY.html

