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Abstract

We present a novel technique called comparison checking that helps optimizer writ-
ers debug optimizers by testing, for given inputs, that the semantics of a program
are not changed by the application of optimizations. We have successfully applied
comparison checking to a large class of program transformations that alter (1) the
relative ordering in which values are computed by the intermediate code statements,
(2) the form of the intermediate code statements, and (3) the control flow structure
using code replication. We outline the key steps that lead to the automation of
comparison checking. The application of comparison checking to test the imple-
mentations of high level loop transformations, low level code optimizations, and
global register allocation for given program inputs is then described.

1 Introduction

As compilers increasingly rely on optimizations to achieve high performance,
the technology to debug optimized code continues to falter. The problem of
debugging optimized code is two fold because errors in an optimized program
can originate in the source program or be introduced by the optimizer. There-
fore tools must be developed to help application programs debug optimized
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code and optimizer writers debug optimizers. In this paper, we focus on a tool
developed for the optimizer writer. In particular, we present a novel technique
called comparison checking that helps optimizer writers debug optimizers by
testing, for given inputs, that the semantics of a program are not changed by
the application of optimizations.

The comparison checker, as illustrated in Figure 1, automatically orches-
trates the executions of both the unoptimized and optimized versions of a
source program, for given inputs, and compares their semantic behaviors. The
semantic behavior of an unoptimized or optimized program with respect to
the source program is characterized by the outputs and values computed by
source level statements in the unoptimized or optimized program for all pos-
sible inputs. Therefore, the semantic behaviors of the unoptimized and opti-
mized programs with respect to the source program are compared by checking
that (1) the same paths are executed in both programs, (2) corresponding
source level assignments compute the same values and reference (i.e., read,
write) the corresponding locations, and (3) the outputs are the same. The
outputs and the values computed by source level assignment statements and
branch predicates for given inputs are compared in both versions. In addition,
for assignments through arrays and pointers, checking is done to ensure the
addresses to which the values are assigned correspond to each other. All as-
signments to source level variables are compared with the exception of those
dead values that are not computed in the optimized code.

unsuccessful

Generate unoptimized
 program.

and optimized programs
executes the unoptimized
Comparison checker

and performs comparisons
on given inputs.

comparisons error in optimizer.

comparisons successful

Generate optimized
 program.

Use info about statements
and optimizations related
to failed checks to locate

Fig. 1. The comparison checking system.

If the semantic behaviors are the same and correct with respect to the
source program, the optimized program can be run with high confidence. On
the other hand, if the semantic behaviors differ, the comparison checker dis-
plays the statements responsible for the differences and the optimizations ap-
plied to these statements. Our approach to checking allows the system to
locate the earliest point where the unoptimized and optimized programs differ
in their semantic behavior with respect to the source program. For example,
the checker detects the earliest point during execution when corresponding
source level statement instances should but do not compute the same values.
Therefore, the checker can detect statements that are incorrectly optimized
and subsequently compute incorrect values. The optimizer writer can use
this information to locate the incorrect code in the optimized program and
determine what transformation(s) produced the incorrect code.
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Fig. 2. Phased comparison checking.

The application of comparison checking can be performed in several phases.
For example, as illustrated in Figure 2, the optimization task can be divided
into three phases: high level transformation, low level optimizations, and
global register allocation. In each comparison checking step, a pair of pro-
gram versions is compared to determine whether a given optimization phase
preserves the program’s semantics. If comparison checking fails, this approach
focuses the attention of the optimizer writer on the part that contains a bug.
If we simply compare the unoptimized and fully optimized programs, and
comparison checking fails, the optimizer writer must consider all three parts
of the optimizer as possible sources of error.

The remainder of this paper is organized as follows. In section 2 we describe
the comparison checking scheme that handles loop transformations as well as
low level code optimizations. In section 3 we present an overview of our
comparison checking scheme for global register allocation. In section 4 we
present some experimental results. We comparing our approach with related
work in section 5 and conclude in section 6.

2 Loop Transformations and Code Optimizations

Our approach handles code optimized using a large class of code optimiza-
tions that can be characterized in terms of their effect on the program code as
follows. The transformations may alter the relative ordering in which values
are computed by the intermediate code statements (e.g., code motion based
partial redundancy and partial dead code elimination), the form of the inter-
mediate code statements (e.g., constant propagation and reassociation), and
the control flow structure using code replication (e.g., function inlining and
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loop unrolling).

To automate comparison checking we must (1) determine which values
computed by both programs need to be compared with each other, (2) deter-
mine where the comparisons are to be performed in the program executions,
and (3) perform the comparisons. To achieve these tasks, the following three
sources of information are utilized:

(1) Mappings. To compare values computed in both the unoptimized and
optimized programs, we need to determine the corresponding statement in-
stances that should compute the same values. A statement instance in the
unoptimized program and a statement instance in the optimized program are
said to correspond if the values computed by the two instances should be the
same and the latter was derived from the former by the application of some
optimizations. Our mappings associate statement instances in the unopti-
mized program and the corresponding statement instances in the optimized
program. In [8], we developed a mapping technique to identify corresponding
statement instances and describe how to generate mappings that support
code optimized with classical optimizations as well as loop transformations.

(2) Annotations. The mappings are used to automatically generate anno-
tations for the unoptimized and optimized programs, which guide the com-
parison checker in comparing corresponding values and addresses. When a
program point in either program version that has annotations is reached, the
actions associated with the annotations at that point are executed by the
comparison checker. Annotations identify program points where comparison
checks or other activities should be performed to enable checking. Break-
points are introduced to extract values and activate annotations associated
with program points in the unoptimized and optimized programs.

(3) Value Pool. Since values to be compared are not always computed in the
same order in the unoptimized and optimized code, a mechanism saves values
that are computed early. These values are saved in a value pool and removed
when no longer needed. Annotations are used to indicate if values should be
saved in the value pool or discarded from the value pool.

Comparison Checking Algorithm

The execution of the unoptimized program drives the checking and the
execution of the optimized program. Therefore, execution begins in the unop-
timized code and proceeds until a breakpoint is reached. Using the annotations
in the unoptimized code, the checker determines if the value computed can be
checked at this point. A breakpoint at a program point in the unoptimized
code that has a comparison check annotation indicates that a value computed
by some statement should be checked. Also, by default, a breakpoint at a
program point in the unoptimized code that has no associated annotation
indicates that the value computed by the most recently executed statement
should be checked. If a value should be checked, the optimized program exe-
cutes until the corresponding value is computed (as indicated by a comparison
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check annotation), at which time the check is performed on the two values.
During the execution of the optimized program, any values that are computed
“early” (i.e., the corresponding value in the unoptimized code has not been
computed yet) are saved in the value pool, as directed by the save annotations.
If a delay comparison check annotation is encountered, indicating the checking
of the value computed by the unoptimized program cannot be performed at
the current point, the value is saved for future checking. The checker continues
to alternate between executions of the unoptimized and optimized programs.
Annotations also indicate when values that were saved for future checking can
finally be checked and when the values can be removed from the value pool.
Values computed by statement instances that are deleted by an optimization
are not checked.

One of the attractive features of comparison checking is that it does not re-
port false positives. This is because it relies upon precise dynamic information.
It may appear that the optimizer can be tested by running the unoptimized
and optimized program versions and comparing their outputs. However, in a
given run, a typical program is expected to compute many intermediate re-
sults that are eventually discarded. Therefore while comparison checking will
detect errors in computing these intermediate results, a simple comparison
of unoptimized and optimized program outputs will fail to detect the same
errors.

An Example

In Figure 3(a), the unoptimized program and the optimized program ver-
sion as well as the annotations are shown. For ease of understanding, the
source level statements shown are simple. The following optimizations were
applied.

• constant propagation - the constant 1 in S1 is propagated, as shown in S2′,
S3′, and S11′.

• copy propagation - the copy M in S6 is propagated, as shown by S7′ and
S10′.

• dead code elimination - S1 and S6 are dead after constant and copy prop-
agation.

• loop invariant code motion - S5 is moved out of the doubly nested loop.
S10 is moved out of the inner loop.

• partial redundancy elimination - S9 is partially redundant with S8.

• partial dead code elimination - S10 is moved out of the outer loop.

Assume all the statements shown are source level statements and loops ex-
ecute for a single iteration. Breakpoints are indicated by circles. Breakpoints
are placed at program points in the unoptimized and optimized code that are
associated with annotations as well as program points in the unoptimized code
where comparison checks should be performed. Given the annotations (dis-
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Fig. 3. Comparison checking scheme example.

played in dotted boxes), we now describe the operations of the checker on this
example. The switching between the unoptimized and optimized program
executions by the checker is illustrated by the traces in Figure 3(b). The
traces include the statements executed as well as the breakpoints (circled)
where annotations are processed. The arrows indicate the switching between
programs.

The annotation Check S with S’ indicates that it is now time to compare the
value computed statement S in the unoptimized code with the corresponding
value computed by statement S’ in the optimized code. If the annotation is
placed immediately following statement S’ in the optimized code, then the
with S’ portion of the annotation is omitted. The annotation Save is used to
save a computed value in the value pool while the annotation Delete is used
to discard a value from the value pool as all checks involving the value have
already been performed. A pair of Delay and Checkable annotations are used
in tandem by the unoptimized code. The Delay annotation indicates that a
value cannot be checked at this point because the optimized code could not
have as yet computed the value while the Checkable annotation indicates that
it should now be possible to check the value.

The unoptimized program starts to execute with S1 and continues exe-
cuting without checking S1, as it was deleted from the optimized program.
After S2 executes, breakpoint 1 is reached and the value computed at S2 can
be checked at this point and so the optimized program executes until Check
S2 is processed, which occurs at breakpoint 2. The values computed by S2
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and S2′ are compared. The unoptimized program resumes execution and the
loop iteration at S3 begins. After S3 executes, breakpoint 3 is reached and
the optimized program executes until Check S3 is processed. Since a num-
ber of comparisons have to be performed using the value computed by S5′,
when breakpoint 4 is reached, the annotation Save S5′ is processed and conse-
quently, the value computed by S5′ is stored in the value pool. The optimized
code continues executing until breakpoint 5, at which time the annotation
Check S3 is processed. The values computed by S3 and S3′ are compared.
S4 then executes and its value is checked. S5 then executes and breakpoint
8 is encountered. The optimized program executes until the value computed
by S5 can be compared, indicated by the annotation Check S5 with S5′ at
breakpoint 9. The value of S5 saved in the value pool is used for the check.
The programs continue executing in a similar manner.

3 Global Register Allocation

In this section, a register allocation checker is developed that can detect errors
in a register allocator implementation and determine the possible cause(s) of
the errors. This checker saves different kinds of information and utilizes a
different set of annotations to track information about the variables that are
assigned to registers and verify that the expected values of these variables are
used throughout the optimized program execution. When a register allocation
technique is implemented incorrectly, the incorrect behavior can include:

• using a wrong register,

• overwriting a live register,

• evicting a value from a register but not saving it for future uses,

• failing to load a value from memory, and

• using a stale value. A stale value of a variable is used in the optimized
program when a value of a variable is computed in a register, but instead of
using the value of the variable in the register, the optimized program uses
the old value in memory.

The register allocation checker can determine when a register allocator ex-
hibits these types of behavior. Consider the unoptimized C program fragment
and its optimized version in Figure 4. Assume the unoptimized program is
correct and the register allocation is turned on. The register allocator assigns
variables x, y, z, and a to registers r3, r1, r4, and r5, respectively, in the
optimized program, and copies the value of y in register r1 to register r2.
Assume the optimized program returns incorrect output. Using the checker,
a difference is detected in the internal behavior of the unoptimized and opti-
mized programs at line 3 in the unoptimized code and line 7 in the optimized
code. The checker indicates that the values used by y in the unoptimized and
optimized programs differ and indicates that r1 is used inconsistently as y was
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evicted from r1 earlier during the execution of the optimized program. The
checker also indicates that the expected value of y is in register r2 and thus,
r2 should have been used instead of r1. The optimizer writer can then use
this information to debug the implementation of register allocation.

3) a = y + y

2) z = x + 5

...

...

Unoptimized Code Optimized Code

2) load r2,2

1) x = 2 * y 1) load r1,y

6) add r4,r3,r1

7) add r5,r1,r1

8) store r5,a

3) mul r3,r1,r2
...

4) move r1,r2

5) load r1,5

...

Fig. 4. Program example for register allocation checking.

The register allocation checking scheme is similar to the comparison check-
ing scheme in that values computed in both the unoptimized and optimized
programs are checked, but the register allocation checking scheme also com-
pares values of variables that are used in both programs and tracks information
about the variables that are assigned to registers throughout the optimized
program execution. This tracking information includes maintaining at each
program point of the execution of the optimized program the

(1) current locations of values of variables,

(2) variables whose memory locations hold stale values,

(3) variables whose values in registers have been evicted, and

(4) variables that are currently assigned to registers.

To achieve these tasks, again mappings and annotations are utilized. The
mappings of the comparison checker are extended to include the correspon-
dences between the uses of variables in the unoptimized and optimized inter-
mediate programs. These mappings are generated before register allocation
is applied because the correspondence between the two program versions is
not changed by the application of register allocation. The mappings capture
only the effects of register allocation and not other optimizations because
the checking is performed on a program before registers are allocated and on
a program after registers are allocated. However, the unoptimized program
can include the application of other optimizations, which are assumed to be
correct. After register allocation is applied and code is generated by the com-
piler, the mappings are used to automatically generate annotations for the
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optimized program, which guide the register allocation checker in comparing
corresponding values and addresses and tracking information about the vari-
ables that are assigned to registers throughout the program execution. When
a targeted program point in the optimized code is reached, the actions associ-
ated with the annotations at that point are executed by the register allocation
checker.

A high level conceptual overview of the register allocation checker algo-
rithm is given in Figure 5. This algorithm is similar to that of the comparison
checker. Breakpoints are used to extract values from the unoptimized and
optimized programs as well as activate annotations. Annotations guide the
actions of the register allocation checker. However, since values that are as-
signed to variables in the optimized code are the values that are tracked and
checked, the execution of the optimized program drives the checking and the
execution of the unoptimized program. Therefore, execution begins in the
optimized code and proceeds until a breakpoint is reached. Depending on
the annotation, the checker may track variables assigned to registers, evicted
variables, and stale variables, and/or determine if a value computed or used
should be checked at the current point of execution of the optimized code.
When a value should be checked, the unoptimized program executes until
the corresponding point of execution is reached, at which time the check is
performed on the two values. The checker continues to alternate between ex-
ecutions of the unoptimized and optimized programs. If the values that are
compared differ, then the checker informs the user of the possible causes of
the difference. Also, as values are tracked, the checker informs the user of
any inconsistencies (e.g., a stale value is loaded, unexpected value is stored
to a memory location, etc.). Once an inconsistency of a value of a variable is
detected, the inconsistency is propagated through the uses of the value.

do
Execute the optimized program and process annotations at breakpoint
if Check annotation then

Execute the unoptimized program until the equivalent execution
point (of the optimized program) is reached
Perform the comparison check
if error then report the error and the cause of the error

if Register Assign annotation or Load annotation or Store annotation
or Register Move annotation then

Update register/variable information
Verify the loaded or stored value is the expected value
Inform user of any inconsistencies

endif
while the optimized program has not finished executing

Fig. 5. Register allocation checker algorithm.
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Annotations

Similar to the comparison checking technique, code annotations guide the
checking of values in the unoptimized and optimized code. Code annotations
are also used to track values of variables. Annotations (1) identify program
points where comparison checks should be performed and (2) indicate what
values of variables/registers should be tracked and checked in the optimized
code. Five types of annotations are needed to implement the register allocation
checking strategy. In the example in Figure 6, which illustrates the same
unoptimized and optimized code example given in Figure 4, annotations are
shown in dotted boxes.

(1) The Check v, r annotation. The check v, r annotation is associated with
a program point p in the optimized code to indicate a check of a value of
variable v in register r is to be performed. The register allocation checker
will execute the unoptimized program until the equivalent program point p
is reached. The corresponding value to be compared is the current value of
v in the optimized code. For example, in Figure 6, a check annotation is
associated with statement S1′ in the optimized code so that the contents of
r1 in the optimized code is compared with the value of y in the unoptimized
code. Check annotations are used to check register loads, stores, uses, and
assignments.

S2) z = x + 5

...

...

S1) x = 2 * y

Load r2

Register move r1,r2
S3) a = y + y

Load r1

S8’) store r5,a Check/Store a,r5

Check/Load y,r1

Check y,r1
Check /Register assign x,r3

Check x,r1
Check/Register assign z,r4

Check y,r1
Check/Register assign a,r5

Unoptimized Code Optimized Code Annotations

...

...

S1’) load r1,y

S2’) load r2,2

S3’) mul r3,r1,r2

S4’) move r1,r2

S5’) load r1,5

S6’) add r4,r3,r1

S7’) add r5,r1,r1

Fig. 6. Annotations example.

(2) The Register assign [v, ] r annotation. The register assign annotation is
associated with a program point in the optimized code to indicate the tracking
information for register r should be updated. The register allocation checker
records that the previous variable assigned to r is evicted. If v is specified,
the register allocation checker updates its information to indicate that r holds
variable v, v is currently stored in r, the memory location of v holds a stale
value, and any other values of v currently in registers are evicted. For example,
in Figure 6, a register assign annotation is associated with statement S3′ in
the optimized code so that the variable x is tracked with register r3 in the
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optimized code.

(3) The Load [v, ] r annotation. The load annotation is associated with a load
instruction in the optimized code and is used to track the load information for
register r. The register allocation checker records that the previous variable
assigned to r is evicted. If v is specified, the register allocation checker records
that r holds variable v, v is currently stored in r, and any other values of v
currently in registers are evicted. Using the tracking information, the checker
checks if the loaded value is stale, and if so, records this information, informs
the user of the stale value of v, and informs the user of the current location of
the expected value of v, if it exists. For example, in Figure 6, a load annotation
is associated with statement S1′ in the optimized code to track and check the
information in register r1.

(4) The Store v, r annotation. The store annotation is associated with a store
instruction in the optimized code to track the store information for register
r. Using the tracking information, the checker checks if r does not hold the
expected value of v, and if so, informs the user that r does not hold the
expected value of v and informs the user of the current location of v, if it
exists. Also, the register allocation checker records that the memory location
of v holds the current value. For example, in Figure 6, a store annotation is
associated with statement S8′.
(5) The Register move r, r′ annotation. The register move annotation is as-
sociated with a move instruction in the optimized code to track the informa-
tion in register r′. The register allocation checker duplicates the information
pertaining to register r for that of register r′. For example, in Figure 6, a
register move annotation is associated with statement S4′ in the optimized
code to track the information in register r2.

Combining Annotations

When a Check annotation is associated with a Store annotation, the
checker checks that the value in the register stored in the memory location of
the variable at a program point in the optimized program matches the value
of the variable at the equivalent program point in the unoptimized program.
If the values do not match, then if the register currently holds the variable,
then the checker informs the user why the value in the optimized code is in-
correct. Either the value is stale, uninitialized, or wrong (possibly because the
correct value was evicted and now the register contains the wrong value that
will be stored). If the register does not currently hold the variable, the checker
informs the user (1) if the expected value of the variable resides in another
register, (2) the last location of the variable, and (3) that either the wrong
register or address was supplied in the instruction, the expected value was
evicted earlier and not saved, or the memory value already has the expected
value (because of an earlier store). A Check annotation associated with a
Load annotation is treated in a similar manner.

When a Check annotation is associated with a Register assign annotation,
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the checker verifies that the value assigned to the register at a program point
in the optimized code matches the value of the variable at the equivalent
program point in the unoptimized code. If the operands were incorrect, the
checker will have already notified the user of the uses that have unexpected
values. Otherwise, incorrect code was generated.

Annotation Placement

Annotations are placed in the optimized program as follows. Using the
mappings, Check/Register assign annotations are placed on every variable
assignment in the optimized code and Check annotations are placed on every
variable use in the optimized code. Next, at every instruction in the opti-
mized code that stores to a register, Register assign annotations are placed,
except at the program points where Check/Register assign annotations have
been placed. At every instruction in the optimized code that loads a vari-
able into a register, Check/Load annotations are placed. At all other load
instructions in the optimized code, Load annotations are placed. Similarly, at
every instruction in the optimized code that stores to a memory location of a
variable, Check/Store annotations are placed. At all other store instructions
in the optimized code, Store annotations are placed. Finally, at every move
instruction in the optimized code, Register move annotations are placed.

4
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2) z = x + 5

Load r2

Register move r1,r2

Load r1

Check/Store a,r5

Check/Load y,r1

Check y,r1
Check /Register assign x,r3

Check x,r1
Check/Register assign z,r4

Check y,r1
Check/Register assign a,r5

Unoptimized Code Optimized Code Annotations

...

...

S1’) load r1,y

S2’) load r2,2

S3’) mul r3,r1,r2

S4’) move r1,r2

S5’) load r1,5

S6’) add r4,r3,r1

S7’) add r5,r1,r1

S8’) store r5,a

1) x = 2 * y

3) a = y + y

Fig. 7. Register allocation checker example.

An Example

Consider the annotated unoptimized and optimized program segments in
Figure 7, which illustrate the same unoptimized and optimized code example
given in Figure 4. Breakpoints are indicated by circles. Annotations are
shown in dotted boxes. The optimized program starts to execute with S1′,
and breakpoint 1 is reached. The checker determines from the annotation
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that the value loaded into register r1 should be compared with the value of y
in the unoptimized code at the equivalent program point in the unoptimized
code. Thus, the unoptimized program executes until breakpoint 2 is reached,
at which time the checker compares the value of y in the unoptimized program
with the value of r1 in the optimized code. If the values are the same, the
checker determines from the Load annotation that information regarding y
and r1 should be tracked. The checker records that r1 now holds the value
of y and that y is currently stored in r1. If y is stored in any other register,
the checker records that y is evicted from these other registers. Also, if the
loaded value is stale, the checker informs the user of the stale value and the
location of the expected value of the variable (if it exists).

The optimized program continues execution and breakpoint 3 is reached.
The checker processes the Load annotation by recording that the latest vari-
able in r2 is now evicted. The optimized and unoptimized programs continue
executing in a similar manner.

Notice that when breakpoint 6 is reached, checker processes the Register move
annotation and records that r2 holds the value of y and y is stored in r2. At
breakpoint 7, the checker processes the Load annotation and records that y is
evicted from r1. At breakpoint 10, the checker processes the Check annotation
by executing the unoptimized program until breakpoint 11 is reached, at which
time the value of y in the unoptimized code is compared with r1. The values
differ and the checker informs the user that y was evicted from r1 and the
expected value of y in the optimized code is in r2.

4 Implementation and Experiments

The Comparison checker for OPtimized code, COP, was implemented, includ-
ing the instruction mapping, annotation placement, and checking. Lcc [7] was
used as the compiler for an application program and was extended to include
a set of optimizations, namely loop invariant code motion, dead code elimi-
nation, partial redundancy elimination, register allocation, copy propagation,
and constant propagation and folding. On average, the optimized code gen-
erated by the optimized lcc executes 16% faster in execution time than the
unoptimized code.

As a program is optimized, mappings are generated. Besides generating
target code, lcc was extended to determine the mappings between the un-
optimized and optimized code, breakpoint information, and annotations that
are derived from the mappings. The code to emit breakpoint information and
annotations is integrated within lcc through library routines. Thus, compi-
lation and optimization of the application program produce the target code
for both the unoptimized program and optimized program as well as auxiliary
files containing breakpoint information and annotations for both the unopti-
mized and optimized programs. These auxiliary files are used by the checker.

13



Jaramillo, Gupta, Soffa

Table 1
Execution times (minutes:seconds).

Source Unoptimized Code Optimized Code COP

length annotated annotated (response

Program (lines) (CPU) (CPU) (CPU) (CPU) (CPU) time)

wc 338 00:00.26 00:02.16 00:00.18 00:01.86 00:30.29 00:53.33

yacc 59 00:01.10 00:06.38 00:00.98 00:05.84 01:06.95 01:34.33

go 28547 00:01.43 00:08.36 00:01.38 00:08.53 01:41.34 02:18.82

m88ksim 1 17939 00:29.62 03:08.15 00:24.92 03:07.39 41:15.92 48:59.29

compress 1 1438 00:00.20 00:02.91 00:00.17 00:02.89 00:52.09 01:22.82

li 1 6916 01:00.25 05:42.39 00:55.15 05:32.32 99:51.17 123:37.67

ijpeg 1 27848 00:22.53 02:35.22 00:20.72 02:33.98 38:32.45 57:30.74

1 Spec95 benchmark test input set was used.

Breakpoints are generated whenever the value of a source level assignment or
a predicate is computed and whenever array and pointer addresses are com-
puted. Breakpoints are also generated to save base addresses for dynamically
allocated storage of structures (e.g., malloc(), free(), etc.). Array addresses
and pointer addresses are compared by actually comparing their offsets from
the closest base addresses collected by the checker. Floating point numbers
are compared by allowing for inexact equality. That is, two floating point
numbers are allowed to differ by a certain small delta [10]. Breakpointing is
implemented using fast breakpoints [9].

Experiments were performed to assess the practicality of COP. The main
concerns were usefulness as well as cost of the comparison checking scheme.
COP was found to be very useful in actually debugging the optimizer imple-
mented for this work. Errors were easily detected and located in the implemen-
tation of the optimizations as well as in the mappings and annotations. When
an unsuccessful comparison between two values was detected, COP indicated
which source level statement computed the value, the optimizations applied
to the statement, and which statements in the unoptimized and optimized
assembly code computed the values.

In terms of cost, the slow downs of the unoptimized and optimized pro-
grams and the speed of the comparison checker are of interest. COP performs
on-the-fly checking during the execution of both programs. Both value and
address comparisons are performed. In the experiments, COP ran on an HP
712/100 and the unoptimized and optimized programs on separate SPARC 5
workstations instead of running all three on the same processor as described
in Section 3. Messages are passed through sockets on a 10 Mb network. A
buffer is used to reduce the number of messages sent between the executing
programs and the checker. Some of the integer Spec95 benchmarks as well as
some smaller test programs were used as test cases.

Table 1 shows the CPU execution times of the unoptimized and optimized
programs with and without annotations. On average, the annotations slowed
down the execution of the unoptimized programs by a factor of 8 and that of
the optimized programs by a factor of 9. The optimized program experiences
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greater overhead than the unoptimized program because more annotations are
added to the optimized program.

Table 1 also shows the CPU and response times of COP. The performance
of COP depends greatly upon the lengths of the execution runs of the pro-
grams. Comparison checking took from a few minutes to a few hours in terms
of CPU and response times. These times are clearly acceptable if comparison
checking is performed off-line (i.e., non-interactively). The performance of
the checker was found to be bounded by the processing platform and speed
of the network. A faster processor and 100 Mb network would considerably
lower these times. In fact, when COP executes on a 333 MHz Pentium Pro
processor, the performance is on average 6 times faster in terms of CPU time.
Access to a faster network was not possible. The pool size was measured dur-
ing experiments and was fairly small. If addresses are not compared, the pool
size contains less than 40 values for each of the programs. If addresses are
compared, then the pool size contains less than 1900 values.

5 Related Work

Not much work has focused on developing tools to help debug optimizers.
Bugfind [1] was developed to help debug optimizers by pinpointing which
functions produce incorrect code. This tool also helps application writers by
compiling each function to its highest level of correct optimization. To achieve
these tasks, functions must be placed in separate files. Boyd and Whalley[2]
developed the vpoiso tool to identify the first transformation during opti-
mization that causes the output of the execution to be incorrect. A graphi-
cal optimization viewer, xvpodb, was developed and allows users to view the
state of the generated instructions before and after each application of trans-
formations. However, if the optimizer writer cannot conclude which specific
instructions in the optimized code produce incorrect results, using xvpodb is
tedious.

More recent work [3,4] statically compares the intermediate form of a pro-
gram before and after a compilation pass and verifies the preservation of the
semantics. This work symbolically evaluates the intermediate forms of the
program and checks that the symbolic evaluations are equivalent. While this
approach validates a program translation for all possible program inputs, it
also detects false alarms that are not necessarily errors. In contrast, compar-
ison checking does not detect false alarms but it only tests the translation
of the program for the inputs on which the the unoptimized and optimized
program versions are run.

Another approach for debugging optimizers is by simply using tools for
debugging optimized code and let the user infer whether the error is in the
source code or the optimizer. Not only does this approach makes the task
of the user much more difficult; in addition, even the most recent works for
debugging optimized code cannot fully report expected values of variables in
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the unoptimized program [11,5,6].

6 Conclusion

In this paper, we presented comparison checking, a technique that is designed
to help optimizers writers debug their optimizers by testing that the unop-
timized and optimized versions of a program have the same semantics with
respect to program inputs. The comparison checking technique uses mappings
and annotations to guide the checking. The mappings are determined as opti-
mizations are performed and thus require that the optimizer writer extend the
optimization implementation to include mappings. The annotations and their
placement are automatically determined from mappings. During checking, if
the semantics of the two versions differ, the checker can pinpoint where the
earliest difference occurs and the optimizations that were involved.

The approach of comparison checking is different from the traditional de-
bugging approach in which the user queries the debugger. The checker works
without any user queries. It is also different from the verification approach
in that the checker, for a given input, uses precise dynamic information to
compare the semantic behaviors. The verification techniques works for any
input but generates false positives. No false positives are generated by the
checker.
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